Have you ever considered that bread and pasta are made from different types of wheat? How about the fact that there are thousands of different wheat products consumed around the world, and each one has unique characteristics and processing requirements?
Scientists at the International Maize and Wheat Improvement Center (CIMMYT) understand that the quality of the final product, be it spaghetti, a loaf of sourdough bread or a tandoori naan, is highly dependent on the quality of the grain and the flour it becomes. Every year, CIMMYT analyzes thousands of wheat lines in detail at its Wheat Quality laboratory to determine the nutritional, processing and end-use quality of the grain. In this short video, CIMMYT’s Wheat Quality lab head Maria Itria Ibba explains exactly what they are looking for and how they find it.
First, CIMMYT scientists test the overall grain quality by analyzing grain weight, density, protein content, moisture content and hardness.
The grains are then milled into flour, which is again analyzed for moisture content, protein content, color and protein quality. Protein quality is especially important to determine the end-use for the type of flour, and CIMMYT conducts several tests to determine this characteristic. Bread and durum wheat flours specifically are analyzed for overall protein quality by checking SDS-sedimentation volume. Mixographs are used to assess the flour’s mixing and absorption characteristics, and alveographs are used to measure dough deformation properties.
At the end of the tests, bread wheat flours are transformed into leavened breads and scored based on the loaf’s volume and crumb quality. Durum wheat flour, used to make Italian-style pasta, is scored based on grain quality, flour yellowness, high protein content and protein quality.
CIMMYT’s work ensures that wheat-derived foods produced in developing countries are nutritious, affordable, and maximize profits for each actor in the value chain.
Cover photo: At CIMMYT’s Wheat Quality lab, researchers evaluate how different bread wheat varieties behave at the time of baking. (Photo: CIMMYT)
Ridder’s smart technology is used by CIMMYT scientists to develop wheat and maize varieties that boost production, prevent crop disease and improve smallholder farmers’ livelihood.
A list of women leaders in STEM features Evangelina Villegas—a plant chemist at CIMMYT during its early days whose ground-breaking work on quality protein maize (QPM) helped combat malnutrition among developing communities worldwide.
Tan spot disease, caused by the fungus Pyrenophora tritici-repentis, may be less well-known than other pathogens of wheat such as rust and blast, but its potential to become a major threat to wheat-growing regions worldwide is a serious concern.
In Kazakhstan, one of the main wheat growing nations in Central Asia, farmers have struggled with tan spot epidemics since the 1980s. During epidemic years, Kazakh farmers have reported losing nearly half of their harvest to the disease.
A recent study published in Frontiers in Genetics has unlocked a promising new weapon against tan spot disease. Scientists at the Institute of Plant Biology and Biotechnology (IPBB) in Kazakhstan and the International Maize and Wheat Improvement Center (CIMMYT) conducted a genome-wide association study (GWAS) which found new sources of genetic resistance to tan spot disease.
“Bread wheat is the most important crop in Central Asia directly linked to food security. 45-60% of daily calories come from wheat,” said Alma Kokhmetova, Professor and Head of the Genetics and Breeding Laboratory at IPBB, who partnered with CIMMYT on this project.
Evaluation of tan spot disease resistance in a greenhouse. (Photo: IPBB)
Creative approaches to challenging, global issues
Global agriculture is repeatedly tested and threatened by emerging pests and diseases.
Fungicides and pesticides are not a one-stop, sustainable solution to controlling outbreaks. In addition to being unaffordable to much of the world’s smallholder population, they have also been found to have some negative environmental and health side effects. But crop breeders will argue that there is a more efficient path to resilience: through genetics.
For example, some wheat varieties are naturally resistant to diseases such as tan spot — it is in their DNA. If breeders can figure out what genes hold the code to tan spot disease resistance, in this case, they can cross and breed future varieties to be naturally immune to the disease. It is a much cleaner, cheaper and greener solution than dousing the world’s crops in fungus- and bug-killing chemicals.
A figure from the genome-wide association study shows novel genomic associations — especially here on chromosome 6A — that display resistance to both races of the tan spot fungus. (Figure: CIMMYT and IPBB)
Finding the needle in the haystack
Working together, CIMMYT and IPBB were able to find some important and novel genetic associations with resistance to tan spot for the two main races of the disease, race 1 and race 5, which are the most prevalent in Kazakhstan. The research centers assembled a panel with 191 samples of wheat having different levels of resistance from Kazakhstan, Russia and CIMMYT, through the International Winter Wheat Yield Partnership (IWWYP).
In order to conduct the genome-wide association study, the scientists used a genotyping platform called DArTseq to sequence the entries in the panel, a device that CIMMYT houses in its global headquarters in Mexico. The DArTseq method sequences the genome representations on the Next Generation Sequencing platforms and generates high-density single nucleotide polymorphisms (SNPs) data in a cost-effective manner.
Using the SNPs generated by DArTSeq and the phenotypic scoring of resistance to tan spot at the seedling and adult plant stages in Kazakhstan, the scientists were able to mark genomic regions associated with resistance to the disease. Novel regions on chromosomes 3BS, 5DL and 6AL were all found to have some promising traits of resistance, especially 6AL, which appears to be superior in protecting plants from both of the races of the pathogen.
Tan spot, caused by Pyrenophora tritici-repentis on susceptible wheat cultivar Steklovidnaya 24. (Photo: IPBB)
Tan spot-resistant wheat cultivar Tyngysh. (Photo: IPBB)
The next steps
This discovery of a new source of genetic resistance to tan spot is exciting to breeders, researchers, donors, national agricultural systems, seed companies and, ultimately, farmers both in and outside of Kazakhstan. Essentially, any country that struggles with race 1 and race 5 of tan spot disease will benefit from this discovery.
“For breeding purposes, 25 lines with the best allele combinations of novel and known genes identified in this study are currently being used in different crossing programs in Kazakhstan,” said Deepmala Sehgal, CIMMYT wheat geneticist. The next stage of this project will also be a collaborative effort with CIMMYT, where the results will be validated in other in genetic backgrounds.
“Once the results are validated, their sequence information will be updated in a genotyping platform called Intertek, which has been designed to assist breeders in genotyping their germplasm with gene-based markers,” added Sehgal
More impact together
“Thanks to the exchange of wheat materials between CIMMYT, Turkey and ICARDA (IWWIP), we have selected and produced disease-resistant advanced wheat lines. These wheat entries now are being evaluated in the different stages of the breeding process,” said Kokhmetova.
The early success of this study and partnership between CIMMYT and IPBB has led to another round of funding approved by the Kazakhstan government to bring this research to the next stage. Additionally, more projects that seek to find sources of genetic resistance to leaf rust and yellow rusts have recently been approved.
“Due to this previous successful collaboration done between IPBB and CIMMYT, two more projects have been funded to our national agricultural research system partner Professor Alma,” said Sehgal.
Although the story of tan spot-resistant wheat is still unfolding, major strides will continue to follow in the footsteps of this exceptional discovery.
Cover photo: Scientists from IPBB evaluate wheat infected with tan spot and wheat rusts in Kazakhstan. (Photo: IPBB)
A MasAgro-supported farmer in Mexico holds up a selection of maize varieties. (Photo: CIMMYT)
The International Maize and Wheat Improvement Center (CIMMYT) is contributing to make Mexico’s agriculture more productive, sustainable and resilient, according to a new report by The Economist Intelligence Unit and Barilla Foundation.
The study focuses on food loss and waste, sustainable agriculture, and nutritional challenges to assess how sustainable and resilient are the food systems of the 20 largest and most advanced economies of the world, which could lead the way to achieve the United Nation’s Sustainable Development Goals (SDGs) by 2030.
The authors discuss the intricacies between national food systems and progress towards SDGs as a cross-cutting issue: “The challenge for the agricultural sectors in the G20 countries is to make their production processes more efficient so that they are growing sufficient food for their populations and their exporters, but doing so in a way that is decoupled from resource use, repairs the damage that has already been done to the planet, helps to raise nutritional standards, and in the wake of the pandemic, rebuilds our resilience to the emergence of diseases.”
Against this backdrop, the data systems of CIMMYT’s MasAgro project are identified as an innovation or best practice that helps cut agriculture’s carbon footprint in Mexico. Under Masagro, CIMMYT monitors over 150,000 farmers and more than 500 variables of the growing cycle per farming plot.
“Farmers can then access data analysis via an app which provides them with a range of information to help them improve productivity, use more sustainable practices and access markets,” the report states.
Women farmers in Mexico attend a MasAgro field day. (Photo: CIMMYT)
The authors conclude that G20 leaders still have a narrow opportunity to adopt a systems approach to reducing food loss and waste, mitigating the impact of food production on the environment, and increasing the nutritional content of global diets to achieve the SDGs by 2030.
However, the policy responses needed to trigger a transformational change in global food systems require political will and leadership. “Involving different stakeholders in improving the sustainability of agriculture is key, according to Bram Govaerts of the International Maize and Wheat Improvement Center (CIMMYT),” reads the report.
The Board of Trustees appointed Bram Govaerts, renowned for pioneering, implementing and inspiring transformational changes for farmers and consumers in meeting sustainable development challenges, as Director General of CIMMYT.
Women represent approximately 43 percent of the world’s agricultural labor. Despite making up less than half of the labor force, women account for 60 to 80 percent of food production in developing countries. Often, official statistics ignore unpaid work – whether in the field, at a home garden or preparing food in the household – thus misrepresenting women’s real contribution to agricultural work and production.
According to the United Nations Food and Agriculture Organization (FAO), if the world’s women farmers had the same access to resources and agricultural financing as men, 150 million people could be lifted out of poverty.
There is no way that we will be able to reach zero hunger if the public and private sectors do not get involved in gender-sensitive programming that addresses women’s access to finance and other resources and opportunities.
A new study supported by the Walmart Foundation, which has been working steadily on this issue, found that smallholder farmers in Mexico must overcome considerable obstacles to access financing – but the barriers to credit are significantly higher for women.
The International Maize and Wheat Improvement Center (CIMMYT) has conducted interventions in the field to support this finding. A multidisciplinary CIMMYT team offered advice on financial inclusion to a group of 1,425 farmers in southern Mexico from 2018 to 2020. The team found that while 331 men received credit, only six women of the same target group did.
Similarly, only three women were able to take out agricultural insurance and 29 opened a savings account after two years of intervention, compared to 110 and 171 men, respectively.
However, there is some hope: an increasing number of farmers, both women and men, is progressively acquiring the basic information and skills to formally request financial products.
CIMMYT obtained funding from the Walmart Foundation in 2018 to implement a project aimed at improving smallholder farmers’ access to markets through collective action, crop diversification, and enhanced access to finance in Mexico’s southern states of Campeche, Chiapas and Oaxaca. The project’s solid results in validation and adoption of sustainable and inclusive technologies were key factors enabling the continuation of activities through 2021.
According to Víctor López, senior manager of partnerships for access to markets at CIMMYT, women farmers are less likely than men to default on loans but seldom have the necessary collateral to be considered as potential clients by standard financial institutions. Without this financial support, they are unable to obtain land, insurance or other critical agricultural inputs, trapping them in a cycle of poverty.
CIMMYT and its partners are working toward a more inclusive approach. With the support of the Walmart Foundation, CIMMYT is strengthening the capacity of farmers – particularly smallholders – and farmer organizations to mitigate production risks and incorporate market-sound considerations into their cropping plans.
These and similar rural development ventures with an inclusive business model perspective can help smallholder farmers, particularly women, combat hunger and food insecurity in Mexico and beyond.
The challenge is to bridge the financial services divide between agriculture and almost every other sector. As economic activity resumes and Mexico gradually recovers from the pandemic crisis, we have a big opportunity to create new credit products and financial services for women farmers that prioritize innovation and sustainable production over ownership rights.
This op-ed by CIMMYT Director General Martin Kropff was originally published in the Mexican Business Review.
A multi-disciplinary team of agricultural researchers and development practitioners is proposing a new approach to tackle the shortcomings of global food production systems that degrade the environment, greatly contribute to climate change and fail to deliver healthy diets for a growing population.
The new methodology developed by the International Maize and Wheat Improvement Center (CIMMYT) in collaboration with the Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT) aims to transform national food systems by achieving consensus between multiple stakeholders and building on successful participatory agricultural research experiences.
According to a peer-reviewed paper published today in the journal PLOS ONE, the Integrated Agri-food System Initiative (IASI) “is designed to generate strategies, actions, and quantitative, [Sustainable Development Goals] SDGs-aligned targets that have [a significant] likelihood of supportive public and private investment”.
The IASI methodology is based on successful integrated development projects implemented by CIMMYT in Mexico and Colombia, the latter in partnership with the Alliance Bioversity-CIAT, which engaged multiple public, private and civil sector collaborators in local maize systems enhancement. These initiatives took advantage of sociopolitical “windows of opportunity” that helped build multiple stakeholder consensus around health, nutrition, food security and development aspirations in both countries.
“CIMMYT’s integrated development approach to maize systems transformation in Mexico and Colombia laid the foundations of the IASI methodology by overcoming government transitions, annual budget constraints and win-or-lose rivalry between stakeholders in favor of equity, profitability, resilience and sustainability,” said Bram Govaerts, chief operating officer and Integrated Development Program director at CIMMYT.
Ultimately, the IASI methodology offers public officials and development practitioners the possibility to transform food systems by scaling out innovative farming practices and technologies that lead to sustainably managed natural resources and improved nutrition and food security.
The main steps to implement the IASI methodology are:
Diverse experts examine the current status and the business-as-usual scenario based on analysis of the socioeconomic, political, and sectoral context and model-based projections;
Stakeholders determine a preferred future scenario based on assessment of national implications, and define drivers of change toward a desired scenario;
Defined criteria are applied to stakeholder and expert inputs to validate drivers of change and to identify strategies and actions — for example, public policies, value chain and market interventions, and biotechnology applications — that can steer toward the preferred future scenario, which are then reviewed and prioritized by high-level decision makers;
Stakeholders agree on measurable targets and tangible, time-bound actions toward the preferred future scenario;
Stakeholders build shared commitment to a tactical implementation plan among traditional, non-traditional, and new partners;
Ongoing stakeholder engagement is organized around an online dashboard that tracks actions and progress toward targets and supports course correction and coordinated investment.
Following these steps, the authors of the IASI methodology propose to build a “global food systems transformation network” to co-design and co-implement agricultural development projects that bring together multiple partners and donors for global agricultural systems transformation.
As the approach is refined and further applications are built, it is expected that this network will harness efforts to initiate a new field of research and global practice on “integrated methodologies for food system transformation and innovation” — analogous to the fields of business administration and organizational development.
IASI serves as the backbone of new CGIAR Regional Integrated Initiatives, which draw on capacities from regional international agricultural research centers and programs to deliver global agri-food system transformation.
It was clear to Fatima Camarillo Castillo from a young age that her future was in agriculture. She grew up on a farm in a small village in Zacatecas, Mexico, and recalls working in the fields alongside her father and siblings, helping with the harvests and milking the cows. And every year, her family ran into the same issue with their crops: droughts.
“Sometimes the harvest was okay, but sometimes we didn’t have any harvest at all,” says Camarillo. “For us that meant that, if we didn’t have enough harvest, then for the whole year my mother and father struggled to send us to school.”
But they did send her to school, and instead of escaping the persistent challenges that agriculture had presented her family in her young life, she was determined to solve them. “After elementary school we had to leave the farm to continue our education,” she explains. “I knew about all the challenges that small farmers face and I wanted to have an impact on them.”
To this day, Camarillo believes in the power of education. Her schooling took her all the way to the International Maize and Wheat Improvement Center (CIMMYT), where she is now not only a researcher, but an educator herself. After her extensive study of plant breeding, genetics and wheat physiology, Camarillo gained a master’s degree from the University of Massachusetts, Amherst, and a PhD from Texas A+M University.
She was a part of CIMMYT’s fellowship program while pursuing her doctorate, and she joined the organization’s wheat breeding team shortly afterward. Camarillo now splits her time between wheat research and organizing the training activities for CIMMYT’s Global Wheat Program (GWP) wheat improvement course.
Fatima Camarillo analyzes durum wheat in the field at CIMMYT’s experimental research station in Ciudad Obregón, Mexico. (Photo: CIMMYT)
A special legacy
CIMMYT’s wheat improvement course is an internationally recognized program where scientists from national agricultural research programs (NARS) from around the world travel to CIMMYT Headquarters in Texcoco, Mexico, and then to Ciudad Obregón, for a 16-week training. Participants observe an entire breeding cycle and learn about the latest technologies and systems for breeding.
“A crucial component of having an impact on farmers is establishing good relationships with national programs, where all the germplasm that CIMMYT develops is going to go,” says Camarillo. “But at the same time, these partners need training. They need to know what is behind these varieties and the process for developing them, and we try to keep them updated with the vision, the current technologies and the breeding pipeline.”
The organization’s university-focused training programs are also special to Camarillo for many reasons, having participated in one of them herself. In fact, her first ever exposure to CIMMYT was through the annual Open Doors day which she attended during her first year of university, watching the breeders and scientists that would eventually become her colleagues give talks on germplasm development and distribution.
The courses also give students a chance to see all how their theoretical education can be applied in the real world. “When you are in graduate school you care a lot about data analysis and the most recent molecular tools,” says Camarillo. “But there is something else out there, the real problems outside. By taking the breeding program course you understand these challenges and situations.”
Camarillo remembers being struck by the thought that something that happens in a research station in Mexico can have an impact on the whole world. “CIMMYT cares about how other countries will adopt new varieties, it’s not just about developing germplasm for the sake of it,” she explains. “We’re interested in how new varieties are going to reach the farmers who need them, and for that, training is essential.”
“At the end of the day, these researchers are the ones who will help us evaluate germplasm. If they’re well trained, the efficiency of the whole process will increase.”
Fatima Camarillo (standing, third from the right) in Ciudad Obregón, Mexico, with participants on the GWP’s 2019 training program. (Photo: CIMMYT)
Keeping an eye on the breeding pipeline
With one foot in education and the other in research, Camarillo has a unique perspective on CIMMYT’s strategy for bringing tools and findings out of the lab, and towards the next step in the impact pathway. A key part of her work involves helping to research physiological traits by developing new tools to increase phenotyping efficiency in the breeding pipeline.
In particular, she is working on a project to develop high-throughput phenotyping tools, which use hyperspectral sensors and cameras to measure several traits in plants. This can help reflect how the plant is responding to different stresses internally, and helps physiologists and breeders understand how the plant behaves within a specific environment, and then quickly integrate these traits into the breeding process.
“Overall it increases the efficiency of selection, so farmers will have better materials, better germplasm, and more reliable yield across environments in a shorter period of time,” says Camarillo.
Sharing the recipe for success
Camarillo’s role in both breeding and training speaks to CIMMYT’s historic and proven strategy of working with national programs to effectively deliver improved seeds to the farmers who need them. In addition to developing friendships with trainees from around the world, she is helping CIMMYT to expand its global network of research and agriculture professionals.
As a product and purveyor of a great agricultural education, Camarillo is dedicated to it passing on. “I think we have to invest in education,” she says. “It is the only path to solve the current problems we face, not only in agriculture, but in every single discipline.”
“If we don’t invest and take the time for education, our future is very uncertain.”
Scientists at the International Maize and Wheat Improvement Center (CIMMYT) have been harnessing the power of drones and other remote sensing tools to accelerate crop improvement, monitor harmful crop pests and diseases, and automate the detection of land boundaries for farmers.
A crucial step in crop improvement is phenotyping, which traditionally involves breeders walking through plots and visually assessing each plant for desired traits. However, ground-based measurements can be time-consuming and labor-intensive.
This is where remote sensing comes in. By analyzing imagery taken using tools like drones, scientists can quickly and accurately assess small crop plots from large trials, making crop improvement more scalable and cost-effective. These plant traits assessed at plot trials can also be scaled out to farmers’ fields using satellite imagery data and integrated into decision support systems for scientists, farmers and decision-makers.
Here are some of the latest developments from our team of remote sensing experts.
An aerial view of the Global Wheat Program experimental station in Ciudad Obregón, Sonora, Mexico (Photo: Francisco Pinto/CIMMYT)
Measuring plant height with high-powered drones
A recent study, published in Frontiers in Plant Science validated the use of drones to estimate the plant height of wheat crops at different growth stages.
The research team, which included scientists from CIMMYT, the Federal University of Viçosa and KWS Momont Recherche, measured and compared wheat crops at four growth stages using ground-based measurements and drone-based estimates.
The team found that plant height estimates from drones were similar in accuracy to measurements made from the ground. They also found that by using drones with real-time kinematic (RTK) systems onboard, users could eliminate the need for ground control points, increasing the drones’ mapping capability.
Recent work on maize has shown that drone-based plant height assessment is also accurate enough to be used in maize improvement and results are expected to be published next year.
A map shows drone-based plant height estimates from a maize line trial in Muzarabani, Zimbabwe. (Graphic: CIMMYT)
Advancing assessment of pests and diseases
CIMMYT scientists and their research partners have advanced the assessment of Tar Spot Complex — a major maize disease found in Central and South America — and Maize Streak Virus (MSV) disease, found in sub-Saharan Africa, using drone-based imaging approach. By analyzing drone imagery, scientists can make more objective disease severity assessments and accelerate the development of improved, disease-resistant maize varieties. Digital imaging has also shown great potential for evaluating damage to maize cobs by fall armyworm.
Scientists have had similar success with other common foliar wheat diseases, Septoria and Spot Blotch with remote sensing experiments undertaken at experimental stations across Mexico. The results of these experiments will be published later this year. Meanwhile, in collaboration with the Federal University of Technology, based in Parana, Brazil, CIMMYT scientists have been testing deep learning algorithms — computer algorithms that adjust to, or “learn” from new data and perform better over time — to automate the assessment of leaf disease severity. While still in the experimental stages, the technology is showing promising results so far.
CIMMYT researcher Gerald Blasch and EIAR research partners Tamrat Negash, Girma Mamo and Tadesse Anberbir (right to left) conduct field work in Ethiopia. (Photo: Tadesse Anberbir)
Improving forecasts for crop disease early warning systems
CIMMYT scientists, in collaboration with Université catholique de Louvain (UCLouvain), Cambridge University and the Ethiopian Institute of Agricultural Research (EIAR), are currently exploring remote sensing solutions to improve forecast models used in early warning systems for wheat rusts. Wheat rusts are fungal diseases that can destroy healthy wheat plants in just a few weeks, causing devastating losses to farmers.
Early detection is crucial to combatting disease epidemics and CIMMYT researchers and partners have been working to develop a world-leading wheat rust forecasting service for a national early warning system in Ethiopia. The forecasting service predicts the potential occurrence of the airborne disease and the environmental suitability for the disease, however the susceptibility of the host plant to the disease is currently not provided.
CIMMYT remote sensing experts are now testing the use of drones and high-resolution satellite imagery to detect wheat rusts and monitor the progression of the disease in both controlled field trial experiments and in farmers’ fields. The researchers have collaborated with the expert remote sensing lab at UCLouvain, Belgium, to explore the capability of using European Space Agency satellite data for mapping crop type distributions in Ethiopia. The results will be also published later this year.
CIMMYT and EIAR scientists collect field data in Asella, Ethiopia, using an unmanned aerial vehicle (UAV) data acquisition. (Photo: Matt Heaton)
Delivering expert irrigation and sowing advice to farmers phones
The project has now ended, with the team delivering a webinar to farmers last October to demonstrate the app and its features. Another webinar is planned for October 2021, aiming to engage wheat and maize farmers based in the Yaqui Valley in Mexico.
CIMMYT researcher Francelino Rodrigues collects field data in Malawi using a UAV. (Photo: Francelino Rodrigues/CIMMYT)
Detecting field boundaries using high-resolution satellite imagery
In Bangladesh, CIMMYT scientists have collaborated with the University of Buffalo, USA, to explore how high-resolution satellite imagery can be used to automatically create field boundaries.
Many low and middle-income countries around the world don’t have an official land administration or cadastre system. This makes it difficult for farmers to obtain affordable credit to buy farm supplies because they have no land titles to use as collateral. Another issue is that without knowing the exact size of their fields, farmers may not be applying to the right amount of fertilizer to their land.
Using state of the art machine learning algorithms, researchers from CIMMYT and the University of Buffalo were able to detect the boundaries of agricultural fields based on high-resolution satellite images. The study, published last year, was conducted in the delta region of Bangladesh where the average field size is only about 0.1 hectare.
A CIMMYT scientist conducts an aerial phenotyping exercise in the Global Wheat Program experimental station in Ciudad Obregón, Sonora, Mexico. (Photo: Francisco Pinto/CIMMYT)
Developing climate-resilient wheat
CIMMYT’s wheat physiology team has been evaluating, validating and implementing remote sensing platforms for high-throughput phenotyping of physiological traits ranging from canopy temperature to chlorophyll content (a plant’s greenness) for over a decade. Put simply, high-throughput phenotyping involves phenotyping a large number of genotypes or plots quickly and accurately.
Recently, the team has engaged in the Heat and Drought Wheat Improvement Consortium (HeDWIC) to implement new high-throughput phenotyping approaches that can assist in the identification and evaluation of new adaptive traits in wheat for heat and drought.
The team has also been collaborating with the Accelerating Genetic Gains in Maize and Wheat (AGG) project, providing remote sensing data to improve genomic selection models.
Cover photo: An unmanned aerial vehicle (UAV drone) in flight over CIMMYT’s experimental research station in Ciudad Obregon, Mexico. (Photo: Alfredo Saenz/CIMMYT)
Wheat stalks grow in a field in India. (Photo: Saad Akhtar)
For scientists, determining how best to increase wheat yields to meet food demand is a persistent challenge, particularly as the trend toward sustainably intensifying production on agricultural lands grows.
The United Nations projects that the current global population of 7.6 billion will increase to more than 9.8 billion by 2050, making higher grain yield potential vital, particularly as climate instability increases due to global warming. International efforts are also focused on meeting the Zero Hunger target detailed in the UN Sustainable Development Goals before they expire in 2030.
Now, a new landmark research survey on the grain yield potential and climate-resilience of bread wheat (Triticum aestivum L.) has brought scientists a few strides closer to meeting their ambitions.
Grain yield has traditionally been an elusive trait in genomic wheat breeding because of its quantitative genetic control, which means that it is controlled by many genomic regions with small effects.
Challenges also include a lack of good understanding about the genetic basis of grain yield, inconsistent grain yield quantitative trait loci identified in different environments, low heritability of grain yield across environments and environment interactions of grain yield.
To dissect the genetic architecture of wheat grain yield for the purposes of the research, which appeared in Scientific Reports, researchers implemented a large-scale genome-wide association study based on 100 datasets and 105,000 grain yield observations from 55,568 wheat breeding lines developed by the International Maize and Wheat Improvement Center (CIMMYT).
They evaluated the lines between 2003 and 2019 in different sites, years, planting systems, irrigation systems and abiotic stresses at CIMMYT’s primary yield testing site, the Norman E. Borlaug Experimental Research Station, Ciudad Obregon, Mexico, and in an additional eight countries — including Afghanistan, India and Myanmar — through partnerships with national programs.
The researchers also generated the grain-yield associated marker profiles and analyzed the grain-yield favorable allele frequencies for a large panel of 73,142 wheat lines, resulting in 44.5 million data points. The marker profiles indicated that the CIMMYT global wheat germplasm is rich in grain yield favorable alleles and is a trove for breeders to choose parents and design strategic crosses based on complementary grain yield alleles at desired loci.
“By dissecting the genetic basis of the elusive grain-yield trait, the resources presented in our study provide great opportunities to accelerate genomic breeding for high-yielding and climate-resilient wheat varieties, which is a major objective of the Accelerating Genetic Gain in Maize and Wheat project,” said CIMMYT wheat breeder Philomin Juliana.
“This study is unique and the largest-of-its-kind focusing on elucidating the genetic architecture of wheat grain yield,” she explained, “a highly complex and economically important trait that will have great implications on future diagnostic marker development, gene discovery, marker-assisted selection and genomic-breeding in wheat.”
Currently, crop breeding methods and agronomic management put annual productivity increases at 1.2% a year, but to ensure food security for future generations, productivity should be at 2.4% a year.
So, the extensive datasets and results presented in this study are expected to provide a framework for breeders to design effective strategies for mitigating the effects of climate change, while ensuring food-sustainability and security.
Seeds are a cornerstone of food security. That is why the maize and wheat genebanks have always been at the heart of the work of the International Maize and Wheat Improvement Center (CIMMYT).
Earlier this year, as the CIMMYT community wished farewell to Denise Costich, Terence (Terry) Molnar stepped into her shoes and took over the management of the world’s largest and most diverse collection of maize.
Molnar calls himself a curator, but unlike his counterparts at libraries and museums, his job is not only about registering and showcasing the 28,000 unique seed collections of maize. He and his team make sure that the rich maize biodiversity collected throughout time and geographies stays alive, viable and accessible to others.
We sat down with Molnar to learn more about his unique role and what we can do to celebrate biodiversity on the International Day for Biological Diversity — and every other day.
Germplasm banks around the world are protectors of genetic diversity, altogether preserving roughly 700,000 samples of wheat varieties from fields far and wide. Thomas (Tom) Payne, the head of CIMMYTs Wheat Germplasm Collection, or genebank, manages the Mexico-based collection of nearly 150,000 accessions from over 100 countries. He has been affiliated with CIMMYT since 1988, and has dedicated his career to wheat improvement and conservation, working in Ethiopia, Mexico, Syria, Turkey and Zimbabwe. In addition to managing the genebank, he is the chair of the CGIAR Genebank Managers Group, has served as secretary to the CIMMYT Board of Trustees, manages the CIMMYT International Wheat Improvement Network and was awarded the Frank N. Meyer Medal for Plant Genetic Resources in 2019.
In advance of his retirement in July 2021, CIMMYT senior scientist Carolina Saint Pierre sat down with Tom Payne over Zoom to ask him a few questions from the wheat breeding team about his lifetime of experience in wheat biodiversity conservation.
What is your favorite Triticum species?
Triticum aestivum, bread wheat, is my favorite. Bread wheat feeds around 2.7 billion people worldwide. In fact, more food products are made from wheat than from any other cereal. An interesting detail about Triticum aestivum, however, is that it’s a hexaploid, meaning that it is a distinct species formed from three separate species. The inherent genetic diversity resulting from its three ancestral species and its ability to naturally incorporate genetic diversity from other species gives breeders a broad palette of genetic diversity to work with for current and future needs.
How can genebank managers of vital food crops add diversity to existing collections?
Some of the thousands of samples that make up the wheat active collection in the Wellhausen-Anderson Plant Genetic Resources Center at CIMMYT’s global headquarters in Texcoco, Mexico. (Photo: X. Fonseca/CIMMYT)
There are many vital genebanks, with community, national, regional, and international affiliations. Harmonization of these efforts into a global conservation network is needed. In wheat, for example, we do not adequately understand the diversity of the crop’s wild relatives. A recent study from Kansas State University observed that two thirds of the accessions of Aegilops tauschii held by several key collections were duplicates. This is an alarm to the global wheat community. The ex-situ collection of a critical species is less representative and more vulnerable than the sheer number of accessions would imply. We need to conduct a thorough characterization of all crop wild relatives to assess the risks to diversity, and a gap analysis of newly collected materials to ensure that their long-term conservation adds unique diversity to existing collections.
Which of the Triticum species that you store in the CIMMYT wheat genebank should, in your opinion, be explored much more?
Species that can readily cross with cultivated wheat, both bread wheat and durum wheat, should have intensified conservation and characterization efforts. Examples of these include Triticum monococcum subspecies monococcum (Einkorn) and Triticum turgidum subspecies dicoccon (Emmer).
What were the most surprising results from the genetic diversity analyses of nearly 80,000 wheat accessions from the CIMMYT genebank?
Modern, molecular genetic tools confirmed, for the most part, the centuries-old Linnaean taxonomic classification of Triticum and Aegilops species. There are generally two broad schools of taxonomists, “lumpers” and “splitters.” The former groups species based on a few common characteristics, and the latter defines multiple taxa based on many traits. The Seeds of Discovery work, in partnership with Michiel van Slageren from Kew Gardens, is confirming the salient taxonomy of the Triticum genus. Van Slageren previously studied and published a taxonomic monograph on the wheat ancestral Aegilops genus.
How can a genebank managers help in pre-breeding?
Maintaining native genetic diversity for use in the future is an important role that genebank managers play in pre-breeding and applied breeding processes. Furthermore, the identification of rare and odd variation plays an important role in understanding trait expression. Genebank managers are now gaining a stronger understanding of the genetic representativeness of their collections, and they can identify where gaps in the conserved genetic diversity may exist. A better understanding of the collections will enable their sustainable conservation and use.
Tom Payne at the Global Seed Vault in Svalbard, Norway, for the official opening ceremony in 2008. He holds one of the sealed boxes used to store the nearly 50,000 unique maize and wheat seed collections deposited by CIMMYT. (Photo: Thomas Lumpkin/CIMMYT)
What would you consider the biggest challenge when striving for genetic diversity in breeding wheat for the future?
CIMMYT and other CGIAR Centers are rightfully proud of their stewardship of global public goods, and the free access to and distribution of germplasm and information. Yet outside of the CGIAR, the two-way sharing of germplasm and knowledge is often still not realized by many crop communities. International agreements have attempted to bridge recognition of intellectual property rights with guaranteed access and benefit-sharing mechanisms. However, the playing field remains uneven between public and private organizations due to varied levels of investment and exclusivity, access to technology and information, and marketability.
What is one way we can ensure long-term conservation of staple crops around the world?
In the past few years, several internationally renowned germplasm collections have been destroyed due to civil conflicts, natural disasters and fires — for example in Aleppo, Cape Town and Sao Paulo. Each time, we hear what a shame it was that the destroyed heritage was lost, that it was irreplaceable and beyond value. When a genebank loses an accession, the ancestral lineage extending hundreds of generations becomes permanently extinct. Genebank managers recognize this threat, and hence duplicate samples of all accessions are now slowly being sent to the Global Seed Vault in Svalbard for long-term preservation.
Cover photo: Tom Payne, Wheat Germplasm Collections & International Wheat Improvement Network Manager. (Photo: X. Fonseca/CIMMYT)
Mexico’s Secretariat of Agriculture and Rural Development (SADER) and its counterpart in the United States reached an agreement to promote knowledge sharing and scientific collaboration on agriculture-related issues.
Martha Delgado Peralta joined the CIMMYT Board of Trustees in 2021.
Delgado is Vice Minister of Multilateral Affairs and Human Rights at Mexico’s Ministry of Foreign Affairs.
She is an environmentalist, renowned nationally and internationally, with over 29 years of professional experience in the public sector and NGOs.
From 1998 to 2003, she was President of the NGO Mexican Citizens Presence (Presencia Ciudadana Mexicana) and the Union of Environmental Groups (Unión de Grupos Ambientalistas), where she was one of the strongest campaigners for the defense of the gray whale.
From 2003 to 2006, she was elected Independent Representative in the Legislative Assembly of Mexico City, where she created and chaired the Water Management Commission.
In 2006–2012, Delgado served as Minister of the Environment of Mexico City, where she led key projects such as the city’s Climate Action Plan, the rescue of the Magdalena river, and the program Greenify Your City.
At the international level, Delgado was deputy head of the World Water Council; president of the Network of Environmental Management Authorities in Cities in Latin America and the Caribbean (2009–2010); and vicepresident of ICLEI – Local Governments for Sustainability (2009–2014). She is a member of the UNESCO Advisory Committee of Experts on Water and Human Settlements.
In 2019, she was President of the First Session of the UN-Habitat Assembly and became Sherpa for Mexico before the High-Level Panel for a Sustainable Ocean Economy, a position she proudly holds to this day.