Skip to main content

Location: Colombia

Winners of 2019 MAIZE Youth Innovators Awards – Latin America announced

The CGIAR Research Program on Maize (MAIZE) is pleased to announce the winners of the 2019 MAIZE Youth Innovators Awards – Latin America. These awards recognize the contributions of young women and men under 35 who are implementing innovations in Latin American maize-based agri-food systems, including research for development, seed systems, agribusiness, and sustainable intensification.

The winners will attend the 23rd Latin American Maize Reunion (XXIII ReuniĂłn Latinoamericana del MaĂ­z) in Monteria, Colombia, where they will receive their awards and present their work. Award recipients may also get the opportunity to collaborate with MAIZE and its partner scientists in Latin America on implementing or furthering their innovations.

This is the third instalment of the awards, following Asia in October 2018 and Africa in May 2019.

Congratulations to this year’s winners, seven exceptional young people working in Latin American maize-based systems:

Eduardo Cruz Rojo.
Eduardo Cruz Rojo.

Eduardo Cruz Rojo (Mexico) – Farmer category

Eduardo Cruz Rojo is a young agricultural entrepreneur, worried about rural out-migration in his region and about the poor agricultural practices that have led farming to cease to be profitable. He has a degree in logistics, and is originally from Alfajayucan, in Mexico’s state of Hidalgo. For the past four years he has been working on maize research and production, with a focus on improved agronomic practices that help farmers increase their yields. This includes soil improvement, organic fertilizers, earthworm compost and biological pest control. Through research and testing, he has shown smallholder farmers the cost-benefit of improved agricultural practices. This has been reflected in local farmers achieving improved soils and yields in an environmentally friendly manner.

 

Yésica Chazarreta.
Yésica Chazarreta.

YĂ©sica Chazarreta (Argentina) – Researcher category

Yésica Chazarreta has a degree in genetics and is currently a doctoral fellow at the Scientific and Technologic Fund, working with the Crop Ecophysiology group at the National Agricultural Technology Institute (INTA) Pergamino in Buenos Aires, Argentina. Her work centers on understanding the genetic and environmental control of the physiological determinants of filling, drying and quality of maize grains in genotypes destined for grain or silage. The objective is to generate knowledge to continue advancing in maize production improvement and to open the possibility of establishing improvement programs differentiated by planting times for her region, as well as to provide valuable information for the creation of mechanistic models to predict the evolution of humidity in maize grains. This information can help farmers make more informed decisions about the best time to harvest. In addition, Chazarreta hopes to deepen understanding of maize biomass quality for animal feed, a practice that has increased in her native country, Argentina, due to changes in crop management practices related to delays in planting dates.

 

Omar Garcilazo Rahme.
Omar Garcilazo Rahme.

Omar Garcilazo Rahme (Mexico) – Researcher category

Omar Garcilazo Rahme is a postgraduate student researching sustainable management of agro-ecosystems at the Meritorious Autonomous University of Puebla (BUAP).

A food engineer by training, he has a profound interest in Mexico’s bio-cultural heritage and maize as a staple food in his native country, as well as the various methods to produce and conserve the crop. His research project seeks to improve the economic, nutritious and sociocultural benefits associated with the production of maize.

He is currently collaborating in a technology transfer and innovation agency on the topics of nutritional labeling, big data and applied technology solutions for the agri-food industry.

 

Lucio Reinoso.
Lucio Reinoso.

Lucio Reinoso (Argentina) – Researcher category

Lucio Reinoso is an agronomist with a master’s degree in agricultural sciences from the National Southern University, Argentina. He has worked as a professor at the National University of Rio Negro since 2019. Reinoso was a fellow and researcher for 12 years at the National Institute for Agricultural Technology (INTA).

He works on sustainable models of maize production under irrigation in the irrigated valleys of Northern Patagonia, Argentina. Reinoso is specifically investigating the adaptation of maize to the soil and climatic conditions of the region, highlighting the water and nutritional needs to maximize production while also caring for the environment.

He works with local farmers to adapt no-till farming to scale and adjust irrigation management to improve water use efficiency while preserving the physical, chemical and biological characteristics of soil, increasing resilience.

 

Viviana LĂłpez RamĂ­rez.
Viviana LĂłpez RamĂ­rez.

Viviana López Ramírez (Colombia) – Researcher category

Viviana López Ramírez is a biological engineer with a master’s degree in environmental studies from the National University of Colombia in Medellin.

She is currently a doctoral student in biological sciences at the National University in RĂ­o Cuarto, Argentina, studying the application of bacteriocins for the biological control of phytopathogens.

This work on bacteriosis in maize is conducted by a multidisciplinary team and focuses on the identification of pathogenic bacteria isolated from a diverse maize population.

 

José Esteban Sotelo Mariche.
José Esteban Sotelo Mariche.

JosĂ© Esteban Sotelo Mariche (Mexico) – Change Agent category

José Esteban Sotelo Mariche is an agronomist from the coastal region of Oaxaca, Mexico. He studied at Chapingo Autonomous University and is certified in rural development and food security.

Since 2012 he has offered capacity building to smallholder maize farmers in his region. In 2014 he formed Integradora Agroempresarial del Rio Verde to promote the production and commercialization of agricultural products. The group now has 80 members, including indigenous and Afro-Mexican farmers. In 2016 he began working with tortilla company Masienda to help local farmers export native maize to gourmet restaurants in the United States.

Most recently he has worked on the integration of the Center for Rural Technology Transfer and Validation (Centro de ValidaciĂłn y Transferencia de TecnologĂ­a Rural) to evaluate conservation agriculture systems, efficient water use and agroforestry. This space also serves to provide training activities and technical assistance to local farmers.

 

Carlos Barragan.
Carlos Barragan.

Carlos Barragan (Mexico) – Change Agent category

Carlos Barragan has a degree in agroecological engineering from Chapingo Autonomous University.

He collaborates with the MasAgro project in Mexico’s state of Oaxaca, helping to adapt small-scale production systems to climate change.

He also contributes to work on soil fertility as well as inclusive business models for smallholder farmers working in agri-food value chains.

 

 

UN-sponsored report acknowledges CIMMYT’s use of data and technologies to promote sustainable farming in Latin America

Surveyors in Mexico collect data from farmers. (Photo: CIMMYT)
Surveyors in Mexico collect data from farmers. (Photo: CIMMYT)

CIMMYT’s projects in Latin America feature in a new report that aims to help countries use data to design public policies and projects that help achieve the Sustainable Development Goals (SDGs) by 2030.

The Counting on The World to Act report was released on September 23, 2019, by the Sustainable Development Solutions Network (SDSN) and the Thematic Research Network on Data and Statistics (TReNDS) during the 74th session of the United Nations General Assembly (UNGA 74) in New York City.

The report describes CIMMYT’s data management systems and tools as examples of “frontier technologies” for data gathering, management and analysis that effectively contribute to sustainable farming in Colombia, Guatemala and Mexico.

“As part of the data revolution, efficiencies are being derived from lower-tech approaches such as using citizen-generated data and smartphones to speed up existing survey-based approaches,” reads the introduction to CIMMYT’s sidebar story in Chapter 4, Incentives for Innovation.

The MasAgro Electronic Log that field technicians use to monitor crop cycles and management practices, and the AgroTutor application that offers farmers more specific and timely recommendations are some of the new affordable tools for data management that CIMMYT is successfully implementing in Latin America.

Read the full report on the TReNDS website.

Read more about MasAgro’s work for sustainable farming in Latin America here.

New partnership announced for sustainable maize production in Colombia

Palmira (Colombia), February 14, 2019 — AGROSAVIA, Colombia’s leading not-for-profit organization for agricultural research and technology transfer, the International Center for Tropical Agriculture (CIAT) and the International Maize and Wheat Improvement Center (CIMMYT) have signed a five-year agreement that aims to boost maize production.

The new project will develop maize varieties adapted to the country’s farming conditions, and will promote sustainable intensification technologies and practices among Colombian farmers.

“We should be able to release the first high-yielding maize variety for Colombia in three years”, said Bram Govaerts, CIMMYT’s director of Innovative Business Strategies and regional representative for the Americas.

To achieve this goal, CIMMYT will provide AGROSAVIA’s breeding program with two thousand advanced lines, developed by combining native maize from Colombia with conventionally improved varieties.

“At both institutions we believe that Colombia can increase production to close the big gap between domestic maize consumption and imports”, said AGROSAVIA’s Executive Director, Juan Lucas Restrepo. “With this agreement, we will have more powerful local capacities and once again a Colombian maize research program for Colombians”.

Although experts agree that Colombian farmers could potentially produce more than 10 tons per hectare, the country’s average yield is currently 3.6 tons per hectare.

“With this agreement, the sister CGIAR centers CIMMYT and CIAT give a first step in the implementation of Maize for Colombia, an ambitious plan that will sustainably increase Colombia’s maize output by building on the learnings and achievements of a successful project implemented in Mexico called MasAgro,” said Govaerts.

Colombia’s Minister of Agriculture and Rural Development, AndrĂ©s Valencia, CIAT’s Director General, RubĂ©n EcheverrĂ­a, Juan Lucas Restrepo, and Bram Govaerts participated in the launch ceremony for the new agreement, which was signed at CIAT’s headquarters.

INTERVIEW OPPORTUNITIES:

Bram Govaerts, Director of Innovative Business Strategies and Regional Representative for the Americas, CIMMYT

FOR MORE INFORMATION, CONTACT THE MEDIA TEAM:

Ricardo Curiel, Communications Officer, CIMMYT. r.curiel@cgiar.org, +52 (55) 5804 2004 ext. 1144

First zinc maize variety launched to reduce malnutrition in Colombia

Left to right: Miguel Lengua, director general of Maxi Semillas S.A.S; Bram Govaerts, Latin America regional director at CIMMYT; Martin Kropff, CIMMYT director general; Howdy Bouis, interim HarvestPlus CEO; and Felix San Vicente, CIMMYT maize breeder; at the launch of new biofortified zinc maize. (Photo: Jennifer Johnson/CIMMYT)
Left to right: Miguel Lengua, director general of Maxi Semillas S.A.S; Bram Govaerts, Latin America regional director at CIMMYT; Martin Kropff, CIMMYT director general; Howdy Bouis, interim HarvestPlus CEO; and Felix San Vicente, CIMMYT maize breeder; at the launch of new biofortified zinc maize. (Photo: Jennifer Johnson/CIMMYT)

Cali, Colombia (CIMMYT) — A new zinc-enriched maize variety was released in Colombia on February 23 to help combat malnutrition in South America.

Zinc is an essential mineral that plays an important role in human development but is not naturally produced by humans. Zinc deficiency can lead to impaired growth and development, respiratory infections, diarrheal disease and a general weakening of the immune system. In Colombia, an average of 22 percent of the population is affected by zinc deficiency. However, in certain regions, such as the pacific coast and Amazonia, up to 65 percent of the population is deficient in zinc.

The new variety, known as BIO-MZN01, was developed by the International Maize and Wheat Improvement Center (CIMMYT) with the support of HarvestPlus in collaboration with the International Center for Tropical Agriculture (CIAT), the CGIAR Research Program on Maize (MAIZE) and the CGIAR Research Program on Agriculture for Nutrition and Health (A4NH).

CIMMYT Director General Martin Kropff speaks at the launch of zinc-enriched maize. (Photo: Jennifer Johnson/CIMMYT)
CIMMYT Director General Martin Kropff speaks at the launch of zinc-enriched maize. (Photo: Jennifer Johnson/CIMMYT)

“The support that CIMMYT and CIAT have received from HarvestPlus has been fundamental in allowing our researchers to develop crops with enhanced vitamin and mineral content,” said Martin Kropff, CIMMYT director general. “The improved maize that we present today is an important example of the impact we can have when we work together in partnership.”

The minimum daily requirement for zinc is 15mg, but not everyone has access to foods with naturally occurring quantities of zinc, which makes this zinc-enriched maize variety a boost for nutrition in a region where maize is a staple food.

BIO-MZN01 contains 36 percent more zinc on average than other maize varieties, meaning that arepas (a common maize-based Colombian dish) made of this new variety offer consumers up to five times more zinc than those made with traditional varieties. Additionally, BIO-MZN01 can yield up to 6 to 8 tons per hectare(t/ha), nearly double the national average in Colombia of 3.7 t/ha and is tolerant to several maize diseases that are common in the region, including rust, turcicum leaf blight, and gray leaf spot. Another advantage is it can be grown between 0 and 1400 meters above sea level during both cropping seasons in the country.

The official launch of BIO-MZN01 was held at CIAT in Palmira, Colombia, and was attended by local farmers, seed companies, and government officials as well as CIMMYT, HarvestPlus and CIAT staff. As part of the launch, visitors and staff were invited into the field to see the variety firsthand and learn more about its properties and the history of its development.

New zinc-biofortified maize variety BIO-MZn01. (Photo: CIMMYT)
New zinc-biofortified maize variety BIO-MZn01. (Photo: CIMMYT)

“The conservation and utilization of genetic diversity have been crucial for the development of this new biofortified variety, as well as other CIMMYT varieties with improved nutrition or resistance to climate change,” said Natalia Palacios, maize nutritional quality specialist at CIMMYT. “This has been an inter-institutional and interdisciplinary effort at all levels of the maize value chain.”

Other products of the CIMMYT/HarvestPlus partnership include zinc-enriched wheat and biofortified provitamin A maize, which helps to prevent blindness in children.

“We have been working with CIMMYT since HarvestPlus began,” said Marilia Nutti, the regional director for Latin America and the Caribbean at HarvestPlus. “The greatest advantage of working with CIMMYT is their quality research—CIMMYT has all of the knowledge of maize and wheat, and maize is a big part of the diet in Latin America. Meanwhile, HarvestPlus and CIAT already had the partnerships on the ground in Colombia to ensure that this improved zinc maize could get to farmers and consumers. This has truly been a win-win partnership to improve nutrition.”

A farmer examines a zinc-enriched maize plant. (Photo: CIMMYT)
A farmer examines a zinc-enriched maize plant. (Photo: CIMMYT)

The scientific work conducted at CIMMYT, HarvestPlus and CIAT reaches the hands of farmers through local seed companies such as Maxi Semillas S.A.S., a partner of CIMMYT Colombia for the past 40 years that will be commercializing the new variety. “These varieties are the product of an incredibly long and costly investigation that we do not have the resources to conduct ourselves. In turn we work to ensure that the variety can reach the hands of the farmers and consumers that need it most,” said Miguel Lengua, director general of Maxi Semillas S.A.S.

The variety will be sold at a similar price to currently available maize varieties in Colombia, and certified seed will be available beginning in August.

BIO-MZN01 will also form part of a new initiative in Colombia called “Semillas para la Paz,” or Seeds for Peace, which seeks to provide improved seed varieties as an alternative to illicit crops. The program, organized by the Colombian government and the Colombian Agricultural Research Corporation (CORPOICA), will promote the cultivation of nine different crops, including maize and beans. Over 20 tons of this new zinc-enriched maize variety will be produced by Maxi Semillas for this program, along with an iron-enriched biofortified bean variety developed by CIAT with HarvestPlus.

Improving diet through nutritious maize in Colombia

CIAT field day. Photo Marleni Rosero, communications specialist at HarvestPlus-CIAT.
CIAT field day om Palmira, Colombia. Photo Luis Narro/CIMMYT.

PALMIRA, COLOMBIA — A field day was organized at the International Center for Tropical Agriculture (CIAT) to show the advances of CIMMYT’s HarvestPlus project in Colombia and throughout Latin America. 58 participants representing regional agriculture, education and health sectors, Colombian agricultural institutions, seed producing companies and producers’ guilds, non-governmental organizations and food processing and supply companies. CIAT and CIMMYT staff involved in HarvestPlus also attended the event.

Conferences held during the field day aimed to show participants the benefits of a biofortification program. Meike Anderson, a HarvestPlus crop development specialist of presented strategic priorities for developing and commercializing biofortified crops, emphasizing more than 2 billion people worldwide suffer from hidden hunger, or micronutrient deficiencies.

HarvestPlus was created to combat hidden hunger, and operates in over 40 countries with more than 200 partners. The project began in 2004 and is now in the dissemination phase. HarvestPlus is directly in line with the CGIAR’s goal to ensure improved crop varieties are designed to have high in nutritional value. HarvestPlus in turn has prioritized the development of maize seed with high zinc and provitamin A content. In Colombia 20% of the population is zinc deficient as it much of the population in other Latin American countries including Guatemala, Nicaragua, Brazil, Mexico and Peru.

Maize is the staple food of around a third of malnourished children all over the world. In Colombia 25% of children under 5 years of age present vitamin A deficiency. Biofortified food could have a huge impact improving diet in Colombia and across the globe.

CIMMYT aims to include higher protein quality, lysine, zinc and provitamin A in biofortified maize. To date, there are at least 10 biofortified varieties than after released that can be sown by farmers for both urban and rural consumers, all which were on display during the field day. A farm-to-plate strategy including beans, rice, cassava and yams should also be implemented.

Carolina Gonzalez, HarvestPlus economist, also presented socioeconomic studies prioritizing biofortification in Colombia during the event, identifying areas on the Atlantic coast as the greatest in need due to high levels of vitamin A and zinc deficiency. Sonia Gallego, post harvest Research Assistant of HarvestPlus, provided information from retention and nutrition studies on biofortified maize, emphasizing how important maize grain processing and conservation from harvest to food production are for vitamin A and zinc availability in the human body.

Narro_2
Discussing the benefits of biofortified maize, whcih should be available to Colombian farmers in 2017. Photo: Marleni Rosero/HarvestPlus-CIAT.

Field activities were also presented by CIMMYT researchers Felix San Vicente and Luis Narro. They emphasized the importance of delivering to farmers biofortified maize seeds that still produce yields that can compete with their competitors.  During an event hosted earlier in the year evaluating biofortified hybrids, the grain yield of the best hybrid was nearly ten tons per hectare, which is on par with the best performing maize used as a control group. This proves that high zinc or protein content does not cause farmers a loss in yield – just gains in nutritional. Biofortification also proved to have no effect on other traits like disease resistance, grain type or plant architecture.

At the end of the field day, teams identified institutions and companies that will take charge of varietal release and the seed production process in Colombia, including CORPOICA, Fenalce, Semivalle and Semillas Guerrero. In addition, CIMMYT will simultaneously sow plots to demonstrate to seed companies and other institutions the agronomic traits of different varieties.

Government programs that provide food for school children were also identified as potential collaborators to meet high demand for maize and malnourished children in that state of Valle del Cauca. Colombia demands is 1,200,000 tons of maize for food uses annually, with many producers and processing companies interested in the benefits of using biofortified maize and other crops.

Everyone who attended the workshop evaluated plant and grain traits and compared experimental plot yields. As a result, the seed companies decided to organize agronomic evaluation plots starting in 2016 and establish semi-commercial plots of hybrids, with the goal to release the first biofortified maize in 2017.

Among workshop attendees were CORPOICA and ICA, seed companies Semivalle, Maxisemillas, Semillas del pacĂ­fico and Procampo, producers guilds FENALCE, FEDERECAFE and ARDECAN, non-governmantal organizations including CETEC, FIDAR and CLAYUCA and companies FundaciĂłn Naturaleza y Vida and Pampa also attended.

Donors push for sustainable agriculture in Latin America and the Caribbean

Intelligent and precise mechanization, presented by VĂ­ctor LĂłpez. Photo: Margaret Zeigle/GHI
Smart, precise mechanization, presented by Víctor López. Photo: Margaret Zeigle/GHI

CALI, Colombia (CIMMYT) — Investment in agricultural research for development provides extraordinary returns and benefits for stakeholders, said the director general of the International Maize and Wheat Improvement Center (CIMMYT), expressing support for a new multi-donor funding platform.

AgroLAC 2025, coordinated by the Inter-American Development Bank in partnership with Dow Chemical Company and The Nature Conservancy, aims to stimulate investment in rural areas, encouraging profitable and sustainable agriculture by supporting pilot projects, funding initiatives and technologies that strengthen agricultural research and promote the sustainable agricultural innovation and development agenda of the Latin America-Caribbean (LAC) region. CIMMYT recently joined the initiative.

“With the looming challenge of feeding 9 billion people in 2050, CIMMYT fully supports the clear recommendations put forward by the AgroLAC 2025 Initiative for policies to help Latin America and the Caribbean (LAC) sustainably realize the potential of its outstanding natural resources,” said Martin Kropff, CIMMYT director general, in a recent blog post.

“Local governments, development agencies, foundations and higher education and research institutions must invest heavily in agricultural research and development. If they do so, the return on their investment will be profound,” he added. “In Mexico alone, this amounts to a network of over 150 partners, 50 research platforms, 233 demonstration modules and several thousands of extension plots, reaching over 200,000 farmers.”

The application of knowledge and technology at scale has the potential to raise national maize and wheat productivity by 25 percent and 10 percent, respectively, by working with some of the most marginalized farmers in resource-poor areas of Mexico, Kropff wrote.

AgroLac 2025 conference participants in Cali, Colombia. Photo: AgroLAC 2025
AgroLac 2025 conference participants in Cali, Colombia. Photo: AgroLAC 2025

With support from Colombia’s Presidential Agency on International Cooperation, AgroLAC 2025 recently hosted its second partnership conference sponsored by the International Center for Tropical Agriculture in Cali, Colombia.

At the event, CIMMYT’s sustainable intensification for Latin America team led a meeting on “Accessible mechanization for climate-smart agriculture in Latin America.”

Bram Govaerts, strategy lead for Latin America with CIMMYT’s Sustainable Intensification Unit and Víctor López, MasAgro’s manager of institutional relations, described CIMMYT’s experience designing mechanized solutions for conservation agriculture –  farming practices that involve minimal soil disturbance, permanent soil cover and the use of crop rotation to simultaneously maintain and boost yields, increase profits and protect the environment – through the MasAgro (Sustainable Modernization of Traditional Agriculture) program and other regional programs.

Read the original AgroLAC 2025 Spanish press release here. 

Read CIMMYT Director General Martin Kropff’s blog on AgroLac2025 here.

CIAT Director General visits CIMMYT

Ruben Echeverría, Director General of the International Center for Tropical Agriculture (CIAT) headquartered near Cali, Colombia, gave a brown bag seminar on “An evolving LAC strategy 
 from international donors to country partnerships,” where he presented an overview of CIAT’s work and strategic initiatives.

An alumnus of CIMMYT, EcheverrĂ­a conducted part of his Ph.D. thesis research in the mid-1980s, in the field in Mexico and Guatemala. At the seminar, he emphasized the need for research centers such as CIMMYT and CIAT to embrace the private sector and partner with agribusiness to collaborate on new potential lines of research.

EcheverrĂ­a also discussed the donor environment in Latin America, and the need to build stronger connections with national governments for future support. In addition to the seminar, EcheverrĂ­a met with CIMMYT staff and key stakeholders to discuss continued collaboration between the centers and future partnership in Colombian maize projects.

CIAT1
From L-R: Director of CIMMYT’s Global Maize Program and CRP Director for MAIZE B.M. Prasanna; CIMMYT Director General Martin Kropff; CIAT Director General Ruben EcheverrĂ­a; CIMMYT Deputy Director General for Research and Partnerships Marianne BĂ€nziger; Associate Director of CIMMYT’s Sustainable Intensification Program (SIP) and Leader of the Sustainable Modernization of Traditional Agriculture (MasAgro) program Bram Govaerts, and Director of CIMMYT-SIP Bruno GĂ©rard. Photo: CIMMYT

ciat 2

EcheverrĂ­a presenting a CIAT study on changing global diets, which gained media attraction, including from National Geographic (in its infographic); the study shows how national diets since 1961 have become ever more similar. Photo: CIMMYT

New technologies to increase coffee-maize system profitability

To demostrate the advances of the project “Increasing the profitability of maize-coffee systems” conducted by CIMMYT in Colombia over the past 10 years in collaboration with the National Federation of Colombian Coffee Producers (FEDERECAFE, Spanish acronym), two field days were held at the Paraguaycito–Quindío (29 April) and La Catalina–Risaralda (7 May) Experiment Stations belonging to CENICAFE, FEDERECAFE’s research unit. At these events, attended by 158 representatives of the Local Coffee Growers’ Committees and the National Federation of Cereal Growers (FENALCE, Spanish acronym), the latest advances in the areas of climate change, agronomy and genetic improvement were presented.

Agronomy

In the field of agronomy, there were demonstrations on how to use a manual maize planter and the GreenSeeker sensor. These inventions are available to farmers today thanks to the work and perseverance of Bill Raun and his colleagues at Oklahoma State University, USA.

In the 1980s, when Bill was working for CIMMYT’s Agronomy Program for Central America, he realized the risks farmers faced when growing maize. The seed was treated with insecticides and fungicides to protect it and promote germination and crop establishment. Farmers would take the seed in their bare hands and put it into the soil, in holes made with the help of a stick; they did not use gloves or any kind of protection.

More than 20 years later, farmers finally have a manual planter. The most important parts of the planter are a plastic tube where the seed is placed, a cylinder that regulates seed drop and a device at the end of the planter that passes the seed from the plastic tube into the soil. During the sowing demonstrations, the attendees observed the excellent germination of a plot sown with the planter the previous week. The planter can also be used for fertilization and is ideal for planting maize on the very steep slopes where coffee is grown and where mechanization is not possible. Most of the region’s coffee growers are small-scale farmers whose land holdings average 1.54 hectares.

Argemiro Moreno, former CENICAFE scientist, spoke on efficient nitrogen use for maize crops in Colombia’s coffee growing region. He also explained the basics of GreenSeeker use to calculate the precise amount of nitrogen that plants need for maximum growth and production and to avoid polluting the atmosphere or the ground water through excess fertilizer use. There was also a demonstration of how to use the GreenSeeker in the field and for converting the readings into fertilizer dosage recommendations (by cell phone at www.nue.okstate.edu).

Genetic improvement––biofortified maize

As Luis Narro, CIMMYT-Colombia, explained during both field days, biofortification uses conventional breeding to develop varieties with higher content of micronutrients such as iron, zinc and provitamin A. Normal maize grain contains, on average, 20 ppm Zn and 2 ppm pro-vitamin A, whereas biofortified maize being developed at CIMMYT with support by HarvestPlus contains 32 ppm Zn (white maize) and 8-10 ppm provitamin A (orange maize).

As a HarvestPlus activity, 81 white experimental hybrids with high zinc content and 81 orange hybrids with high provitamin A content are being evaluated in Colombia’s coffee growing region. Preliminary results at La Catalina Experiment Station indicate that the best hybrid with high Zn content (8.9 t/ha) yielded 10% more than the normal (check) hybrid and showed less ear rot and less tar spot damage. The yield of the best hybrid with high provitamin A content was 5.4 t/ha, similar to that of the normal check.

At the same time, the HarvestPlus team at CIAT, in collaboration with small food product manufacturers in Colombia’s Cauca Valley, are conducting pilot studies aimed at developing food products from biofortified maize, as well as sensory studies and studies on micronutrient retention and on shelf life. Consequently, it’s very possible that cropping and consumption of biofortified maize will be promoted in Colombia’s coffee region as an alternative for improving food security.

* This is the second part of a two-part report; the first was published in the previous issue of the CIMMYT Informa.

Maize protects Colombian coffee from climate change

The Eddy Covariance microclimate station in Paraguaycito takes meteorological data needed to predict climate variability. Phots: Claudio Romero Perilla.
The Eddy Covariance microclimate station in Paraguaycito takes meteorological data needed to predict climate variability. Phots: Claudio Romero Perilla.

Preliminary results have shown that a maize-coffee cropping system acts like a huge atmospheric carbon sink, capturing up to 60 times more carbon than a coffee-bean system during one cycle of the associated temporary bean crop. In addition, maize creates a more adequate micro-climate for coffee’s growth and development because it reduces air temperature, helps to maintain soil moisture and decreases daytime-nighttime soil temperature fluctuations. This has a buffer effect that benefits soil biochemical processes and improves crop productivity.

To demonstrate advances of the project “Increasing the profitability of maize-coffee systems” that CIMMYT has been conducting in Colombia for 10 years in collaboration with the National Federation of Colombian Coffee Producers (FEDERECAFE, Spanish acronym), two field days were held at the Paraguaycito–Quindío (29 April) and La Catalina–Risaralda (7 May) Experiment Stations belonging to CENICAFE, FEDERECAFE’s research unit. At these events, attended by 158 representatives of the Local Coffee Growers’ Committees and the National Federation of Cereal Growers (FENALCE, Spanish acronym), the latest advances in the areas of climate change, agronomy and genetic improvement were presented.*

At Paraguaycito, CENICAFE agronomists Myriam Cañon and Angela Castaño explain the effects of climate on the coffee-maize system.
At Paraguaycito, CENICAFE agronomists Myriam Cañon and Angela Castaño explain the effects of climate on the coffee-maize system.

On the subject of climate change, Angela Castaño, a Ph.D. student at Cauca University linked to CENICAFE, indicated that at the Paraguaycito Experiment Station, the performance of agro-ecosystem depends on energy-water-carbon dynamics, because its distribution is related to the production system. In the case of coffee, solar radiation, water and atmospheric carbon are distributed differently depending on whether the coffee is fully exposed to the sun, or if it is grown in association with other crops.

With the aim of studying energy-water-carbon dynamics in different coffee production systems, at Paraguaycito there is an Eddy Covariance micro-climate station that measures the sun’s energy and the amount of carbon and water vapor in the production system. Strategically placed sensors in the micro-climate station measure air and soil temperature and humidity, as well as the flow of latent heat (energy used for evapotranspiration) and of perceivable heat (energy used to heat the air). This information is used to study four types of agro-ecosystems that include growing temporary crops during the growth stage of coffee, namely, coffee with maize; coffee with common beans; coffee with pigeon-pea; and coffee under full sun exposure.

At Paraguaycito, CENICAFE agronomists Myriam Cañon and Angela Castaño explain the effects of climate on the coffee-maize system.
At Paraguaycito, CENICAFE agronomists Myriam Cañon and Angela Castaño explain the effects of climate on the coffee-maize system.

Myriam Cañon, Paraguaycito Station Coordinator, mentioned that the coffee-maize association reduces the number of coffee plants that die.

Diego Montoya, La Catalina Station Coordinator, explained that rain is now less frequent but more intense. This causes damage due to surface runoff on the steep terrain where coffee is grown in Colombia. However, there is less damage when coffee is cropped in association with maize because the soil is better protected by both crops.

This is the first of a two-part report; the second part will be published in the next issue of the CIMMYT Informa.

CIAT and CIMMYT complete genetic analysis and plant breeding course in Colombia

By Luis Narro and Janeth Bolaños/ CIMMYT

Dr. Jiankang Wang planted a bread tree at the end of the course, which is a CIAT tradition to mark the close of an international training course.

CIMMYT’s office in Colombia,  in collaboration with the  International Center for  Tropical Agriculture (CIAT),  organized the Genetic Analysis  and Plant Breeding course from  23-27 June. This course has been  offered in Australia, China and  Mexico and reviews plant breeding  methods as well as quantitative  genetics, development of linkage  maps, quantitative trait loci (QTL)  mapping, identification of genes  with quantitative effect and epistasis,  analysis of the interaction QTL x  environment and integration of the  knowledge of the action of genes in  conventional breeding.

CIMMYT scientist Dr. Jiankang Wang, based in Beijing, facilitated the course with funding from the HarvestPlus Challenge Program.  While the course has been offered 10 times, this is the first to include genetic analysis of vegetative propagation species, which are important for CGIAR centers working with cassava, potatoes and sweet potatoes.

Attending the course were 42 scientists (16 women and 28 men), representing public and private institutions from Colombia, Ecuador, Peru and the United States.

William Viera, head of the Fruit Program at Ecuador’s National Autonomous Institute of Agriculture and Livestock (INIAP), described the course as “very interesting. It includes molecular techniques that will allow us high level scientific studies. In our case, we will start a research project on tree tomatoes, tamarind and little oranges (lulo). With the tools and knowledge we gained, we will be able to develop the project in a positive way, and will identify genes that increase disease resistance and improve fruit quality.”

Rocío Silvestre, coordinator of improved materials for the gene bank at the International Potato Center (CIP), said, “The opportunity to interact with our colleagues from all around the world is a great contribution to our research programs. What we learned in the course will help us to design genetic maps, QTL mapping and morphological data analysis.”

Karen Viviana Osorio, research assistant from the Colombian agribusiness Semillas Valle S.A., thanked CIMMYT for sharing the new technology and biotechnology tools currently used in the agriculture sector. Osorio noted that CIMMYT has “helped people who work in agricultural research to access updated and high-quality information. We have made the most of this course in our daily activities.” Bodo Raatz, a molecular geneticist from CIAT’s Bean Improvement Program, described the course as “what we need to know about improvement and genetic studies. It includes all we need to map QTL.”

The Genetic Analysis and Plant Breeding course drew 42 scientists representing public and private institutions from Colombia, Ecuador, Peru and the U.S.

CIAT’s Rice, Tropical Forages and Bean programs will benefit from information on the latest advances in the development of elements that facilitate their work with quantitative traits. “With this course we have been able to identity some needs from the national programs, and they have been provided with free access tools for genetic improvement,” said Luis Augusto Becerra, a molecular geneticist from CIAT’s Cassava Improvement Program.

There are tentative plans to organize another course in collaboration with CIP.

AIP-maize establishes public-private variety evaluation network in Pakistan

By AbduRahman Beshir Issa/CIMMYT

The maize component of the recently launched Agricultural Innovation Program (AIP) for Pakistan has created a public-private network to evaluate CIMMYT international trials of white and yellow kernel hybrids and OPVs including conventionally developed bio-fortified maize.

Faisal Hayat, R&D manager of Jullundur Private Ltd. (right), and AbduRahman Beshir Issa during a maize evaluation at JPL. Photos: AbduRahman Beshir

Seven types of maize trials consisting of different maturity groups, various tolerances to water stress and enhanced levels of protein quality were introduced from CIMMYT Colombia, Mexico and Zimbabwe and distributed to five private seed companies, six public research institutes and two universities for evaluation during the spring season (February-June). The preliminary evaluation during seed setting showed good performance of introduced materials, and a number of entries are showing strong selection potential.

The testing will continue in the summer season (July-November) with additional varieties and partners to check seasonal variations on the performance of the varieties. The AIP is funded by the USAID Feed the Future Initiative and collaborators receive grants to conduct variety evaluation and other project activities. This approach will strengthen the public-private partnership and ensure accelerated diffusion of improved maize cultivars to the smallholders at an affordable price. In addition, partners will enrich their gene pool and enhance their breeding program through the acquisition of CIMMYT maize germplasm.

Maize evaluation at MMRI.

AIP maize trials distributed to public and private partners in Pakistan (Spring 2014)

Partner institution/center No. of trials

  • Maize and Millet Research Institute (MMRI): 4
  • Cereal Crops Research Institute (CCRI): 5
  • National Agricultural Research Institute (NARC): 7
  • Jullundur Private Ltd (JPL): 3
  • Four Brothers Seed company (4B group): 3
  • Ali Akbar Group: 2
  • ICI Pakistan Ltd: 2
  • Petal Seed Company (PSC): 1
  • Agricultural Research Institute – Balochistan/Quetta: 1
  • Agricultural Research Institute- Tandojam (ARIT)-Sindh: 1
  • Agricultural Research Institute- Gilgit Biltistan: 1
  • University of Agriculture Faisalabad (UAF): 1
  • University of Agriculture Peshawar (UAP): 1

CIMMYT strengthens partnerships in South America

By Sam Storr/CIMMYT

Representatives from the national agricultural systems in Bolivia and Ecuador visited CIMMYT at El BatĂĄn, Mexico, from 7-9 April to lay the framework for future collaboration to improve maize production.

The meeting was preceded by a visit from Colombian officials and will be followed by a visit of officials from Peru at the end of April, completing initial talks between CIMMYT and the four South American countries. “We are determining how CIMMYT can work more quickly and concretely to help feed populations in alliance with these countries. Bolivia is self-sufficient in maize, but it could become an exporter,” said Luis Narro, plant breeder for CIMMYT in Colombia. “Ecuador is importing more, but the government has decided to achieve self-sufficiency in two years. So they want to know how CIMMYT can be more involved in solving the problem of production in these countries, and we hope to improve the lives of producers.” Visitors included Nemesia Achacollo, Bolivian minister for land and rural development; Gabriel Hoyos, executive director general of the National Institute of Agrarian and Forestry Innovation (INIAF, Bolivia); and JosĂ© Luis Zambrano, director of research at Ecuador’s Autonomous National Institute of Agrarian Research (INIAP).

A delegation from Bolivia and Ecuador visited CIMMYT on 7-9 April to discuss possible collaboration. (Photos: Xochiquezal Fonseca)

Presentations on advanced maize research at CIMMYT, including an introduction to MasAgro work in sustainable intensification were conducted for the delegation. After learning more about the extent of work undertaken by CIMMYT, Achacollo was impressed by the challenges facing Bolivia in establishing its own international quinoa center. The delegation members also visited the Agua Fría Experimental Station in Puebla, where Achacollo announced that the Bolivian government would create policies for young Bolivian researchers to train in similar facilities. “We must invest in future generations so that they can provide the foundation of agricultural knowledge,” she said. “We cannot be left behind.”

Course on remote sensing using an unmanned aerial vehicle in Peru

Course-on-remote-sensing-using-an-unmanned-aerial-vehicleTraining on the use of remote sensing from an unmanned aerial vehicle was given at INIAP-Peru’s Vista Florida experiment station on 1-5 June 2013. The course was organized by INIAP, the University of Barcelona, Spain, and CIMMYT’s regional office in Colombia. Remote sensing is used in precision agriculture and for phenotyping crops that are important for the region, such as maize, rice, and sugar cane.

Course participants included 44 representatives from the International Potato Center (CIP), the University of Talca (Chile), INIA-Peru, and Peru’s Ministry of Agriculture, among other institutions. The course is one of several activities sponsored by the “Affordable field-based HTPPs” project led by JosĂ© Luis Araus of the Department of Plant Biology of the University of Barcelona and funded by  CRP MAIZE. During the event, a phenotyping platform developed within the framework of the project was presented to INIA.

The director of the Vista Florida station, Miguel Monsalve Aita, opened the course, which was given by distinguished academics and scientists such as JosĂ© Luis Araus; Pablo Zarco and Alberto Hornero from the Sustainable Agriculture Institute, CĂłrdoba, Spain; AntĂłn HernĂĄndez, president of AirElectronics, Madrid, Spain; Carlos Poblete, Claudio BalbotĂ­n, and Gustavo Lobos from the University of Talca, Chile; Hildo MacLean and Susan Palacios from CIP, and Luis Narro from CIMMYT’s Global Maize Program.

The lectures focused on topics such as applying remote sensing in phenotyping; spectral and thermal remote sensing of stress from unmanned aircraft; image and data processing; use of software to process the gathered information; and thermal image analysis for diagnosing drought stress and controlling irrigation. In addition, Hildo MacLean showed how the Oktokopter–XL works. Luis Narro demostrated how to use the new version of the GreenSeeker for making recommendations on N application in maize and, Antón Hernández showed how the unmanned aircraft Sky Walker, which comes equipped with a flight programmer, an infrared camera, and a multispectral camera for collecting data, works. The aircraft used in the demonstration was donated to the Vista Florida station as part of the project’s contributions.

Another essential part of the course was the intensive training on subjects such as platform management, flight programming, and downloading and processing information that was provided to a group of technicians from INIA and private seed companies. Also, Given that INIA technicians who are in charge of the platform need to become thoroughly familiar with it, three technicians from Vista Florida will go to Spain in September to take a course on processing and interpreting images.

The course organizers wish to express their appreciation to the Vista Florida Maize Program.

Course-on-remote-sensing-using-an-unmanned-aerial-vehicle3

Generating drought tolerant maize varieties in Latin America

S03TLWN-ears-ColombiaOn 26-27 April 2013, the FONTAGRO “Generation and validation
of drought tolerant maize varieties to stabilize and reduce mycotoxin damage resulting from climate change” project held its end-of-project meeting in La Ceiba, Honduras, along with the Central American Cooperative Program for the Improvement of Crops and Animals (PCCMCA) meeting (21-26 April). The event highlighted the advances to date, the project’s products, and recommendations for follow-up to ensure that the products reach farmers.

Since 2009, the project generated 5,000 doubled haploid (DH) lines which are currently being evaluated by CIMMYT. The populations were developed from inbred lines identified for drought tolerance, ear rot resistance, and reduced mycotoxin accumulation. The project also identified a set of inbred lines with high levels of ear rot and mycotoxin resistance. The information has been shared with project partners and other breeders for wide use, and CIMMYT will distribute these lines to interested parties. CIMMYT maize breeder Luis Narro commented on the research on diseases, ear rots in particular. “Ear rot is increasing in incidence and severity in South America. Evaluation of 18 commercial hybrids in Peru revealed ear rot incidences as high as 42% on susceptible hybrids in some locations,” he said. “Ear rot tolerant hybrids identified in this project will play an important role in mitigating the detrimental effects posed by ear rots and mycotoxin contamination. These need to be promoted to reach farmers rapidly.” As far as mycotoxins are concerned, the team also identified promising hybrids from validation trials documenting the natural incidence of mycotoxins in Peru, Colombia, and Mexico. This study showed that fumonisins are the most prevalent mycotoxin in South America (compared to aflatoxin and deoxynivalenol).

“The project has generated many products and validated some that are now being released in several countries,” said the project leader George Mahuku. Among those are four varieties released in Honduras (three white and one yellow); one white variety in Colombia; two varieties (one yellow, one white) and a yellow hybrid in Nicaragua, and three varieties (two yellow and one white) in Panama. Three hybrids outperforming the local commercial checks are under validation in Peru. Furthermore, two varieties showing the stability and rustic nature of CIMMYT-generated varieties were released in Colombia, Honduras, and Nicaragua. All the released cultivars are moderately tolerant to the tar spot complex disease which is becoming more common in Latin America.
CIMMYT maize breeder Felix San Vicente presented on the advances that have been made in breeding for drought tolerance and ear rot resistance. “We need to establish and maintain a regional network to test our products in marginal areas,” he noted. “We hope that we will be able to leverage funding from the CRP [MAIZE] to continue the validation and dissemination of these important and promising products in the region.” During the meeting, scientists presented 29 papers, 5 of which contained results from the FONTAGRO project. The papers of CIMMYT colleagues Román Gordon and Oscar Cruz were awarded for their contributions to the maize section of the project: Gordon received the first prize for his paper “Selection of maize varieties for tolerance to water stress in Panama 2010-2012,” and Cruz received the second prize for his paper on “Participatory validation of white and yellow maize varieties in two regions of Honduras.”

Fontagro-Laceiba-Honduras-019The project has generally been considered very successful. “We now know which mycotoxins are important in the region and we have the products to potentially minimize the risk,” commented Mahuku. “What we need is to widely test and disseminate the products so that they reach as many farmers as possible. With a little infusion of resources, the dedication demonstrated by this group, and support from policy makers, I have no doubt that we will get there.”

During 23-25 July, FONTAGRO will hold its annual meeting (VIII Taller de Seguimiento TĂ©cnico de Proyectos FONTAGRO) in Uruguay. The “Generation and validation of drought tolerant maize varieties to stabilize and reduce mycotoxin damage resulting from climate change” is one of five projects finishing this year; its representatives were invited to present their results and compete for a financial award given to the best project. If the project wins, the financial resources could help with continued and wider validation of products generated by this project.

FONTAGRO project holds workshop in Colombia

FontagroThe FONTAGRO project “Development of Maize Lines Combining Drought Tolerance and Ear Rot Resistance as a Way to Mitigate the Effects of Climate Change and Minimize Mycotoxin Contamination” held a workshop during 11-14 September 2012 in Monteria, Colombia. The workshop was jointly organized by CIMMYT and Sergio Mejía of CORPOICA and gathered participants and collaborators from Peru, Panama, Honduras, and Colombia. The participants were trained in concepts of seed production and explored ways to link with seed companies so that quality seed products can reach farmers. They were also trained in harvesting techniques and collecting agronomic data of the validation trials.

The FONTAGRO project has led to the release of two varieties combining drought tolerance and resistance to ear rots and mycotoxins which have already been registered and released in Honduras. Two additional varieties are currently in the process of being validated for release in Colombia and Nicaragua. Mycotoxins result from fungal infection of maize kernels and have detrimental health effects when contaminated grain is consumed by humans and livestock. They have the potential to cause acute and chronic health problems through direct consumption, consumption through animal products, skin contact, and inhalation. Pre- and post-harvest technologies have been an effective method of reducing mycotoxins in maize.

“Through the generous support of the Director of Corpoica Turipana, the course went on very well,” stated George Mahuku, FONTAGRO project leader. During his opening remarks, Mahuku highlighted the successes of the project in validation and distribution of maize varieties and hybrids. “The project has also made progress in creating awareness of the health hazards from mycotoxin contamination,” stated Mahuku.

Luis Narro from CIMMYT-Colombia discussed current developments in maize breeding and the genesis of hybrid maize production. Félix San Vicente, leader of International Maize Yield Consortium (IMIC)-Latin America, discussed the IMIC concept and CRPs MAIZE and WHEAT, as well as ways to channel products from this project into the CRP/IMIC concept to increase diffusion and distribution. Cesar Ruiz from Semivalle, a private seed company based in Colombia, provided insights into the seed industry and the interactions between public institutions and private seed companies, a crucial component of the project enabling improved varieties to reach farmers. Alba Arcos, a CIMMYT-Colombia PhD student, presented on doubled haploid technology and how this can be harnessed to accelerate inbred line development combining different favorable traits.

“The meeting was a success and the project has generated many products in three years, including information on the incidence and prevalence of aflatoxin and fumonisin contamination of maize. We hope that we can leverage more funding to ensure that these products are widely tested throughout Latin America,” stated Mahuku. Overall, the FONTAGRO project and its network of collaborators have generated more than 6,000 doubled haploid lines combining drought tolerance and ear rot resistance.

During the workshop, collaborators discussed next steps for the project. A possible link to leverage funding from IMIC and CRP MAIZE to continue the network of breeders, researchers, and seed companies were discussed as follow-up items. A Spanish language course on doubled haploid technology will take place at the end of November at CIMMYT headquarters in El BatĂĄn, Mexico. The workshop will draw upon the results of the Monteria workshop and promote linkages throughout the region of Latin America.