CIMMYT has several offices in the Americas, including global headquarters in Mexico and a regional office in Colombia. Activities are supported by an additional 140 hectares of stations in diverse agro-ecological zones of Mexico. CIMMYT’s genebank in Mexico stores 27,000 maize and 170,000 wheat seed collections – key to preserving the crop genetic diversity of the region. CIMMYT projects range from developing nutritionally enhanced maize to mapping regional climate change hot spots in Central America. The comprehensive MasAgro project aims to increase wheat production in Mexico by 9 million tons and maize production by 350,000 tons by 2030. CIMMYT promotes regional collaboration and facilitates capacity building for scientists, researchers and technicians.
Simon N. Groot is the winner of the 2019 World Food Prize. With this award, food and agriculture leaders recognize his work to increase vegetable production in more than 60 countries, through the development of high-quality seeds and training programs for farmers.
Groot’s efforts were crucial in leading millions of farmers to become horticulture entrepreneurs, resulting in improved incomes and livelihoods for them, and greater availability of nutritious vegetables for hundreds of millions of consumers.
Like small-town Iowa farm boy Norman Borlaug, Groot comes from a small town in the Netherlands, where he learned the value of seeds at a young age. Both shared the same vision to feed the world and succeeded.
“I think I was born to be a vegetable seedsman.”
– Simon N. Groot
Groot devoted his whole life to the seed and plant breeding industry. After 20 years in the industry in Europe and North America, Groot travelled to southeast Asia at the age of 47 with a vision to set up the region’s first vegetable seed breeding company. Frustrated by the poor quality seeds he found and noticing a total lack of commercial breeding activities in the region, Groot decided to set up his own company, using his own capital, partnering with Benito Domingo, a Philippines local with a passion for seeds and local connections to the traditional seed trade, agriculture industry and universities.
The company, named East-West Seed Company, started out as a small five-hectare farm outside Lipa City, Philippines. Groot brought over well-trained plant breeders from the Netherlands to begin plant breeding and help train locals as breeders and technicians. Groot was the first to introduce commercial vegetable hybrids in tropical Asia: varieties which were high-yielding, fast-growing and resistant to local diseases and stresses. Today, East-West Seed Company has over 973 improved varieties of 60 vegetable crops which are used by more than 20 million farmers across Asia, Africa and Latin America.
Inspired by Borlaug
Groot described meeting Dr. Borlaug at a conference in Indonesia in the late 1980s as “a pivotal moment” for him, writing that “his legacy has continued to serve as an inspiration for everything I have done at East-West Seed.”
In response to being awarded the 2019 World Food Prize, Groot wrote: “Bringing about the ‘Vegetable Revolution’ will be a fitting tribute to the work of Dr. Borlaug.”
The World Food Prize has been referred to as the “Nobel Prize for food and agriculture.” Awarded by the World Food Prize Foundation, it recognizes individuals who have advanced human development by improving the quality, quantity or availability of food in the world. Winners receive $250,000 in prize money.
The World Food Prize was founded in 1986 by Norman Borlaug, recipient of the 1970 Nobel Peace Prize.
CIMMYT colleagues pose for a photo at the 23rd Latin American Maize Reunion. (Photo: Carlos Alfonso Cortes Arredondo/CIMMYT.)
Latin America is the birthplace of maize and home to much of its genetic diversity. Maize is a main staple food across the continent and plays an important role in local culture and gastronomy. However, maize faces many challenges, from climate change related stresses such as drought and heat to emerging pests and diseases. Maize experts, as well as scientists from other key crops, from around the world came together to discuss these challenges and how to solve them at the 23rd Latin American Maize Reunion and 4th Seed Congress, held October 7-10 in Monteria, Colombia.
The reunion began with a welcome address from Luis Narro, a senior maize scientist with the International Maize and Wheat Improvement Center (CIMMYT). Narro thanked participants for coming from throughout the region and discussed the history of the event. “Why are we here today? Because maize is one of the most important crops of this century. This should be both a challenge and incentive for us to continue our work with maize, as it is a crop with huge demand,” he said.
In the inaugural session, Deyanira Barrero, general manager of the Colombian Agricultural Institute (ICA) and Jorge E. Bedoya, president of the Society of Colombian Farmers, highlighted the importance of seeds and strategies to ensure the quality and future of Colombia and Latin America’s agri-food systems.
The event was organized by the Colombian Corporation for Agricultural Research (Agrosavia), the Colombian Seed and Biotechnology Association (Acosemillas), the National Federation of Cereal and Legume Growers (Fenalce), the Latin American maize network, and the International Maize and Wheat Improvement Center (CIMMYT). Four CIMMYT scientists presented at the reunion, sharing their experience with and perspectives on agronomy, seed systems, native maize and strategies to increase resilience to climate change.
Nele Verhulst, senior scientist at CIMMYT, presented on the development of management practices for conservation agriculture as well as post-harvest technologies in Latin America, particularly Mexico and Central America. She emphasized the importance of crop management in maize so that improved seeds can reach their maximum potential in terms of yield and profitability. The seed systems lead for Africa and Latin America with CIMMYT’s Global Maize Program, Arturo Silva, shared his experience in these regions strengthening maize seed systems and working to accelerate variety replacement with newer, better seeds. Terry Molnar, maize breeder at the Center, studies native maize varieties to identify characteristics such as disease resistance that can be used to develop improved maize varieties for smallholder farmers. Kai Sonder, head of CIMMYT’s Geographic Information System (GIS) unit, presented on the potential impact of climate change on global and regional maize production.
The reunion closed with the award session for the winners of the MAIZE Youth Innovators Awards 2019 – Latin America. The awards, an initiative of the CGIAR Research Program on Maize (MAIZE), seek to recognize the contributions of young women and men who are implementing innovations in Latin American maize-based agri-food systems.
Winners of the MAIZE Youth Innovators Awards 2019 – Latin America pose for a photo with their awards. (Photo: Carlos Alfonso Cortes Arredondo/CIMMYT.)
Eduardo Cruz Rojo, Mexico, won in the “Farmer” category for his work using biological control agents to protect maize from fall armyworm. Carlos Barragán and José Esteban Sotelo Mariche, both from Mexico, won in the category of “Change Agent” for their work helping farmers increase their maize yields through inter-cropping and for helping farmers better commercialize their native maize, respectively. In the “Researcher” category, Yésica Chazarreta, from Argentina, won for her research on the effect of maize planting dates on grain filling and drying. Omar Garcilazo Rahme of Mexico was recognized for his work helping farmers grow high-value edible maize fungus in traditional maize production systems. Viviana López Ramírez of Colombia won for her work on bacteriosis in maize, and Lucio Reinoso of Argentina for his contribution to the development of a maize seeder that helps farmers adopt conservation agriculture techniques. In a video message, B.M. Prasanna, director of the CIMMYT global maize program and the CGIAR Research Program on Maize (MAIZE), congratulated the young winners and expressed his hopes that they would inspire other young people to get involved in maize based systems. This was the first time the awards were held in Latin America, following Asia in 2018 and Africa in spring of 2019.
Two additional awards were given at the close of the reunion, one to Alberto Chassiagne, maize seeds systems specialist for Latin America at CIMMYT, who received first place in the scientific poster competition at the reunion for his work “Proposed model to generate seed production technology for maize hybrids”. Another award went to Luis Narro for his contributions to maize in Latin America throughout his career.
The conference was followed by a field day held October 10 at the Agrosavia Turipaná Research Center in Cereté, Colombia. The field day began with a speech by Colombia’s Minister of Agriculture and Rural Development, Andrés Valencia, who discussed the importance of agriculture to his country’s economy as well as plans to increase maize production to decrease reliance on imports. This announcement follows the launch of Maize for Colombia, a strategic plan to help improve maize production in the country while increasing sustainability.
Guillermo Garcia Barrios, a co-author of the study and student at Colegio de Postgraduados in Montecillo, Mexico, with a PHERAstar machine used to validate genetic markers. (Photo: Marcia MacNeil/CIMMYT)
To meet the demand for wheat from a rising and quickly urbanizing population, wheat yields in farmers’ fields must increase by an estimated 1.5% each year through 2030.
Of all the factors that influence yield, grain weight is the trait that is most stable and heritable for use in breeding improved wheat varieties. Breeders measure this by thousand grain weight (TGW).
Over the years, molecular scientists have made efforts to identify genes related to increased TGW, in order to speed up breeding through marker-assisted selection (MAS). Using MAS, breeders can select parents that contain genes related to the traits they are looking for, increasing the likelihood they will be passed on and incorporated in a new variety.
There have been some limited successes in these efforts: in the past years, a few genes related to increased TGW have been cloned, and a set of genetic markers have been determined to be used for MAS. However, the effects of most of these candidate genes have not yet been validated in diverse sets of wheat germplasm throughout the world that represent the full range of global wheat growing environments.
A group of wheat geneticists and molecular breeders from the International Maize and Wheat Improvement Center (CIMMYT) has recently conducted a thorough study to confirm the effects of the favorable alleles reported for these genes on TGW in CIMMYT wheat, and to identify new genetic determinants of this desired trait.
They found some good news and some bad news.
First, the good news: focusing on more than 4,000 lines of CIMMYT wheat germplasm they found 15 haplotype blocks significantly associated with TGW. Four haplotype blocks associated with TGW were also associated with grain yield — a grand prize for breeders, because in general the positive association of grain yield with TGW is less profound and sometimes even negative. However, of the 14 genes that had been previously reported to increase TGW, only one in CIMMYT’s 2015-2016 Elite Yield Trial and two in Wheat Associative Mapping Initiative panel were shown to have significant TGW associations.
Wheat grains prepared for placement in a Thousand Grain Weight machine. (Photo: Marcia MacNeil/CIMMYT)
The scientists also found that the alleles — pairs of genes on a chromosome that determine heredity — that were supposedly favorable to TGW actually decreased it. These candidate genes also appear to vary in their TGW effects with genetic background and/or environment.
Thus, these findings also provide a foundation for more detailed investigations, opening the door for more studies on the genetic background dependence and environment sensitivity of the known candidate genes for TGW.
“Our findings indicate that it will be challenging to use MAS based on these existing markers across individual breeding programs,” said Deepmala Sehgal, CIMMYT wheat geneticist and the primary author of the study.
However, efforts to identify new genetic determinants of TGW were promising. The authors’ study of CIMMYT germplasm found one locus on chromosome 6A that showed increases of up to 2.60 grams in TGW and up to 258 kilograms per hectare in grain yield.
Thousand Grain Weight is measured in this machine at CIMMYT’s global headquarters in Texcoco, Mexico. (Photo: Marcia MacNeil/CIMMYT)
This discovery expands opportunities for developing diagnostic markers to assist in multi-gene pyramiding — a process that can derive new and complementary allele combinations for enhanced wheat TGW and grain yield.
Most of all, the study highlights the strong need for better and more validation of the genes related to this and other traits, so that breeders can be sure they are using material that is confirmed to increase wheat grain weight and genetic yield.
“Our findings are very promising for future efforts to efficiently develop more productive wheat in both grain weight and grain yield,” said Sehgal. “This ultimately means more bread on household tables throughout the world.”
“Validation of Candidate Gene-Based Markers and Identification of Novel Loci for Thousand-Grain Weight in Spring Bread Wheat” in Frontiers in Plant Science by Deepmala Sehgal, Suchismita Mondal, Carlos Guzman, Guillermo Garcia Barrios, Carolina Franco, Ravi Singh and Susanne Dreisigacker was supported by funding from the CGIAR Research Program on Wheat (WHEAT), the Delivering Genetic Gain in Wheat (DGGW) project funded by the Bill & Melinda Gates Foundation and the UK Department for International Development (DFID), and the US Agency for International Development (USAID) Feed the Future Innovation Lab for Applied Wheat Genomics.
The CGIAR Research Program on Maize (MAIZE) is pleased to announce the winners of the 2019 MAIZE Youth Innovators Awards – Latin America. These awards recognize the contributions of young women and men under 35 who are implementing innovations in Latin American maize-based agri-food systems, including research for development, seed systems, agribusiness, and sustainable intensification.
The winners will attend the 23rd Latin American Maize Reunion (XXIII Reunión Latinoamericana del Maíz) in Monteria, Colombia, where they will receive their awards and present their work. Award recipients may also get the opportunity to collaborate with MAIZE and its partner scientists in Latin America on implementing or furthering their innovations.
This is the third instalment of the awards, following Asia in October 2018 and Africa in May 2019.
Congratulations to this year’s winners, seven exceptional young people working in Latin American maize-based systems:
Eduardo Cruz Rojo.
Eduardo Cruz Rojo (Mexico) – Farmer category
Eduardo Cruz Rojo is a young agricultural entrepreneur, worried about rural out-migration in his region and about the poor agricultural practices that have led farming to cease to be profitable. He has a degree in logistics, and is originally from Alfajayucan, in Mexico’s state of Hidalgo. For the past four years he has been working on maize research and production, with a focus on improved agronomic practices that help farmers increase their yields. This includes soil improvement, organic fertilizers, earthworm compost and biological pest control. Through research and testing, he has shown smallholder farmers the cost-benefit of improved agricultural practices. This has been reflected in local farmers achieving improved soils and yields in an environmentally friendly manner.
Yésica Chazarreta has a degree in genetics and is currently a doctoral fellow at the Scientific and Technologic Fund, working with the Crop Ecophysiology group at the National Agricultural Technology Institute (INTA) Pergamino in Buenos Aires, Argentina. Her work centers on understanding the genetic and environmental control of the physiological determinants of filling, drying and quality of maize grains in genotypes destined for grain or silage. The objective is to generate knowledge to continue advancing in maize production improvement and to open the possibility of establishing improvement programs differentiated by planting times for her region, as well as to provide valuable information for the creation of mechanistic models to predict the evolution of humidity in maize grains. This information can help farmers make more informed decisions about the best time to harvest. In addition, Chazarreta hopes to deepen understanding of maize biomass quality for animal feed, a practice that has increased in her native country, Argentina, due to changes in crop management practices related to delays in planting dates.
Omar Garcilazo Rahme is a postgraduate student researching sustainable management of agro-ecosystems at the Meritorious Autonomous University of Puebla (BUAP).
A food engineer by training, he has a profound interest in Mexico’s bio-cultural heritage and maize as a staple food in his native country, as well as the various methods to produce and conserve the crop. His research project seeks to improve the economic, nutritious and sociocultural benefits associated with the production of maize.
He is currently collaborating in a technology transfer and innovation agency on the topics of nutritional labeling, big data and applied technology solutions for the agri-food industry.
Lucio Reinoso.
Lucio Reinoso (Argentina) – Researcher category
Lucio Reinoso is an agronomist with a master’s degree in agricultural sciences from the National Southern University, Argentina. He has worked as a professor at the National University of Rio Negro since 2019. Reinoso was a fellow and researcher for 12 years at the National Institute for Agricultural Technology (INTA).
He works on sustainable models of maize production under irrigation in the irrigated valleys of Northern Patagonia, Argentina. Reinoso is specifically investigating the adaptation of maize to the soil and climatic conditions of the region, highlighting the water and nutritional needs to maximize production while also caring for the environment.
He works with local farmers to adapt no-till farming to scale and adjust irrigation management to improve water use efficiency while preserving the physical, chemical and biological characteristics of soil, increasing resilience.
Viviana López Ramírez is a biological engineer with a master’s degree in environmental studies from the National University of Colombia in Medellin.
She is currently a doctoral student in biological sciences at the National University in Río Cuarto, Argentina, studying the application of bacteriocins for the biological control of phytopathogens.
This work on bacteriosis in maize is conducted by a multidisciplinary team and focuses on the identification of pathogenic bacteria isolated from a diverse maize population.
José Esteban Sotelo Mariche.
José Esteban Sotelo Mariche (Mexico) – Change Agent category
José Esteban Sotelo Mariche is an agronomist from the coastal region of Oaxaca, Mexico. He studied at Chapingo Autonomous University and is certified in rural development and food security.
Since 2012 he has offered capacity building to smallholder maize farmers in his region. In 2014 he formed Integradora Agroempresarial del Rio Verde to promote the production and commercialization of agricultural products. The group now has 80 members, including indigenous and Afro-Mexican farmers. In 2016 he began working with tortilla company Masienda to help local farmers export native maize to gourmet restaurants in the United States.
Most recently he has worked on the integration of the Center for Rural Technology Transfer and Validation (Centro de Validación y Transferencia de Tecnología Rural) to evaluate conservation agriculture systems, efficient water use and agroforestry. This space also serves to provide training activities and technical assistance to local farmers.
Carlos Barragan.
Carlos Barragan (Mexico) – Change Agent category
Carlos Barragan has a degree in agroecological engineering from Chapingo Autonomous University.
He collaborates with the MasAgro project in Mexico’s state of Oaxaca, helping to adapt small-scale production systems to climate change.
He also contributes to work on soil fertility as well as inclusive business models for smallholder farmers working in agri-food value chains.
Mexican and international researchers have joined with farmers and specialists from Jala, a scenic valley near the Pacific Coast of Mexico’s state of Nayarit, in a critical strategy to save and study an endangered, legendary maize race whose ears once grew longer than a man’s forearm.
Specialists from the International Maize and Wheat Improvement Center (CIMMYT) are analyzing the race’s genetic diversity, in hopes of preserving its qualities and, in concert with Jala farmers, safeguarding its future and merits.
Efforts include a new maize festival that reprises a yearly contest begun in 1981 to honor the community’s largest maize ear, but the outsize Jala maize race faces myriad hurdles to survive, according to Carolina Camacho, CIMMYT socioeconomics researcher and festival collaborator.
“The Jala maize landrace is unsuited to mechanization due to its size and agronomic requirements,” said Camacho. “It must be sown by hand and, because the plant can grow to several meters or taller, the ears must be harvested on horseback.”
Jala maize is also losing out to more competitive and profitable improved varieties, Camacho added. It is prized locally for its floury texture, but many farmers favor varieties more suited to milling and which yield more husks — in high demand as tamale wraps — as well as fodder and feed. The floury texture also means the grain is less dense and so fetches a lower price on external markets, where grain is sold by weight.
Youth panel discussion at the Feria de la Mazorca del Maize Nativo with Carolina Camacho, CIMMYT (third from right). (Photo: Denise Costich/CIMMYT)
A fair fight for preservation
The most recent “Feria de la Mazorca del Maíz Nativo,” or Landrace Maize Ear Festival, was held in December 2018. Under the boughs of a giant guanacaste tree in the town square of Coapan, Jala Valley, children, elders, cooks and dancers celebrated maize and its associated traditions. The festival culminated in the contest for the largest maize ear, with the winning farmer’s submission measuring nearly 38 centimeters in length.
The competition typically takes place in August as part of Jala’s two-week “Feria del Elote,” or green ear festival, first established to foster the appreciation and preservation of the native maize.
CIMMYT scientists helped the community set up a local genebank to store Jala landrace seed, according to Denise Costich, head of the CIMMYT maize germplasm bank and festival collaborator.
“This enhances the community’s role as custodians of landrace diversity and their access to the seed,” said Costich, adding that Jala seed from as far back as the early 1980s forms part of CIMMYT’s maize collections, which comprise 28,000 unique samples.
Under CIMMYT’s Seeds of Discovery project, scientists are analyzing the remaining genetic potential in the Jala maize population, particularly to understand the extent and effects of both inbreeding and outcrossing.
On the one hand, Costich said, Jala’s unique genetic pedigree appears to be diluted from mixing with other varieties in the valley whose pollen lands on Jala silks. At the same time, she worries about possible inbreeding in some small and isolated valley pockets where Jala is grown.
Finally, the yearly contest, for which maize ears are harvested in the green stage before maturity, precludes use of the grain as seed and so may also remove inheritable potential for large ears from the local maize gene pool.
Farewell to small-scale farmers?
Setting up the contest entries in Coapan: (l-r) Cristian Zavala of the CIMMYT maize genebank recording data; Rafael Mier from Fundacion Tortillas de Maiz Mexicana; Victor Vidal, INIFAP collaborator and judge of the contest; and Alfredo Segundo of the CIMMYT maize genebank. (Photo: Denise Costich/CIMMYT)
Whatever the causes, Jala maize isn’t what it used to be. In 1924, a visiting scientist observed maize plants over 6 meters in height and with ears more than 60 centimeters long — far longer than today’s samples.
One grave challenge to the landrace’s continued existence is the steady disappearance of older farmers who grow it. As throughout rural Mexico, many youths are leaving farm communities like Jala in search of better opportunities and livelihoods in cities.
Camacho believes the festival and contest encourage farmers to continue growing Jala maize but cannot alone ensure the landrace’s preservation.
“The solutions need to encompass all aspects of Jala maize and be supported by the entire community, particularly young people,” said Camacho.
The festival in Coapan included a panel discussion with local youths, among them graduate students from the Autonomous University of Nayarit.
“The panelists highlighted the lack of opportunities in rural areas and the need for an economically secure future; things that Jala maize doesn’t offer,” Camacho said.
The festival is a collaboration among Costich, Camacho, Victor Vidal of INIFAP-Nayarit, and local partners including Gilberto González, Ricardo Cambero, Alondra Maldonado, Ismael Elías, Renato Olmedo (CIMMYT), and Miguel González Lomelí.
William Penn University’s Health & Life Sciences Division welcomed students, staff, faculty, and community members at the annual World Food Prize lecture on Wednesday, Oct. 16.
This year’s speaker was Bram Govaerts, the global Director Innovative Business Strategies with CIMMYT. Read more here.
Ricardo Curiel Martinez is responsible for drafting and disseminating content about CIMMYT’s main activities and projects in Mexico and Latin America. He is the main contact for the media in the region, and coordinates public events organized in collaboration with public and private sector funders and partners.
Surveyors in Mexico collect data from farmers. (Photo: CIMMYT)
CIMMYT’s projects in Latin America feature in a new report that aims to help countries use data to design public policies and projects that help achieve the Sustainable Development Goals (SDGs) by 2030.
The Counting on The World to Act report was released on September 23, 2019, by the Sustainable Development Solutions Network (SDSN) and the Thematic Research Network on Data and Statistics (TReNDS) during the 74th session of the United Nations General Assembly (UNGA 74) in New York City.
The report describes CIMMYT’s data management systems and tools as examples of “frontier technologies” for data gathering, management and analysis that effectively contribute to sustainable farming in Colombia, Guatemala and Mexico.
“As part of the data revolution, efficiencies are being derived from lower-tech approaches such as using citizen-generated data and smartphones to speed up existing survey-based approaches,” reads the introduction to CIMMYT’s sidebar story in Chapter 4, Incentives for Innovation.
The MasAgro Electronic Log that field technicians use to monitor crop cycles and management practices, and the AgroTutor application that offers farmers more specific and timely recommendations are some of the new affordable tools for data management that CIMMYT is successfully implementing in Latin America.
In the early 20th century, Aaron Aaronsohn, a prominent agronomist best known for identifying the progenitor of wheat, began looking for durum wheat landraces in Israel. He traveled to villages across the country, carefully collecting and recording details of the local varieties used in each area.
This task was not without purpose. Aaronsohn recognized that as increasing numbers of settlers like himself came to the territory, the varietal change from the introduction of new and competitive wheat varieties and the rapid intensification of agriculture would soon cause all the traditional structures he had identified to disappear.
Aaronsohn was one of the first to begin collecting germplasm in the region, but others saw the importance of collecting before large-scale change occurred. For example, Russian botanist Nikolai Vavilov gathered samples from Israel on one of his expeditions through the Middle East. By the end of the century, a number of collections had been established, but overall efforts at conservation were fragmented.
“That’s why we say the collection was on the verge of extinction,” explains Roi Ben-David, a researcher at the Volcani Center, Israel’s Agricultural Research Institute (ARO). “There were single accessions in genebanks around the world but no one really gave them special treatment or saw their value. Many were in private collections; others were simply lost.”
When Ben-David and his colleagues began looking for landraces six years ago, even the collection housed at the Israeli Genebank (IGB) was disappointing, with many samples stored in unmarked boxes in sub-optimal conditions. “When we came in nobody was really trying to study what we had and put it together to represent the area’s wheat landscape as it was 100 years ago.”
Long-term efforts to restore and conserve a collection of Israeli and Palestinian wheat landraces (IPLR) have led to the restoration of 930 lines so far, but there are many varieties that cannot be recovered. Therefore, it came as a great surprise to Ben-David when he arrived at the International Maize and Wheat Improvement Center (CIMMYT) headquarters in Mexico and stumbled upon one of the collections presumed lost. “I think it was actually my first week at CIMMYT when I spotted a demonstration plot growing one of the lost varieties — a subset of the Ephrat-Blum collection — and I couldn’t believe it.”
He had heard about this collection from the late Abraham Blum, but had never been able to locate it. “Someone might have moved the seeds, or maybe the box was not well labelled and thrown out. We don’t know, but needless to say it was a very good surprise to rediscover 64 of our missing lines.”
What prompted you and your colleagues to start looking for landraces in Israel?
We began because we recognized local landraces are good genetic resources but unfortunately, we couldn’t find any. It wasn’t so much that they didn’t exist, but the accessions were scattered across the world, mostly in private collections in countries like the USA or Australia. The Israeli Genebank, which sits only two floors above my office, had a few buckets of germplasm but nobody really knew what was inside.
The Middle East and the Fertile Crescent are centers of diversity, not only for wheat but for all crops that were part of the Neolithic revolution 10,000 years ago. They started here – the exact point of origin was probably in what is now southeast Turkey – so we have had thousands of years of evolution in which those landraces dominated the agricultural landscape and adapted to different environments.
Why do you think so much of the collection was lost?
The lines from Israel were lost because their conservation simply wasn’t prioritized. Losses happen everywhere but what was missing in this case was the urgency and understanding of just how important these collections are. Luckily, the current manager of the IGB, who is a fundamental partner in building the IPLR, understood the need to prioritize this and allocated a budget to conserve it as one collection.
What is the value of conserving landraces and why should it be prioritized?
Landraces are an extremely important genetic resource. Wild relatives are the biggest treasure, but breeders are usually reluctant to use them because they are so very different from modern varieties. So landraces form the link between these two, having already been domesticated and developed within farming systems while remaining genetically distinct from the modern. In wheat, they’re quite easy to spot because of how tall they are compared to the semi-dwarf varieties that replaced them in the 20th century.
There are two main reasons why we need to prioritize conservation. First, we believe that the evolution under domestication in this region is important to the community as a whole. Second, it is now a critical time, as we’re getting further from the time in which those traditional lines were in use. The last collection was carried out in the 1980s, when people were still able to collect authentic landraces from farmers but this is just not possible any more. We travelled all over the country but the samples we collected were not authentic – most were modern varieties that farmers thought were traditional. Not everybody knows exactly what they’re growing.
The time factor is critical. If we were to wake up 50 years from now and decide that it’s important to start looking for landraces, I don’t know how much we could actually save.
Are there any farmers still growing landraces in Israel?
When we started looking for farmers who are still growing landraces we only found one farm. It is quite small – only about ten acres shared between two brothers. They grow a variety which is typically used to make a traditional food called kube, a kind of meat ball covered in flour and then then either fried or boiled. If you boil it using regular flour it falls apart, so people prefer to use a landrace variety, which is what the brothers grow and are able to sell for up to six times as much as regular durum wheat in the market. However, they’re not really interested in getting rich; they’re just trying to keep their traditions alive.
How are you and your colleagues working to conserve the existing collection?
There are two approaches. We want to develop is ex-situ conservations to preserve the diversity. As landraces are not always easy to conserve in a genebank, we also want to support in-situ conservation in the field, like traditional farmers have done. Together with the IGB we’ve distributed seed to botanical gardens and other actors in the hope that at least some of them will propagate it in their fields.
Having established the collection, we’re also trying to utilize it for research and breeding as much as possible. So far we’ve characterized it genetically, tested for drought tolerance and other agronomic traits and we’re in talks to start testing the quality profile of the lines.
Did you continue working on this while you were based at CIMMYT?
Yes, this was an additional project I brought with me during my sabbatical. The main success was working with Carolina Sansaloni and the team at the Genetic Resources program to carry out the genotyping. If it were left to my own resources, I don’t think we could have done it as the collection contains 930 plant genotypes and we only had the budget to do 90.
Luckily, CIMMYT also has an interest in the material so we could collaborate. We brought the material, CIMMYT provided technical support and we were able to genotype it all, which is a huge boost for the project. We had already been measuring phenotypes in Israel, but now that we have all the genetic data as well we can study the collection more deeply and start looking for specific genes of interest.
What will happen to the lines you discovered at CIMMYT?
They’ve been sent back to Israel to be reintegrated into the collection. I want to continue collaborating with people in CIMMYT’s Genetic Resources program and genebank to do some comparative genomics and assess how much diversity we have in the IPLR collection compared with what CIMMYT has. Is there any additional genetic diversity? How does it compare to other landraces collections? That is what we want to find out next.
Roi Ben-David is based at Israel’s Agricultural Research Organization (ARO). He works in the Plant Institute, where his lab focuses on breeding winter cereals such as wheat. He has recently completed a one-year sabbatical placement at the International Maize and Wheat Improvement Center (CIMMYT).
CIMMYT’s germplasm banks contain the largest and most diverse collections of maize and wheat in the world. Improved and conserved seed is available to any research institution worldwide.
Maximino Alcalá de Stefano working at CIMMYT’s wheat international nurseries. (Photo: CIMMYT)
The International Maize and Wheat Improvement Center (CIMMYT) sadly notes the passing of Maximino Alcalá de Stefano, former head of the center’s Wheat International Nurseries service, on August 27. He was 80 years old.
Fondly known as “Max” by friends and colleagues, Alcalá worked at CIMMYT from 1967 to 1992, coordinating wheat international nurseries during the late 1960s and early 1970s. The job included organizing nursery shipments to over 100 partners worldwide each year and collating, analyzing, and sharing results from the nurseries grown.
Maximino Alcalá de Stefano passed away at the age of 80 in Houston, Texas, USA. (Photo: Alcalá family)
The printed international nursery report featured an introductory section that described the nurseries, the locations, the statistical analyses used, and an overview of the performance of the breeding lines tested, which comprised the best CIMMYT materials but also germplasm from other sources. The report also carried tables with full data from each location as well as summary tables.
“Max was instrumental in preparing and distributing the printed nursery results, now made available online but which continue to provide crucial input for breeding by CIMMYT and partners,” said Hans-Joachim Braun, director of CIMMYT’s Global Wheat Program. “He also helped start the international nursery database.”
A native of Mexico, Alcalá completed a bachelor’s in Science at the Universidad Autónoma Agraria Antonio Narro in 1964 and a master’s at Texas A&M University in 1967. Alcalá pursued doctoral studies in wheat breeding at Oregon State University under the guidance of renowned OSU researcher Warren E. Kronstad, finishing in 1974.
Maximino Alcalá de Stefano (second from right) worked closely with Nobel Prize winner Norman Borlaug (third from left). In the photo, a group of CIMMYT Scientists during a visit to Nepal in 1978. (Photo: CIMMYT)
His professional experience prior to CIMMYT included appointments at Mexico’s National Institute of Agricultural Research (INIA) and in the national extension services.
Later in his career, Alcalá supported wheat training at CIMMYT and helped coordinate visitors services at CIMMYT’s experimental station near Ciudad Obregón, in Mexico’s Sonora state.
The CIMMYT community sends its deepest sympathies and wishes for peace to the Alcalá family.
A diverse group of agriculture, food security, environment and science journalists gathered in Saskatoon, Canada recently for an intensive course in innovative wheat research, interviews with top international scientists and networking with peers.
The occasion was the International Wheat Congress (IWC), which convened more than 900 wheat scientists and researchers in Saskatoon, in Canada’s biggest wheat-growing province, Saskatchewan, to discuss their latest work to boost wheat productivity, resilience and nutrition.
Martin Kropff (right), Director General of the International Maize and Wheat Improvement Center (CIMMYT), speaks to the press at the International Wheat Congress. (Photo: Marcia MacNeil/CIMMYT)
The seven journalists were part of a group of 11 who won a competitive sponsorship offered by the CGIAR Research Program on Wheat (WHEAT). Seven journalists attended the conference, while another four followed the proceedings and activities from home. The ten-day immersive training included multiple daily press briefings with top scientists in climate change modeling and resilience testing, innovative breeding techniques, analysis and protection of wheat diversity and many more topics, on top of a full schedule of scientific presentations.
“The scientists were so eager to talk to us, and patient with our many questions,” said Nkechi Isaac, from the Leadership newspaper group in Nigeria. “Even the director general of [the International Maize and Wheat Improvement Center] CIMMYT spoke with us for almost an hour.”
“It was a pleasant surprise for me.”
The journalists, who come from regions as diverse as sub-Saharan Africa and East Asia, offered support and encouragement from their travel preparations though their time in Saskatoon and beyond — sharing story ideas, interview and site visit opportunities, news clips and photos through a WhatsApp group.
Linda McCandless (center) of Cornell University and David Hodson (left) of CIMMYT were among the panelists sharing tips on wheat news coverage at the journalist roundtable. (Photo: Matt Hayes/Cornell)
“It is really helpful to be connected to colleagues around the world,” said Amit Bhattacharya of the Times of India. “I know we will continue to be a resource and network for each other through our careers.”
The week wasn’t all interviews and note-taking. The journalists were able to experience Saskatchewan culture, from a tour of a wheat quality lab and a First Nations dance performance to a visit to a local wheat farm, and even an opportunity to see Saskatoon’s newest modern art gallery.
The media sponsorship at IWC aimed to encourage informed coverage of the importance of wheat research, especially for farmers and consumers in the Global South, where wheat is the main source of protein and a critical source of life for 2.5 billion people who live on less than $2 a day.
The group also spoke with members of the many coalitions that facilitate the collaboration that makes innovative wheat research possible, including the International Wheat Yield Partnership (IWYP), the Heat and Drought Wheat Improvement Consortium (HeDWIC) and the G20-organized Wheat Initiative.
“This is the first time we’ve invested this heavily in journalist training,” said WHEAT program director Hans Braun. “We think the benefits – for the journalists, who gained a greater understanding of wheat research issues, and for developing country audiences, who will be more aware of the importance of improving wheat –– are worth it.”
Lominda Afedraru (center) from Uganda’s Daily Monitor shares her experience covering science with participants at the journalist roundtable. (Photo: Marcia MacNeil/CIMMYT)
A roundtable discussion with peers from Canadian news organizations and seasoned science communications professionals and a networking breakfast with CIMMYT scientists provided platforms for a candid exchange on the challenges and opportunities in communicating wheat science in the media.
A common refrain was the importance of building relationships between scientists and media professionals – because wheat science offers dramatic stories for news audiences, and an informed and interested public can in turn lead to greater public investment in wheat science. The journalists and scientists in Saskatoon have laid a solid foundation for these relationships.
The sponsored journalists are:
Amit Bhattacharya: Senior Editor at The Times of India, New Delhi, and a member of the team that produces the front page of India’s largest English daily. He writes on Indian agriculture, climate change, the monsoon, weather, wildlife and science. A 26-year professional journalist in India, he is a Jefferson Fellow on climate change at the East-West Center, Hawaii.
Emmanuelle Landais: Freelance journalist based in Dakar, Senegal, currently reporting for Deutsche Welle’s radio service in English and French on the environment, technology, development and youth in Africa. A former line producer for France 24 in Paris and senior environment reporter for the daily national English newspaper Gulf News in Dubai, she also reports on current affairs for the Africalink news program, contributes to Radio France International’s (RFI) English service, and serves as news producer for the Dakar-based West Africa Democracy Radio.
Julien Chongwang: Deputy Editor, SciDev.Net French edition. He is based in Douala, Cameroon, where he has been a journalist since 2002. Formerly the editor of the The Daily Economy, he worked on the French edition of Voice of America and Morocco economic daily LES ECO, and writes for Forbes Africa, the French edition of Forbes in the United States.
Lominda Afedraru: Science correspondent at the Daily Monitor newspaper, Uganda, part of the Nation Media Group. A journalist since 2004, she also freelances for publications in the United States, UK, Kenya and Nigeria among others and has received fellowships at the World Federation of Science Journalists, Biosciences for Farming in Africa courtesy of University of Cambridge UK and Environmental Journalism Reporting at Sauti University, Tanzania.
Muhammad Amin Ahmed: Senior Correspondent, Daily Dawn in Islamabad, Pakistan. He has been a journalist for more than 40 years. Past experience includes working at the United Nations in New York and Pakistan Press International. He received a UN-21 Award from former U.N. Secretary General Kofi Annan (2003).
Muhammad Irtaza: Special Correspondent with Pakistan’s English daily The Nation at Multan. A 10-year veteran journalist and an alumnus of the Reuters Foundation, he also worked as a reporter with the Evansville Courier and Press in Indiana, United States. He is an ICFJ-WHO Safety 2018 Fellow (Bangkok), Asia Europe Foundation Fellow (Brussels), and a U.S.-Pakistan Professional Partnership in Journalism Program Fellow (Washington). He teaches mass communications at Bahauddin Zakariya University Multan.
Nkechi Isaac: Deputy Editor, Leadership Friday in Nigeria. She is also the head, Science and Technology Desk of the Leadership Group Limited, publishers of LEADERSHIP newspapers headquartered in Abuja, Nigeria. She is a Fellow of Cornell University’s Alliance for Science.
Reaz Ahmad: Executive Editor of the Dhaka Tribune, Bangladesh’s national English newspaper. A journalist for 30 years, he is a Cochran Fellow of the U.S. Department of Agriculture and an adjunct professor of University of Dhaka (DU) and Independent University, Bangladesh.
Rehab Abdalmohsen: Freelance science journalist based in Cairo, Egypt who has covered science, health and environment for 10 years for such websites as the Arabic version of Scientific American, SciDev.net, and The Niles.
Tan Yihong: Executive Deputy Editor-in-Chief, High-Tech & Commercialization Magazine, China. Since 2008, she has written about science particularly agriculture innovation and wheat science. She has attended several Borlaug Global Rust Initiative (BGRI) Technical Workshops. In Beijing, she helped organize a BGRI communication workshop and media outreach.
Tony Iyare: Senior Correspondent, Nigerian Democratic Report. For more than 30 years, he has covered environment, international relations, gender, media and public communication. He has worked as a stringer for The New York Times since 1992, and freelanced for the Paris-based magazine, The African Report and the U.N. Development Programme publication Choices. He was columnist at The Punch and co-authored a book: The 11-Day Siege: Gains and Challenges of Women’s Non-Violent Struggles in Niger Delta.
Nigerian journalist Nkechi Isaac (center) tours a Saskatchewan wheat farm. (Photo: Julie Mollins)
The CGIAR Research Program on Wheat (WHEAT) is led by the International Maize and Wheat Improvement Center (CIMMYT), with the International Center for Agricultural Research in the Dry Areas (ICARDA) as a primary research partner. Funding comes from CGIAR, national governments, foundations, development banks and other agencies, including the Australian Centre for International Agricultural Research (ACIAR), the UK Department for International Development (DFID) and the United States Agency for International Development (USAID).
As many regions worldwide baked under some of the most persistent heatwaves on record, scientists at a major conference in Canada shared data on the impact of spiraling temperatures on wheat.
In the Sonora desert in northwestern Mexico, nighttime temperatures varied 4.4 degrees Celsius between 1981 and 2018, research from the International Maize and Wheat Improvement Center (CIMMYT) shows. Across the world in Siberia, nighttime temperatures rose 2 degrees Celsius between 1988 and 2015, according to Vladimir Shamanin, a professor at Russia’s Omsk State Agrarian University who conducts research with the Kazakhstan-Siberia Network on Spring Wheat Improvement.
“Although field trials across some of the hottest wheat growing environments worldwide have demonstrated that yield losses are in general associated with an increase in average temperatures, minimum temperatures at night — not maximum temperatures — are actually determining the yield loss,” said Gemma Molero, the wheat physiologist at CIMMYT who conducted the research in Sonora, in collaboration with colleague Ivan Ortiz-Monasterio.
“Of the water taken up by the roots, 95% is lost from leaves via transpiration and from this, an average of 12% of the water is lost during the night. One focus of genetic improvement for yield and water-use efficiency for the plant should be to identify traits for adaptation to higher night temperatures,” Molero said, adding that nocturnal transpiration may lead to reductions of up to 50% of available soil moisture in some regions.
Wheat fields at CIMMYT’s experimental station near Ciudad Obregón, Sonora, Mexico. (Photo: M. Ellis/CIMMYT)
Climate challenge
The Intergovernmental Panel on Climate Change (IPCC) reported in October that temperatures may become an average of 1.5 degrees Celsius warmer in the next 11 years. A new IPCC analysis on climate change and land use due for release this week, urges a shift toward reducing meat in diets to help reduce agriculture-related emissions from livestock. Diets could be built around coarse grains, pulses, nuts and seeds instead.
Scientists attending the International Wheat Congress in Saskatoon, the city at the heart of Canada’s western wheat growing province of Saskatchewan, agreed that a major challenge is to develop more nutritious wheat varieties that can produce bigger yields in hotter temperatures.
CIMMYT wheat physiologist Gemma Molero presents at the International Wheat Congress. (Photo: Marcia MacNeil/CIMMYT)
As a staple crop, wheat provides 20% of all human calories consumed worldwide. It is the main source of protein for 2.5 billion people in the Global South. Crop system modeler Senthold Asseng, a professor at the University of Florida and a member of the International Wheat Yield Partnership, was involved in an extensive study in China, India, France, Russia and the United States, which demonstrated that for each degree Celsius in temperature increase, yields decline by 6%, putting food security at risk.
Wheat yields in South Asia could be cut in half due to chronically high temperatures, Molero said. Research conducted by the University of New South Wales, published in Environmental Research Letters also demonstrates that changes in climate accounted for 20 to 49% of yield fluctuations in various crops, including spring wheat. Hot and cold temperature extremes, drought and heavy precipitation accounted for 18 to 4% of the variations.
At CIMMYT, wheat breeders advocate a comprehensive approach that combines conventional, physiological and molecular breeding techniques, as well as good crop management practices that can ameliorate heat shocks. New breeding technologies are making use of wheat landraces and wild grass relatives to add stress adaptive traits into modern wheat – innovative approaches that have led to new heat tolerant varieties being grown by farmers in warmer regions of Pakistan, for example.
More than 800 global experts gathered at the first International Wheat Congress in Saskatoon, Canada, to strategize on ways to meet projected nutritional needs of 60% more people by 2050. (Photo: Matthew Hayes/Cornell University)
Collaborative effort
Matthew Reynolds, a distinguished scientist at CIMMYT, is joint founder of the Heat and Drought Wheat Improvement Consortium (HeDWIC), a coalition of hundreds of scientists and stakeholders from over 30 countries.
“HeDWIC is a pre-breeding program that aims to deliver genetically diverse advanced lines through use of shared germplasm and other technologies,” Reynolds said in Saskatoon. “It’s a knowledge-sharing and training mechanism, and a platform to deliver proofs of concept related to new technologies for adapting wheat to a range of heat and drought stress profiles.”
Aims include reaching agreement across borders and institutions on the most promising research areas to achieve climate resilience, arranging trait research into a rational framework, facilitating translational research and developing a bioinformatics cyber-infrastructure, he said, adding that attracting multi-year funding for international collaborations remains a challenge.
Nitrogen traits
Another area of climate research at CIMMYT involves the development of an affordable alternative to the use of nitrogen fertilizers to reduce planet-warming greenhouse gas emissions. In certain plants, a trait known as biological nitrification inhibition (BNI) allows them to suppress the loss of nitrogen from the soil, improving the efficiency of nitrogen uptake and use by themselves and other plants.
CIMMYT’s director general Martin Kropff speaks at a session of the International Wheat Congress. (Photo: Matthew Hayes/Cornell University)
“Every year, nearly a fifth of the world’s fertilizer is used to grow wheat, yet the crop only uses about 30% of the nitrogen applied, in terms of biomass and harvested grains,” said Victor Kommerell, program manager for the multi-partner CGIAR Research Programs (CRP) on Wheat and Maize led by the International Maize and Wheat Improvement Center.
“BNI has the potential to turn wheat into a highly nitrogen-efficient crop: farmers could save money on fertilizers, and nitrous oxide emissions from wheat farming could be reduced by 30%.”
Excluding changes in land use such as deforestation, annual greenhouse gas emissions from agriculture each year are equivalent to 11% of all emissions from human activities. About 70% of nitrogen applied to crops in fertilizers is either washed away or becomes nitrous oxide, a greenhouse gas 300 times more potent than carbon dioxide, according to Guntur Subbarao, a principal scientist with JIRCAS.
Hans-Joachim Braun, Director of CIMMYT’s Global Wheat Program and the CGIAR Research Program on Wheat, speaks at the International Wheat Congress. (Photo: Marcia MacNeil/CIMMYT)
To exploit this roots-based characteristic, breeders would have to breed this trait into plants, said Searchinger, who presented key findings of the report in Saskatoon, adding that governments and research agencies should increase research funding.
Other climate change mitigation efforts must include revitalizing degraded soils, which affect about a quarter of the planet’s cropland, to help boost crop yields. Conservation agriculture techniques involve retaining crop residues on fields instead of burning and clearing. Direct seeding into soil-with-residue and agroforestry also can play a key role.
Newly formed, non-profit ProMaíz Nativo will promote Mexico’s native corn biodiversity with a front-of-pack logo to help consumers choose sustainably-grown, heirloom varieties. Read more here.
CIMMYT scientist Velu Govindan (right) is interviewed by Michael Condon of ABC Rural at the International Wheat Conference in Sydney, Australia, 2015. (Photo: Julie Mollins/CIMMYT)
In the Green Revolution era, the focus for wheat breeders was on boosting yields to feed more people, but today the challenge is not only to increase production on smaller plots of land, but also to improve nutritional quality, said CIMMYT wheat breeder Velu Govindan, during an interview on BBC Newsday.
SASKATOON, Canada (CIMMYT) — Amid global efforts to intensify the nutritional value and scale of wheat production, scientists from all major wheat growing regions in the world will gather from July 21 to 26, 2019 at the International Wheat Congress in Saskatoon, the city at the heart of Canada’s western wheat growing province, Saskatchewan. The CGIAR Research Program on Wheat (WHEAT), led by the International Maize and Wheat Improvement Center (CIMMYT), is a founding member of the G20 Wheat Initiative, a co-host of the conference.
Wheat provides 20% of all human calories consumed worldwide. In the Global South, it is the main source of protein and a critical source of life for 2.5 billion people who live on less than $2 (C$2.60) a day.
In spite of its key role in combating hunger and malnutrition, the major staple grain faces threats from climate change, variable weather, disease, predators and many other challenges. Wheat’s vital contribution to the human diet and farmer livelihoods makes it central to conversations about the rural environment, agricultural biodiversity and global food security.
More than 800 delegates, including researchers from the CGIAR Research Program on Wheat, CIMMYT, the International Center for Agricultural Research in the Dry Areas (ICARDA), the International Wheat Yield Partnership (IWYP), Cornell University’s Delivering Genetic Gain in Wheat project (DGGW), the University of Saskatchewan and many other organizations worldwide will discuss the latest research on wheat germplasm.
“We must solve a complex puzzle,” said Martin Kropff, CIMMYT’s director general. “Wheat must feed more people while growing sustainably on less land. Wheat demand is predicted to increase 60% in the next three decades, while climate change is putting an unprecedented strain on production.”
“The scientific community is tackling this challenge head-on, through global collaboration, germplasm exchange and innovative approaches. Researchers are looking at wheat’s temperature response mechanisms and using remote sensing, genomics, bio-informatics and other technologies to make wheat more tolerant to heat and drought,” Kropff said.
The congress is the first major gathering of the wheat community since the 2015 International Wheat Conference in Sydney, Australia.
CGIAR and CIMMYT scientists will share the latest findings on:
State-of-the-art approaches for measuring traits to speed breeding for heat and drought tolerance
Breeding durum (pasta) wheat for traits for use in bread products
New sources of diversity — including ancient wheat relatives — to create aphid-resistant wheat and other improved varieties
DNA fingerprinting to help national partners identify gaps in improved variety adoption
For more details on schedule and scientists’ presentations, click here.
Research shows that more than 60% of wheat varietal releases since 1994 were CGIAR-related.
Low- and middle-income countries are the primary focus and biggest beneficiaries of CGIAR wheat research, but high-income countries reap substantial rewards as well. In Canada, three-quarters of the wheat area is sown to CGIAR-related cultivars and in the United States almost 60% of the wheat area was sown to CGIAR-related varieties, according to the research.
WHEN
July 21-26, 2019
The opening ceremony and lectures will take place on
Monday, July 22, 2019 from 08:50 to 10:50 a.m.
CGIAR is a global research partnership for a food secure future dedicated to reducing poverty, enhancing food and nutrition security, and improving natural resources.
About the CGIAR Research Program on Wheat
Joining advanced science with field-level research and extension in lower- and middle-income countries, the Agri-Food Systems CGIAR Research Program on Wheat (WHEAT) works with public and private organizations worldwide to raise the productivity, production and affordable availability of wheat for 2.5 billion resource-poor producers and consumers who depend on the crop as a staple food. WHEAT is led by the International Maize and Wheat Improvement Center (CIMMYT), with the International Center for Agricultural Research in the Dry Areas (ICARDA) as a primary research partner. Funding for WHEAT comes from CGIAR and national governments, foundations, development banks and other public and private agencies, in particular the Australian Centre for International Agricultural Research (ACIAR), the UK Department for International Development (DFID) and the United States Agency for International Development (USAID). www.wheat.org
About CIMMYT
The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of CGIAR and leads the CGIAR Research Programs on Maize and Wheat, and the Excellence in Breeding Platform. The center receives support from national governments, foundations, development banks and other public and private agencies.