Skip to main content

Location: Honduras

Innovation hubs in western Honduras, cornerstones for agricultural sustainability

Visit to the hub located at Elmer’s plot in Lentago, BelĂ©n Gualcho Ocotepeque, Honduras. (Photo: Erardo DĂ­az)

We are paving the way for significant agricultural change in the community of Lentago, Belén Gualcho, Ocotepeque. By means of the AgriLAC Resiliente initiative, we have taken firm steps towards more sustainable and resilient agrifood systems in Honduras through continuation efforts at the agricultural innovation hub.

“Fertilization is one of the main issues identified through plot diagnosis and the participation of several producers from three areas (Lentago, El Aguacatillo and La Mohaga),” says JesĂșs Erardo DĂ­az GĂłmez. He is a technician participating in the project and provided Elmer Valeriano with technical support during the installation of the hub on his plot, where sustainable practices are currently being implemented and compared with conventional local practices.

Traditionally, fertilization occurs 15 to 22 days after planting. “The innovation hub seeks to improve this practice by evaluating fertilization during planting in order to ensure adequate nutrient availability maize plants,” says Erardo, who is part of the InnovaHub West Honduras technical team, which coordinates local organization and stakeholder AgriLAC Resiliente efforts, promoting innovation and sustainability in the Honduran agricultural sector.

InnovaHub Occidente is not just impacting fertilization methods. Erardo states that the seed selection processes for future crops also needs to be reexamined. Currently, seeds are selected once they “tapizcan” (harvest) the maize, taking it out of the field. However, this has its problems. “With the innovation hub, we aim to start this process in the field, carefully selecting the healthiest plants most suited to the needs of local producers,” he explains.

Hubs like the one in Lentago help disseminate knowledge about sustainable practices. The CIMMYT and ODECO technical team has played a pivotal role resolving questions and orienting farmers about sustainable maize management.

Of course, the success of efforts like this one requires commitment and active participation from farmers like Elmer Valeriano. Elmer is a proactive farmer open to new techniques. He is an inspirational model showing how collaboration between technicians and farmers drive the shift towards more sustainable and efficient practices, like the installation of a rain gauge that promises to yield vital data for informed decision making in the hub.

Though seemingly simple, the rain gauge provides a way to better understand crop irrigation requirements and adjust agricultural practices accordingly. “The results will allow us to compare the amount of water received with actual crop requirements, providing a reliable foundation for making decisions,” says Erardo, noting Elmer’s commitment to collecting and recording the data from the rain gauge.

Elmer reads the rain gauge. (Photo: Erardo DĂ­az)

The work by InnovaHub Occidente de Honduras is not isolated. It is a part of a broader initiative: AgriLAC Resiliente. This CGIAR driven effort aims to transform agrifood systems in Latin America and the Caribbean by increasing resilience and competitiveness. The InnovaHubs in Honduras, in collaboration with organizations such as the Alliance of Bioversity International and CIAT and CIMMYT, are paving the way towards a more prosperous and sustainable future for agriculture in the region.

Ultimately, success for these initiatives will depend on continued collaboration among all stakeholders: farmers, technicians, organizations, and local communities. More resilient agrifood systems that not only feed present generations, but also protect and restore land for future generations, are possible as long as we continue to focus on innovation and sustainability.

The original piece was published in Spanish. 

Empowering communities through sustainable agriculture

Miriam Torres conducts field activities in eastern Honduras. (Photo: Mirian Torres)

In the eastern region of Honduras, Mirian Lizeth Torres, an agroindustrial engineer who graduated from the National Autonomous University of Honduras, is making a difference. Her commitment to agricultural sustainability and the empowerment of local communities through sustainable agriculture is evident in her work with the Eastern Regional Farmers Association (ARSAGRO, for its acronym in Spanish) and with her participation in the InnovaHub Oriente, set within the framework of the AgriLAC Resiliente initiative.

“In 2023, I volunteered at ARSAGRO, addressing crucial issues with producers, from events and extension to projects with CIAT that focused on the assessment of plots, water, soil, forest, pests and diseases, bean nutrition, grain quality, among others,” said Mirian, highlighting the breadth of her experience.

Her participation in the InnovaHub Oriente has been key to integrating theory and practice in the field. “I am a student of the conservation agriculture course, where I have explored agronomic practices that improve the sustainability of crops, creating more resilient systems,” she highlights. “These practices are shared with producers through innovation modules, which are plots where conservation agriculture innovations are implemented and compared, side by side, with conventional methods.”

Mirian knows the importance of communicating this knowledge to communities. “At events held on these plots, we shared practices and knowledge, reaching producers who were not familiar with these technologies,” she explains. “Thanks to AgriLAC, in 2023 we contributed significantly to the empowerment of producers and organized groups in eastern Honduras.”

Additionally, Mirian is proud of her role as an inspiration for the inclusion of youth and women in agriculture. “At every event we organize, we see increasing participation of young people and women,” she states. “The empowerment of women in agricultural activities has been notable, with many resuming activities in the field through the transfer of knowledge.”

Looking to the future, Mirian hopes to further encourage youth participation. “My invitation to young people is not to abandon the field; it is that they get involved in agricultural issues to contribute to the livelihood of their families and, at the same time, reduce migration,” she states with determination.

In a world where sustainable agriculture is essential, Mirian Lizeth Torres has assumed solid leadership from the field, helping her community move towards a more sustainable and equitable agricultural future.

Looking to the future, Mirian hopes to further encourage youth participation. “My invitation to young people is not to abandon the field, but rather that they get involved in agricultural issues to contribute to the livelihood of their families and, at the same time, reduce migration,” she states with determination.

Fast Tracking Climate Solutions from CGIAR Germplasm Banks

The Fast Tracking Climate Solutions from CGIAR Germplasm Banks project, led by the International Maize and Wheat Improvement Center (CIMMYT), is expanding the use of common bean and maize biodiversity, held in trust for humanity in the genebanks of CGIAR, to develop the raw ingredients of new climate-smart crop varieties for small-scale farmers in the Northern Triangle: Guatemala, Honduras and El Salvador.

Aligned with, and building upon the Mining Useful Alleles for Climate Change Adaptation from CGIAR Genebanks project, this project aims to identify common bean accessions in genebanks that contain alleles, or gene variations, responsible for characteristics such as heat, drought or salt tolerance, and to facilitate their use in breeding climate-resilient crop varieties. Additionally, within the maize work, the project focuses on transferring valuable novel genetic variation identified from landraces under the aligned project into breeding materials suitable for variety development in the Northern Triangle.

Through this project, breeders will learn how to use genebank materials more effectively and efficiently to develop climate-smart versions of important food crops.

Building on ten years of support to CIMMYT from the Mexican government, CGIAR Trust Fund contributors, the UK Biotechnology and Biological Sciences Research Council, and the ongoing Mining Useful Alleles for Climate Change Adaptation from CGIAR Genebanks project, this project combines the use of cutting-edge technologies and approaches, high-performance computing, GIS mapping, and new plant breeding methods to identify and use accessions with high value for climate-adaptive breeding of varieties needed by farmers and consumers.

Objectives:

  • Support faster and more cost-effective discovery and deployment of climate-adaptive alleles from the world’s germplasm collections.
  • Test integrated approaches for the rapid and cost-effective discovery and deployment of climate-adaptive alleles.

AgriLAC Resiliente presented in Guatemala

Representatives from CGIAR leadership, CGIAR Centers, government and other stakeholders stand for a group photo during the launch of the AgriLAC Resiliente Initiative in Guatemala City. (Photo: CGIAR)
Representatives from CGIAR leadership, CGIAR Centers, government and other stakeholders stand for a group photo during the launch of the AgriLAC Resiliente Initiative in Guatemala City. (Photo: CGIAR)

Latin America and the Caribbean possess the largest reserve of arable land on the planet, 30% of renewable water, 46% of tropical forests and 30% of biodiversity. These resources represent an important contribution to the world’s food supply and other ecosystem services. However, climate change and natural disasters, exacerbated by COVID-19, have deteriorated economic and food security, destabilizing communities and causing unprecedented migration, impacting not only the region but the entire world.

Against this regional backdrop, AgriLAC Resiliente was created. This CGIAR Initiative seeks to increase the resilience, sustainability and competitiveness of the region’s agrifood systems and actors. It aims to equip them to meet urgent food security needs, mitigate climate hazards, stabilize communities vulnerable to conflict and reduce forced migration.

Guatemala was selected to present this Initiative, which will also impact farmers in Colombia, El Salvador, Honduras, Mexico, Nicaragua and Peru, and will be supported by national governments, the private sector, civil society, and regional and global donors and partners.

At a workshop on June 27–28, 2022, in Guatemala City, partners consolidated their collaboration by presenting the Initiative and developing a regional roadmap. Workshop participants included representatives from the government of Guatemala, NGOs, international cooperation programs, the private sector, producer associations, and other key stakeholders from the host country. Also at the workshop were the leaders from CGIAR research Centers involved in the Initiative, such as the Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), the International Maize and Wheat Improvement Center (CIMMYT), the International Potato Center (CIP) and the International Food Policy Research Institute (IFPRI).

JoaquĂ­n Lozano, CGIAR Regional Director for Latin America and the Caribbean, presents during the launch of the AgriLAC Resiliente Initiative. (Photo: CGIAR)
JoaquĂ­n Lozano, CGIAR Regional Director for Latin America and the Caribbean, presents during the launch of the AgriLAC Resiliente Initiative. (Photo: CGIAR)

Impact through partnerships

“Partnerships are the basis for a future of food security for all through the transformation of food systems in the context of a climate crisis. AgriLAC’s goal of a coordinated strategy and regional presence will facilitate strong joint action with partners, donors, and producers, and ensure that CGIAR science continues to be leveraged so that it has the greatest possible impact,” said JoaquĂ­n Lozano, CGIAR Regional Director for Latin America and the Caribbean.

This Initiative is one of many CGIAR Initiatives in Latin America and consists of five research components: Climate and nutrition that seeks to use collaborative innovations for climate resilient and nutritious agrifood systems; Digital agriculture through the use of digital and inclusive tools for the creation of actionable knowledge; Low-emission competitiveness focused on agroecosystems, landscapes and value chains that are low in sustainable emissions; Innovation and scaling with the Innova-Hubs network for agrifood innovations and scaling; and finally, Science for timely decision making and establishment of policies, institutions, and investments for resilient, competitive and low-emission agrifood systems.

“We know the important role that smallholder farmers, both women and men, will play in the appropriation of the support tools that the Initiative will offer, which will allow them to make better decisions for the benefit of their communities. That is why one of the greatest impacts we expect from the project will be the contribution to gender equality, the creation of opportunities for youth, and the promotion of social inclusion,” said Carolina GonzĂĄlez, leader of the Initiative, from the Alliance of Bioversity International and CIAT.

Bram Govaerts, Director General of CIMMYT, said: “In Guatemala, we have had the opportunity to work side by side with farmers who today, more than ever, face the vicious circle of conflict, poverty and climate change. Through this Initiative, we hope to continue making progress in the transformation of agrifood systems in Central America, helping to make agriculture a dignified and satisfying job and a source of prosperity for the region’s producers.”

“I realize the importance of implementing strategic actions designed to improve the livelihoods of farmers. The environmental impact of development without sustainable planning puts at risk the wellbeing of humanity. The Initiatives of this workshop contribute to reducing the vulnerability of both productive systems and farmers and their families. This is an ideal scenario to strengthen alliances that allow for greater impact and respond to the needs of the country and the region,” said Jose Angel Lopez, Guatemala’s Minister of Agriculture, Livestock and Food.

Bram Govaerts, Director General of CIMMYT (right), presents during the launch of the AgriLAC Resiliente Initiative. (Photo: CGIAR)
Bram Govaerts, Director General of CIMMYT (right), presents during the launch of the AgriLAC Resiliente Initiative. (Photo: CGIAR)

National and regional strategies

AgriLAC Resiliente will also be presented in Honduras, where national partners will learn more about the Initiative and its role in achieving a resilient, sustainable, and competitive Latin America and the Caribbean, that will enable it to achieve the Sustainable Development Goals.

Under the general coordination of CGIAR, other Initiatives are also underway in Guatemala that will synergize with the global research themes toward the transformation of more resilient agrifood systems.

“We are committed to providing a structure that responds to national and regional priorities, needs, and demands. The support of partners, donors and producers will be key to building sustainable and more efficient agrifood systems,” Lozano said.


About CGIAR

CGIAR is a global research partnership for a food-secure future, dedicated to transforming food, land, and water systems in a climate crisis. Its research is carried out by 13 CGIAR Centers/Alliances in close collaboration with hundreds of partners, including national and regional research institutes, civil society organizations, academia, development organizations and the private sector. www.cgiar.org

We would like to thank all Funders who support this research through their contributions to the CGIAR Trust Fund.

About the Alliance of Bioversity International and CIAT

The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT) delivers research-based solutions that address the global crises of malnutrition, climate change, biodiversity loss, and environmental degradation. The Alliance focuses on the nexus of agriculture, nutrition and environment. We work with local, national, and multinational partners across Africa, Asia, and Latin America and the Caribbean, and with the public and private sectors and civil society. With novel partnerships, the Alliance generates evidence and mainstreams innovations to transform food systems and landscapes so that they sustain the planet, drive prosperity, and nourish people in a climate crisis.

The Alliance is a CGIAR Research Center. https://alliancebioversityciat.org

About CIMMYT

The International Maize and Wheat Improvement Center (CIMMYT) is an international nonprofit agricultural research and training organization that empowers farmers through science and innovation to nourish the world in the midst of a climate crisis. Applying high-quality science and strong partnerships, CIMMYT works toward a world with healthier, more prosperous people, freedom from global food crises, and more resilient agrifood systems. CIMMYT’s research brings higher productivity and better profits to farmers, mitigates the effects of the climate crisis, and reduces the environmental impact of agriculture.

CIMMYT is a CGIAR Research Center. https://staging.cimmyt.org

About CIP

The International Potato Center (CIP) was founded in 1971 as a research-for-development organization with a focus on potato, sweetpotato and andean roots and tubers. It delivers innovative science-based solutions to enhance access to affordable nutritious food, foster inclusive sustainable business and employment growth, and drive the climate resilience of root and tuber agrifood systems. Headquartered in Lima, Peru, CIP has a research presence in more than 20 countries in Africa, Asia, and Latin America.

CIP is a CGIAR Research Center. https://cipotato.org/

About IFPRI

The International Food Policy Research Institute (IFPRI) provides research-based policy solutions to sustainably reduce poverty and end hunger and malnutrition in developing countries. IFPRI currently has more than 600 employees working in over 50 countries. Global, regional, and national food systems face major challenges and require fundamental transformations. IFPRI is focused on responding to these challenges through a multidisciplinary approach to reshape food systems so they work for all people sustainably.

IFPRI is a CGIAR Research Center. www.ifpri.org

CGIAR Initiative to increase resilience, sustainability and competitiveness in Latin America and the Caribbean

(Photo: CIMMYT)
(Photo: CIMMYT)

Este artículo también estå disponible en español.

With the participation of more than 30 researchers from four CGIAR Centers located in the Americas, a planning workshop for a new CGIAR Research Initiative, AgriLAC Resiliente, was held on April 4–6, 2022. Its purpose was to define the implementation of activities to improve the livelihoods of producers in Latin America, with the support of national governments, the private sector, civil society, and CGIAR’s regional and global funders, and partners.

“This workshop is the first face-to-face planning meeting aimed at defining, in a joined-up manner and map in hand, how the teams across Centers in the region will complement each other, taking advantage of the path that each Center has taken in Latin America, but this time based on the advantage of reaching the territories not as four independent Centers, but as one CGIAR team,” says Deissy Martínez Barón, leader of the Initiative from the Alliance of Bioversity International and CIAT.

AgriLAC Resiliente is an Initiative co-designed to transform food systems in Latin America and the Caribbean. It aims to increase resilience, ecosystem services and the competitiveness of agrifood innovation systems in the region. Through this Initiative, CGIAR is committed to providing a regional structure that enhances its effectiveness and responds better to national and regional priorities, needs and demands.

This Initiative is one of a number that the CGIAR has in Latin America and the Caribbean and consists of five research components:

  1. Climate and nutrition that seeks to use collaborative innovations for climate-resilient and nutritious agrifood systems;
  2. Digital agriculture through the use of digital and inclusive tools for the creation of actionable knowledge;
  3. Competitiveness with low emissions, focused on agroecosystems, landscapes and value chains, low in sustainable emissions;
  4. Innovation and scaling with the Innova-Hubs network for agrifood innovations and their scaling up;
  5. Science for timely decision making and the establishment of policies, institutions and investments in resilient, competitive and low-emission agrifood systems.

The regional character of these CGIAR Initiatives and of the teams of researchers who make them a reality in the territories with the producers, was prominent in the minds of the leadership that also participated in this workshop. Martin Kropff, Global Director, Resilient Agrifood Systems, CGIAR; JoaquĂ­n Lozano, Regional Director, Latin America and the Caribbean, CGIAR; Óscar Ortiz, Acting Director General of the International Potato Center; JesĂșs Quintana, Manager for the Americas of the Alliance of Bioversity International and CIAT; and Bram Govaerts, Director General of the International Maize and Wheat Improvement Center (CIMMYT), all stated the importance of CGIAR being central to every discussion in which the teams are co-constructing a greater consensus on what AgriLAC Resliente is, what it wants to achieve, the approach it will use, and the goals it aims to achieve through synergies among its five components.

Acting as an integrated organization is also an opportunity for CGIAR to leverage co-developed solutions and solve local challenges in the global South related to climate change and agrifood systems transformation. “Building the new CGIAR involves tons of collaboration and coordination. In this AgriLAC Resiliente workshop, we have had a dialogue full of energy focused on achieving real impact” highlighted Bram Govaerts. He continued, “this is an occasion to strengthen teamwork around this CGIAR Initiative in which the Integrated Agrifood System Initiative approach will be applied in the Latin American region, which is a very interconnected region” he pointed out.

One of the main results of this workshop is an opportunity to carry out the integration of the CGIAR teams in the implementation of the AgriLAC Resiliente Initiative, with applied science and the decisive role of the partners at each point of the region, as mechanisms for change.

In 2022, the research teams will begin to lay the groundwork for implementing the Initiative’s integrative approach to strengthen the innovations to be co-developed with partners and collaborators in the Latin American region, that encompass the interconnected nature of the global South.

Learn more about the Initiative:
AgriLAC Resiliente: Resilient Agrifood Innovation Systems in Latin America and the Caribbean

This article, authored by the AgriLAC Resiliente team, was originally published on CGIAR.org.

Biofortified Maize for Improved Human Nutrition

The Biofortified Maize for Improved Human Nutrition project conducts field research both at CIMMYT and with partners on breeding for increased pro-vitamin A and Zinc content in both Africa and Latin America. The project grant is renewed annually and has been in operation since 2004.

Key activities include supporting early and mid-late product development, evaluation and release in Mexico and target countries in southern Africa, food science and retention studies. Molecular breeding and biochemical analysis are key components for successful breeding, and the project also involves technical backstopping for partners in both regions.

Objectives

  • Conduct field research on breeding for increased pro-vitamin A for target countries in Africa
  • Conduct field research on breeding for increased Zinc for product evaluation and release
  • Conduct essential research to deploy analytical tools and marker assisted selection or genomic selection methods in micronutrient breeding work
  • Facilitate the dissemination, promotion and consumption of biofortified crops

Closing the yield gap: Why localized analysis matters

General view of the experimental field in Lempira, Honduras. (Photo: Nele Verhulst/CIMMYT)
General view of the experimental field in Lempira, Honduras. (Photo: Nele Verhulst/CIMMYT)

Populations in Central America are rising rapidly, but staple crop production seems unable to keep up with increasing food demands.

Maize yields are particularly low compared to other regions. Cumulatively, farmers in El Salvador, Guatemala, Honduras and Nicaragua produce maize on nearly 2.5 million hectares, with a large proportion of these maize systems also including beans, either through relay cropping or intercropping. Though potential yields are estimated to be as high as 10 metric tons per hectare, average production remains low at around 2.28.

There is clearly immense opportunity for improvement, but it is not always obvious which issues need tackling.

Yield gap analysis — which measures the difference between potential and actual yield — is a useful starting point for addressing the issue and identifying intensification prospects. It is not a new concept in applied agronomy, but it has not been adequately applied in many regions. For example, Analyses of Central America tend to be grouped with the rest of Latin America, making it difficult to provide recommendations tailored to local contexts.

I see a more comprehensive understanding of the region’s specific crop production limitations as the first step towards improving food security.

Along with fellow researchers from the International Maize and Wheat Improvement Center (CIMMYT) and other institutions, we set out to identify the main factors limiting production in these areas. We established field trials in six maize and bean producing regions in El Salvador, Guatemala and Honduras, which represent about three-quarters of the maize producing area. We assessed factors such as water stress, nutrient deficiency, pressure from pests and diseases, and inter-plant competition, hypothesizing that optimized fertilization and supplementary irrigation would have the greatest effects on yields.

A maize cob in La Libertad, El Salvador, shows kernels affected by tar spot complex which have not filled completely (Photo: Nele Verhulst/CIMMYT)
A maize cob in La Libertad, El Salvador, shows kernels affected by tar spot complex which have not filled completely (Photo: Nele Verhulst/CIMMYT)

We found that while improved fertilization improved maize yields by 11% on average, it did not have a significant effect on bean production. Irrigation had no effect, though this was mainly due to good rainfall distribution throughout the growing season in the study year. On average, optimized planting arrangements increased maize yields by 18%, making it the most promising factor we evaluated.

It was interesting though perhaps unsurprising to note that the contribution of each limiting factor to yield gaps carried across all sites and no single treatment effectively increased yields consistently across all sites. The trial results confirmed that production constraints are highly dependent on local management practices and agroecological location.

With this in mind, we recommend that development actors aiming to increase crop production begin by conducting multi-year, participatory experiments to understand the primary causes of yield gaps and identify the limitations specific to the areas in question, as this will allow for more effective research and policy efforts.

Read the full article “Factors contributing to maize and bean yield gaps in Central America vary with site and agroecological conditions” in The Journal of Agricultural Science.

Central American Agriculture and Livestock Council signs agreement with CIMMYT

Julio Calderón and Tom Lumpkin stop for a photo as they tour the CIMMYT campus. Photos: Xochiquetzal Fonseca
The CIMMYT delegation provides a presentation for Calderón. From left to right: Felix San Vicente, Víctor López, Lumpkin, Calderón, Arturo Hinojosa and Isabel Peña.

In Texcoco, Mexico, on 03 December, Thomas A. Lumpkin, CIMMYT director general, signed a memorandum of understanding with Julio Calderón, Executive Secretary of the Central American Agriculture and Livestock Council (CAC), for shared work to strengthen the seed sector and to promote seed of improved crop varieties and relevant mechanization for small- and intermediate-scale farmers in the region.

Created in 1991, CAC is part of the Central American Integration System (SICA) established by Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua and Panama and helps to link agricultural with other key sectors and agencies, in benefit of farmers and rural inhabitants.

From left to right: Bram Govaerts, Calderón, Lumpkin and San Vicente pause for a photo.
Calderón and Lumpkin sign the memorandum of understanding.

Generating drought tolerant maize varieties in Latin America

S03TLWN-ears-ColombiaOn 26-27 April 2013, the FONTAGRO “Generation and validation
of drought tolerant maize varieties to stabilize and reduce mycotoxin damage resulting from climate change” project held its end-of-project meeting in La Ceiba, Honduras, along with the Central American Cooperative Program for the Improvement of Crops and Animals (PCCMCA) meeting (21-26 April). The event highlighted the advances to date, the project’s products, and recommendations for follow-up to ensure that the products reach farmers.

Since 2009, the project generated 5,000 doubled haploid (DH) lines which are currently being evaluated by CIMMYT. The populations were developed from inbred lines identified for drought tolerance, ear rot resistance, and reduced mycotoxin accumulation. The project also identified a set of inbred lines with high levels of ear rot and mycotoxin resistance. The information has been shared with project partners and other breeders for wide use, and CIMMYT will distribute these lines to interested parties. CIMMYT maize breeder Luis Narro commented on the research on diseases, ear rots in particular. “Ear rot is increasing in incidence and severity in South America. Evaluation of 18 commercial hybrids in Peru revealed ear rot incidences as high as 42% on susceptible hybrids in some locations,” he said. “Ear rot tolerant hybrids identified in this project will play an important role in mitigating the detrimental effects posed by ear rots and mycotoxin contamination. These need to be promoted to reach farmers rapidly.” As far as mycotoxins are concerned, the team also identified promising hybrids from validation trials documenting the natural incidence of mycotoxins in Peru, Colombia, and Mexico. This study showed that fumonisins are the most prevalent mycotoxin in South America (compared to aflatoxin and deoxynivalenol).

“The project has generated many products and validated some that are now being released in several countries,” said the project leader George Mahuku. Among those are four varieties released in Honduras (three white and one yellow); one white variety in Colombia; two varieties (one yellow, one white) and a yellow hybrid in Nicaragua, and three varieties (two yellow and one white) in Panama. Three hybrids outperforming the local commercial checks are under validation in Peru. Furthermore, two varieties showing the stability and rustic nature of CIMMYT-generated varieties were released in Colombia, Honduras, and Nicaragua. All the released cultivars are moderately tolerant to the tar spot complex disease which is becoming more common in Latin America.
CIMMYT maize breeder Felix San Vicente presented on the advances that have been made in breeding for drought tolerance and ear rot resistance. “We need to establish and maintain a regional network to test our products in marginal areas,” he noted. “We hope that we will be able to leverage funding from the CRP [MAIZE] to continue the validation and dissemination of these important and promising products in the region.” During the meeting, scientists presented 29 papers, 5 of which contained results from the FONTAGRO project. The papers of CIMMYT colleagues Román Gordon and Oscar Cruz were awarded for their contributions to the maize section of the project: Gordon received the first prize for his paper “Selection of maize varieties for tolerance to water stress in Panama 2010-2012,” and Cruz received the second prize for his paper on “Participatory validation of white and yellow maize varieties in two regions of Honduras.”

Fontagro-Laceiba-Honduras-019The project has generally been considered very successful. “We now know which mycotoxins are important in the region and we have the products to potentially minimize the risk,” commented Mahuku. “What we need is to widely test and disseminate the products so that they reach as many farmers as possible. With a little infusion of resources, the dedication demonstrated by this group, and support from policy makers, I have no doubt that we will get there.”

During 23-25 July, FONTAGRO will hold its annual meeting (VIII Taller de Seguimiento TĂ©cnico de Proyectos FONTAGRO) in Uruguay. The “Generation and validation of drought tolerant maize varieties to stabilize and reduce mycotoxin damage resulting from climate change” is one of five projects finishing this year; its representatives were invited to present their results and compete for a financial award given to the best project. If the project wins, the financial resources could help with continued and wider validation of products generated by this project.

FONTAGRO project holds workshop in Colombia

FontagroThe FONTAGRO project “Development of Maize Lines Combining Drought Tolerance and Ear Rot Resistance as a Way to Mitigate the Effects of Climate Change and Minimize Mycotoxin Contamination” held a workshop during 11-14 September 2012 in Monteria, Colombia. The workshop was jointly organized by CIMMYT and Sergio Mejía of CORPOICA and gathered participants and collaborators from Peru, Panama, Honduras, and Colombia. The participants were trained in concepts of seed production and explored ways to link with seed companies so that quality seed products can reach farmers. They were also trained in harvesting techniques and collecting agronomic data of the validation trials.

The FONTAGRO project has led to the release of two varieties combining drought tolerance and resistance to ear rots and mycotoxins which have already been registered and released in Honduras. Two additional varieties are currently in the process of being validated for release in Colombia and Nicaragua. Mycotoxins result from fungal infection of maize kernels and have detrimental health effects when contaminated grain is consumed by humans and livestock. They have the potential to cause acute and chronic health problems through direct consumption, consumption through animal products, skin contact, and inhalation. Pre- and post-harvest technologies have been an effective method of reducing mycotoxins in maize.

“Through the generous support of the Director of Corpoica Turipana, the course went on very well,” stated George Mahuku, FONTAGRO project leader. During his opening remarks, Mahuku highlighted the successes of the project in validation and distribution of maize varieties and hybrids. “The project has also made progress in creating awareness of the health hazards from mycotoxin contamination,” stated Mahuku.

Luis Narro from CIMMYT-Colombia discussed current developments in maize breeding and the genesis of hybrid maize production. Félix San Vicente, leader of International Maize Yield Consortium (IMIC)-Latin America, discussed the IMIC concept and CRPs MAIZE and WHEAT, as well as ways to channel products from this project into the CRP/IMIC concept to increase diffusion and distribution. Cesar Ruiz from Semivalle, a private seed company based in Colombia, provided insights into the seed industry and the interactions between public institutions and private seed companies, a crucial component of the project enabling improved varieties to reach farmers. Alba Arcos, a CIMMYT-Colombia PhD student, presented on doubled haploid technology and how this can be harnessed to accelerate inbred line development combining different favorable traits.

“The meeting was a success and the project has generated many products in three years, including information on the incidence and prevalence of aflatoxin and fumonisin contamination of maize. We hope that we can leverage more funding to ensure that these products are widely tested throughout Latin America,” stated Mahuku. Overall, the FONTAGRO project and its network of collaborators have generated more than 6,000 doubled haploid lines combining drought tolerance and ear rot resistance.

During the workshop, collaborators discussed next steps for the project. A possible link to leverage funding from IMIC and CRP MAIZE to continue the network of breeders, researchers, and seed companies were discussed as follow-up items. A Spanish language course on doubled haploid technology will take place at the end of November at CIMMYT headquarters in El BatĂĄn, Mexico. The workshop will draw upon the results of the Monteria workshop and promote linkages throughout the region of Latin America.

Latin American ministers visit CIMMYT and develop food price crisis strategy

CIMMYT E-News, vol 5 no. 5, May 2008

may05Skyrocketing food prices recently brought Latin American agriculture ministers from 14 countries and development experts to CIMMYT to seek a way forward for a region characterized by serious rural poverty.

On 26 May 2008, ministers of agriculture and government officials from Belize, Bolivia, Costa Rica, Cuba, the Dominican Republic, Ecuador, El Salvador, Guatemala, Haiti, Honduras, Mexico, Nicaragua, Panama, and Venezuela, as well as representatives of international organizations working in agricultural development and the Mexican media—more than 70 persons in all—visited CIMMYT’s headquarters in Mexico to learn about the center’s work and discuss collaborative strategies for addressing the food price crisis. The visit was part of a two-day summit organized by Mexico’s agriculture (SAGARPA) and foreign relations (SRE) ministries, following up on recommendations from a regional summit on the same topic in Nicaragua earlier this month.

Speaking on behalf of the Alliance of Centers of the Consultative Group on International Agricultural Research (CGIAR) in his welcoming talk, CIMMYT Director General Tom Lumpkin emphasized the need to move from the present emergency to a permanent vision for addressing the crisis. “It appears that two decades of complacency about basic food production has finally given way to a sense of urgency,” Lumpkin said. “We must now transform that urgency into a long-term vision, making sensible investments in agricultural research and extension to provide food for our children and our grandchildren.”

Have policy makers forgotten small-scale farmers?

The rising cost of food is being felt around the world, especially by poor people in rural zones. Though often not on the radar screens of policymakers, the rural poor are numerous. A recent paper from the International Food Policy Research Institute (IFPRI) says there are more than 400 million small farms in developing countries, and that these are home to most of the world’s hungry and disadvantaged. In Latin America and the Caribbean, nearly 64% of the rural population lives below the poverty line, according to a report by the International Fund for Agricultural Development (IFAD). Over the last two decades, the number of poor people in rural areas in the region has increased in both absolute and relative terms, the report says.

SAGARPA and CIMMYT undertake new, joint projects

As the meetings closed, Lumpkin urged “
the governments of Mexico and other countries in the region to re-examine their relationship with CIMMYT and bring new backing for research to increase food production and farm productivity.” In the week following the visit and at the invitation of Mexico’s Secretary of Agriculture, Alberto CĂĄrdenas JimĂ©nez, the center has submitted proposals for joint SAGARPA-CIMMYT work to develop, test, and disseminate drought tolerant maize varieties, as well as management practices that reduce small-scale farmers’ losses of stored maize grain to insect pests.

For more information: Rodomiro Ortiz, Director, Resource Mobilization (r.ortiz@cgiar.org)

may06