Skip to main content

Location: Guatemala

U.S. Pledges $5M for Guatemala Food Security Initiative

At the UN General Assembly, the U.S. Department of State announced $5 million in food security assistance to advance the Vision for Adapted Crops and Soils initiative in Guatemala. Co-led by CIMMYT and FAO, it aims to enhance sustainable agriculture through innovative practices that improve soil health and crop diversity. This initiative, part of the U.S. Feed the Future program, will strengthen resilience to climate change and support Guatemala’s agricultural sector, directly benefiting the 1.6 million people dependent on farming. CIMMYT’s leadership ensures scientific expertise in crop and soil management is central to addressing food insecurity and malnutrition in the region.

Read the full story.

Representatives of the Norwegian Government visit innovative plot in Guatemala

Visit of Norway’s Minister and Ambassador to Mexico at an Innovation Module in Guatemala. (Photo: Francisco AlarcĂłn/CIMMYT)

The visit of Anne Beathe, Norway’s Minister of International Development, and Ragnhild Imerslund, Norway’s Ambassador to Mexico and Central America, to the Lomas Abajo demonstration module in San Jacinto, Chiquimula, Guatemala—part of the InnovaHubs promoted by CIMMYT and its collaborators in that country through the AgriLAC Resiliente initiative—on June 5.

The presence of the minister and the ambassador highlights the Norwegian government’s support for initiatives like CGIAR’s AgriLAC Resiliente, which shares a common vision of Latin American regional development within a framework of triangular cooperation between the Norwegian Embassy, the Mexican Agency for International Development Cooperation (AMEXCID), and CIMMYT.

This cooperation framework seeks to strengthen the innovation management model known as InnovaHub because it promotes constant interaction between farmers and their local allies, with whom technicians and researchers work hand-in-hand on the plots that are part of the physical infrastructure, such as the modules visited by the Norwegian government representatives, which serve as spaces for co-learning and validation of sustainable practices and technologies for the region.

The work and actions in Guatemala are part of a methodology for accelerating agricultural innovation built on CIMMYT’s successful experiences in Mexico. In this sense, CIMMYT, together with other CGIAR Research Centers in the region—the Alliance of Bioversity International and CIAT, the International Potato Center (CIP), and the International Food Policy Research Institute (IFPRI)—lead AgriLAC Resiliente and, through collaboration with various regional partners, have succeeded in establishing and operating two InnovaHubs in Guatemala—one in the eastern region and another in the western region—where organizations like ADIPAZ and ASORECH work closely in disseminating sustainable practices suited to each agricultural and sociocultural context.

For the Norwegian government, which seeks to strengthen ties with the governments and societies of Mexico and Central America, the InnovaHubs model is ideal for connecting not only with national governments but also with local governments, producers, and a wide range of strategic actors.

The Norwegian government, which, together with CIMMYT, already promotes Agriculture for Peace—drawing on the legacy of Norman Borlaug to promote peaceful and resilient societies through sustainable and inclusive agriculture—considers agriculture a vital means to promote social stability in rural areas as it supports income generation and contributes to political stability, hence its interest and support for the InnovaHubs’ efforts in promoting innovative and sustainable agriculture.

Anne Beathe, Norway’s Minister of International Development, at an Innovation Module in Guatemala. (Photo: Francisco AlarcĂłn / CIMMYT)

During their visit to Guatemala, Minister Beathe and Ambassador Imerslund were accompanied by Jelle Van Loon, associate director of CIMMYT’s Sustainable Agrifood Systems Program, the operational team of AgriLAC in Guatemala; Elder Cardona, mayor of San Jacinto; as well as representatives of Alliance of Bioversity International and CIAT, ADIPAZ, and ASORECH, with whom they toured InnovaHubs facilities and engaged in a lively dialogue with various producers participating in AgriLAC Resiliente, particularly with a group of women farmers who shared their experiences on how the knowledge gained through the initiative has led to empowerment and better living conditions.

During the visit, the context of Chiquimula, the ChortĂ­ region, and the Dry Corridor was also explained, highlighting the challenges and limitations; the activities carried out with AgriLAC, including research platforms, post-harvest processes, and training; ongoing agronomic research, proposals for families, agronomic management programs, and crop diversification, Agroclimatic Technical Tables (MTAs), among other topics.

Finally, it was emphasized that, with the triangular cooperation between the Norwegian Embassy, AMEXCID, and CIMMYT, actions are planned for CIMMYT to train field advisors from El Salvador, Guatemala, and Honduras, with the aim of continuing the efforts of Agriculture for Peace for the benefit of the countries in the region.

CIMMYT at the AIM for Climate Summit

Sieg Snapp, Tek Sapkota, and partners photographed during AIM for Climate (Photo: CIMMYT)

As climate change threats accelerate, new technologies, products, and approaches are required for smallholder farmers to mitigate and adapt to current and future threats. Targeting smallholder farmers will benefit not only the farmers but the entire agri-food system through enhanced locally relevant knowledge that harnesses handheld sensors and advisories on management options, soil status, weather, and market information.

The Agriculture Innovation Mission for Climate (AIM for Climate / AIM4C) seeks to address climate change and global hunger by uniting participants to significantly increase investment in, and other support for, climate-smart agriculture and food systems innovation over five years (2021–2025).

The International Maize and Wheat Improvement Center (CIMMYT), as a partner of AIM for Climate, organized a breakout session titled “Smart Smallholder Fertilizer Management to Address Food Security, Climate Change, and Planetary Boundaries” during the AIM for Climate Summit in Washington DC, May 8-10, 2023.

Fertilizers are essential for increasing crop yields and ensuring food security, yet fertilizer use for food and fodder is severely skewed at the global level, leading to over-fertilization in some regions and under-fertilization in others.

Farmers in low-income countries are highly vulnerable to fertilizer supply shortages and price spikes, which have direct consequences for food prices and hunger. Improving fertilizer efficiency and integrated organic and inorganic sources is important globally as nutrient loss to the environment from inappropriate input use drives greenhouse gas emissions and pollution.

Innovation Sprint

Because smallholder farmers are the primary managers of land and water, the CIMMYT-led AIM4C Innovation Sprint, Climate-Resilient soil fertility management by smallholders in Africa, Asia, and Latin America is designed to implement and scale-up a range of climate robust nutrient management strategies in 12 countries, and to reach tens of millions of smallholder farmers in close collaboration with nearly 100 public-private partners organizations.

Sieg Snapp called for more investments in data synthesis (Photo: CIMMYT)

Strategies include innovations in extension where digital tools enable farmer-centered private and public advisories to increase the uptake of locally adapted nutrient management practices. Connecting farmers to investors and markets provides financial support for improved nutrient management.

By tailoring validated fertility management practices to their specific conditions, and integrated use of legumes and manure, smallholders will optimize productivity, enhance climate resilience, and mitigate greenhouse gas emissions. Research from other organizations has determined that improved fertilizer management can increase global crop yield by 30% while reducing greenhouse gas emissions.

Right place, right time

“We need locally adapted fertilizer management approaches that work for smallholder farmers. By tailoring validated fertility management practices to their specific conditions, smallholders will optimize productivity, enhance climate resilience, and mitigate greenhouse gas emissions,” said Sieg Snapp, CIMMYT’s Sustainable Agricultural Systems Program Director. She continued, “What is needed now is major investment in data synthesis. Through this SPRINT we are exploring options to enable taking sensors to scale, to reach tens of millions of farmers with hyper-local soils information.”

Inequality is the core of the problem in fertilizer management: some regions apply more than the required amount, where in other regions fertilizer application is insufficient for plant needs, leading to low yields and soil degradation.

Tek Sapkota spoke on fertilizer management (Photo: CIMMYT)

“Fertilizer efficiency can be improved through application of the right amount of fertilizer using the right source employing the right methods of application at the right time of plant demand,” said Tek Sapkota, CIMMYT Senior Scientist, Agricultural System/Climate Change.

The session included presentations by the Foundation for Food & Agriculture Research (FFAR), UN Foundation, Pakistan Agricultural Research Council (PARC), Stockholm International Water Institute (SIWI), USDA, and Alliance of CIAT-Bioversity. Highlights sustainable and climate-smart practices in Pakistan, novel plant genetics for improved nitrogen cycling, and soil water and nutrient management in the Zambezi to tackle food security and climate change challenges.

Latin American female scientists collaborate on CIMMYT-supported TechMaiz project

A team of women researchers that are part of the Latin American Maize Network participated in the training given by CIMMYT in the framework of the TechMaiz project. (Photo: Francisco AlarcĂłn and Fernando Garcilazo/CIMMYT)

Female scientists from four different Latin American countries have come together to work on TechMaiz, a project supported by the International Maize and Wheat Improvement Center (CIMMYT), and continue the organization’s commitment to inclusivity and inclusion.

The scientists spent four days in November at CIMMYT’s headquarters in Mexico to contribute to the training plan, which focused on genetic improvement, soil conservation, seed storage, analysis of the nutritional quality of grain and innovation management in the hub model of maize cultivation.

This training allowed the researchers from Ecuador, Colombia, Guatemala and Peru to discuss the use of new technological tools for sustainable intensification of production systems of small and medium farmers, as well as the challenges on the road to moving from efficiency to resilience.

The scientists involved in this training within the framework of the TechMaiz project were:

  • Liliana Atencio S. – A Colombian who works at the Colombian Agricultural Research Corporation (AGROSAVIA). She is an agricultural engineer with a master’s degree in agronomic science. This includes an emphasis on plant physiology and she has additional experience in transient and forage crop improvement programs.
  • Ana Pincay – An Ecuadorian working at the Santa Catalina Experimental Station of the National Institute of Agricultural Research (INIAP) as an agricultural researcher. She’s also a biotechnology engineer.
  • Alicia Medina – A Peruvian who is based at the National Institute of Agrarian Innovation (INIA) as a researcher. She is an agricultural engineer and has a master’s degree in development planning.
  • MarĂ­a Gabriela AlbĂĄn – She has several responsibilities, including co-investigator, coordinates the academic-financial part and is a professor of the agronomy engineering career at the San Francisco de Quito University (USFQ) in Ecuador. She is an agribusiness engineer with a master’s degree in agricultural sciences with an emphasis on agricultural business development. AlbĂĄn also has a diploma in design, management, and evaluation of development projects.
  • Karen Agreda – An agronomist engineer in agri-production systems. She has a postgraduate degree in alternative fruit and vegetable production and works as a specialized researcher in the validation and technology of transference program at the Institute of Agricultural Science and Technology (ICTA) in Guatemala.
Visiting a research plot under the guidance of Nele Verhulst, Cropping Systems Agronomist with CIMMYT’s Sustainable Agrifood Systems (SAS) program. (Photo: Francisco AlarcĂłn and Fernando Garcilazo/CIMMYT)

Weaving bonds of trust to generate changes

Following a period of continuous interaction, the researchers identified not only a number of shared challenges in their respective countries, but also how much complementary and concrete opportunities for teamwork are created when bonds of trust and teamwork are strengthened.

“In addition to strengthening knowledge, there’s also the relationship between researchers and institutions, understanding the role of each member of the team is important and allows us to make greater progress,” said Atencio. “For example, Alicia works on improvement, Ana on the use of bio-inputs, and Karen on transfers and linking. We all see that there are opportunities in agriculture for innovation by using tools such as e-agrology. The result of this is that generational change is becoming more and more urgent.”

Proposing more ambitious projects, but also clearer and more precise ones, is part of the learning the researchers plan to take with them. The scientists are determined to share this information with their teams and colleagues, along with integrative approaches that are designed to strengthen the human talent of each institution.

“In Ecuador, we practice the agriculture of conservation, but we didn’t know the concept of not removing the soil,” Picay said. “It is always a good decision to invest in training, as it refreshes the thought, opens the mind and triggers actions.”

The TechMaĂ­z project will continue in 2023 with its third year of implementation, promoting national meetings to promote and disseminate the use of sustainable technologies for maize production. CIMMYT training for members of the Latin American Maize Network is also expected to continue.

Building capacities in genetic resources and seed production strengthens collaboration ties between Guatemala and CIMMYT

Field day on maize seed production. (Photo: CIMMYT)

More than 20 participants attended the genetic resources and seed production courses given by researchers from the Global Maize Program of the International Maize and Wheat Improvement Center (CIMMYT), from October 24 to 28 in Antigua, Guatemala. Among the attendees were technicians and researchers from the Institute of Agricultural Science and Technology (ICTA, for its acronym in Spanish), as well as students from Universidad Rafael Landívar and the University Centers of Chimaltenango (CUNDECH, in Spanish) and Quiché (CUSACQ, in Spanish) of Universidad de San Carlos de Guatemala.

Thanks to the support of the Global Environment Facility (GEF), the Tropical Agricultural Research and Higher Education Center (CATIE, in Spanish), the National Council for Protected Areas (CONAP, in Spanish) and the United Nations Environment Program (UNEP), these courses contributed to the development of a biosafety project, supported by GEF and UNEP, to complete the implementation process of the Cartagena Protocol through an innovative approach that promotes a strong link between biotechnology and biodiversity. In addition, it sought to strengthen capacities in the performance and interpretation of molecular analyses and promote the generational change that is gradually taking place in this Central American country.

Activities began on October 24 and 25 with the course on Statistics Applied to Genetic Resources given by Juan Burgueño, Head of CIMMYT’s Biometrics and Statistics Unit, to students from the aforementioned universities and ICTA staff interested in the analysis of molecular data for the purpose of characterizing accessions and the formation of core collections in germplasm banks. On the 26 and 27 of the same month, CĂ©sar Petroli, a specialist in high-throughput genotyping at CIMMYT, offered a course on biotechnology and high-throughput genotyping.

ICTA seed production leaders and CIMMYT course facilitators. (Photo: CIMMYT)

At the same time, Alberto Chassaigne, curator of the Maize Collection of CIMMYT’s germplasm bank, participated in the course on Genetic Resources and Management of Germplasm Banks. He explained the management of CIMMYT’s germplasm bank, the processes that are carried out and the partnerships with ICTA on work with community seed banks and the plans of both institutions for 2023. Also, as a specialist in Seed Systems, Chassaigne and Ubaldo Marcos, research assistant in CIMMYT’s Maize Seed Systems area, gave a course on Maize Seed Production. This course was aimed at staff in charge of the production of basic and certified seed at ICTA. This course concluded with a field day at the Regional Research Center of the South (CISUR, in Spanish), Cuyuta, Escuintla, where participants asked the specialists questions while visiting a maize seed production plot.

In turn, María de los Ángeles Mérida, a researcher specializing in genetic resources from ICTA, who organized these courses, spoke about the collection and conservation of native varieties of maize in Guatemala. Additionally, César Azurdia, CONAP biodiversity advisor, gave a presentation on wild relatives of different crops in Guatemala. Leslie Melisa Ojeda C. (CONAP) also participated, and spoke about the issue of legislation on crop wild relatives; and, Mynor Otzoy, a researcher from Universidad de San Carlos de Guatemala, spoke about the collection and morphological characterization of cocoa germplasm in Guatemala.

Along the path of constant strengthening of collaboration ties with countries, course participants highlighted their interest and need to continue this type of training. In 2023, it is expected to facilitate a team training with Ubaldo Marcos and Félix San Vicente, CIMMYT maize breeder for Latin America. It should be noted that, within the framework of the CGIAR germplasm bank initiative, the objective will be to replicate this experience in other Latin American countries and increase participation in community seed banks (ex situ and in situ banks).

CIMMYT leads innovation sprint to deliver results to farmers rapidly

Smallholder farmers, the backbone of food systems around the world, are already facing negative impacts because of climate change. Time to adapt climate mitigation strategies is not a luxury they have. With that in mind, the Agriculture Innovation Mission for Climate (AIM4C) facilitates innovation sprints designed to leverage existing development activities to create a series of innovations in an expedited timeframe.

At the UN COP27 in Egypt, AIM4C announced its newest round of innovation sprints, including one led by the International Center for Maize and Wheat Improvement (CIMMYT) to enable smallholder farmers to achieve efficient and effective nitrogen fertilizer management. From 2022 to 2025, this sprint will steer US $90 million towards empowering small-scale producers in Africa (Kenya, Malawi, Morocco, Tanzania, and Zimbabwe), Asia (China, India, Laos and Pakistan), and Latin America (Guatemala and Mexico).

“When we talk to farmers, they tell us they want validated farming practices tailored to their specific conditions to achieve greater productivity and increase their climate resilience,” said Sieg Snapp, CIMMYT Sustainable Agrifood Systems (SAS) program director who is coordinating the sprint. “This sprint will help deliver those things rapidly by focusing on bolstering organic carbon in soil and lowering nitrous oxide emissions.”

Nitrogen in China

Working with the Chinese Academy of Agricultural Sciences (CAAS), the sprint will facilitate the development of improved versions of green manure crops, which are grown specifically for building and maintaining soil fertility and structures which are incorporated back into the soil, either directly, or after removal and composting. Green manure can significantly reduce the use of nitrogen-based fertilizers, which prime climate culprits.

“There are already green manure systems in place in China,” said Weidong Cao from CAAS, “but our efforts will integrate all the work being done to establish a framework for developing new green manure crops aid in their deployment across China.”

Triple wins in Kenya

The Kenya Climate Smart Climate Project, active since 2017, is increasing agricultural productivity and building resilience to climate change risks in the targeted smallholder farming and pastoral communities. The innovation sprint will help rapidly achieve three wins in technology development and dissemination, cutting-edge innovations, and developing sets of management practices all designed to increase productive, adaption of climate smart tech and methods, and reduce greenhouse gas (GHG) emissions.

Agricultural innovations in Pakistan

The Agricultural Innovation Program (AIP), a multi-disciplinary and multi-sectoral project funded by USAID, led by CIMMYT, and active in Pakistan since 2015, fosters the emergence of a dynamic, responsive, and competitive system of science and innovation that is ‘owned’ by Pakistan and catalyzes equitable growth in agricultural production, productivity, and value.

“From its beginning, AIP has been dedicated to building partnerships with local organizations and, smallholder farmers throughout Pakistan, which is very much in line with the objectives and goal as envisioned by Pakistan Vision 2025 and the Vision for Agriculture 2030, as Pakistan is a priority country for CIMMYT. However, a concerted effort is required from various players representing public and private sectors,” said Thakur Prasad Tiwari, senior scientist at CIMMYT. “Using that existing framework to deliver rapid climate smart innovations, the innovation sprint is well-situated to react to the needs of Pakistani farmers. “

Policies and partnerships for innovations in soil fertility management in Nepal

The Nepal Seed and Fertilizer (NSAF) project, funded by USAID and implemented by CIMMYT, facilitates sustainable increases in Nepal’s national crop productivity, farmer income, and household-level food and nutrition security. NSAF promotes the use of improved seeds and integrated soil fertility management technologies along with effective extension, including the use of digital and information and communications technologies. The project facilitated the National Soil Science Research Centre (NSSRC) to develop new domain specific fertilizer recommendations for rice, maize, and wheat to replace the 40 years old blanket recommendations.

Under NSAFs leadership, the Ministry of Agriculture and Livestock Development (MOALD) launched Asia’s first digital soil map and has coordinated governmental efforts to collect and analyze soil data to update the soil map and provide soil health cards to Nepal’s farmers. The project provides training to over 2000 farmers per year to apply ISFM principles and provides evidence to the MOALD to initiate a balanced soil fertility management program in Nepal and to revise the national fertilizer subsidy policy to promote balanced fertilizers. The project will also build efficient soil fertility management systems that significantly increase crop productivity and the marketing and distribution of climate smart and alternative fertilizer products and application methods.

Public-private partnerships accelerate access to innovations in South Asia

The Cereal Systems Initiative for South Asia (CSISA), established in 2009, has reached more than 8 million farmers by conducting applied research and bridging public and private sector divides in the context of rural ‘innovation hubs’ in Bangladesh, India, and Nepal. CSISA’s work has enabled farmers to adopt resource-conserving and climate-resilient technologies and improve their access to market information and enterprise development.

“Farmers in South Asia have become familiar with the value addition that participating in applied research can bring to innovations in their production systems,” said Timothy Krupnik, CIMMYT systems agronomist and senior scientist. “Moreover, CSISA’s work to address gaps between national and extension policies and practices as they pertain to integrated soil fertility management in the context of intensive cropping systems in South Asia has helped to accelerate farmers’ access to productivity-enhancing innovations.”

CSISA also emphasizes support for women farmers by improving their access and exposure to improved technological innovations, knowledge, and entrepreneurial skills.

Sustainable agriculture in Zambia

The Sustainable Intensification of Smallholder Farming systems in Zambia (SIFAZ) is a research project jointly implemented by the UN Food and Agriculture Organization (FAO), Zambia’s Ministry of Agriculture and CIMMYT designed to facilitate scaling-up of sustainable and climate smart crop production and land management practices within the three agro-ecological zones of Zambia. “The Innovation Sprint can take advantage of existing SIFAZ partnerships, especially with Zambia’s Ministry of Agriculture,” said Christian Thierfelder, CIMMYT scientist. “Already having governmental buy-in will enable quick development and dissemination of new sustainable intensification practices to increase productivity and profitability, enhance human and social benefits while reducing negative impacts on the environment.”

Cover photo: Paul Musembi Katiku, a field worker based in Kiboko, Kenya, weighs maize cobs harvested from a low nitrogen trial. (Florence Sipalla/CIMMYT)

Fast Tracking Climate Solutions from CGIAR Germplasm Banks

The Fast Tracking Climate Solutions from CGIAR Germplasm Banks project, led by the International Maize and Wheat Improvement Center (CIMMYT), is expanding the use of common bean and maize biodiversity, held in trust for humanity in the genebanks of CGIAR, to develop the raw ingredients of new climate-smart crop varieties for small-scale farmers in the Northern Triangle: Guatemala, Honduras and El Salvador.

Aligned with, and building upon the Mining Useful Alleles for Climate Change Adaptation from CGIAR Genebanks project, this project aims to identify common bean accessions in genebanks that contain alleles, or gene variations, responsible for characteristics such as heat, drought or salt tolerance, and to facilitate their use in breeding climate-resilient crop varieties. Additionally, within the maize work, the project focuses on transferring valuable novel genetic variation identified from landraces under the aligned project into breeding materials suitable for variety development in the Northern Triangle.

Through this project, breeders will learn how to use genebank materials more effectively and efficiently to develop climate-smart versions of important food crops.

Building on ten years of support to CIMMYT from the Mexican government, CGIAR Trust Fund contributors, the UK Biotechnology and Biological Sciences Research Council, and the ongoing Mining Useful Alleles for Climate Change Adaptation from CGIAR Genebanks project, this project combines the use of cutting-edge technologies and approaches, high-performance computing, GIS mapping, and new plant breeding methods to identify and use accessions with high value for climate-adaptive breeding of varieties needed by farmers and consumers.

Objectives:

  • Support faster and more cost-effective discovery and deployment of climate-adaptive alleles from the world’s germplasm collections.
  • Test integrated approaches for the rapid and cost-effective discovery and deployment of climate-adaptive alleles.

CGIAR Initiative: Digital Innovation

Digital innovations can enable an unprecedented transformation of food, land and water systems for greater climate resilience and sustainability. To realize this potential, multidisciplinary expertise across the CGIAR must find solutions to three challenges affecting the Global South: 

  1. The digital divide: digital technologies and infrastructure do not meet people’s needs, especially women and rural populations. More than 600 million people live outside the reach of mobile networks, two-thirds of them in sub-Saharan Africa. 
  2. Weak information systems: available information is inadequate or does not reach those who need it most. More than 300 million small-scale producers lack access to digital climate services. Weak information systems prevent evidence-based policy responses and lead to missed opportunities to reduce poverty and increase economic growth. 
  3. Limited digital capabilities: digital literacy and skill levels across the Global South remain low, particularly for marginalized and food-insecure individuals and groups such as women.

Objective

The Digital Innovation Initiative aims to develop and support digital innovations to stimulate the inclusive, sustainable transformation of food, land and water systems in the areas of investments that policymakers could make to close the digital divide, information delivery systems that allow more people to take action against predicted risks, and ways for partner organizations and marginalized communities to enhance digital capabilities, access resources and opportunities. 

This objective will be achieved through:

  • Generating evidence on impacts of digital innovations and collaborative partnerships to create an enabling environment for digital ecosystems, unlocking local innovators’ access to investments and advanced technologies. 
  • Developing a suite of tools and guidelines to bridge the digital divide, ensuring that gender equality and social inclusion underly the development of digital innovations, research programs and their implementation. 
  • System dynamics modeling to understand complex dynamics in agrifood systems and support natural resource management authorities in equitably allocating water and land resources and managing risks. 
  • Real-time food system monitoring to provide timely and reliable information to stakeholders by applying AI-driven analytics of satellite remote sensing, internet-connected sensors, and other ground-truthed data from multidisciplinary sources. 
  • Strengthening partners’ capacity to collect real-time data, conduct data analytics and make data-driven decisions to enable equitable digital platforms and services.

AgriLAC Resiliente presented in Guatemala

Representatives from CGIAR leadership, CGIAR Centers, government and other stakeholders stand for a group photo during the launch of the AgriLAC Resiliente Initiative in Guatemala City. (Photo: CGIAR)
Representatives from CGIAR leadership, CGIAR Centers, government and other stakeholders stand for a group photo during the launch of the AgriLAC Resiliente Initiative in Guatemala City. (Photo: CGIAR)

Latin America and the Caribbean possess the largest reserve of arable land on the planet, 30% of renewable water, 46% of tropical forests and 30% of biodiversity. These resources represent an important contribution to the world’s food supply and other ecosystem services. However, climate change and natural disasters, exacerbated by COVID-19, have deteriorated economic and food security, destabilizing communities and causing unprecedented migration, impacting not only the region but the entire world.

Against this regional backdrop, AgriLAC Resiliente was created. This CGIAR Initiative seeks to increase the resilience, sustainability and competitiveness of the region’s agrifood systems and actors. It aims to equip them to meet urgent food security needs, mitigate climate hazards, stabilize communities vulnerable to conflict and reduce forced migration.

Guatemala was selected to present this Initiative, which will also impact farmers in Colombia, El Salvador, Honduras, Mexico, Nicaragua and Peru, and will be supported by national governments, the private sector, civil society, and regional and global donors and partners.

At a workshop on June 27–28, 2022, in Guatemala City, partners consolidated their collaboration by presenting the Initiative and developing a regional roadmap. Workshop participants included representatives from the government of Guatemala, NGOs, international cooperation programs, the private sector, producer associations, and other key stakeholders from the host country. Also at the workshop were the leaders from CGIAR research Centers involved in the Initiative, such as the Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), the International Maize and Wheat Improvement Center (CIMMYT), the International Potato Center (CIP) and the International Food Policy Research Institute (IFPRI).

JoaquĂ­n Lozano, CGIAR Regional Director for Latin America and the Caribbean, presents during the launch of the AgriLAC Resiliente Initiative. (Photo: CGIAR)
JoaquĂ­n Lozano, CGIAR Regional Director for Latin America and the Caribbean, presents during the launch of the AgriLAC Resiliente Initiative. (Photo: CGIAR)

Impact through partnerships

“Partnerships are the basis for a future of food security for all through the transformation of food systems in the context of a climate crisis. AgriLAC’s goal of a coordinated strategy and regional presence will facilitate strong joint action with partners, donors, and producers, and ensure that CGIAR science continues to be leveraged so that it has the greatest possible impact,” said JoaquĂ­n Lozano, CGIAR Regional Director for Latin America and the Caribbean.

This Initiative is one of many CGIAR Initiatives in Latin America and consists of five research components: Climate and nutrition that seeks to use collaborative innovations for climate resilient and nutritious agrifood systems; Digital agriculture through the use of digital and inclusive tools for the creation of actionable knowledge; Low-emission competitiveness focused on agroecosystems, landscapes and value chains that are low in sustainable emissions; Innovation and scaling with the Innova-Hubs network for agrifood innovations and scaling; and finally, Science for timely decision making and establishment of policies, institutions, and investments for resilient, competitive and low-emission agrifood systems.

“We know the important role that smallholder farmers, both women and men, will play in the appropriation of the support tools that the Initiative will offer, which will allow them to make better decisions for the benefit of their communities. That is why one of the greatest impacts we expect from the project will be the contribution to gender equality, the creation of opportunities for youth, and the promotion of social inclusion,” said Carolina GonzĂĄlez, leader of the Initiative, from the Alliance of Bioversity International and CIAT.

Bram Govaerts, Director General of CIMMYT, said: “In Guatemala, we have had the opportunity to work side by side with farmers who today, more than ever, face the vicious circle of conflict, poverty and climate change. Through this Initiative, we hope to continue making progress in the transformation of agrifood systems in Central America, helping to make agriculture a dignified and satisfying job and a source of prosperity for the region’s producers.”

“I realize the importance of implementing strategic actions designed to improve the livelihoods of farmers. The environmental impact of development without sustainable planning puts at risk the wellbeing of humanity. The Initiatives of this workshop contribute to reducing the vulnerability of both productive systems and farmers and their families. This is an ideal scenario to strengthen alliances that allow for greater impact and respond to the needs of the country and the region,” said Jose Angel Lopez, Guatemala’s Minister of Agriculture, Livestock and Food.

Bram Govaerts, Director General of CIMMYT (right), presents during the launch of the AgriLAC Resiliente Initiative. (Photo: CGIAR)
Bram Govaerts, Director General of CIMMYT (right), presents during the launch of the AgriLAC Resiliente Initiative. (Photo: CGIAR)

National and regional strategies

AgriLAC Resiliente will also be presented in Honduras, where national partners will learn more about the Initiative and its role in achieving a resilient, sustainable, and competitive Latin America and the Caribbean, that will enable it to achieve the Sustainable Development Goals.

Under the general coordination of CGIAR, other Initiatives are also underway in Guatemala that will synergize with the global research themes toward the transformation of more resilient agrifood systems.

“We are committed to providing a structure that responds to national and regional priorities, needs, and demands. The support of partners, donors and producers will be key to building sustainable and more efficient agrifood systems,” Lozano said.


About CGIAR

CGIAR is a global research partnership for a food-secure future, dedicated to transforming food, land, and water systems in a climate crisis. Its research is carried out by 13 CGIAR Centers/Alliances in close collaboration with hundreds of partners, including national and regional research institutes, civil society organizations, academia, development organizations and the private sector. www.cgiar.org

We would like to thank all Funders who support this research through their contributions to the CGIAR Trust Fund.

About the Alliance of Bioversity International and CIAT

The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT) delivers research-based solutions that address the global crises of malnutrition, climate change, biodiversity loss, and environmental degradation. The Alliance focuses on the nexus of agriculture, nutrition and environment. We work with local, national, and multinational partners across Africa, Asia, and Latin America and the Caribbean, and with the public and private sectors and civil society. With novel partnerships, the Alliance generates evidence and mainstreams innovations to transform food systems and landscapes so that they sustain the planet, drive prosperity, and nourish people in a climate crisis.

The Alliance is a CGIAR Research Center. https://alliancebioversityciat.org

About CIMMYT

The International Maize and Wheat Improvement Center (CIMMYT) is an international nonprofit agricultural research and training organization that empowers farmers through science and innovation to nourish the world in the midst of a climate crisis. Applying high-quality science and strong partnerships, CIMMYT works toward a world with healthier, more prosperous people, freedom from global food crises, and more resilient agrifood systems. CIMMYT’s research brings higher productivity and better profits to farmers, mitigates the effects of the climate crisis, and reduces the environmental impact of agriculture.

CIMMYT is a CGIAR Research Center. https://staging.cimmyt.org

About CIP

The International Potato Center (CIP) was founded in 1971 as a research-for-development organization with a focus on potato, sweetpotato and andean roots and tubers. It delivers innovative science-based solutions to enhance access to affordable nutritious food, foster inclusive sustainable business and employment growth, and drive the climate resilience of root and tuber agrifood systems. Headquartered in Lima, Peru, CIP has a research presence in more than 20 countries in Africa, Asia, and Latin America.

CIP is a CGIAR Research Center. https://cipotato.org/

About IFPRI

The International Food Policy Research Institute (IFPRI) provides research-based policy solutions to sustainably reduce poverty and end hunger and malnutrition in developing countries. IFPRI currently has more than 600 employees working in over 50 countries. Global, regional, and national food systems face major challenges and require fundamental transformations. IFPRI is focused on responding to these challenges through a multidisciplinary approach to reshape food systems so they work for all people sustainably.

IFPRI is a CGIAR Research Center. www.ifpri.org

CGIAR Initiative to increase resilience, sustainability and competitiveness in Latin America and the Caribbean

(Photo: CIMMYT)
(Photo: CIMMYT)

Este artículo también estå disponible en español.

With the participation of more than 30 researchers from four CGIAR Centers located in the Americas, a planning workshop for a new CGIAR Research Initiative, AgriLAC Resiliente, was held on April 4–6, 2022. Its purpose was to define the implementation of activities to improve the livelihoods of producers in Latin America, with the support of national governments, the private sector, civil society, and CGIAR’s regional and global funders, and partners.

“This workshop is the first face-to-face planning meeting aimed at defining, in a joined-up manner and map in hand, how the teams across Centers in the region will complement each other, taking advantage of the path that each Center has taken in Latin America, but this time based on the advantage of reaching the territories not as four independent Centers, but as one CGIAR team,” says Deissy Martínez Barón, leader of the Initiative from the Alliance of Bioversity International and CIAT.

AgriLAC Resiliente is an Initiative co-designed to transform food systems in Latin America and the Caribbean. It aims to increase resilience, ecosystem services and the competitiveness of agrifood innovation systems in the region. Through this Initiative, CGIAR is committed to providing a regional structure that enhances its effectiveness and responds better to national and regional priorities, needs and demands.

This Initiative is one of a number that the CGIAR has in Latin America and the Caribbean and consists of five research components:

  1. Climate and nutrition that seeks to use collaborative innovations for climate-resilient and nutritious agrifood systems;
  2. Digital agriculture through the use of digital and inclusive tools for the creation of actionable knowledge;
  3. Competitiveness with low emissions, focused on agroecosystems, landscapes and value chains, low in sustainable emissions;
  4. Innovation and scaling with the Innova-Hubs network for agrifood innovations and their scaling up;
  5. Science for timely decision making and the establishment of policies, institutions and investments in resilient, competitive and low-emission agrifood systems.

The regional character of these CGIAR Initiatives and of the teams of researchers who make them a reality in the territories with the producers, was prominent in the minds of the leadership that also participated in this workshop. Martin Kropff, Global Director, Resilient Agrifood Systems, CGIAR; JoaquĂ­n Lozano, Regional Director, Latin America and the Caribbean, CGIAR; Óscar Ortiz, Acting Director General of the International Potato Center; JesĂșs Quintana, Manager for the Americas of the Alliance of Bioversity International and CIAT; and Bram Govaerts, Director General of the International Maize and Wheat Improvement Center (CIMMYT), all stated the importance of CGIAR being central to every discussion in which the teams are co-constructing a greater consensus on what AgriLAC Resliente is, what it wants to achieve, the approach it will use, and the goals it aims to achieve through synergies among its five components.

Acting as an integrated organization is also an opportunity for CGIAR to leverage co-developed solutions and solve local challenges in the global South related to climate change and agrifood systems transformation. “Building the new CGIAR involves tons of collaboration and coordination. In this AgriLAC Resiliente workshop, we have had a dialogue full of energy focused on achieving real impact” highlighted Bram Govaerts. He continued, “this is an occasion to strengthen teamwork around this CGIAR Initiative in which the Integrated Agrifood System Initiative approach will be applied in the Latin American region, which is a very interconnected region” he pointed out.

One of the main results of this workshop is an opportunity to carry out the integration of the CGIAR teams in the implementation of the AgriLAC Resiliente Initiative, with applied science and the decisive role of the partners at each point of the region, as mechanisms for change.

In 2022, the research teams will begin to lay the groundwork for implementing the Initiative’s integrative approach to strengthen the innovations to be co-developed with partners and collaborators in the Latin American region, that encompass the interconnected nature of the global South.

Learn more about the Initiative:
AgriLAC Resiliente: Resilient Agrifood Innovation Systems in Latin America and the Caribbean

This article, authored by the AgriLAC Resiliente team, was originally published on CGIAR.org.

What is nixtamalization?

For centuries, people across Mexico and Central America have been using a traditional method, known as nixtamalization, to process their maize.

Now carried out both at household and industrial levels, this technique offers a range of nutritional and processing benefits. It could easily be adopted by farmers and consumers in other parts of the world.

What is nixtamalization?

Nixtamalization is a traditional maize preparation process in which dried kernels are cooked and steeped in an alkaline solution, usually water and food-grade lime (calcium hydroxide).

After that, the maize is drained and rinsed to remove the outer kernel cover (pericarp) and milled to produce dough that forms the base of numerous food products, including tortillas and tamales.

How does it work?

Key steps of the traditional nixtamalization process. (Graphic: Nancy Valtierra/CIMMYT)
Key steps of the traditional nixtamalization process. (Graphic: Nancy Valtierra/CIMMYT)

What happens when maize kernels are nixtamalized?

The cooking (heat treatment) and steeping in the alkaline solution induce changes in the kernel structure, chemical composition, functional properties and nutritional value.

For example, the removal of the pericarp leads to a reduction in soluble fiber, while the lime cooking process leads to an increase in calcium content. The process also leads to partial starch gelatinization, partial protein denaturation — in which proteins present in the kernel become insoluble — and a partial decrease in phytic acid.

What are the benefits of processing maize in this way?

In addition to altering the smell, flavor and color of maize products, nixtamalization provides several nutritional benefits including:

  • Increased bioavailability of vitamin B3 niacin, which reduces the risk of pellagra disease
  • Increased calcium intake, due to its absorption by the kernels during the steeping process
  • Increased resistant starch content in food products, which serves as a source of dietary fiber
  • Significantly reduced presence of mycotoxins such as fumonisins and aflatoxins
  • Increased bioavailability of iron, which decreases the risk of anemia

These nutritional and health benefits are especially important in areas where maize is the dietary staple and the risk of aflatoxins is high, as removal of the pericarp is thought to help reduce aflatoxin contamination levels in maize kernels by up to 60% when a load is not highly contaminated.

Additionally, nixtamalization helps to control microbiological activity and thus increases the shelf life of processed maize food products, which generates income and market opportunities for agricultural communities in non-industrialized areas.

Where did the practice originate?

The word itself comes from the Aztec language Nahuatl, in which the word nextli means ashes and tamali means unformed maize dough.

Populations in Mexico and Central America have used this traditional maize processing method for centuries. Although heat treatments and soaking periods may vary between communities, the overall process remains largely unchanged.

Today nixtamalized flour is also produced industrially and it is estimated that more than 300 food products commonly consumed in Mexico alone are derived from nixtamalized maize.

Can farmers and consumers in other regions benefit from nixtamalization?

Nixtamalization can certainly be adapted and adopted by all consumers of maize, bringing nutritional benefits particularly to those living in areas with low dietary diversity.

Additionally, the partial removal of the pericarp can contribute to reduced intake of mycotoxins. Aflatoxin contamination is a problem in maize producing regions across the world, with countries as diverse as China, Guatemala and Kenya all suffering heavy maize production losses as a result. While training farmers in grain drying and storage techniques has a significant impact on reducing post-harvest losses, nixtamalization technology could also have the potential to prevent toxin contamination and significantly increase food safety when used appropriately.

If adapted, modern nixtamalization technology could also help increase the diversity of uses for maize in food products that combine other food sources like vegetables.

Cover photo: Guatemalan corn tortillas. (Photo: Marco Verch, CC BY 2.0 DE)

Classic milpa maize intercrop can help feed communities forgotten by development

A farmer holds a maize ear. (Photo: Cristian Reyna)
A maize ear harvested from a “milpa,” the maize-based intercrop that is a critical source of food and nutritional security for smallholder farming communities in remote areas such as the Western Highlands of Guatemala. (Photo: Cristian Reyna)

The traditional milpa intercrop — in which maize is grown together with beans, squash, or other vegetable crops — can furnish a vital supply of food and nutrients for marginalized, resource-poor communities in the Americas, according to a study published today in Nature Scientific Reports.

One hectare of a milpa comprising maize, common beans, and potatoes can provide the annual carbohydrate needs of more than 13 adults, enough protein for nearly 10 adults, and adequate supplies of many vitamins and minerals, according to the study. The research was based on data from nearly 1,000 households across 59 villages of the Western Highlands of Guatemala and is the first to relate milpa intercropping diversity with nutritional capacity, using multiple plots and crop combinations.

“The milpa was the backbone of pre-Columbian agriculture in North America, Mexico, and Central America,” said Santiago López-Ridaura, specialist in agricultural systems and climate change adaptation at the International Maize and Wheat Improvement Center (CIMMYT) and lead author of the article.

“Milpa production anchored around locally-adapted maize is still an essential food and nutritional lifeline for isolated, often indigenous communities throughout Mexico and Central America, and can be tailored to improve their food and nutritional security, along with that of small-scale farmers in similar settings,” he added.

Maize for feed or food and nutrition?

In modern times, some 1 billion tons of maize are harvested yearly from about 200 million hectares worldwide. Much of this output results from intensive monocropping of hybrids that yield an average 10 tons per hectare, in places like the U.S.

This massive world harvest goes chiefly for animal feed, corn starch, corn syrup, ethanol, and myriad industrial products, but in sub-Saharan Africa, Latin America, and parts of Asia, maize remains a critical food staple, often grown by smallholder farmers with yields averaging around 1.5 tons per hectare.

The Western Highlands of Guatemala is among the world’s poorest regions — a mountainous area ill-served by markets and where communities battered by food insecurity and malnutrition sow crops at altitudes of up to 3,200 meters, according to Cristian A. Reyna-Ramírez, a co-author of the study from the Universidad Autónoma Metropolitana-Xochimilco, Mexico.

“Fully two-thirds of farmers in this region grow milpas based on maize but varying the intercrops with potatoes, faba bean, and even fruit trees,” Reyna-Ramírez said. “Our study showed that combinations such as maize-common bean-faba bean, maize-potatoes, and maize-common bean-potatoes provided the most carbohydrates, proteins, zinc, iron, calcium, potassium, folate, thiamin, riboflavin, vitamin B6, niacin and vitamin C.”

The classic “milpa” intercrop comprises maize, beans, and squash. The bean plant climbs the maize stalk to reach sunlight and its roots add nitrogen to the soil; the squash leaves shade the soil, conserving moisture and inhibiting weed growth. Milpa systems are often grown on steep hillsides at a wide range of altitudes. (Photo: Cristian Reyna)
The classic “milpa” intercrop comprises maize, beans, and squash. The bean plant climbs the maize stalk to reach sunlight and its roots add nitrogen to the soil; the squash leaves shade the soil, conserving moisture and inhibiting weed growth. Milpa systems are often grown on steep hillsides at a wide range of altitudes. (Photo: Cristian Reyna)

Better diets and routes out of poverty?

With typical landholdings of less than a quarter hectare and households averaging six members, Guatemala’s Western Highlands inhabitants cannot depend on the milpa alone to satisfy their needs, López-Ridaura cautioned.

“As with many smallholder farm communities, lack of land and general marginalization traps them in a vicious circle of poverty and malnutrition, forcing them to experiment with risky cash crops or for working-age members to undertake dangerous and heartbreaking migrations to find work and send back remittances,” he explains.

According to LĂłpez-Ridaura, this study points the way for tailoring milpa systems to help communities that still rely on that intercrop or others that could benefit from its use.

Looking forward

Natalia Palacios Rojas, CIMMYT maize quality and nutrition expert and a co-author of this article, notes that calculations of this and other milpa studies consider raw nutrients and that research is needed on the nutritional contributions of cooked food and non-milpa foods such as poultry, livestock, home-garden produce, and purchased food.

“Further work should also address the effects of storing milpa produce on its nutrient stability and how the seasonal availability of milpa crops impacts diets and nutrition,” Palacios said.

The authors are grateful for funding from the United States Agency for International Development (USAID) as part of Feed the Future, the U.S. Government’s global hunger and food security initiative, under the Buena Milpa project, as well as the support of the CGIAR Research Program on Maize.

Read the full article:
Maize intercropping in the milpa system. Diversity, extent and importance for nutritional security in the Western Highlands of Guatemala

Taking stock of value chain development

In 1967 Albert O. Hirschman, the pioneering development economist, published Development Projects Observed. Based on an analysis of a handful of long-standing World Bank projects, the book was an effort, as Hirschman writes in the preface, “to ‘sing’ the epic adventure of development­ — its challenge, drama, and grandeur.” He sang this epic not in the register of high development theory,­ but rather through the ups and downs and unexpected twists of real-world development projects.

Today, a new group of researchers have taken up a similar challenge. Value Chain Development and the Poor: Promise, delivery, and opportunities for impact at scale, a new book edited by Jason Donovan, Dietmar Stoian and Jon Hellin, surveys over two decades of academic and practical thinking on value chains and value chain development. While value chain development encompasses a broad variety of approaches, it has largely focused on improving the ability of small scale, downstream actors — such as smallholders in agri-food value chains — to capture more value for their products or to engage in value-adding activities. Value chain development approaches have also focused on improving the social and environmental impacts of specific value chains. Donovan, Stoian and Hellin’s book assesses these approaches through careful analysis of real-world cases. The book was published with support from the CGIAR Research Programs on Maize and on Policies, Institutions, and Markets.

Lessons learned

The book takes an unsparing look at what has and hasn’t worked in the field of value chain development. It begins by dissecting the drivers of the high degree of turnover in approaches that characterizes the field. The editors argue that “issue-attention cycles” among project stakeholders, coupled with monitoring and evaluation metrics that are more focused on tracking project implementation rather than producing robust measurements of their social impact, too often lead to the adoption — and abandonment — of approaches based on novelty and buzz.

The unfortunate consequences are that strengths and limitations of any given approach are never fully appreciated and that projects — and even entire approaches — are abandoned before they’ve had a chance to generate deep social impacts. Moreover, the opportunity to really learn from development projects — both in terms of refining and adapting a given approach to local conditions, and of abstracting scalable solutions from real development experiences — is lost.

A recurring theme throughout the book is the tension between the context-sensitivity needed for successful value chain development interventions and the need for approaches that can be scaled and replicated. Programs must develop tools for practitioners on one hand and demonstrate scalability to funders on the other. For example, a chapter on maize diversity and value chain development in Guatemala’s western highlands illustrates how an approach that was successful in Mexico — connecting producers of indigenous maize landraces with niche markets — is ill-suited to the Guatemalan context, where most producers are severely maize deficient. And a chapter reviewing guides for gender-equitable value chain development highlights how — for all their positive impact — such guides often overlook highly context- and culturally-specific gender dynamics. Intra-household bargaining dynamics and local masculinities, for example, can play critical roles in the success or failure of gender-focused value chain development interventions.

This new book takes an unsparing look at what has and hasn’t worked in the field of value chain development.
This new book takes an unsparing look at what has and hasn’t worked in the field of value chain development.

Finally, while lauding the valuable impact many value chain development initiatives have achieved, the editors warn against an exclusive reliance on market-based mechanisms, especially when trying to benefit the poorest and most marginalized of smallholders. In the case of Guatemala’s maize-deficient highland farmers, for example, the development of niche markets for native maize proved to be a poor mechanism for achieving the stated goal of preserving maize biodiversity and farmers’ livelihoods. Non-market solutions are called for. Based on this and similar experiences, the editors note that, while value chain development can be a valuable tool, to truly achieve impact at scale it must be coordinated with broader development efforts.

“The challenge of ensuring that value chain development contributes to a broad set of development goals requires transdisciplinary, multisector collaboration within broader frameworks, such as integrated rural-urban development, food system transformation, and green recovery of the economy in the post COVID-19 era,” write the editors.

This bracing and clear reflection on the promise and limitations of current development approaches is not only timely; it is perhaps more urgent today than in Hirschman’s time. While tremendous gains have been made since the middle of the 20th century, many stubborn challenges remain, and global climate change threatens to undo decades of progress. Projects like Value Chain Development and the Poor and the ongoing Ceres2030 initiative provide development practitioners, researchers, funders and other stakeholders a much needed assessment of what can be built upon and what needs to be rethought as they tackle these gargantuan challenges.

Embracing uncertainty

At the time Development Projects Observed was published, the study and practice of development was already entering a crisis of adolescence, as it were. Having achieved quasi-independence from its parent discipline of economics, it had to settle on an identity of its own.

Hirschman’s book represented one possible way forward — an understanding of development practice as a blend of art and science. The book’s most famous concept, that of the Hiding Hand, illustrates how planners’ optimism could fuel enormously complex and challenging projects — undertakings that might never have been attempted had all the challenges been known beforehand. At the same time, projects’ inevitable failures and shortcomings could spur creative local responses and solutions, thus ensuring their eventual success and rootedness in their specific context.

As Michele Alacevich points out in the Afterword to the book’s most recent reissue, the World Bank’s response to Hirschman’s book demonstrates the road that development research and practice ultimately took. The book was disregarded, and the Bank turned to the growing literature on cost-benefit analysis instead. “Whereas Hirschman’s analysis had placed uncertainty — an unmeasurable dimension — center stage, cost-benefit analysis assimilated it to risk, therefore turning it into something measurable and quantifiable,” Alacevich writes. Faced with a newfound awareness of the limits to the field’s powers and abilities — a rite of passage for all prodigies — development institutions appeared to try to outrun these limitations through ever-increasing technification.

The issue-attention cycles identified by Stoian and Donovan may represent a new, more frenetic and self-defeating iteration of this discomfort with uncertainty. If so, Value Chain Development and the Poor serves as an urgent call for development institutions and practitioners to make peace with the messiness of their vocation. As Hirschman observed decades ago, only by embracing the uncertainty and art inherent in development work can its students and practitioners further the enormously complex scientific understanding of the endeavor, and, crucially, generate broad and lasting social change.

The eBook is available for free (Open Access):
Value Chain Development and the Poor: Promise, delivery, and opportunities for impact at scale

Cover image: A researcher from the International Maize and Wheat Improvement Center (CIMMYT) demonstrates the use of a farming app in the field. (Photo: C. De Bode/CGIAR)

Breaking Ground: Andrea GardeazĂĄbal transforms data into meaningful information

Andrea Gardeazábal has many titles — Monitor, Evaluation and Learning Manager, ICT for Agriculture — but the core of what she does is knowledge management. She merges monitoring, evaluation, accountability and learning (MEAL) with information communication technologies (ICT) to transform data into something meaningful.

A political scientist by training, GardeazĂĄbal knows the power of data and statistics. As she began working on ICT-for-development projects in the field, she observed a lack of understanding of ICT and how the development sector could take advantage of these tools.

“I knew this was progressing very fast; that this was the future. Everyone was talking about ICT and the future with the internet of things, and social media was just getting started,” she said. So she asked herself, how could the development sector take advantage of these new technologies?

GardeazĂĄbal was working on projects bringing computers to rural areas in Colombia, which did not have internet connection or electricity. The problem could not be solved simply with a machine. She wanted to understand how to use ICT for development in a meaningful way. This triggered an interest in MEAL, to understand how ICT benefits the development sector, or does not, and to reintegrate that information into project design and impact.

After working in ICT for civil participation, education and microfinance, she joined CIMMYT with the mission to understand ICT for agriculture. Now she merges ICT tools with MEAL, leading the design, development and operation of systems for data collection, data cleaning, data analysis and data visualization with the Integrated Development program’s projects in Colombia, Guatemala and Mexico.

Ensuring intended results

Monitoring, learning, accountability and evaluation is crucial to ensure CIMMYT delivers on its objectives. Monitoring means ensuring that operations in the field are happening as planned. Rather than waiting until the end of the project when the donor asks for a report, Gardeazábal’s team monitors operations in the field on a quarterly or yearly basis. The team, both in the field and at headquarters, uses this data to check that the project is achieving what was intended and make interventions or adjustments if necessary.

Evaluation looks at project results and evidence. The team collects evidence for every single data point that they have, and then evaluates that evidence for impact and results in the field. This data is not only related to yield increase, but includes sustainable production, capacity development, and adequate technology adaptation and adoption processes.

Accountability is transparency with funders, so that everyone involved in a project is accountable for the processes, decisions and impact. CIMMYT is able to show progress through a transparent relationship with funders.

Learning happens after the team collects information, produces results evaluations, and understands what was done well and where the process had to be redirected. This information can then inform design of new projects or project phases. “We use the data and analysis of each project to redesign or modify our plans for the next project or even what kinds of projects we want to conduct,” Gardeazábal said.

Andrea GardeazĂĄbal merges ICT tools with monitoring, evaluation, accountability and learning to improve project design.
Andrea GardeazĂĄbal merges ICT tools with monitoring, evaluation, accountability and learning to improve project design. (Photo: Francisco AlarcĂłn/CIMMYT)

What ICT can offer

In the past, a MEAL team would collect data from a representative sample at the start of the project, then go back to the office and analyze that data. At the end of the project, the team would complete the same exercise, to see the difference from what they gathered at the beginning.

With ICT tools, researchers are able to gather and analyze robust data more quickly and can communicate efficiently with the beneficiaries of a project throughout its course. Artificial intelligence and machine learning algorithms can help in understanding large sets of data so that this information can strengthen and streamline the MEAL process and project impact.

“We don’t need to wait until the end of the project for the results in the field or to have a sense of what the farmers are saying and achieving. We have a lot of tools, from the ICT side, that help make monitoring and evaluation more efficient,” Gardeazábal explained.

An international award recognized some of these ICT tools earlier this year. GardeazĂĄbal formed part of the winning team with members from the Alliance of Bioversity International and CIAT and the International Institute for Applied Systems Analysis (IIASA) working on groundbreaking data systems and tools that help over 150,000 farmers in Mexico.

The team tracked over 500 variables over different farming plots and analyzed them with geographic, weather and market data to help identify the best management practices for each plot. This information — including historic yield potential, local benchmarks, windows of opportunity, recommended agricultural practices and commodity price forecasting — is available to farmers through an app called AgroTutor (Android, iOS).

The importance of an enabling environment

However, GardeazĂĄbal cautions against the idea that technology on its own is going to end poverty or increase food security.

“ICT is a vehicle for innovation in agriculture. Just having an app in the field is not enough to generate the change that we are actually looking for. You need an enabling environment, a network, engagement of the farmers and the buy-in of scientists to take advantage of ICT tools.”

From drones and satellite imagery to artificial intelligence, ICT tools can help CIMMYT carry out its mission by streamlining the data gathering and analytics processes.

However, this work is not done in isolation from the environment surrounding it. CIMMYT does not only work on increasing yields, but also manages resources and local networks in efficient ways. Teams must monitor data on air quality, water use and efficient information flows, analyze this data, and then return to the field with recommendations for the most sustainable production within integrated agri-food systems.

Biofortified Maize for Improved Human Nutrition

The Biofortified Maize for Improved Human Nutrition project conducts field research both at CIMMYT and with partners on breeding for increased pro-vitamin A and Zinc content in both Africa and Latin America. The project grant is renewed annually and has been in operation since 2004.

Key activities include supporting early and mid-late product development, evaluation and release in Mexico and target countries in southern Africa, food science and retention studies. Molecular breeding and biochemical analysis are key components for successful breeding, and the project also involves technical backstopping for partners in both regions.

Objectives

  • Conduct field research on breeding for increased pro-vitamin A for target countries in Africa
  • Conduct field research on breeding for increased Zinc for product evaluation and release
  • Conduct essential research to deploy analytical tools and marker assisted selection or genomic selection methods in micronutrient breeding work
  • Facilitate the dissemination, promotion and consumption of biofortified crops