Skip to main content

Location: Americas

CIMMYT has several offices in the Americas, including global headquarters in Mexico and a regional office in Colombia. Activities are supported by an additional 140 hectares of stations in diverse agro-ecological zones of Mexico. CIMMYT’s genebank in Mexico stores 27,000 maize and 170,000 wheat seed collections – key to preserving the crop genetic diversity of the region. CIMMYT projects range from developing nutritionally enhanced maize to mapping regional climate change hot spots in Central America. The comprehensive MasAgro project aims to increase wheat production in Mexico by 9 million tons and maize production by 350,000 tons by 2030. CIMMYT promotes regional collaboration and facilitates capacity building for scientists, researchers and technicians.

Out with the old, in with the new

A shop attendant displays drought-tolerant maize seed at the Dryland Seed Company shop in Machakos, Kenya. (Photo: Florence Sipalla/CIMMYT)
A shop attendant displays drought-tolerant maize seed at the Dryland Seed Company shop in Machakos, Kenya. (Photo: Florence Sipalla/CIMMYT)

For several decades, the International Maize and Wheat Improvement Center (CIMMYT) has worked with partners and farmers to improve maize and wheat varieties. Packed with “upgrades” such as tolerance to environmental stresses, tolerance to diseases and pests, boosted nutrient content, higher yield potential and storage capabilities, and improved efficiency in using water and fertilizers, these seeds are rolled out by CIMMYT and its partners to create new opportunities for easier and better lives for farmers.

Together with national research partners, farmers, local governments and seed companies, CIMMYT’s work in seed systems has reaped results. Its experts are eager to put this experience into further action as CGIAR embarks on the next ten years of its journey to transform food, land, and water systems in a climate crisis. And rightly so: investments in CGIAR research — mainly through their contributions to enhancing yields of staple food crops — have returned ten-fold benefits and payoffs for poor people in terms of greater food abundance, lower prices of food, reduced food insecurity and poverty and reduced geographical footprint of agriculture. A large part of this impact is the result of CIMMYT’s day to day efforts to create a better world.

A Bangladeshi woman cuts up feed for her family's livestock. They did not previously have animals, but were able to buy them after her husband, Gopal Mohanta, attended a farmer training from CIMMYT and its partners, which gave him access to better seed, technologies, and practices. Mohanta planted a wider range of crops, and in 2005 he planted maize for the first time, using improved seed based on CIMMYT materials. (Photo: S. Mojumder/Drik/CIMMYT)
A Bangladeshi woman cuts up feed for her family’s livestock. They did not previously have animals, but were able to buy them after her husband, Gopal Mohanta, attended a farmer training from CIMMYT and its partners, which gave him access to better seed, technologies, and practices. Mohanta planted a wider range of crops, and in 2005 he planted maize for the first time, using improved seed based on CIMMYT materials. (Photo: S. Mojumder/Drik/CIMMYT)

Replacing old varieties, not as easy as it sounds

Slow variety turnover — that of more than ten years — makes farmers vulnerable to risks such as climate change and emerging biotic threats. On the other hand, planting improved varieties that match farmers’ needs and the geography they work in, can increase productivity gains and improve the nutritional status of smallholders and their families. This, in turn, contributes to increased household incomes. Indirectly, the benefits can reach the surrounding community by providing increased employment opportunities, wage increases and affordable access to food.

Despite its tremendous benefits, varietal turnover is no small feat.

When it comes to seeds, detailed multi-disciplinary research is behind every new variety and its deployment to farmers. Just as the production of a new snack, beverage or a car requires an in-depth study of what the customer wants, seed systems also must be demand-driven.

Socioeconomists have to work hand-in-hand with breeders and seed system specialists to understand the drivers and bottlenecks for improved varietal adoption, market needs, and gender and social inclusion in seed delivery. Bottlenecks include the lack of access by farmers — especially for resource-poor, socially-excluded ones — to reliable information about the advantages of new varieties. Even if farmers are aware of new varieties, seeds might not be available for sale where they live or they might be too expensive.

Possibly the most complex reason for slow variety turnover is risk vulnerability: some farmers simply can’t afford to take the risk of investing in something that might be good but could also disappoint. At the same time, seed companies also perceive a certain risk: they might not be interested in taking on an improved variety that trumps the seeds from older but more popular varieties they have on stock. For them, building and marketing a new brand of seeds requires significant investments.

Agricultural seed on sale by a vendor near Islamabad, Pakistan. For improved crop varieties to reach farmers, they usually must first reach local vendors like these, who form an essential link in the chain between researchers, seed producers and farmers. (Photo: M. DeFreese/CIMMYT)
Agricultural seed on sale by a vendor near Islamabad, Pakistan. For improved crop varieties to reach farmers, they usually must first reach local vendors like these, who form an essential link in the chain between researchers, seed producers and farmers. (Photo: M. DeFreese/CIMMYT)

New approaches are yielding results

Despite the complexity of the challenge, CIMMYT has been making progress, especially in Africa where slow variety turnover is creating roadblocks for increased food security and poverty alleviation.

Recent analysis of the weighted average age of CIMMYT-related improved maize varieties in 8 countries across eastern and southern Africa reveals that the overall weighted average age has decreased from 14.6 years in 2013 to 10.2 years in 2020. The remarkable progress in accelerating the rate of variety turnover and deploying the improved genetics — with climate resilience, nutritional-enhancement and grain yield — are benefiting more than eight million smallholders in Africa.

In Ethiopia, CIMMYT, EIAR and ICARDA’s work led to the adoption of improved rust-resistant varieties, corresponding productivity gains and economic benefits that, besides the urgent need to fight against the damaging rust epidemic, depended on a combination of enabling factors: pre-release seed multiplication, pro-active policies and rust awareness campaigns. The estimated income gain that farmers enjoyed due to adopting post-2010 varieties in 2016/2017 reached $48 million. For the country itself, the adoption of these varieties could save $65 million that otherwise would be spent on wheat imports.

Bill Gates echoes this in Chapter 9 of his new climate book, How to Avoid a Climate Disaster, as he describes CIMMYT and IITA’s drought-tolerant maize work: “[…] experts at CGIAR developed dozens of new maize varieties that could withstand drought conditions, each adapted to grow in specific regions of Africa. At first, many smallholder farmers were afraid to try new crop varieties. Understandably so. If you’re eking out a living, you won’t be eager to take a risk on seeds you’ve never planted before, because if they die, you have nothing to fall back on. But as experts worked with local farmers and seed dealers to explain the benefits of these new varieties, more and more people adopted them.”

Bidasem director general María Ester Rivas (center) stands for a photo with her seed processing team. Bidasem is a small seed company based in the city of Celaya in the central Mexican plains region known as the Bajío. Despite their small size, Bidasem and similar companies play an important role in reaching small farmers with improved seed that offers them better livelihoods. (Photo: X. Fonseca/CIMMYT)
Bidasem director general María Ester Rivas (center) stands for a photo with her seed processing team. Bidasem is a small seed company based in the city of Celaya in the central Mexican plains region known as the Bajío. Despite their small size, Bidasem and similar companies play an important role in reaching small farmers with improved seed that offers them better livelihoods. (Photo: X. Fonseca/CIMMYT)

Holistic action needed if we are to reach farmers with genetic innovations

Now more than ever, with increased frequency and intensification of erratic weather events on top of the complications of the COVID-19 pandemic, successful seed systems require the right investments, partnerships, efforts across disciplines, and enabling policies.

Varietal release and dissemination systems rely greatly on appropriate government policies and adoption of progressive seed laws and regulations. CGIAR’s commitment to farmers and the success of national seed systems is described in the recently launched 10-year strategy: “CGIAR will support effective seed systems by helping national governments and private sector companies and regulators build their capacities to play their roles successfully. New initiatives will be jointly designed along the seed distribution chain, including for regional seed registration, import and export procedures, efficient in-country trialing, registration and release of new varieties, and seed quality promotion through fit-for-purpose certification.”

In line with CGIAR’s ambitious goals, to provide farmers with a better service, small- and medium-size seed companies need to also be strengthened to become more market-oriented and dynamic. According to SPIA, helping local private seed dealers learn about new technology increases farm-level adoption by over 50% compared to the more commonly used approach, where public sector agricultural extension agents provide information about new seed to selected contact farmers.

CIMMYT socioeconomics and market experts are putting this in practice through working with agrodealers to develop retail strategies, such as targeted marketing materials, provision of in-store seed decision support and price incentives, to help both female and male farmers get the inputs that work best.

Within the new CGIAR, CIMMYT scientists will continue to work with partners to strongly improve the performance of wheat and maize in smallholder farmers’ fields. Concerted efforts from all actors conforming the entire seed system are essential to achieve our vision: to transform food systems for affordable, sufficient and healthy diets produced within planetary boundaries. Wheat and maize seed systems will form the basis to fulfill that vision and provide a tried and tested roadmap for other crops, including legumes, vegetables and fruits. Together, we can keep a finger on the pulse of farmers’ needs and build healthy diets for a better tomorrow from the ground up.

Remembering the life and legacy of Sanjaya Rajaram

Sanjaya Rajaram at the Centro de Investigaciones Agrícolas del Noroeste (CIANO) in Ciudad Obregón, in Mexico’s Sonora state. (Photo: Gil Olmos/CIMMYT)
Sanjaya Rajaram at the Centro de Investigaciones Agrícolas del Noroeste (CIANO) in Ciudad Obregón, in Mexico’s Sonora state. (Photo: Gil Olmos/CIMMYT)

With great sorrow, we report the passing of Sanjaya Rajaram, former Wheat Program director and distinguished scientist at the International Maize and Wheat Improvement Center (CIMMYT), in Mexico on February 17, 2021, at the age of 78. Rajaram was one of the most successful and influential wheat breeders ever, and was distinguished with the World Food Prize in 2014.

As leader of bread wheat breeding and later director of CIMMYT’s Global Wheat Program, Rajaram — affectionately known by his colleagues as “Raj” — personally oversaw the development of more than 480 high-yielding, disease-resistant varieties sown on 58 million hectares in 51 countries, increasing global wheat production by more than 200 million tons during his lifetime in diverse regions across the globe.

“At CIMMYT, we all remember Raj as a great and humble colleague helping the team to perform at the highest levels of science with impact. Many of us within CIMMYT, as well in national programs worldwide, have been inspired by him,” said Martin Kropff, CIMMYT Director General. “We will also remember him as a friend who cared for others and treated all people alike.”

“Dr. Rajaram built a generation of wheat breeders at CIMMYT, ICARDA and national research institutions, who are carrying on his legacy and ensuring that new wheat varieties continue to reach farmers. We will deeply miss his presence and encouragement,” said Ravi Singh, head of the Wheat Improvement program once led by Rajaram.

Norman Borlaug (right) in the field with Sanjaya Rajaram, his successor as head of CIMMYT's wheat program. (Photo: Gene Hettel/CIMMYT)
Norman Borlaug (right) in the field with Sanjaya Rajaram, his successor as head of CIMMYT’s wheat program. (Photo: Gene Hettel/CIMMYT)
Hans Braun (center), Sanjaya Rajaram (third from right), Ravi Singh (first from right) and other colleagues stand for a photograph during a field day at CIMMYT’s experimental station in Ciudad Obregón, Sonora, Mexico. (Photo: CIMMYT)
Hans Braun (center), Sanjaya Rajaram (third from right), Ravi Singh (first from right) and other colleagues stand for a photograph during a field day at CIMMYT’s experimental station in Ciudad Obregón, Sonora, Mexico. (Photo: CIMMYT)
Sanjaya Rajaram (right) speaks during a field day for scientists and staff at the CIMMYT experimental station in Toluca, Mexico, in 2013. (Photo: CIMMYT)
Sanjaya Rajaram (right) speaks during a field day for scientists and staff at the CIMMYT experimental station in Toluca, Mexico, in 2013. (Photo: CIMMYT)
The World Food Prize 2014 was awarded to Sanjaya Rajaram for his achievements in plant research and food production. (Photo: RajaramS, CC BY-SA 4.0, via Wikimedia Commons)
The World Food Prize 2014 was awarded to Sanjaya Rajaram for his achievements in plant research and food production. (Photo: RajaramS, CC BY-SA 4.0, via Wikimedia Commons)
Sanjaya Rajaram speaks at the 2015 BGRI Workshop in Sydney, Australia. (Photo: Christopher Knight/CIMMYT)
Sanjaya Rajaram speaks at the 2015 BGRI Workshop in Sydney, Australia. (Photo: Christopher Knight/CIMMYT)
Sanjaya Rajaram speaks at the event to celebrate CIMMYT’s 50th anniversary in 2014. (Photo: Gerardo Mejía/CIMMYT)
Sanjaya Rajaram speaks at the event to celebrate CIMMYT’s 50th anniversary in 2014. (Photo: Gerardo Mejía/CIMMYT)

A life devoted to wheat breeding

Born on a small farm in India in 1943, Rajaram studied genetics and plant breeding at the Indian Agricultural Research Institute in New Delhi. After receiving his Ph.D. from the University of Sydney, he joined CIMMYT in 1969, diligently working as a wheat breeder alongside Nobel Prize Laureate and scientist Norman Borlaug in Mexico. Recognizing his talent and initiative, Borlaug appointed Rajaram as head of CIMMYT’s wheat breeding program at just 29 years of age.

Borlaug described Rajaram as “a scientist of great vision who made a significant contribution to the improvement of world wheat production, working for the benefit of hundreds of thousands of farmers in countries across the globe.”

Among Rajaram’s many accomplishments include being awarded the prestigious World Food Prize in 2014 for his role in increasing global wheat production and alleviating world hunger. His crossing of spring and winter wheat varieties led to new advances in wheat varieties that were stable across a wide range of environments, as well as featuring high yields and resistance to wheat diseases, particularly rust and foliar blight.

In 2015, he was awarded the Pravasi Bharatiya Samman award, the highest honor conferred on Indians overseas. He also received the highly prestigious Padma Shri award from the government of India in 2001, the Friendship Award from the government of China in 1998, numerous fellowships from scientific societies and doctorates from various universities.

Rajaram recognized the importance of sharing his knowledge and cultivating the talents of the next generation of plant scientists, training and mentoring more than 700 scientists from developing countries worldwide.

Rajaram also served as Director of the Integrated Gene Management Program at the International Center for Agricultural Research in the Dry Areas (ICARDA) before formally retiring in 2008. In his retirement, he continued as a special scientific advisor to CIMMYT and ICARDA, residing in his home of Mexico.

In addition to his successful career as a plant scientist, Rajaram launched and operated Resource Seeds International, a company to study and market seed of improved wheat varieties.

The CIMMYT community sends our deepest condolences to Rajaram’s family during this period.

If you wish to share a message of condolences with the family, please use this email address.

Classic milpa maize intercrop can help feed communities forgotten by development

A farmer holds a maize ear. (Photo: Cristian Reyna)
A maize ear harvested from a “milpa,” the maize-based intercrop that is a critical source of food and nutritional security for smallholder farming communities in remote areas such as the Western Highlands of Guatemala. (Photo: Cristian Reyna)

The traditional milpa intercrop — in which maize is grown together with beans, squash, or other vegetable crops — can furnish a vital supply of food and nutrients for marginalized, resource-poor communities in the Americas, according to a study published today in Nature Scientific Reports.

One hectare of a milpa comprising maize, common beans, and potatoes can provide the annual carbohydrate needs of more than 13 adults, enough protein for nearly 10 adults, and adequate supplies of many vitamins and minerals, according to the study. The research was based on data from nearly 1,000 households across 59 villages of the Western Highlands of Guatemala and is the first to relate milpa intercropping diversity with nutritional capacity, using multiple plots and crop combinations.

“The milpa was the backbone of pre-Columbian agriculture in North America, Mexico, and Central America,” said Santiago López-Ridaura, specialist in agricultural systems and climate change adaptation at the International Maize and Wheat Improvement Center (CIMMYT) and lead author of the article.

“Milpa production anchored around locally-adapted maize is still an essential food and nutritional lifeline for isolated, often indigenous communities throughout Mexico and Central America, and can be tailored to improve their food and nutritional security, along with that of small-scale farmers in similar settings,” he added.

Maize for feed or food and nutrition?

In modern times, some 1 billion tons of maize are harvested yearly from about 200 million hectares worldwide. Much of this output results from intensive monocropping of hybrids that yield an average 10 tons per hectare, in places like the U.S.

This massive world harvest goes chiefly for animal feed, corn starch, corn syrup, ethanol, and myriad industrial products, but in sub-Saharan Africa, Latin America, and parts of Asia, maize remains a critical food staple, often grown by smallholder farmers with yields averaging around 1.5 tons per hectare.

The Western Highlands of Guatemala is among the world’s poorest regions — a mountainous area ill-served by markets and where communities battered by food insecurity and malnutrition sow crops at altitudes of up to 3,200 meters, according to Cristian A. Reyna-Ramírez, a co-author of the study from the Universidad Autónoma Metropolitana-Xochimilco, Mexico.

“Fully two-thirds of farmers in this region grow milpas based on maize but varying the intercrops with potatoes, faba bean, and even fruit trees,” Reyna-Ramírez said. “Our study showed that combinations such as maize-common bean-faba bean, maize-potatoes, and maize-common bean-potatoes provided the most carbohydrates, proteins, zinc, iron, calcium, potassium, folate, thiamin, riboflavin, vitamin B6, niacin and vitamin C.”

The classic “milpa” intercrop comprises maize, beans, and squash. The bean plant climbs the maize stalk to reach sunlight and its roots add nitrogen to the soil; the squash leaves shade the soil, conserving moisture and inhibiting weed growth. Milpa systems are often grown on steep hillsides at a wide range of altitudes. (Photo: Cristian Reyna)
The classic “milpa” intercrop comprises maize, beans, and squash. The bean plant climbs the maize stalk to reach sunlight and its roots add nitrogen to the soil; the squash leaves shade the soil, conserving moisture and inhibiting weed growth. Milpa systems are often grown on steep hillsides at a wide range of altitudes. (Photo: Cristian Reyna)

Better diets and routes out of poverty?

With typical landholdings of less than a quarter hectare and households averaging six members, Guatemala’s Western Highlands inhabitants cannot depend on the milpa alone to satisfy their needs, López-Ridaura cautioned.

“As with many smallholder farm communities, lack of land and general marginalization traps them in a vicious circle of poverty and malnutrition, forcing them to experiment with risky cash crops or for working-age members to undertake dangerous and heartbreaking migrations to find work and send back remittances,” he explains.

According to López-Ridaura, this study points the way for tailoring milpa systems to help communities that still rely on that intercrop or others that could benefit from its use.

Looking forward

Natalia Palacios Rojas, CIMMYT maize quality and nutrition expert and a co-author of this article, notes that calculations of this and other milpa studies consider raw nutrients and that research is needed on the nutritional contributions of cooked food and non-milpa foods such as poultry, livestock, home-garden produce, and purchased food.

“Further work should also address the effects of storing milpa produce on its nutrient stability and how the seasonal availability of milpa crops impacts diets and nutrition,” Palacios said.

The authors are grateful for funding from the United States Agency for International Development (USAID) as part of Feed the Future, the U.S. Government’s global hunger and food security initiative, under the Buena Milpa project, as well as the support of the CGIAR Research Program on Maize.

Read the full article:
Maize intercropping in the milpa system. Diversity, extent and importance for nutritional security in the Western Highlands of Guatemala

Lightbulb moments

The challenges facing our food system are growing, both in size and in complexity. In order to tackle these issues and meet the needs of our changing world, the International Maize and Wheat Improvement Center (CIMMYT) understands the importance of assembling a workforce that is diverse, creative and representative. In addition to encouraging STEM careers and hiring more women in scientific positions, we must also foster a more encouraging scientific community for women whose careers are just sparking.

Whether it is through a school field trip, a first internship or a PhD thesis project, CIMMYT is committed to encouraging young women to step into the lab and the fields, and up to the challenge, as we strive to create a more equitable community. On the International Day of Women and Girls in Science, we are inspired by the words of some of the many brilliant women whose scientific careers are just beginning, lighting the pathway to a more equitable future.

The International Day of Women and Girls in Science is particularly meaningful to CIMMYT’s new Global Wheat Program (GWP) Director, Alison Bentley. Listen and watch as she tells her story, from her first lightbulb moment on a high school field trip, to a leadership position in the wheat research world.

In celebration of the International Day of Women and Girls in Science, CIMMYT is participating in a unique marathon event, carrying a global conversation with CGIAR women scientists that are leading change and creating solutions to some of the world’s biggest challenges.

Powered by Women in Research and Science (WIRES), a new employee-led resource group at CGIAR, the event will showcase the many ways women scientists are transforming the way we look at our food, land and water systems around the world. In addition to learning about cutting-edge science, you’ll be able to engage with inspiring speakers in 13 different countries.

Join CIMMYT’s discussion on February 11, 2021, at 1:00 p.m. CST, and learn about the journeys of the 2020 Bänziger Award recipients, an engaging Q&A with four CIMMYT scientists, and our vision for a more equitable workforce. Register for the event.

Honoring the life and legacy of Byrd C. Curtis

Byrd C. Curtis, director of CIMMYT's Global Wheat Program from 1982 to 1988. (Photo: CIMMYT)
Byrd C. Curtis, director of CIMMYT’s Global Wheat Program from 1982 to 1988. (Photo: CIMMYT)

The International Maize and Wheat Improvement Center (CIMMYT) sadly notes the passing of Byrd C. Curtis, former Director of the Global Wheat Program, on January 7. He was 95 years old and lived in Fort Collins, Colorado, USA, with his wife Eloise Curtis.

From his studies at Oklahoma State University to retiring after a fruitful international career with Colorado State University, Cargill Inc. and CIMMYT, he never got weary of sharing his passion for breeding better, tastier and sturdier wheat to improve peoples’ livelihoods.

He was an innovator at heart and his legacy will live on through Colorado State University’s wheat breeding program and the many wheat varieties he developed. Not only did he start Colorado State University’s wheat breeding program in 1963, but he also ensured that the varieties that were bred by his team reflected the needs of humanity for decades to come, such as the hard, red winter wheat variety named after himself.

Curtis worked at CIMMYT from 1982 and 1988 as Director of the Global Wheat Program. Together with his team, he worked to position CIMMYT as the leading international research-for-development and breeding organization for wheat for years to come.

“Byrd was very keen to build oral communication skills of scientists, which has been very helpful to me,” said Ravi Singh, Head of Global Wheat Improvement at CIMMYT. “He also initiated the Turkey-CIMMYT-ICARDA International Winter Wheat Improvement Partnership’s (IWWIP) winter wheat breeding program and even worked there in Turkey in his final year with CIMMYT to ensure it would take off well.”

Byrd was instrumental and showed tremendous foresight. IWWIP’s establishment in Turkey became first major breeding program within CGIAR that was hosted by a national program. He strongly supported the creation of the Wide Crossing Program. The synthetic wheat varieties developed in this program have had global impact on wheat improvement.

Aside from his remarkable technical legacy, Byrd had a knack for choosing the right people for the job. In the six years as Director of the Global Wheat Program, he hired scientists who held major roles in global wheat improvement: Ravi Singh, Distinguished Scientist and Head of Global Wheat Improvement; Wolfgang Pfeiffer, former leader of spring bread wheat, durum wheat, and triticale crop improvement; and Hans Braun, Director of the Global Wheat Program from 2004 to 2020.

“Byrd not only initiated the winter wheat program,” said former Global Wheat Program Director Hans Braun, who was hired by Byrd in 1983. “He was also director when the tropical wheat program was implemented in Thailand.” This program’s work increased yields up to 1.5 tons per hectare but ultimately did not convince Thai farmers. Nevertheless, Braun said, “One of the oddest experiences I’ve had was to see our winter wheat material from Turkey grown in the Thai jungle!”

After retiring from his professional life in 1991, Curtis and his wife Eloise moved back to Fort Collins, where his career started in the 1960s and where he will be remembered by his townspeople — and fellow athletes and gym-goers — for his determination and active lifestyle.

The CIMMYT community sends its deepest sympathies and wishes for peace to the Curtis family.

FFAR grant develops climate-resilient wheat

Durum wheat drought tolerance trials in Ciudad Obregon, Mexico, 2017. (Photo: Alfonso Cortés/CIMMYT)
Durum wheat drought tolerance trials in Ciudad Obregon, Mexico, 2017. (Photo: Alfonso Cortés/CIMMYT)

Wheat constitutes 20% of all calories and protein consumed, making it a cornerstone of the human diet, according to the United Nations. However, hotter and drier weather, driven by a changing climate, threatens the global wheat supply. To address this threat, the Foundation for Food and Agriculture Research (FFAR) awarded a $5 million grant to the International Maize and Wheat Improvement Center (CIMMYT) to develop climate-resilient wheat. CIMMYT leads global research programs on maize and wheat, sustainable cropping systems and policies to improve farmers’ livelihoods. These activities have driven major gains in wheat variety improvement across the globe for decades; in the US alone, for example, over 50% of the wheat acreage is sown with CIMMYT-related varieties.

Wheat is among the most widely grown cereal crops in the world and the third-largest crop grown in the US by acre. Nearly all US wheat crops are improved and supported by public agriculture research. As most wheat in the US is dependent on rainfall and has no access to irrigation, this research is critical for helping the plants — and producers — weather climatic changes including extreme heat and drought. Additionally, the demand for wheat is expected to rise in the coming years — as much as 60% by 2050. Without public research, wheat production could decrease by nearly 30% over the same period due to extreme climate conditions.

“FFAR leverages public agriculture research funding through public-private partnerships to pioneer actionable research. With temperatures on the rise and water becoming scarcer, we are committed to supporting wheat farmers and providing new wheat varieties designed with future environmental challenges in mind,” said FFAR’s Executive Director Sally Rockey.

Using the FFAR grant, CIMMYT researchers are pioneering wheat breeding technologies to produce heat-tolerant, drought-resistant and climate-resilient wheat.

CIMMYT researchers and collaborators are applying cutting-edge approaches in genomics, remote sensing and big data analysis to develop new breeding technologies. A key intervention will explore the vast and underutilized reserve of wheat genetic resources to fortify the crop against current and future climate-related stresses.

“This project will help bridge a longstanding gap between state-of-the-art technological findings and crop improvement to deliver climate resilient wheat to farmers as quickly as possible,” said Matthew Reynolds, head of Wheat Physiology at CIMMYT and principal investigator of the project.

Breakthroughs from the FFAR funded project will achieve impact for growers via the International Wheat Improvement Network (IWIN) that supplies new wheat lines to public and private breeding programs worldwide, and has boosted productivity and livelihoods for wheat farmers for over half a century, especially in the Global South.

The research and breeding supported by FFAR will be conducted under the Heat and Drought Wheat Improvement Consortium (HeDWIC), a project led by CIMMYT in partnership with experts across the globe, designed to ensure wheat’s long-term climate resilience. Under the umbrella of the Wheat Initiative’s AHEAD unit, the most relevant advances in academia will be channeled to HeDWIC to help further boost impacts.

“‘Heat,’ ‘drought’ and ‘wheat’ are three of the most important words for billions of people,” said CIMMYT Interim Deputy Director for Research Kevin Pixley. “This partnership between CIMMYT and FFAR will help ensure that the best agricultural science is applied to sustainably raise production of one of the world’s most important staple crops, despite unprecedented challenges.”

CIMMYT Director General Martin Kropff said, “This project represents not only a breakthrough to develop wheat for the future, but also an emerging partnership between CIMMYT and FFAR. I look forward to a productive collaboration that will move us all closer to our mission of maize and wheat science for improved livelihoods.”

FFAR’s investment was matched by co-investments from the CGIAR Research Program on Wheat (WHEAT) and Accelerating Genetic Gains for Maize and Wheat (AGG), a project which is jointly funded by  the Bill & Melinda Gates Foundation and the UK Foreign, Commonwealth, and Development Office (FCDO).


FOR MORE INFORMATION, OR TO ARRANGE INTERVIEWS, CONTACT:

Marcia MacNeil, Communications Officer, CGIAR Research Program on Wheat, CIMMYT. +52 5951148943, m.macneil@cgiar.org

Brian Oakes, FFAR. +1 202-604-5756, boakes@foundationfar.org

About the Foundation for Food & Agriculture Research

The Foundation for Food & Agriculture Research (FFAR) builds public-private partnerships to fund bold research addressing big food and agriculture challenges. FFAR was established in the 2014 Farm Bill to increase public agriculture research investments, fill knowledge gaps and complement USDA’s research agenda. FFAR’s model matches federal funding from Congress with private funding, delivering a powerful return on taxpayer investment. Through collaboration and partnerships, FFAR advances actionable science benefiting farmers, consumers and the environment.

Connect: @FoundationFAR | @RockTalking

About CIMMYT

The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies.

For more information, visit staging.cimmyt.org

Taking stock of value chain development

In 1967 Albert O. Hirschman, the pioneering development economist, published Development Projects Observed. Based on an analysis of a handful of long-standing World Bank projects, the book was an effort, as Hirschman writes in the preface, “to ‘sing’ the epic adventure of development­ — its challenge, drama, and grandeur.” He sang this epic not in the register of high development theory,­ but rather through the ups and downs and unexpected twists of real-world development projects.

Today, a new group of researchers have taken up a similar challenge. Value Chain Development and the Poor: Promise, delivery, and opportunities for impact at scale, a new book edited by Jason Donovan, Dietmar Stoian and Jon Hellin, surveys over two decades of academic and practical thinking on value chains and value chain development. While value chain development encompasses a broad variety of approaches, it has largely focused on improving the ability of small scale, downstream actors — such as smallholders in agri-food value chains — to capture more value for their products or to engage in value-adding activities. Value chain development approaches have also focused on improving the social and environmental impacts of specific value chains. Donovan, Stoian and Hellin’s book assesses these approaches through careful analysis of real-world cases. The book was published with support from the CGIAR Research Programs on Maize and on Policies, Institutions, and Markets.

Lessons learned

The book takes an unsparing look at what has and hasn’t worked in the field of value chain development. It begins by dissecting the drivers of the high degree of turnover in approaches that characterizes the field. The editors argue that “issue-attention cycles” among project stakeholders, coupled with monitoring and evaluation metrics that are more focused on tracking project implementation rather than producing robust measurements of their social impact, too often lead to the adoption — and abandonment — of approaches based on novelty and buzz.

The unfortunate consequences are that strengths and limitations of any given approach are never fully appreciated and that projects — and even entire approaches — are abandoned before they’ve had a chance to generate deep social impacts. Moreover, the opportunity to really learn from development projects — both in terms of refining and adapting a given approach to local conditions, and of abstracting scalable solutions from real development experiences — is lost.

A recurring theme throughout the book is the tension between the context-sensitivity needed for successful value chain development interventions and the need for approaches that can be scaled and replicated. Programs must develop tools for practitioners on one hand and demonstrate scalability to funders on the other. For example, a chapter on maize diversity and value chain development in Guatemala’s western highlands illustrates how an approach that was successful in Mexico — connecting producers of indigenous maize landraces with niche markets — is ill-suited to the Guatemalan context, where most producers are severely maize deficient. And a chapter reviewing guides for gender-equitable value chain development highlights how — for all their positive impact — such guides often overlook highly context- and culturally-specific gender dynamics. Intra-household bargaining dynamics and local masculinities, for example, can play critical roles in the success or failure of gender-focused value chain development interventions.

This new book takes an unsparing look at what has and hasn’t worked in the field of value chain development.
This new book takes an unsparing look at what has and hasn’t worked in the field of value chain development.

Finally, while lauding the valuable impact many value chain development initiatives have achieved, the editors warn against an exclusive reliance on market-based mechanisms, especially when trying to benefit the poorest and most marginalized of smallholders. In the case of Guatemala’s maize-deficient highland farmers, for example, the development of niche markets for native maize proved to be a poor mechanism for achieving the stated goal of preserving maize biodiversity and farmers’ livelihoods. Non-market solutions are called for. Based on this and similar experiences, the editors note that, while value chain development can be a valuable tool, to truly achieve impact at scale it must be coordinated with broader development efforts.

“The challenge of ensuring that value chain development contributes to a broad set of development goals requires transdisciplinary, multisector collaboration within broader frameworks, such as integrated rural-urban development, food system transformation, and green recovery of the economy in the post COVID-19 era,” write the editors.

This bracing and clear reflection on the promise and limitations of current development approaches is not only timely; it is perhaps more urgent today than in Hirschman’s time. While tremendous gains have been made since the middle of the 20th century, many stubborn challenges remain, and global climate change threatens to undo decades of progress. Projects like Value Chain Development and the Poor and the ongoing Ceres2030 initiative provide development practitioners, researchers, funders and other stakeholders a much needed assessment of what can be built upon and what needs to be rethought as they tackle these gargantuan challenges.

Embracing uncertainty

At the time Development Projects Observed was published, the study and practice of development was already entering a crisis of adolescence, as it were. Having achieved quasi-independence from its parent discipline of economics, it had to settle on an identity of its own.

Hirschman’s book represented one possible way forward — an understanding of development practice as a blend of art and science. The book’s most famous concept, that of the Hiding Hand, illustrates how planners’ optimism could fuel enormously complex and challenging projects — undertakings that might never have been attempted had all the challenges been known beforehand. At the same time, projects’ inevitable failures and shortcomings could spur creative local responses and solutions, thus ensuring their eventual success and rootedness in their specific context.

As Michele Alacevich points out in the Afterword to the book’s most recent reissue, the World Bank’s response to Hirschman’s book demonstrates the road that development research and practice ultimately took. The book was disregarded, and the Bank turned to the growing literature on cost-benefit analysis instead. “Whereas Hirschman’s analysis had placed uncertainty — an unmeasurable dimension — center stage, cost-benefit analysis assimilated it to risk, therefore turning it into something measurable and quantifiable,” Alacevich writes. Faced with a newfound awareness of the limits to the field’s powers and abilities — a rite of passage for all prodigies — development institutions appeared to try to outrun these limitations through ever-increasing technification.

The issue-attention cycles identified by Stoian and Donovan may represent a new, more frenetic and self-defeating iteration of this discomfort with uncertainty. If so, Value Chain Development and the Poor serves as an urgent call for development institutions and practitioners to make peace with the messiness of their vocation. As Hirschman observed decades ago, only by embracing the uncertainty and art inherent in development work can its students and practitioners further the enormously complex scientific understanding of the endeavor, and, crucially, generate broad and lasting social change.

The eBook is available for free (Open Access):
Value Chain Development and the Poor: Promise, delivery, and opportunities for impact at scale

Cover image: A researcher from the International Maize and Wheat Improvement Center (CIMMYT) demonstrates the use of a farming app in the field. (Photo: C. De Bode/CGIAR)

Nixtamalization: An ingenious solution for healthier maize-based diets

Some 500 years ago — in the wake of the cataclysmic encounter between European powers and the indigenous cultures of the Americas — people, ideas, goods and enormous amounts of biological material were sucked into an unprecedented planetary network of commercial circuits and flung around the globe. But the process was chaotic and often violent. People, ideas and other living things that had long commingled and coevolved were torn apart, and often sent hurtling down very different trajectories.

Among the many forms of plant life caught up in this global dispersion event was a curious grain developed over thousands of years in Mesoamerica: maize. Today it is the world’s most widely planted cereal crop ­— a cornerstone of the global industrial food system on the one hand and many local and regional agri-food systems on the other.

The thing is that to truly understand a crop you arguably must look beyond the plant itself and see it in relation to a variety of human agricultural, culinary and socioeconomic practices. But maize moved around the globe shorn of its complement of indigenous knowledge and practices. As a food archeologist Bill Schindler argues in a new video for Wired, this rupture has had enormous consequences for the health and well-being of maize-consuming communities up to the present.

The video, which borrows from an explainer produced by the International Maize and Wheat Improvement Center (CIMMYT), notes that for centuries maize producers and consumers in the Americas have processed maize using a technique called nixtamalization. This treatment — cooking and steeping dried maize kernels in an alkaline solution made with water and lime or wood ash — provides several nutritional and sanitary benefits, including: increased niacin and iron bioavailability, increased calcium and resistant starch content, and decreased mycotoxin contamination.

Maize-dependent diets that do not incorporate nixtamalization have historically contributed to outbreaks of pellagra and other nutrient deficiency-driven health problems. Today un-nixtamalized maize is used as the nutritionally-poor but chemically malleable basis for many hyper-processed foodstuffs thought to have contributed to the meteoric rise of diet-related disease since the 1980s.

Faced with this, Schindler asks: what if more of the world finally reunited maize with it’s indigenous processing techniques. Heat, water and lime — it might just be a solution to some pretty big problems.

The International Maize and Wheat Improvement Center works in Colombia to enhance grain quality

Natalia Palacios, Maize Quality Specialist at CIMMYT, spoke about the center’s work in Colombia and the future of maize production in the program ‘Tierra de Sueños’ (Land of Dreams).

Listen to the episode here: https://www.rcnradio.com/colombia/el-centro-internacional-de-mejoramiento-maiz-y-trigo-trabaja-en-colombia-por-la-calidad

Agriculture for Peace: A call to action to avert a global food crisis

Norman Borlaug teaches a group of young trainees in the field in Sonora, Mexico. (Photo: CIMMYT)
Norman Borlaug teaches a group of young trainees in the field in Sonora, Mexico. (Photo: CIMMYT)

50 years ago, the late Norman Borlaug received the 1970 Nobel Peace Prize for averting famine by increasing wheat yield potential and delivering improved varieties to farmers in South Asia. He was the first Nobel laureate in food production and is widely known as “the man who saved one billion lives.”

In the following decades, Borlaug continued his work from the Mexico-based International Maize and Wheat Improvement Center (CIMMYT), a non-profit research-for-development organization funded by the Rockefeller Foundation and the governments of Mexico and the United States.

CIMMYT became a model for a future network of publicly-funded organizations with 14 research centers: CGIAR. Today, CGIAR is led by Marco Ferrroni, who describes it as a global research partnership that “continues to be about feeding the world sustainably with explicit emphasis on nutrition, the environment, resource conservation and regeneration, and equity and inclusion.”

Norman Borlaug’s fight against hunger has risen again to the global spotlight in the wake of the most severe health and food security crises of the 21st Century. “The Nobel Peace Prizes to Norman Borlaug and the World Food Programme are very much interlinked,” said Kjersti Flogstad, Executive Director of the Oslo-based Nobel Peace Center. “They are part of a long tradition of awarding [the prize] to humanitarian work, also in accordance with the purpose [Alfred] Nobel expressed in his last will: to promote fraternity among nations.”

During welcome remarks at the virtual 50-year commemoration of Norman Borlaug’s Nobel Peace Prize on December 8, 2020, Mexico’s Secretary of Agriculture and Rural Development Víctor Villalobos Arámbula, warned that “for the first time in many years since Borlaug defeated hunger in Southeast Asia, millions of people are at risk of starvation in several regions of Africa, Asia and Latin America.”

According to CIMMYT’s Director General Martin Kropff, celebrating Norman Borlaug’s legacy should also lead to renewed investments in the CGIAR system. “A report on the payoff of investing in CGIAR research published in October 2020 shows that CIMMYT’s return on investment (ROI) exceeds a benefit-cost ratio of 10 to 1, with median ROI rates for wheat research estimated at 19 and for maize research at 12.”

Mexico’s Foreign Affairs Department echoed the call to invest in Agriculture for Peace. “The Government of Mexico, together with the Nobel Peace Center and CIMMYT, issues a joint call to action to overcome the main challenges to human development in an international system under pressure from conflict, organized crime, forced migration and climate change,” said Martha Delgado, Mexico’s Under Secretary of Multilateral Affairs and Human Rights.

Norman Borlaug sits on a tractor next to field technicians in Sonora, Mexico. (Photo: CIMMYT)
Norman Borlaug sits on a tractor next to field technicians in Sonora, Mexico. (Photo: CIMMYT)

The event called for action against the looming food crises through the transformation of food systems, this time with an emphasis on nutrition, environment and equality. Speakers included experts from CGIAR, CIMMYT, Conservation International, Mexico’s Agriculture and Livestock Council, United Nations Food and Agriculture Organization (FAO), United States Agency for International Development (USAID) and the World Food Programme (WFP), among others. Participants discussed the five action tracks of the 2021 United Nations Food Systems Summit: (1) ensure access to safe and nutritious food for all; (2) shift to sustainable consumption patterns; (3) boost nature-positive production; (4) advance equitable livelihoods; and, (5) build resilience to vulnerabilities, shocks and stresses.

“This event underlines the need for international solidarity and multilateral cooperation in the situation the world is facing today,” said Norway’s Ambassador to Mexico, Rut Krüger, who applauded CIMMYT’s contribution of 170,000 maize and wheat seeds to the Global Seed Vault in Svalbard, Norway. “This number reflects the global leadership position of CIMMYT in the development of maize and wheat strains.”

Norman Borlaug’s famous words — “take it to the farmer” — advocated for swift agricultural innovation transfers to the field; Julie Borlaug, president of the Borlaug Foundation, said the Agriculture for Peace event should inspire us to also “take it to the public.”

“Agriculture cannot save the world alone,” she said. “We also need sound government policies, economic programs and infrastructure.”

CIMMYT’s Deputy Director General for Research and Partnerships, and Integrated Development Program Director Bram Govaerts, called on leaders, donors, relief and research partners to form a global coalition to transform food systems. “We must do a lot more to avert a hunger pandemic, and even more to put the world back on track to meet the Sustainable Development Goals of the 2030 Agenda.”

CIMMYT’s host country has already taken steps in this direction with the Crops for Mexico project, which aims to improve the productivity of several crops essential to Mexico’s food security, including maize and wheat. “This model is a unique partnership between the private, public and social sectors that focuses on six crops,” said Mexico’s Private Sector Liaison Officer Alfonso Romo. “We are very proud of its purpose, which is to benefit over one million smallholder households.”

The call stresses the need for sustainable and inclusive rural development. “It is hard to imagine the distress, frustration and fear that women feel when they have no seeds to plant, no grain to store and no income to buy basic foodstuffs to feed their children,” said Nicole Birrell, Chair of CIMMYT’s Board of Trustees. “We must make every effort to restore food production capacities and to transform agriculture into productive, profitable, sustainable and, above all, equitable food systems worldwide.”

Best of 2020: Editors’ picks

COVID-19 didn’t slow us down! In 2020, our editors continued to cover exciting news and events related to maize and wheat science around the world. Altogether, we published more than 250 stories.

It is impossible to capture all of the places and topics we reported on, but here are some highlights and our favorite stories of the year.

Thank you for being a loyal reader of CIMMYT’s news and features. We are already working on new stories and campaigns for 2021. Sign up for our newsletter and be the first to know!

The cereals imperative of future food systems

The 2019 EAT-Lancet Commission report defines specific actions to achieve a “planetary health diet” enhancing human nutrition and keeping resource use of food systems within planetary boundaries. With major cereals still supplying about one-third of calories required in the proposed diet, the way they are produced, processed, and consumed must be a central focus of global efforts to transform food systems. This article from our annual report argues three main reasons for this imperative.

Cereals matter. (Photo: Alfonso Cortés/CIMMYT)
Cereals matter. (Photo: Alfonso Cortés/CIMMYT)

Explainer: What is conservation agriculture?

Farmers are increasingly adopting conservation agriculture practices. This sustainable farming method is based on three principles: crop diversification, minimal soil movement and permanent soil cover.

Field worker Lain Ochoa Hernandez harvests a plot of maize grown with conservation agriculture techniques in Nuevo México, Chiapas, Mexico. (Photo: P. Lowe/CIMMYT)
Field worker Lain Ochoa Hernandez harvests a plot of maize grown with conservation agriculture techniques in Nuevo México, Chiapas, Mexico. (Photo: P. Lowe/CIMMYT)

Massive-scale genomic study reveals wheat diversity for crop improvement

A team of scientists has completed one of the largest genetic analyses ever done of any agricultural crop to find desirable traits in wheat’s extensive and unexplored diversity.

A new study analyzing the diversity of almost 80,000 wheat accessions reveals consequences and opportunities of selection footprints. (Photo: Eleusis Llanderal/CIMMYT)
A new study analyzing the diversity of almost 80,000 wheat accessions reveals consequences and opportunities of selection footprints. (Photo: Eleusis Llanderal/CIMMYT)

Reaching women with improved maize and wheat

The new AGG project aims to respond to the climate emergency and gender nexus through gender-intentional product profiles for its improved seed varieties and gender-intentional seed delivery pathways.

Farmer Agnes Sendeza harvests maize cobs in Malawi. (Photo: Peter Lowe/CIMMYT)
Farmer Agnes Sendeza harvests maize cobs in Malawi. (Photo: Peter Lowe/CIMMYT)

Safeguarding biodiversity is essential to prevent the next COVID-19

Experts share their insights on the link between biodiversity loss and emerging infectious diseases.

Forests in the land of the Ese'eja Native Community of Infierno, in Peru's Madre de Dios department. (Photo: Yoly Gutierrez/CIFOR)
Forests in the land of the Ese’eja Native Community of Infierno, in Peru’s Madre de Dios department. (Photo: Yoly Gutierrez/CIFOR)

Seeing is believing

At demonstration farms, Kenyan farmers discover the stress-tolerant maize varieties they were looking for.

A seed company representative explains to farmers the merits of the variety on this plot. (Photo: Joshua Masinde/CIMMYT)
A seed company representative explains to farmers the merits of the variety on this plot. (Photo: Joshua Masinde/CIMMYT)

Battling devastating viral diseases, also in plants

Maize lethal necrosis (MLN) has taught us that intensive efforts to keep human and plant diseases at bay need to continue beyond the COVID-19 crisis. We interviewed B.M. Prasanna, director of the Global Maize Program at CIMMYT and the CGIAR Research Program on Maize (MAIZE), to discuss the MLN success story, the global COVID-19 crisis, and the similarities in the challenge to tackle plant and human viral diseases.

We had a similar conversation with Hans Braun, Director of the Global Wheat Program and the CGIAR Research Program on Wheat, who taled to us about the need for increased investment in crop disease research as the world risks a food security crisis related to COVID-19.

Maize Lethal Necrosis (MLN) sensitive and resistant hybrid demo plots in Naivasha’s quarantine & screening facility (Photo: KIPENZ/CIMMYT)
Maize Lethal Necrosis (MLN) sensitive and resistant hybrid demo plots in Naivasha’s quarantine & screening facility (Photo: KIPENZ/CIMMYT)

The many colors of maize, the material of life

The use of corn husk as veneer has helped a town to preserve maize biodiversity, protect the environment and reduce migration.

Denise Costich (center, pink hat) stands with members of the Totomoxtle project in Tonahuixtla. (Photo: Provided by Denise Costich/CIMMYT)
Denise Costich (center, pink hat) stands with members of the Totomoxtle project in Tonahuixtla. (Photo: Provided by Denise Costich/CIMMYT)

COVID-19 induced economic loss and ensuring food security for vulnerable groups

Study quantifies the economic losses from Bangladesh’s COVID-19 lockdowns and outlines policy implications for the country.

CIMMYT also published a similar study gauging the impact of COVID-19 lockdowns in Nepal.

A rice farmer in central Bangladesh tends to his crop. (Photo: Scott Wallace/World Bank)
A rice farmer in central Bangladesh tends to his crop. (Photo: Scott Wallace/World Bank)

Small is beautiful

Seven ways to make small-scale mechanization work for African farmers.

Local female artisan, Hawassa, Ethiopia. (Photo: CIMMYT)
Local female artisan, Hawassa, Ethiopia. (Photo: CIMMYT)

Cover photo: A member of a women farmers group serves a platter of mung bean dishes in Suklaphanta, Nepal. (Photo: Merit Maharajan/Amuse Communication)

Best of 2020: Our favorite videos

The Multimedia team at the International Maize and Wheat Improvement Center (CIMMYT) and our producers around the world kept busy in 2020. They uploaded 50 videos to our YouTube channel and countless more to our social media, intranet and training platforms!

Here are some of our favorites. Subscribe to our YouTube channel to stay tuned!

Preserving the legacy of biodiversity

We shot much of this video on location in Svalbard, north of the Arctic Circle, where freezing temperatures put our cameras to the test — but the most challenging part of production was yet to come. After a global pandemic was declared, we had to shoot our first-ever socially distanced interviews, guide people to record themselves and coordinate editing remotely.

Travel with us to the Global Seed Vault, where maize and wheat seeds from CIMMYT’s genebank are are safely backed up.

Bringing landraces back home, 50 years later

Half a century ago, scientists collected and preserved samples of maize landraces in Morelos, Mexico. Now, descendants of those farmers were able to get back their ancestral maize seeds and, with them, a piece of their family history.

Jamal conquered his dreams through maize farming

It is not very often that we are able to use soap opera-style drama to convey science. In this video, actors dramatize the human stakes of the battle against fall armyworm.

At the end of the video, graphics and images show techniques developed by CIMMYT and partners to help real farmers beat this pest.

One-minute science: Carolina Rivera explains wheat physiology

Growing the right wheat varieties is necessary to nutritiously feed a growing population in the context of environmental stress.

How do I become a zero-till farmer?

An online training takes farmers and service providers though a visual journey on the use of conservation agriculture-based sustainable intensification methods.

A series of videos — available in Bengali, Hindi and English — demonstrates the process to become a zero-till farmer or service provider: from learning how to prepare a field for zero tillage to the safe use of herbicides.

The Cereal Serial: What are whole grains and why do they matter?

In the first installment of this video series for social media, CIMMYT’s maize and wheat quality experts Natalia Palacios and Itria Ibba explain what whole grains are and why they are an important part of healthy diets.

 

 

 

50-year anniversary of Norman Borlaug’s Nobel Peace Prize

In 1970, Norman Borlaug was awarded the Nobel Peace Prize for his important scientific work that saved millions of people from famine. Today, humanity faces an equally complex challenge which requires the commitment of all nations, leaders, investors and strategic partners: avoiding the next food crisis.

The Government of Mexico, the Nobel Peace Center and the International Maize and Wheat Improvement Center (CIMMYT) will celebrate the 50th anniversary of Borlaug’s Nobel Prize with a call to action to develop a transformational response of agriculture for peace, with an emphasis on nutrition, environment and equity.

Join us on December 8, 2020, from 9:00 to 10:30 a.m. (CST, GMT-6).

Please register in advance.

This special event is part of the run-up to the United Nations Summit of Agrifood Systems of 2021. It will feature international experts in each of the five action tracks of the summit: ensure access to safe and nutritious food for all; shift to sustainable consumption patterns; boost nature-positive production; advance equitable livelihoods; and build resilience to vulnerabilities, shocks and stress.

Guest speakers will include:

  • Marcelo Ebrard Casaubón – Mexico’s Secretary of Foreign Affairs
  • Kjersti Fløgstad – Executive Director, Nobel Peace Center
  • Victor Villalobos – Mexico’s Secretary of Agriculture and Rural Development
  • Martin Kropff – Director General, CIMMYT
  • Margaret Bath – Member of CIMMYT’s Board of Trustees
  • Alison Bentley – Director of CIMMYT’s Global Wheat Program
  • Robert Bertram – Chief Scientist, USAID’s Bureau for Resilience and Food Security
  • Nicole Birrell – Chair of CIMMYT’s Board of Trustees
  • Julie Borlaug – President of the Borlaug Foundation
  • Gina Casar – Assistant Secretary-General of the World Food Programme
  • Martha Delgado – Mexico’s Deputy Secretary for Multilateral Affairs and Human Rights
  • Marco Ferroni – Chair, CGIAR System Board
  • Federico González Celaya – President of Mexico’s Food Banks Association
  • Bram Govaerts – Deputy Director General for Research and Collaborations a.i. and Director of the Integrated Development Program, CIMMYT
  • Juana Hernández – Producer from the community of San Miguel, in Ocosingo, Chiapas, Mexico
  • Rut Krüger Giverin – Norwegian Ambassador to Mexico
  • Sylvanus Odjo – Postharvest Specialist, CIMMYT
  • Lina Pohl – FAO’s Mexico Representative
  • B.M. Prasanna – Director of CIMMYT’s Global Maize Program and the CGIAR Research Program on Maize
  • Tatiana Ramos – Executive Director, Conservation International Mexico
  • Alfonso Romo – Private Sector Liaison, Government of Mexico
  • Bosco de la Vega – President Mexico’s National Farmer’s Agricultural Council (CNA)

Matching seed to farmer

Farmer Raj Narayin Singh stands in his wheat field in Bihar, India. (Photo: Petr Kosina/CIMMY)
Farmer Raj Narayin Singh stands in his wheat field in Bihar, India. (Photo: Petr Kosina/CIMMYT)

Since the earliest days of global wheat breeding at the International Maize and Wheat Improvement Center (CIMMYT), breeders have made their crossing selections to meet farmers’ requirements in specific environments throughout the world’s wheat-growing regions.

To streamline and make this trait selection process consistent, in the 1970s CIMMYT breeders developed 15 mega-environments — sets of farming, climatic, weather, and geographic conditions to use as profiles for testing their varieties.

They took this a step further in the 1980s by developing sets of profiles for their varieties with common characteristics in current — and projected — climatic, soil and hydrological characteristics as well as socioeconomic features such as end-use quality and agronomic practices.

In newly presented research, CIMMYT wheat scientist Leo Crespo has taken another look at these mega-environments in the form of target population of environments (TPE) — specifically the ones that fall in the bread basket wheat production area of India — to create more nuanced definitions based on updated underlying conditions and desired traits.

Using meteorological and soil data, along with information about farmers’ practices in each region and more advanced analytical methods, Crespo defined three new specific TPEs for the region:

  • TPE1, in the optimally irrigated Northwestern Plain Zone with higher yield potential;
  • TPE2, in the irrigated, heat-stressed Northeastern Plains Zone; and
  • TPE3, in the drought-stressed Central-Peninsular Zone.

These TPEs encompass more than 28 million hectares, equivalent to more than 97% of India’s total wheat production area.

“While the mega-environments can be broad and transcontinental, we defined the TPE at a more regional level,” said Crespo. “In fact, two of our new TPEs — the NWPZ (TPE1) and part of the NEPZ (TPE2) — have distinct climate and soil characteristics, but they both fall under the same mega-environment: ME1.”

Elite wheat varieties at CIMMYT’s experimental station in Ciudad Obregon, in Mexico's Sonora state. (Photo: Marcia MacNeil/CIMMYT)
Elite wheat varieties at CIMMYT’s experimental station in Ciudad Obregon, Mexico. (Photo: Marcia MacNeil/CIMMYT)

Comparing international environments

Crespo later cross-checked these TPEs with the testing environments that CIMMYT wheat breeders use in the research station in Obregon, in Mexico’s Sonora Valley.

Obregon has long been valued by wheat breeders worldwide for its unique capacity to simulate many wheat growing conditions. Wheat grown in the various testing environments replicate in Obregon — known as selection environments (SEs) — goes through an arduous testing process including testing in other agroeconomic zones and undergoing pest and disease infestations to demonstrate its resilience.

This process, though intensive, is much cheaper and more efficient than testing each potential new wheat line in every major wheat growing area. That is why it is so important to verify that the decisions made in Obregon are the right ones for farmers in the diverse growing areas of the world.

Crespo used data from one of CIMMYT’s global wheat trials, the Elite Spring Wheat Yield Trials (ESWYT), to estimate the genetic correlation between the TPEs and in Obregon, selection response indicators and performance prediction. He found that wheat lines that perform well in the Obregon selection environments are very likely to display high performance in the TPEs he defined in India.

“Our results provide evidence that the selection environments in CIMMYT’s Obregon research station correlate with international sites, and this has led to high genetic gains in targeted regions,” explained Crespo.

“We can achieve even greater gains by targeting selections for farmers in the TPEs and improving the testing in those TPEs, along with the high-quality evaluations from the selection environment.”

These findings confirming the relationship between the selection environments and farmers’ fields in one of the world’s largest wheat growing regions allow CIMMYT to realize its mission to deliver superior wheat germplasm to national partners for their breeding programs, or for direct release as varieties for farmers throughout the world.

Watch Leo Crespo’s full presentation at the BGRI Technical Workshop.

“CIMMYT is at my heart”

After a 37-year career, Hans-Joachim Braun is retiring from the International Maize and Wheat Improvement Center (CIMMYT). As the director of the Global Wheat Program and the CGIAR Research Program on Wheat, Braun’s legacy will resonate throughout halls, greenhouses and fields of wheat research worldwide.

We caught up with him to capture some of his career milestones, best travel stories, and vision for the future of CIMMYT and global wheat production. And, of course, his retirement plans in the German countryside.

Beyh Akin (left) and Hans Braun in wheat fields in Izmir, Turkey, in 1989. (Photo: CIMMYT)
Beyh Akin (left) and Hans Braun in wheat fields in Izmir, Turkey, in 1989. (Photo: CIMMYT)

Major career milestones

Native to Germany, Braun moved to Mexico in 1981 to complete his PhD research at CIMMYT’s experimental station in Obrégon, in the state of Sonora. His research focused on identifying the optimum location to breed spring wheat for developing countries — and he found that Obrégon was in fact the ideal location.

His first posting with CIMMYT was in Turkey in 1985, as a breeder in the International Winter Wheat Improvement Program (IWWIP). This was the first CGIAR breeding program hosted by a CIMMYT co-operator, that later developed into the joint Turkey, CIMMYT and the International Center for Agricultural Research in the Dry Areas (ICARDA) winter wheat program. “In 1990, when the Commonwealth of Independent States was established, I saw this tremendous opportunity to work with Central Asia to develop better wheat varieties,” he said. “Today, IWWIP varieties are grown on nearly 3 million hectares.”

Although Braun was determined to become a wheat breeder, he never actually intended to spend his entire career with one institution. “Eventually I worked my entire career for CIMMYT. Not so usual anymore, but it was very rewarding. CIMMYT is at my heart; it is what I know.”

Hans Braun (center), Sanjaya Rajaram (third from right), Ravi Singh (first from right) and other colleagues stand for a photograph during a field day at CIMMYT’s experimental station in Ciudad Obregón, Sonora, Mexico. (Photo: CIMMYT)
Hans Braun (center), Sanjaya Rajaram (third from right), Ravi Singh (first from right) and other colleagues stand for a photograph during a field day at CIMMYT’s experimental station in Ciudad Obregón, Sonora, Mexico. (Photo: CIMMYT)

“Make the link to the unexpected”

One of Braun’s standout memories was a major discovery when he first came to Turkey.  When evaluating elite lines from outside the country — in particular lines from a similar environment in the Great Plains — his team noticed they were failing but nobody knew why.

Two of his colleagues had just returned from Australia, where research had recently identified micronutrient disorders in soil as a major constraint for cereal production. The team tried applying micro-nutrients to wheat plots, and it became crystal clear that zinc deficiency was the underlying cause. “Once aware that micro-nutrient disorders can cause severe growth problems, it was a minor step to identify boron toxicity as another issue. Looking back, it was so obvious. The cover picture of a FAO book on global soil analysis showed a rice field with zinc deficiency, and Turkey produces more boron than the rest of the world combined.”

“We tested the soil and found zinc deficiency was widespread, not just in the soils, but also in humans.” This led to a long-term cooperation with plant nutrition scientists from Cukurova University, now Sabanci University, in Istanbul.

But zinc deficiency did not explain all growth problems. Soil-borne diseases — cyst and lesion nematodes, and root and crown rot — were also widespread. In 1999, CIMMYT initiated a soil-borne disease screening program with Turkish colleagues that continues until today.  Over the coming decade, CIMMYT’s wheat program will make zinc a core trait and all lines will have at least 25% more zinc in the grain than currently grown varieties.

After 21 years in Turkey, Braun accepted the position as director of CIMMYT’s Global Wheat Program and moved back to Mexico.

Left to right: Zhonghu He, Sanjaya Rajaram, Ravi Singh and Hans Braun during a field trip in Anyang, South Korea, in 1990. (Photo: CIMMYT)
Left to right: Zhonghu He, Sanjaya Rajaram, Ravi Singh and Hans Braun during a field trip in Anyang, South Korea, in 1990. (Photo: CIMMYT)

Partnerships and friendships

Braun emphasized the importance of “mutual trust and connections,” especially with cooperators in the national agricultural research systems of partner countries. This strong global network contributed to another major milestone in CIMMYT wheat research: the rapid development and release of varieties with strong resistance to the virulent Ug99 race of wheat rust. This network, led by Cornell University, prevented a potential global wheat rust epidemic.

CIMMYT’s relationship with Mexico’s Ministry of Agriculture and the Obregón farmers union, the Patronato, is especially important to Braun.

In 1955, Patronato farmers made 200 hectares of land available, free if charge, to Norman Borlaug. The first farm community in the developing world to support research, it became CIMMYT’s principal wheat breeding experimental station: Norman Borlaug Experimental Station, or CENEB.  When Borlaug visited Obregón for the last time in 2009, the Patronato farmers had a big surprise.

“I was just getting out of the shower in my room in Obregón when I got a call from Jorge Artee Elias Calles, the president of the Patronato,” Braun recalls. “He said, ‘Hans, I’m really happy to inform you that Patronato decided to donate $1 million.’”

The donation, in honor of Borlaug’s lifetime of collaboration and global impact, was given for CIMMYT’s research on wheat diseases.

“This relationship and support from the Obregón farmers is really tremendous,” Braun says. “Obregón is a really special place to me. I am admittedly a little bit biased, because Obregón gave me a PhD.”

Hans Braun (right) and colleagues in a wheat field in CIMMYT’s experimental station in Ciudad Obregón, Sonora, Mexico. (Photo: CIMMYT)
Hans Braun (right) and colleagues in a wheat field in CIMMYT’s experimental station in Ciudad Obregón, Sonora, Mexico. (Photo: CIMMYT)
Norman Borlaug (left), Ravi Singh (center) and Hans Braun stand in the wheat fields at CIMMYT’s experimental station in Ciudad Obregón, in Mexico’s Sonora state. (Photo: CIMMYT)
Norman Borlaug (left), Ravi Singh (center) and Hans Braun stand in the wheat fields at CIMMYT’s experimental station in Ciudad Obregón, in Mexico’s Sonora state. (Photo: CIMMYT)
Left to right: Sanjaya Rajaram, unknown, unknown, unknown, Norman E. Borlaug, unknown, Ken Sayre, Arnoldo Amaya, Rodrigo Rascon and Hans Braun during Norman Borlaug's birthday celebration in March 2006. (Photo: CIMMYT)
Left to right: Sanjaya Rajaram, unknown, unknown, unknown, Norman E. Borlaug, unknown, Ken Sayre, Arnoldo Amaya, Rodrigo Rascon and Hans Braun during Norman Borlaug’s birthday celebration in March 2006. (Photo: CIMMYT)
Left to right: Hans Braun, Ronnie Coffman, Jeanie Borlaug-Laube, Thomas Lumpkin, Antonio Gándara, Katharine McDevitt and unknown during the unveiling of the Norman Borlaug statue at CIMMYT’s experimental station in Ciudad Obregón, Sonora, Mexico, in 2012. (Photo: Xochil Fonseca/CIMMYT)
Left to right: Hans Braun, Ronnie Coffman, Jeanie Borlaug-Laube, Thomas Lumpkin, Antonio Gándara, Katharine McDevitt and unknown during the unveiling of the Norman Borlaug statue at CIMMYT’s experimental station in Ciudad Obregón, Sonora, Mexico, in 2012. (Photo: Xochil Fonseca/CIMMYT)
Participants in the first technical workshop of the Borlaug Global Rust Initiative in 2009 take a group photo at CIMMYT’s experimental station in Ciudad Obregón, Sonora, Mexico. (Photo: CIMMYT)
Participants in the first technical workshop of the Borlaug Global Rust Initiative in 2009 take a group photo at CIMMYT’s experimental station in Ciudad Obregón, Sonora, Mexico. (Photo: CIMMYT)

A worldwide perspective

Braun’s decades of international research and travel has yielded just as many stories and adventures as it has high-impact wheat varieties.

He remembers seeing areas marked with red tape as he surveyed wheat fields in Afghanistan in the 1990s, and the shock and fear he felt when he was informed that they were uncleared landmine areas. “I was never more scared than in that moment, and I followed the footsteps of the guy in front of me exactly,” Braun recalls.

On a different trip to Afghanistan, Braun met a farmer who had struggled with a yellow rust epidemic and was now growing CIMMYT lines that were resistant to it.

“The difference between his field and his neighbors’ was so incredible. When he learned I had developed the variety he was so thankful. He wanted to invite me to his home for dinner. Interestingly, he called it Mexican wheat, as all modern varieties are called there, though it came from the winter wheat program in Turkey.”

Seeing the impact of CIMMYT’s work on farmers was always a highlight for Braun.

Hans Braun, Director of CIMMYT’s Global Wheat Program of CIMMYT, is interviewed by Ethiopian journalist at an event in 2017. (Photo: CIMMYT)
Hans Braun, Director of CIMMYT’s Global Wheat Program of CIMMYT, is interviewed by Ethiopian journalist at an event in 2017. (Photo: CIMMYT)

CIMMYT’s future

Braun considers wheat research to be still in a “blessed environment” because a culture of openly-shared germplasm, knowledge and information among the global wheat community is still the norm. “I only can hope this is maintained, because it is the basis for future wheat improvement.”

His pride in his program and colleagues is clear.

“A successful, full-fledged wheat breeding program must have breeders, quantitative genetics, pathology, physiology, molecular science, wide crossing, quality, nutrition, bioinformatics, statistics, agronomy and input from economists and gender experts,” in addition to a broad target area, he remarked at an acceptance address for the Norman Borlaug Lifetime Achievement award.

“How many programs worldwide have this expertise and meet the target criteria? The Global Wheat Program is unique — no other wheat breeding program has a comparable impact. Today, around 60 million hectares are sown with CIMMYT-derived wheat varieties, increasing the annual income of farmers by around $3 billion dollars. Not bad for an annual investment in breeding of around $25 million dollars. And I don’t take credit for CIMMYT only, this is achieved through the excellent collaboration we have with national programs.”

A bright future for wheat, and for Braun

General view Inzlingen, Germany, with Basel in the background. (Photo: Hans Braun)
General view Inzlingen, Germany, with Basel in the background. (Photo: Hans Braun)

After retirement, Braun is looking forward to settling in rural Inzlingen, Germany, and being surrounded by the beautiful countryside and mountains, alongside his wife Johanna. They look forward to skiing, running, e-biking and other leisure activities.

“One other thing I will try — though most people will not believe me because I’m famous for not cooking — but I am really looking into experimenting with flour and baking,” he says.

Despite his relaxing retirement plans, Braun hopes to continue to support wheat research, whether it is through CIMMYT or through long friendships with national partners, raising awareness of population growth, the “problem of all problems” in his view.

“We have today 300 million more hungry people than in 1985. The road to zero hunger in 2030 is long and will need substantial efforts. In 1970, Organization for Economic Co-Operation and Development (OECD) countries agreed to spend 0.7% of GDP on official development assistance. Today only 6 countries meet this target and the average of all OECD countries has never been higher than 0.4%. Something needs to change to end extreme poverty — and that on top of COVID-19. The demand for wheat is increasing, and at the same time the area under wheat cultivation needs to be reduced, a double challenge. We need a strong maize and wheat program. The world needs a strong CIMMYT.”

Left to right: Bruno Gerard, Ram Dhulipala, David Bergvinson, Martin Kropff, Víctor Kommerell , Marianne Banziger, Dave Watson and Hans Braun stand for a photograph at CIMMYT’s global headquarters in Texcoco, Mexico. (Photo: Alfonso Cortés/CIMMYT)
Left to right: Bruno Gerard, Ram Dhulipala, David Bergvinson, Martin Kropff, Víctor Kommerell , Marianne Banziger, Dave Watson and Hans Braun stand for a photograph at CIMMYT’s global headquarters in Texcoco, Mexico. (Photo: Alfonso Cortés/CIMMYT)
Former Director General of CIMMYT, Thomas Lumpkin (center), Hans Braun (next right) and Turkish research partners on a field day at a wheat landraces trial in Turkey. (Photo: CIMMYT)
Former Director General of CIMMYT, Thomas Lumpkin (center), Hans Braun (next right) and Turkish research partners on a field day at a wheat landraces trial in Turkey. (Photo: CIMMYT)
Hans Braun (sixth from right) stands for a photograph with colleagues during a work trip to CIMMYT’s Pakistan office in 2020. (Photo: CIMMYT)
Hans Braun (sixth from right) stands for a photograph with colleagues during a work trip to CIMMYT’s Pakistan office in 2020. (Photo: CIMMYT)
Hans Braun (seventh from left) visits wheat trials in Eskişehir, Turkey in 2014. (Photo: CIMMYT)
Hans Braun (seventh from left) visits wheat trials in Eskişehir, Turkey in 2014. (Photo: CIMMYT)

Cover photo: Hans Braun, Director of the Global Wheat Program at the International Maize and Wheat Improvement Center (CIMMYT), inspects wheat plants in the greenhouses. (Photo: Alfonso Cortés/CIMMYT)