Skip to main content

Location: Mexico

Is a world without hunger possible, asks Germany’s minister Gerd Müller during his visit to CIMMYT

CIMMYT staff welcome Minister Müller and his team at the entrance of CIMMYT’s global headquarters in Mexico. (Photo: Alfonso Cortés/CIMMYT)
CIMMYT staff and management welcome Minister Müller (front row, fifth from left) and his team at the entrance of CIMMYT’s global headquarters in Mexico. (Photo: Alfonso Cortés/CIMMYT)

On March 4, 2019, staff from the International Maize and Wheat Improvement Center (CIMMYT) welcomed Gerd Müller, Germany’s Federal Minister of Economic Cooperation and Development (BMZ), for a short visit to CIMMYT’s global headquarters in Mexico. Before exploring the campus and sitting down to hear about CIMMYT’s latest innovations in maize and wheat research, Minister Müller challenged the scientists gathered there by asking: “Is a world with no hunger actually possible?”

“It is possible, but it will require a lot of research and development activities to get there,” replied CIMMYT’s director general, Martin Kropff.

With $3.5 billion generated in benefits annually, CIMMYT is well positioned for Minister Müller’s challenge. CIMMYT works throughout the developing world to improve livelihoods and foster more productive, sustainable maize and wheat farming. Its portfolio squarely targets critical challenges, including food insecurity and malnutrition, climate change and environmental degradation. In addition, over 50 percent of maize and wheat grown in the developing world is based on CIMMYT varieties.

The director of CIMMYT’s Global Wheat Program, Hans Braun (left), shows one of the 28,000 unique maize seed varieties housed at CIMMYT’s genebank, the Wellhausen-Anderson Plant Genetic Resources Center. (Photo: Alfonso Cortés/CIMMYT)
The director of CIMMYT’s Global Wheat Program, Hans Braun (left), shows one of the 28,000 unique maize seed varieties housed at CIMMYT’s genebank, the Wellhausen-Anderson Plant Genetic Resources Center. (Photo: Alfonso Cortés/CIMMYT)

Germany has generously supported CIMMYT’s work for decades in a quest to answer this very question, which aligns with the German government’s agenda to improving food and nutrition security, the environment and livelihoods.

“CIMMYT is working to find ways to allow developing countries to grow maize and wheat on less land so that a larger percentage of it can be freed for nutritious and higher value cash crops. This requires better seeds that are adapted to biotic and abiotic stressors, smarter agronomy and machinery, which CIMMYT develops with partners,” Kropff explained.

CIMMYT works between smallholders and small companies to create an incentive on one side to grow varieties and on the other side, to increase demand for quality grain that will ultimately become the tortillas and bread on customers’ dinner tables. These sustainable sourcing and breeding efforts depend on the breathtaking diversity of maize and wheat housed at CIMMYT’s genebank, the Wellhausen-Anderson Plant Genetic Resources Center, which is supported by German funding along with solar panels that generate clean energy for the genebank.

Through funding for the CGIAR Research Program on WHEAT and the CIM Integrated Experts Program, Germany’s GIZ and BMZ have also supported CIMMYT research into gender and innovation processes in Africa, Central and South Asia, enhancing gender awareness in both projects and rural communities and mainstreaming gender-sensitive approaches in agricultural research. As a result, CIMMYT researchers and partners have increased gender equality in wheat-based cropping systems in Ethiopia, reduced the burden of women’s wheat cleaning work in Afghanistan, and hosted a series of training courses promoting the integration of gender awareness and analysis in research for development.

The German delegation watches the work of a lab technician counting wheat root chromosomes. (Photo: Alfonso Cortés/CIMMYT)
The German delegation watches the work of a lab technician counting wheat root chromosomes. (Photo: Alfonso Cortés/CIMMYT)

In addition, the CIM Integrated Experts program has allowed CIMMYT to increase its efforts to scale up agricultural innovations and link research to specific development needs. With support from GIZ and in collaboration with the PPPLab, in 2018 CIMMYT researchers developed a trial version of the Scaling Scan, a tool which helps researchers to design and manage scaling at all project phases: at the beginning, during and after implementation.

CIMMYT is committed to improving livelihoods and helping farmers stay competitive through increasing labor productivity and reducing costs. CIMMYT’s mechanization team works to identify, develop, test and improve technologies that reduce drudgery and enable smallholders in Mexico, sub-Saharan Africa and South Asia to adopt sustainable intensification practices, which require greater farm power and precision. In Ethiopia, CIMMYT has an ongoing collaboration with the GIZ/BMZ green innovation center — established as part of the ONE WORLD – No Hunger initiative — and is working with GIZ in Namibia to provide knowledge, expertise and capacity building on conservation agriculture. This includes the organization of training courses to mechanics and service providers on everything from the use to the repair of machinery and small-scale mechanization services.

“We’re on a mission to improve livelihoods through transforming smallholder agriculture, much of which depends on empowering women, scaling, market development and pushing for policies that would create the right incentives. Partnerships with local and international stakeholders such as Germany are at the core of CIMMYT’s operations and allow for us to have global impact,” said Kropff.

More photos of the visit are available here.

“Could we turn it on?” asks Germany’s federal minister of economic cooperation and development, Gerd Müller, during a small-scale machinery demonstration to show off the latest achievements of MasAgro, an innovative sustainable intensification project that works with more than 500,000 maize and wheat farmers in Mexico. (Photo: Alfonso Cortés/CIMMYT)
“Could we turn it on?” asks Germany’s federal minister of economic cooperation and development, Gerd Müller, during a small-scale machinery demonstration to show off the latest achievements of MasAgro, an innovative sustainable intensification project that works with more than 500,000 maize and wheat farmers in Mexico. (Photo: Alfonso Cortés/CIMMYT)

Farmers key to realizing EAT-Lancet report recommendations in Mexico, CIMMYT highlights

CIMMYT's director of innovative business strategies, Bram Govaerts (left), explained that three changes are needed to reduce the environmental impact of food systems in Mexico: innovation in production practices, reduction of food waste, and change of diets. (Photo: CIMMYT)
CIMMYT’s director of innovative business strategies, Bram Govaerts (left), explained that three changes are needed to reduce the environmental impact of food systems in Mexico: innovation in production practices, reduction of food waste, and change of diets. (Photo: CIMMYT)

MEXICO CITY (CIMMYT) — The International Maize and Wheat Improvement Center (CIMMYT) was invited to discuss the findings of the EAT-Lancet Commission report and its implications for Mexico, during a launch event hosted by Mexico’s Health Department on March 4, 2019.

The report, published earlier this year, aims to offer an in-depth scientific analysis of the world’s food production systems and their impact on the planet and human health. It proposes a “planetary health diet” that balances nutrition with sustainable food production.

“Our first objective was to develop healthy diets for the 10 billion people who will inhabit the planet in 2050”, said Juan Ángel Rivera Dommarco, Director General of Mexico’s Public Health Institute and member of the EAT-Lancet Commission. According to Dommarco, the healthy diet recommended for Mexico had to increase the intake of fruits, vegetables, legumes and whole grains to avert chronic diseases and combat malnutrition and obesity.

The report also makes several recommendations to reduce the environmental impact of food production, taking into account planetary boundaries. “The world needs to sustainably intensify food production and to produce basic foodstuffs of higher nutritional value”, said Fabrice DeClerck, EAT’s Science Director.

“If anybody is able to manage the complex systems that will sustainably yield the volume of nutritious food that the world needs, that’s the farmer”, said Bram Govaerts, Director of Innovative Business Strategies at CIMMYT. “In Mexico, more than 500 thousand farmers already innovate every day and grow maize, wheat and related crops under sustainable intensification practices that CIMMYT and Mexico’s Agriculture Department promote with MasAgro”.

Víctor Villalobos Arámbula, Mexico’s Secretary of Agriculture, said that the EAT-Lancet Commission report recommendations were very much in line with the strategic public policies that Mexico plans to implement in the coming years.

From left to right: Fabrice DeClerck, Science Director at the EAT Foundation; Hugo López-Gatell Ramírez, Mexico’s Undersecretary for Prevention and Promotion of Health; Teresa Shamah Levy, Deputy Director General for Evaluation and Surveys Research at Mexico’s Public Health Institute; Jorge Alcocer Varela, Mexico’s Secretary of Health; Víctor Villalobos Arámbula, Mexico’s Secretary of Agriculture; Bram Govaerts, Director of Innovative Business Strategies at CIMMYT; Rut Krüger Giverin, Norway’s Ambassador to Mexico; Juan Ángel Rivera Dommarco, Director General of Mexico’s Public Health Institute; and Olav Kjørven, Chief Strategic Officer at the EAT Foundation. (Photo: CIMMYT)
From left to right: Fabrice DeClerck, Science Director at the EAT Foundation; Hugo López-Gatell Ramírez, Mexico’s Undersecretary for Prevention and Promotion of Health; Teresa Shamah Levy, Deputy Director General for Evaluation and Surveys Research at Mexico’s Public Health Institute; Jorge Alcocer Varela, Mexico’s Secretary of Health; Víctor Villalobos Arámbula, Mexico’s Secretary of Agriculture; Bram Govaerts, Director of Innovative Business Strategies at CIMMYT; Rut Krüger Giverin, Norway’s Ambassador to Mexico; Juan Ángel Rivera Dommarco, Director General of Mexico’s Public Health Institute; and Olav Kjørven, Chief Strategic Officer at the EAT Foundation. (Photo: CIMMYT)

Breaking Ground: Breeder Marcela C. Andrade bolsters maize with hardiness from ancestral races

Postcard_Marcela CarvalhoAs the world heats up and water grows scarce, threatening the productivity of humankind’s preferred crops, breeder Marcela Carvalho Andrade and her colleagues at the International Maize and Wheat Improvement Center (CIMMYT) are working to toughen maize, drawing resilience traits from landraces, the forerunners of modern maize.

For decades, scientists have sought to utilize the hardiness of maize landraces, which evolved over millennia of farmer selection for adaptation to diverse and sometimes harsh local settings in Mexico, Central and South America.

But crossing elite varieties with landraces brings along wild traits that are difficult and costly to purge, including lower grain yields, excessive tallness or a tendency to fall over in strong winds. For this and for their genetic complexity, landraces are seldom used directly in breeding programs, according to Andrade.

Crosses that home in on genetically complex traits

“Our strategy is to cross selected landraces with elite maize lines, thus developing improved lines that can be directly incorporated and recycled in breeding programs,” explained Andrade, who joined CIMMYT in 2016.

The traits sought include better resilience under high temperatures, drought conditions or the attacks of rapidly-evolving crop diseases. “All these features will be critical for the future productivity of maize,” said Andrade.

One of the world’s three most important crops, maize contributes over 20% of the calories in human diets in 21 low-income countries, as well as being used in industry, biofuels, and feed for livestock and poultry.

Andrade and the maize breeding team develop new lines that carry a 75 percent genetic contribution from the elite source and 25 percent from a landrace. The aim she said is to get the good components from both sides, while broadening maize’s genetic diversity for use by breeders and ultimately farmers.

The resulting lines and hybrids are tested for yield, resilience and overall agronomic performance, under both normal growing conditions and “stressed” environments; for example, in plots grown at sites with high temperatures or reduced water availability.

“We can thus identify landraces that offer traits of interest, as well as generating improved breeding lines to strengthen the resilience of elite maize without reducing its yield,” said Andrade, noting that the research employs conventional cross-pollination and selection.

According to Andrade, CIMMYT has carried out large-scale molecular analysis of its maize seed collections, which number around 28,000 and comprise landraces from 70 countries.

“Over the past years, CIMMYT has used genetic diversity analyses of its maize collections to select landraces for use in drought tolerance breeding or for finding lines that are resistant to newly important diseases such as  Maize Lethal Necrosis or Tar Spot,” she explained. “Genetic diversity analysis allows us to narrow the number of candidate landrace sources that we need to cross and assess in the field.”

The viral disease Maize Lethal Necrosis (MLN) has devastated crops in eastern Africa since its appearance there in 2011.

The researchers have also found landrace sources of resilience against Tar Spot Complex, a maize disease of the Americas that can cause 50 percent or greater yield losses in infected crops.

Benefiting breeding and farmers

Andrade said the breeding team expects to release a first wave of landrace-derived, improved maize lines in 2019, some featuring enhanced drought tolerance and others that provide better resistance to Tar Spot.

“The lines we offer will be freely available to breeders worldwide and must yield well and show superior resilience,” Andrade explained. “They will have reasonable agronomics—ear and plant height and standability, for example. The lines will not be perfect, but breeders won’t hesitate to use them because we’ve ensured that they are superior for at least one crucial trait and reasonably competitive for most other traits.”

From Brazil to the world

Growing up in a small town and having direct contact with her father’s dairy farm in Minas Gerais, a mainly rural state in Brazil, Andrade finds her CIMMYT work enormously satisfying. “My dad and a few uncles were farmers and complained some years that their crops didn’t yield well,” she says. “I knew I wanted to help them somehow.”

Andrade obtained Bachelor and Master’s degrees in agronomy/plant science from the Universidade Federal de Lavras (UFLA), one of Brazil’s premier institutions of higher education. She later completed a Doctorate in Genetics and Plant Breeding at UFLA, in partnership with Ohio State University.

She credits CIMMYT maize scientist Terry Molnar, her supervisor and mentor, with teaching her the complex ins and outs of maize breeding. “I am a plant breeder and worked previously with vegetables, but I learned the practical aspects of maize breeding from Terry.”

Looking ahead, Andrade sees herself continuing as a plant breeder. “I don’t see myself working in anything else. I would eventually like to lead my own program but, at this point in my career, I’m happy to help transfer landrace traits to modern maize varieties.”

Q&A: Expanding CIMMYT’s research agenda on markets and business

TEXCOCO, Mexico (CIMMYT) — Food security is heavily dependent on seed security. Sustainable seed systems ensure that a variety of quality seeds are available to farming communities at affordable prices. In many developing countries, however, farmers still lack access to the right seeds at the right time.

In the past, governments played a major role in getting improved seed to poor farmers. These days, however, the private sector plays a leading role, often with strong support from governments and NGOs.

“Interventions in formal seed systems in maize have tended to focus on improving the capacity of seed producing companies, which are often locally owned small-scale operations, to produce and distribute quality germplasm,” says Jason Donovan, Senior Economist at International Maize and Wheat Improvement Center (CIMMYT). “These local seed companies are expected to maintain, reproduce and sell seed to underserved farmers. That’s a pretty tall order, especially because private seed businesses themselves are a fairly new thing in many countries.”

Prior to the early 2000s, Donovan explains, many seed businesses were partially or wholly state-owned. In Mexico, for example, the Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP) produced seed and supplied it to a market-oriented entity which was responsible for distribution. “What we’re seeing now is locally owned private seed businesses carving out their space in the maize seed market, sometimes in direct competition with multinational seed companies,” he says. In Mexico, around 80 locally owned maize seed producing businesses currently exist, most of which have been involved in CIMMYT’s MasAgro Maize project. These are mostly small businesses selling between 150,000 and 500,000 kg of hybrid maize per year.

In the following Q&A, Donovan discusses new directions in research on value chains, the challenges facing private seed companies, and how new studies could help understand their capacities and needs.

Seed storage warehouse at seed company Bidasem in Celaya, Guanajato state, México. (Photo: X. Fonseca/CIMMYT)
Seed storage warehouse at seed company Bidasem in Celaya, Guanajato state, México. (Photo: X. Fonseca/CIMMYT)

How does research on markets and value chains contribute to CIMMYT’s mission?

We’re interested in the people, businesses and organizations that influence improved maize and wheat seed adoption, production, and the availability and quality of maize and wheat-based foods. This focus perfectly complements the efforts of those in CIMMYT and elsewhere working to improve seed quality and increase maize and wheat productivity in the developing world.

We are also interested in the nutrition and diets of urban and rural consumers. Much of the work around improved diets has centered on understanding fruit and vegetable consumption and options to stimulate greater consumption of these foods. While there are good reasons to include those food groups, the reality is that those aren’t the segments of the food market that are immediately available to or able to feed the masses. Processed maize and wheat, however, are rapidly growing in popularity in both rural and urban areas because that’s what people want and need to eat first. So the question becomes, how can governments, NGOs and others promote the consumption of healthier processed wheat and maize products in places where incomes are growing and tastes are changing?

This year, CIMMYT started a new area of research in collaboration with A4NH, looking at the availability of processed maize and wheat products in Mexico City — one of the world’s largest cities. We’re working in collaboration with researchers form the National Institute of Public Health to find out what types of wheat- and maize-based products the food industry is selling, to whom, and at what cost. At the end of the day, we want to better understand the variation in access to healthier wheat- and maize-based foods across differences in purchasing power. Part of that involves looking at what processed products are available in different neighborhoods and thinking about the dietary implications of that.

Your team has also recently started looking at formal seed systems in various locations. What direction is the research taking so far?

Our team’s current priority is to advance learning around the private sector’s role in scaling improved maize varieties. We are engaged with three large projects: MasAgro Maize in Mexico, Stress Tolerant Maize for Africa (STMA) and the Nepal Seed and Fertilizer Project (NSFP). We are looking to shed light on the productive and marketing capacities of the privately owned seed producing businesses and their ability to get more seed to more farmers at a lower cost. This implies a better understanding of options to better link seed demand and supply, and the business models that link seed companies with agro-dealers, seed producing farmers, and seed consumers.

We are also looking at the role of agro-dealers — shops that sell agricultural inputs and services (including seed) to farmers — in scaling improved maize seed.

At the end of the day, we want to provide evidence-based recommendations for future interventions in seed sectors that achieve even more impact with fewer resources.

Farmers purchase seed from an agro-dealer in Machakos, Kenya. (Photo: Market Matters Inc.)
Farmers purchase seed from an agro-dealer in Machakos, Kenya. (Photo: Market Matters Inc.)

This research is still in its initial stages, but do you already have an idea of what some of the key limiting factors are?

I think one of the main challenges facing small-scale seed producing businesses is the considerable expense entailed in simultaneously building their productive capacities and their market share. Many businesses simply don’t have a lot of capital. There’s also a lack of access to specialized business support.

In Mexico, for example, a lot of people in the industry are actually ex-breeders from government agencies, so they’re very familiar with the seed production process, but less so with options for building viable businesses and growing markets for new varieties of seed.

This is a critical issue if we expect locally owned seed businesses to be the primary vehicle by which improved seeds are delivered to farmers at scale. We’re currently in the assessment phase, examining what the challenges and capacities are, and hopefully this information will feed into new approaches to designing our interventions.

Is the study being replicated in other regions as well?

Yes, in East Africa, under the Stress Tolerant Maize for Africa (STMA) project. We’re working with seed producing businesses and agro-dealers in Ethiopia, Kenya, Tanzania, and Uganda to understand their strategies, capacities, and needs in terms of providing improved seed to more farmers. We’re using the same basic research design in Mexico, and there is also ongoing work in the Nepal Seed and Fertilizer Project. Given that we are a fairly small team within CIMMYT, comparable cross-regional research is one way to punch above our weight.

Why is this research timely or important?

The research is critical as CIMMYT’s impact relies, in part, on partnerships. In the case of improved maize seed, that revolves around viable seed businesses.

Although critical, no one else is actually engaged in this type of seed sector research. There have been a number of studies on seed production, seed systems and the adoption of improved seed by poor farmers. A few have focused on the emergence of the private sector in formal seed systems and the implications for seed systems development, but most have been pretty broad, examining the overall business environment in which these companies operate but not much beyond that. We’re trying to deepen the discussion. While we don’t expect to have all the answers at the end of this study, we hope we can shift the conversation about options for better support to seed companies and agro-dealers.

Jason Donovan joined CIMMYT in 2017 and leads CIMMYT’s research team on markets and value chains, based in Mexico. He has some 15 years of experience working and living in Latin America. Prior to joining CIMMYT he worked at the Peru office of the World Agroforestry Center (ICRAF), where his research focused on business development, rural livelihoods, gender equity and certification. He has a PhD in development economics from the University of London’s School of Oriental and African Studies (SOAS).

Matthew Reynolds joins the Mexican Academy of Sciences

EL BATAN, Mexico (CIMMYT) — Mexico’s most prestigious scientific association has welcomed Matthew Reynolds among its regular members after accepting the nomination presented by fellow member, Alfonso Larqué Saavedra from the Yucatan Scientific Research Center.

The Mexican Academy of Sciences is an independent and not-for-profit association formed by acknowledged scientists working in both Mexican and international organizations. Its main objective is to offer expert advice to address the most pressing issues and challenges confronting Mexico’s government and civil society.

“I am deeply honoured to be recognized by the Academy,” Reynolds said. “Mexico has a proud tradition of scientific achievements including those of its pre-Hispanic civilizations, and not least in crop science. It is my hope that I can continue to contribute to Mexican agriculture and capacity building, especially in helping to buffer the effects of climate change. I am also very grateful for my long association with Professor Larqué Saavedra with whom I jointly supervised my first Mexican graduate student at Colpos and who nominated me for this position.”

CIMMYT scientist Matthew Reynolds has been appointed a member of the Mexican Academy of Science.
CIMMYT scientist Matthew Reynolds has been appointed a member of the Mexican Academy of Science.

Reynolds is a Wheat Physiologist at International Maize and Wheat Improvement Center (CIMMYT). His leadership of the Wheat component of the MasAgro project strengthened his nomination to the Academy. In this capacity, he has overseen the publication of 32 peer-reviewed articles in scientific journals that account for the progress achieved in the development of new high-yielding and resilient wheat varieties for Mexico and for other wheat-growing regions in the developing world.

Since 2011, MasAgro Trigo has characterized 71 thousand wheat lines in field trials designed to test yield potential under severe stress caused by heat and drought conditions. As a result, Reynolds and his team have formed the Wheat Yield Collaboration Yield Trial and the Stress Adaptive Traits Yield Nursery, two panels of elite lines that yield more grain in high temperatures and under limited water supply. Mexico’s agricultural research system INIFAP has recently incorporated 42 elite lines from these nurseries into its wheat-breeding program.

Reynolds has also mentored 12 Mexican students who have undertaken postgraduate studies under the supervision of renowned wheat scientists in American, Australian, British, Chilean and Spanish universities. Eight students have already achieved a PhD degree in different areas of wheat research. This new generation of scientists will further contribute to promote science and research in Mexico, one of the Academy’s main objectives.

Cobs & Spikes podcast: Blue maize opportunities for Mexican farmers

Blue maize is a ubiquitous aspect of Mexico’s food culture, especially in the central highlands. Most of it is grown by small-scale farmers for local consumers who value it for its rich flavor and texture. But it’s also catching the attention of some food processing companies who are interested in its health benefits, as well as high-end culinary markets seeking authentic Mexican cuisine. Find out how CIMMYT researchers are helping Mexican farmers tap into two emerging markets that could boost incomes while conserving culture and biodiversity.

You can listen to our podcast here, or subscribe on iTunes, SoundCloud or Stitcher.

 

Breaking Ground: Santiago López-Ridaura supports farmers facing tough decisions

Postcard_santiago lopez

Farmers frequently encounter trade-offs between maximizing short-term profits and ensuring sustainable, long-term production. Santiago López-Ridaura, a senior scientist at the International Maize and Wheat Improvement Center (CIMMYT), says these trade-offs are even more complicated for small-scale farmers who grow a mix of crops and raise livestock. With computer models to play out different scenarios, he and his team are helping them find optimal solutions.

“If you have $100, one hectare of maize, a half hectare of beans and three cows, you have limited resources,” indicates López-Ridaura. “You have to decide how you allocate those resources.”

Should the farmer use the money to buy new equipment or vaccinate the cows? What would happen if the farmer replaced the half-acre of beans with maize? These trade-offs, López-Ridaura explains, are one aspect of a farming system’s complexity.

“The other is that these farmers are trying to satisfy multiple objectives,” he adds. “They want to generate income. They want to produce enough food to feed their family and they may be trying to maintain cultural values.”

For example, a hybrid maize variety may produce higher yields under certain growing conditions, but the farmer could decide to continue growing the native variety because it carries cultural or even religious importance. Seasonal migration for off-farm jobs, climate change and access to markets are just some of the other factors that further complicate the decision-making process. López-Ridaura points out many models in the past have failed to capture these complexities because they have focused on one objective: productivity at the plot level.

“Our models show the bigger picture. They take a lot of time to develop, but they’re worth it,” says López-Ridaura.

Custom solutions to farming challenges

The models start with hundreds of in-depth household surveys from a specific region. López-Ridaura and his team then organize the large pool of data into several categories of farming systems.

“We make a model that says, ‘OK, this farm in Oaxaca, Mexico, has five hectares, 20 sheep and five people,” he explains. “We know how much the animals need to eat, how much the people need to eat, how much the farm produces and how much production costs.”

He and his team can then adjust certain factors in the model to explore different outcomes. For example, they can see how much water the farmer could use for irrigation to maximize his/her yields without depleting the local water supply during a drought. They can see which farmers would be the most vulnerable to a commodity crop price drop or who would benefit from a new policy.

Senior scientist Santiago Lopez-Ridaura (left) asks a farmer in Guatemala about his priorities — produce food, generate income, maintain soil health and feed his livestock — and the reasons behind his agricultural practices. (Photo: Carlos Sum/Buena Milpa)
Santiago López-Ridaura (left) asks a farmer in Guatemala about his priorities — produce food, generate income, maintain soil health and feed his livestock — and the reasons behind his agricultural practices. (Photo: Carlos Sum/Buena Milpa)

“The political guys often want a simple solution so they may say, ‘We should subsidize inputs such as seeds and fertilizers.’ In Mexico, for example, you might miss 60-70% of farmers as they don’t use much of these inputs,” López-Ridaura says. “So that’s great for 30% of the population, but why don’t we think about the other 70%? We must be able to suggest alternatives from a basket of options, considering the diversity of farming systems.”

López-Ridaura emphasizes that the models on their own do not provide solutions. He and his research team work with farmers to learn what they identify as their main challenges and how best to support them.

“We have networks of farmers in Guatemala and Oaxaca, and some may say, ‘Well, our main challenge is being self-sufficient with forage crops,’ and we’ll say, ‘OK, why don’t we try a crop rotation with forage crops? Our model suggests that it might be an appropriate option.’”

He and his team can then help the farmers access the right kind of seed and find out how best to grow it. This relationship is not a one-way street. The farmers also provide feedback on what is or is not working on the ground, which helps the researchers improve the accuracy of their models. This approach helps the researchers, farmers and policymakers understand different pathways forward and develop locally adapted, sustainable solutions.

Santiago López-Ridaura and his team work in Africa, Latin America and South Asia. Their funding often comes from development agencies such as IFAD and USAID.

Winners of third Cargill-CIMMYT Award increase food production in Mexico

FOR IMMEDIATE RELEASE

EL BATAN, MEXICO – Cargill Mexico and the International Maize and Wheat Improvement Center (CIMMYT) announced the winners of the third Cargill-CIMMYT Food Security and Sustainability Award on July 24. The award ceremony took place at CIMMYT’s global headquarters in México.

The Cargill-CIMMYT Award supports initiatives that tackle food security challenges in Mexico through long-term solutions. Winners have successfully increased the production of nutrient-rich food and made it available to people.

This year, the jury selected the most innovative projects in three categories:

  • Farmers: Carlos Barragán, for the project ‘De la milpa a tu plato’ (‘From the field to your plate’). Based in the state of Oaxaca, this initiative promotes food security and sustainability in small-scale farming systems.
  • Opinion Leaders: Fundación Mexicana para el Desarrollo Rural, for the project Educampo. This project supports poor maize smallholders who live in marginalized communities to make their farming more productive and profitable.
  • Researchers: Mario López, for the project ‘Technology for bean production.’ This initiative incremented production from 2 to 9 tons per hectare, disseminated agricultural technologies and increased the use of improved seed.

Winners were awarded a total of $25,000. The Farmers and Researchers categories received $10,000 each and the Opinion Leaders category was supported with $5,000.

A panel of experts from the agricultural and food sectors selected the winners from a shortlist of 30 projects across the country. The jury included representatives from Cargill Mexico, CIMMYT, Grupo Bimbo, the Inter-American Institute for Cooperation on Agriculture, Mexico’s Agriculture Council and Mexico’s Secretariat of Agriculture, Livestock, Rural Development, Fisheries and Food.


About Cargill

Cargill’s 155,000 employees across 70 countries work relentlessly to achieve our purpose of nourishing the world in a safe, responsible and sustainable way. Every day, we connect farmers with markets, customers with ingredients, and people and animals with the food they need to thrive.

We combine 153 years of experience with new technologies and insights to serve as a trusted partner for food, agriculture, financial and industrial customers in more than 125 countries. Side-by-side, we are building a stronger, sustainable future for agriculture. For more information, visit Cargill.com and our News Center.

About Cargill Mexico

Cargill Mexico aims to contribute in improving agricultural productivity, satisfying and fulfilling the expectations of the domestic industry. In addition to adding value to human and animal nutrition and thus encourage economic development, Cargill Mexico reinvests its profits in several new businesses in the country. Cargill has 9 business units that have operations in Mexico, it employs more than 1,750 people in 13 states and has a total of 30 facilities, including a corporate office in Mexico City. For more information, visit Cargill.com.mx, and our News Center.

About CIMMYT

The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information, visit staging.cimmyt.org.


For more information

Cargill Mexico: Joselyn Ortega, Joselyn_Ortega@cargill.com, +52 5511057429.

CIMMYT: Ricardo Curiel, R.Curiel@cgiar.org, +52 5558047544.


Photos available (click on the image to download the high-resolution JPG file)

Carlos Barragán (center) receives the Cargill-CIMMYT Award, in the Farmers category. Behind him are representatives from the organizations in the jury (from left to right): Bosco de la Vega, President of Mexico’s National Agriculture Council; David Hernández, Global Chief Procurement Officer of Grupo Bimbo; Martin Kropff, Director General of CIMMYT; Jorge Zertuche, Mexico’s Undersecretary of Agriculture; Marcelo Martins, President of Cargill Mexico; and José Sáenz, Chief of Staff to the Secretary of Economy. (Photo: CIMMYT)
Carlos Barragán (center) receives the Cargill-CIMMYT Award, in the Farmers category.
Behind him are representatives from the organizations in the jury (from left to right): Bosco de la Vega, President of Mexico’s National Agriculture Council; David Hernández, Global Chief Procurement Officer of Grupo Bimbo; Martin Kropff, Director General of CIMMYT; Jorge Zertuche, Mexico’s Undersecretary of Agriculture; Marcelo Martins, President of Cargill Mexico; and José Sáenz, Chief of Staff to the Secretary of Economy. (Photo: CIMMYT)
From left to right: Marcelo Martins, President of Cargill Mexico; Carlos Barragán, Farmers category winner; Citlali Fuentes, from Fundación Mexicana para el Desarrollo Rural, Opinion Leaders category winner; Mario López, Researchers category winner; and Martin Kropff, Director General of CIMMYT. (Photo: CIMMYT)
From left to right: Marcelo Martins, President of Cargill Mexico; Carlos Barragán, Farmers category winner; Citlali Fuentes, from Fundación Mexicana para el Desarrollo Rural, Opinion Leaders category winner; Mario López, Researchers category winner; and Martin Kropff, Director General of CIMMYT. (Photo: CIMMYT)

Breaking Ground: Gemma Molero sheds light on wheat photosynthesis

Postcard_Gemma MoleroDespite the rising interest in advanced methods to discover useful genes for breeding in crops like wheat, the role of crop physiology research is now more important than ever, according to Gemma Molero, a wheat physiologist at the International Maize and Wheat Improvement Center (CIMMYT).

“Physiology starts with the physical, observable plant,” Molero said. “It attempts to understand plant traits and processes and, ultimately, to provide breeders with selectable traits. Take for example the plant’s ability to capture and use sunlight. This is a complex trait and there are no useful DNA markers for it, so we have to analyze how it works and then help breeders to select plants that use sunlight better and yield more grain.”

A key goal of breeders and physiologists is to boost wheat’s genetic yield potential dramatically. Progress through current breeding is less than 1 percent each year. Molero said that needs to go to 1.7 percent yearly, to meet the demand expected by 2050 from expanding and urbanizing populations.

“Science must also adapt wheat to rising temperatures, less water, and mutating disease strains, and physiology is contributing,” she added.

Applied science and fieldwork drew Molero to CIMMYT

Molero grew up near Barcelona, Spain, in a family that included a folk-healing grandmother and a grandfather whose potato fields and orchards she recalls helping to tend as a child, during summers in Granada.

“My family called me ‘santurrona’ — something like ‘goody-two-shoes’ in English — because I was always trying to help people around me,” Molero explained.

Molero completed bachelor’s and master’s degrees in biology at the University of Barcelona, Spain, by 2006. She then pursued a doctorate in eco-physiology under the supervision of José Luis Araus, a University of Barcelona professor who was also working as a CIMMYT maize physiologist around the same time.

“Araus was an example of persistence and enthusiasm for me,” Molero explained. “He sent me to the CIMMYT research station near Ciudad Obregón, in northwestern Mexico, for fieldwork as part of my Ph.D. research. That sealed the deal. I said ‘This is the type of work where I can have impact, in an interdisciplinary setting, and with fieldwork.’ ”

She joined CIMMYT in 2011 as a post-doctoral fellow with Matthew Reynolds, a CIMMYT distinguished scientist who leads wheat physiology research.

Wheat spikes hold grain and catch light

Molero has quickly made a mark in CIMMYT wheat physiology research. Among other achievements, she has spearheaded studies on photosynthesis in wheat spikes — the small ears that hold the grain — to increase yield.

“In elite wheat varieties, spike photosynthesis adds an average 30 percent to grain yield,” she said. “In wheat wild relatives and landraces, that can go as high as 60 percent. This has put wheat spike photosynthesis in the science limelight.”

Practical outputs of this work, which involves numerous partners, include molecular markers and other tools that breeders can use to select for high spike photosynthesis in experimental lines. “We have a project with Bayer Crop Science to refine the methods,” Molero said.

Molero is also collaborating with plant biologists Stephen Long, University of Illinois, and Elizabete Carmo-Silva, Lancaster University, UK, to understand how quickly wheat returns to full photosynthesis after being shaded — for example, when clouds pass overhead. According to Molero, wheat varies greatly in its response to shading; over a long cropping season, quick recoveries can add 20 percent or more to total productivity.

“This is a breakthrough in efforts to boost wheat yields,” explained Molero, who had met Long through his participation in the International Wheat Yield Partnership (IWYP), an initiative that aims to raise wheat’s genetic yield potential by 50 percent over the next two decades. “I was fortunate to arrive at CIMMYT at just the right time, when IWYP and similar global partnerships were being formalized.”

Training youth and improving conditions for young women

From a post-doctoral fellow to her current position as a full scientist at CIMMYT, Molero has supervised 13 Ph.D. students and post-doctoral fellows, as well as serving as an instructor in many training courses.

“During my first crop cycle at Ciudad Obregón, I was asked to coordinate the work of five Ph.D. students,” she said. “I’d arrive home exhausted from long days and fall asleep reading papers. But I love supervising students and it’s a great way to learn about diverse facets of wheat physiology.”

Regarding the challenges for women and youth in the scientific community, Molero believes a lot needs to change.

“Science is male-dominated and fieldwork even more,” she observed. “It’s challenging being a woman and being young — conditions over which we have no control but which can somehow blind peers to our scientific knowledge and capacity. Instances of what I call ‘micro-machismo’ may appear small but they add up and, if you push back, the perceived ‘feminism’ makes some male scientists uncomfortable.”

Molero also believes young scientists need ample room to develop. “The most experienced generation has to let the new generation grow and make mistakes.”

Selected images from Science Week 2018

Every two years scientists from 15 offices worldwide of the International Maize and Wheat Improvement Center (CIMMYT) gather at the center’s headquarters in Mexico for an event known as “Science Week,” where they share and discuss new developments, science, challenges, and opportunities.

Science Week 2018, which took place from 25 to 28 June, drew more than 270 participants representing 46 countries that grow maize and wheat, crops that provide food and livelihoods for billions worldwide, to consider the theme “Next-generation science and partnerships for impact at CIMMYT.”

Topics addressed included cutting-edge tools and approaches for breeding, such as advanced genotyping, phenotyping, and data management, along with new technologies for the sustainable intensification of maize and wheat cropping systems—all to ensure benefits for farmers and consumers while accelerating genetic gains in maize and wheat, improving nutrition, and mitigating climate change impacts in agriculture.

Click here to see images of CIMMYT staff at work during Science Week 2018.

42299484135_22f61a733a_z

Designing and promoting institutional change: Geoff Graham of Corteva talks about CIMMYT

When trying to drive change in a global research organization, the science is the easy part, according to Geoff Graham, Vice President for Plant Breeding at Corteva Agriscience, a new company that brings together DuPont Crop Protection, DuPont Pioneer, and Dow AgroSciences.

“The hard thing is to change organizational culture—getting people to stop remembering how they’ve always done things and to think instead about what needs to be done,” said Graham, speaking on the topic to more than 600 international scientists and support staff at the Mexico headquarters of the International Maize and Wheat Improvement Center (CIMMYT) on 25 June 2018.

“Innovation is a process that can be managed, but it takes time and must be prioritized,” he explained, in his keynote talk during the opening session of CIMMYT’s biennial Science Week, which brings together the center’s researchers from 15 offices in Africa, Asia, and Latin America and this year focused on next-generation science and partnerships for impact.

“Innovation may require creativity, but innovation and creativity are different things,” added Graham, whose family lived in Cali, Colombia, until he was 14 and then moved to Minnesota in the U.S.

Responsible for global breeding activities at Corteva, a name derived from a combination of words meaning “heart” and “nature,” Geoff previously worked at DuPont Pioneer. He has Bachelor of Science and Master of Science degrees from the University of Minnesota, and earned a Ph.D. in genetics and plant breeding from North Carolina State University.

Below, watch an interview with Graham regarding the role of research institutions in society, how change can occur in CIMMYT, and how Corteva will support the CIMMYT-led CGIAR Excellence in Breeding Platform.

Wheat-rye crosses provide control for deadly sap-sucking aphid

Martin Kropff, CIMMYT director general (left) and Mustapha El-Bouhssini, ICARDA entomologist, in that center’s lab at Rabat, Morocco.
Martin Kropff, CIMMYT director general (left) and Mustapha El-Bouhssini, ICARDA entomologist, in that center’s lab at Rabat, Morocco.

In an excellent example of scientific collaboration spanning borders and generations, Mustapha El-Bouhssini, entomologist at the International Centre for Agricultural Research in the Dry Areas (ICARDA), screened wheat breeding lines from the International Maize and Wheat Improvement Center (CIMMYT) under glasshouse infestations of Russian wheat aphid (Diuraphis noxia), a major global pest of wheat. At least one of the lines, which were developed through crosses of wheat with related crop and grass species, showed high levels of resistance.

Scientists at CIMMYT began research on sources of RWA resistance for wheat in the early 1990s. Good sources of resistance from rye were accessed via wide crosses that combined major portions of both crop’s chromosomes, in collaborative work led by Adam J. Lukaszewski, University of California, Riverside.

“In our experiments, we did an initial screening with one replication and then a replicated test with a Pavon line and the check,” said El-Bouhssini.

Pavon is a semi-dwarf wheat variety developed by Sanjaya Rajaram, former CIMMYT wheat director and 2014 World Food Prize laureate. The version of Pavon referred to by El-Bouhssini had been crossed with rye by Lukaszewski and entered CIMMYT’s wheat genetic resource collections; the check was a popular high-yielding variety with no resistance to Russian wheat aphid.

The resistant wheat line (center) is green while all others have perished under heavy infestation of Russian wheat aphid, in the ICARDA entomology lab at Rabat, Morocco.
The resistant wheat line (center) is green while all others have perished under heavy infestation of Russian wheat aphid, in the ICARDA entomology lab at Rabat, Morocco.

Pavon had been used by Lukaszewski and colleagues as a model variety for wide crosses to transfer pest and disease resistance to wheat from its distant relatives. More recently Leonardo Crespo-Herrera, CIMMYT wheat breeder, pursued this research for his doctoral studies. It was he who provided a selection of wide-cross lines to El-Bouhssini.

“Resistance to pests in wheat is a valuable trait for farmers and the environment,” said Crespo-Herrera. “It can protect yield for farmers who lack access to other control methods. For those with access to insecticides, it can minimize their use and cost, as well as negative impacts on the environment and human health.”

 

 

 

 

CIMMYTNEWSlayer1

Breaking Ground: Tom Hagen brings IT expertise to crop breeding

Postcard_Tom HagenFrom an early age, Tom Hagen has enjoyed watching plants grow and solving complex problems. Now, as the enterprise breeding system manager at the International Maize and Wheat Improvement Center (CIMMYT), Hagen is combining his expertise in crop breeding and IT to help researchers and farmers be more successful.

“You could say I’m a hybrid scientific consultant – IT system architect,” said Hagen. “I will work with breeding teams to appropriately design software and then manage its development and deployment to facilitate breeding operations at CIMMYT and the International Rice Research Institute.”

The software will help breeders more effectively choose seed varieties, design field trials, collect data and analyze their outcomes. It is intended to assist farmers and extension agents as well.

“It will be able to give them advice about the appropriate seeds to use based on their specific environment and economic situation,” said Hagen. “It can also recommend ways to plant and manage their crop for better yields and higher income.”

Hagen’s interest in using computer programing to analyze large sets of biological data emerged shortly after obtaining a doctorate in plant genetics from the University of Georgia. It was the early 1990s, and bioinformatics was a new frontier. Hagen founded and managed the university’s Center for Scientific Computing and Visualization, and helped create the Bioinformatics Graduate Program.

In 1999, Hagen decided to leave the world of academia for the private sector.

“Universities are about inventing things, not applying them,” he said. “It is important to base your practice on theory, but at the end of the day, I personally think you need to apply it because otherwise – well, what is the point of it all?”

Hagen joined DuPont Pioneer, a large U.S. producer of hybrid seeds, where he and a team of designers created different technologies for breeders. Specifically, they worked on technologies that would help breeders develop a line of drought-resistant maize.

“By being in that group, I was both a scientist trying to invent and validate these methods while also designing and building the IT for that,” said Hagen.

During his last two years at DuPont Pioneer, Hagen was the architect of all analytics software. He also conducted research on crop growth modeling for predicting genotype-environment interactions for maize hybrids. This information has helped breeders, extension agents and farmers choose appropriate seed varieties for their specific environmental conditions.

Hagen joined the CGIAR Excellence in Breeding Platform (EiB) in January 2018. Led by CIMMYT, EiB aims to modernize breeding programs, specifically targeting the developing world for greater impact on food and nutrition security, climate change adaptation and development.

“I’m excited to be part of the work that’s starting to ramp up here at CIMMYT and the other CGIAR centers,” said Hagen. “I’m here to learn and engage, and do whatever I can to help others learn.”

Funding for the Excellent in Breeding Platform comes from the CGIAR, the Bill & Melinda Gates Foundation, national governments, development banks and other public and private agencies. Contributors include CGIAR system centers, the Biosciences eastern and central Africa- International Livestock Research Institute Hub, Cornell University, Diversity Arrays Technology, DuPont Pioneer, the Integrated Breeding Platform, Monsanto and Queensland University.

CIMMYTNEWSlayer1

Breaking Ground: Wei Xiong helps farmers and policymakers make better decisions

Farmers and agricultural policymakers frequently encounter tough decisions with complex trade-offs. Selecting which crop to plant next season, for example, would be much easier with a crystal ball. Wei Xiong, a senior scientist at the International Maize and Wheat Improvement Center (CIMMYT), cannot look into the future, but he can remove a lot of the guesswork.

Xiong uses modeling tools to simulate how agricultural systems would respond to different policies, technological innovations and climate change.

“With these simulations, we can show farmers and policymakers different hypothetical outcomes,” said Xiong. “We can help them make better, more informed decisions.”

Xiong and his multi-disciplinary team are interested in looking at new angles of agricultural issues. For one project, Xiong is investigating how climate change could affect global beer prices. He and his team are studying the effects of increasingly frequent extreme weather events, such as drought, on global barley yields and how this could affect beer production and prices.

“We call the project drinking security,” added Xiong.

Xiong is also interested in the impacts of air pollution on agricultural production and livelihoods in India and China.

“We want to know if air pollution affects yields and whether policies to curb air pollution will have any impact on farmer incomes, food prices and international trade,” he said.

Xiong collaborates with a team of Chinese agricultural scientists and local extension officers on a program called Size & Technology Backyard. The program aims to increase farmers’ yields while decreasing agricultural pollution in the water, air and soil. During each growing season, agricultural students stay in villages to conduct surveys and field research with farmers.

“Based on that data, we can create an agricultural modeling system that incorporates everything from the crop physiology side, to the socioeconomic side and human dimension side,” said Xiong. “We can project which farmers are most likely to adopt which specific kinds of technology based on everything from their location to their family structure.”

But in China, Xiong explained, agriculture still falls under government control.

“The government has always decided which crop you should plant, which area you should use and how to use the areas,” said Xiong. “Most of the policies are based on suggestions by experts.”

The team will use their simulation models to recommend policies that benefit farmers and the environment.

Xiong effectively links many silos through his work at CIMMYT, in large part due to his diverse educational background. After receiving a bachelor’s degree in geography at Hubei University, he continued with a master’s degree in meteorology from the Chinese Academy of Agricultural Sciences (CAAS) in Beijing. He later went on to earn a doctorate in agronomy from China Agricultural University.

After ten years as a professor at CAAS, Xiong worked at the International Institute for Applied Systems Analysis where he designed large-scale simulations of crop production and the effects of global policy. In 2014, he collaborated with other researchers on a global agriculture systems modeling project through a position at the University of Florida. Last fall, Xiong joined CIMMYT at its headquarters in El Batán, Mexico, working on sustainable intensification.

Xiong will return to China later this year to help establish a new CIMMYT office in Henan and strengthen CIMMYT’s partnership with Henan Agricultural University. The new location will focus on research and training, and will host two international senior scientists with expertise in remoting sensing, informatics, physiology and crop management.

The most important award is the one farmers give: Bram Govaerts

Bram Govaerts with the members of the Río Fuerte Sur Farmer Association (AARFS) Management Committee. Photo: José Saucedo.
Bram Govaerts with the members of the Río Fuerte Sur Farmer Association (AARFS) Management Committee. Photo: José Saucedo.

On the 14th of May, the Río Fuerte Sur Farmers’ Association (Asociación de Agricultores del Río Fuerte Sur, or AARFS), whose membership includes 2,500 farmers from northern Sinaloa, granted Bram Govaerts the 2018 Tecnoagro Award.

Starting 27 years ago, this award has been granted to people who promote the development of science and technologies aimed at improving farmers’ productivity and their ability to overcome the challenges of Mexican agriculture.

Govaerts received the 2018 Tecnoagro Award in recognition of the efforts of CIMMYT and, in particular, of its Sustainable Intensification Program, for promoting the adoption of conservation agriculture in northern Sinaloa, where the MasAgro program has had great success thanks to its close collaboration with AARFS farmers.

“It gave me great satisfaction to hear the words of Montiel Ibarra, an agricultural engineer who is Chairman of the Management Committee of the AARFS, indicating that MasAgro practices are the most appropriate alternative because they allow farmers to reduce costs, become more competitive, transform Sinaloa’s agriculture and make it more sustainable,” said Govaerts. “The best award is the one farmers give,” added CIMMYT’s Regional Representative in the Americas.

Govaerts receives the 2018 Tecnoagro Award and gives a keynote speech at the AARFS offices in Los Mochis, Sinaloa. Photo: Andrea Carbajal.
Govaerts receives the 2018 Tecnoagro Award and gives a keynote speech at the AARFS offices in Los Mochis, Sinaloa. Photo: Andrea Carbajal.

CIMMYT’s latest data indicate that Sinaloan farmers have saved, on average, $4,564 Mexican pesos and increased their productivity by 1.3 tons per hectare by implementing MasAgro’s sustainable intensification practices.

Additionally, conservation agriculture and the technologies that MasAgro promotes have made it possible for farmers to save up to 50% of the water used in their irrigation systems and reduce their pesticide applications by up to 66%, thanks to innovative integrated pest management practices.

Sinaloan farmers have also saved up to 170 kg of nitrogen fertilizer per hectare by applying optimal fertilizer doses estimated by remote sensors that very precisely determine the nutrient needs of maize or wheat crops.

Upon accepting the 2018 Tecnoagro Award, Govaerts joined AARFS’ call for farmers to adopt the sustainable intensification practices promoted by CIMMYT through MasAgro and reaffirmed his commitment to agricultural development both in Mexico and the world.

 

 

CIMMYTNEWSlayer1