Skip to main content

Location: Canada

Public and Private Plant Breeding: Finding Common Ground

Seed the World Group hosted a webinar to find a common ground between public and private breeding programs in North America and some possible paths forward. Fernando Gonzalez, a retired plant breeder from CIMMYT mentioned a noticeable uptick in the involvement of the private sector in breeding programs in Mexico.

Learn more about the primary goals underlying public and private breeding efforts.

 

 

 

How does physical disturbance of soil impact carbon mineralization?

Higher levels of potential carbon mineralization (Cmin) in soil indicate that the soil is healthier. Many reports indicate that Cmin in agricultural soils increases with reductions in soil disturbance through tillage, but the mechanisms driving these increases are not well understood.

The International Maize and Wheat Improvement Center (CIMMYT) has established a network of research platforms in Mexico, where collaborating scientists evaluate conservation agriculture and other sustainable technologies to generate data on how to improve local production systems. This network of research trials, many of which have over five years in operation, allowed us to participate with Mexican sites in the North American Project to Evaluate Soil Health Measurements (NAPESHM). This project aimed to identify widely applicable soil health indicators and evaluate the effects of sustainable practices on soil health in 124 long-term experiments across Canada, the United States of America, and Mexico.

Experienced field teams from CIMMYT sampled the soils from 16 experiments in Mexico, which were then analyzed by the Soil Health Institute for this study. Potential carbon mineralization, 16S rRNA sequences, and soil characterization data were collected, with results demonstrating that microbial (archaeal and bacterial) sensitivity to physical disturbance is influenced by cropping system, the intensity of the disturbance, and soil pH.

A subset of 28 percent of amplicon sequence variants were enriched in soils managed with minimal disturbance. These enriched sequences, which were important in modeling Cmin, were connected to organisms that produce extracellular polymeric substances and contain metabolic strategies suited for tolerating environmental stressors.

The unique sampling design of this study – analyzing across a variety of agricultural soils and climate – allows to evaluate management impacts on standardized measures of soil microbial activity. Additionally, understanding the microbial drivers of soil health indicators like Cmin can help with the interpretation of those indicators and ultimately the understanding of how to better manage soils.

Read the study: Linking soil microbial community structure to potential carbon mineralization: A continental scale assessment of reduced tillage

Cover photo: Soil sampling in the Tlaltizapan station, Mexico in March 2019. (Photo: Simon Fonteyne/CIMMYT)

Can Wheat Save the World?

“If we can put a man on the moon, we can solve 800 million people going to bed hungry every day. Wheat is a crucial part of that challenge,” said Martin Kropff, director-general of the International Maize and Wheat Improvement Center (CIMMYT) at the first International Wheal Congress held in Saskatoon.

Read more here.

Global group of journalists find wheat research, comradery in Canada

A diverse group of agriculture, food security, environment and science journalists gathered in Saskatoon, Canada recently for an intensive course in innovative wheat research, interviews with top international scientists and networking with peers.

The occasion was the International Wheat Congress (IWC), which convened more than 900 wheat scientists and researchers in Saskatoon, in Canada’s biggest wheat-growing province, Saskatchewan, to discuss their latest work to boost wheat productivity, resilience and nutrition.

Martin Kropff (right), Director General of the International Maize and Wheat Improvement Center (CIMMYT), speaks to the press at the International Wheat Congress. (Photo: Marcia MacNeil/CIMMYT)
Martin Kropff (right), Director General of the International Maize and Wheat Improvement Center (CIMMYT), speaks to the press at the International Wheat Congress. (Photo: Marcia MacNeil/CIMMYT)

The seven journalists were part of a group of 11 who won a competitive sponsorship offered by the CGIAR Research Program on Wheat (WHEAT). Seven journalists attended the conference, while another four followed the proceedings and activities from home. The ten-day immersive training included multiple daily press briefings with top scientists in climate change modeling and resilience testing, innovative breeding techniques, analysis and protection of wheat diversity and many more topics, on top of a full schedule of scientific presentations.

“The scientists were so eager to talk to us, and patient with our many questions,” said Nkechi Isaac, from the Leadership newspaper group in Nigeria. “Even the director general of [the International Maize and Wheat Improvement Center] CIMMYT spoke with us for almost an hour.”

“It was a pleasant surprise for me.”

The journalists, who come from regions as diverse as sub-Saharan Africa and East Asia, offered support and encouragement from their travel preparations though their time in Saskatoon and beyond — sharing story ideas, interview and site visit opportunities, news clips and photos through a WhatsApp group.

Linda McCandless (center) of Cornell University and David Hodson (left) of CIMMYT were among the panelists sharing tips on wheat news coverage at the journalist roundtable. (Photo: Matt Hayes/Cornell)
Linda McCandless (center) of Cornell University and David Hodson (left) of CIMMYT were among the panelists sharing tips on wheat news coverage at the journalist roundtable. (Photo: Matt Hayes/Cornell)

“It is really helpful to be connected to colleagues around the world,” said Amit Bhattacharya of the Times of India. “I know we will continue to be a resource and network for each other through our careers.”

The week wasn’t all interviews and note-taking. The journalists were able to experience Saskatchewan culture, from a tour of a wheat quality lab and a First Nations dance performance to a visit to a local wheat farm, and even an opportunity to see Saskatoon’s newest modern art gallery.

The media sponsorship at IWC aimed to encourage informed coverage of the importance of wheat research, especially for farmers and consumers in the Global South, where wheat is the main source of protein and a critical source of life for 2.5 billion people who live on less than $2 a day.

The group also spoke with members of the many coalitions that facilitate the collaboration that makes innovative wheat research possible, including the International Wheat Yield Partnership (IWYP), the Heat and Drought Wheat Improvement Consortium (HeDWIC) and the G20-organized Wheat Initiative.

“This is the first time we’ve invested this heavily in journalist training,” said WHEAT program director Hans Braun. “We think the benefits – for the journalists, who gained a greater understanding of wheat research issues, and for developing country audiences, who will be more aware of the importance of improving wheat –– are worth it.”

Lominda Afedraru (center) from Uganda’s Daily Monitor shares her experience covering science with participants at the journalist roundtable. (Photo: Marcia MacNeil/CIMMYT)
Lominda Afedraru (center) from Uganda’s Daily Monitor shares her experience covering science with participants at the journalist roundtable. (Photo: Marcia MacNeil/CIMMYT)

A roundtable discussion with peers from Canadian news organizations and seasoned science communications professionals and a networking breakfast with CIMMYT scientists provided platforms for a candid exchange on the challenges and opportunities in communicating wheat science in the media.

A common refrain was the importance of building relationships between scientists and media professionals – because wheat science offers dramatic stories for news audiences, and an informed and interested public can in turn lead to greater public investment in wheat science. The journalists and scientists in Saskatoon have laid a solid foundation for these relationships.

The sponsored journalists are:

Amit Bhattacharya: Senior Editor at The Times of India, New Delhi, and a member of the team that produces the front page of India’s largest English daily. He writes on Indian agriculture, climate change, the monsoon, weather, wildlife and science. A 26-year professional journalist in India, he is a Jefferson Fellow on climate change at the East-West Center, Hawaii.

Emmanuelle Landais: Freelance journalist based in Dakar, Senegal, currently reporting for Deutsche Welle’s radio service in English and French on the environment, technology, development and youth in Africa. A former line producer for France 24 in Paris and senior environment reporter for the daily national English newspaper Gulf News in Dubai, she also reports on current affairs for the Africalink news program, contributes to Radio France International’s (RFI) English service, and serves as news producer for the Dakar-based West Africa Democracy Radio.

Julien Chongwang: Deputy Editor, SciDev.Net French edition. He is based in Douala, Cameroon, where he has been a journalist since 2002. Formerly the editor of the The Daily Economy, he worked on the French edition of Voice of America and Morocco economic daily LES ECO, and writes for Forbes Africa, the French edition of Forbes in the United States.

Lominda Afedraru: Science correspondent at the Daily Monitor newspaper, Uganda, part of the Nation Media Group. A journalist since 2004, she also freelances for publications in the United States, UK, Kenya and Nigeria among others and has received fellowships at the World Federation of Science Journalists, Biosciences for Farming in Africa courtesy of University of Cambridge UK and Environmental Journalism Reporting at Sauti University, Tanzania.

Muhammad Amin Ahmed: Senior Correspondent, Daily Dawn in Islamabad, Pakistan. He has been a journalist for more than 40 years. Past experience includes working at the United Nations in New York and Pakistan Press International. He received a UN-21 Award from former U.N. Secretary General Kofi Annan (2003).

Muhammad Irtaza: Special Correspondent with Pakistan’s English daily The Nation at Multan. A 10-year veteran journalist and an alumnus of the Reuters Foundation, he also worked as a reporter with the Evansville Courier and Press in Indiana, United States. He is an ICFJ-WHO Safety 2018 Fellow (Bangkok), Asia Europe Foundation Fellow (Brussels), and a U.S.-Pakistan Professional Partnership in Journalism Program Fellow (Washington). He teaches mass communications at Bahauddin Zakariya University Multan.

Nkechi Isaac: Deputy Editor, Leadership Friday in Nigeria. She is also the head, Science and Technology Desk of the Leadership Group Limited, publishers of LEADERSHIP newspapers headquartered in Abuja, Nigeria. She is a Fellow of Cornell University’s Alliance for Science.

Reaz Ahmad: Executive Editor of the Dhaka Tribune, Bangladesh’s national English newspaper. A journalist for 30 years, he is a Cochran Fellow of the U.S. Department of Agriculture and an adjunct professor of University of Dhaka (DU) and Independent University, Bangladesh.

Rehab Abdalmohsen: Freelance science journalist based in Cairo, Egypt who has covered science, health and environment for 10 years for such websites as the Arabic version of Scientific American, SciDev.net, and The Niles.

Tan Yihong: Executive Deputy Editor-in-Chief, High-Tech & Commercialization Magazine, China. Since 2008, she has written about science particularly agriculture innovation and wheat science. She has attended several Borlaug Global Rust Initiative (BGRI) Technical Workshops. In Beijing, she helped organize a BGRI communication workshop and media outreach.

Tony Iyare: Senior Correspondent, Nigerian Democratic Report. For more than 30 years, he has covered environment, international relations, gender, media and public communication. He has worked as a stringer for The New York Times since 1992, and freelanced for the Paris-based magazine, The African Report and the U.N. Development Programme publication Choices. He was columnist at The Punch and co-authored a book: The 11-Day Siege: Gains and Challenges of Women’s Non-Violent Struggles in Niger Delta.

Nigerian journalist Nkechi Isaac (center) tours a Saskatchewan wheat farm. (Photo: Julie Mollins)
Nigerian journalist Nkechi Isaac (center) tours a Saskatchewan wheat farm. (Photo: Julie Mollins)

The CGIAR Research Program on Wheat (WHEAT) is led by the International Maize and Wheat Improvement Center (CIMMYT), with the International Center for Agricultural Research in the Dry Areas (ICARDA) as a primary research partner. Funding comes from CGIAR, national governments, foundations, development banks and other agencies, including the Australian Centre for International Agricultural Research (ACIAR),  the UK Department for International Development (DFID) and the United States Agency for International Development (USAID).

Warmer night temperatures reduce wheat yields in Mexico, scientists say

As many regions worldwide baked under some of the most persistent heatwaves on record, scientists at a major conference in Canada shared data on the impact of spiraling temperatures on wheat.

In the Sonora desert in northwestern Mexico, nighttime temperatures varied 4.4 degrees Celsius between 1981 and 2018, research from the International Maize and Wheat Improvement Center (CIMMYT) shows. Across the world in Siberia, nighttime temperatures rose 2 degrees Celsius between 1988 and 2015, according to Vladimir Shamanin, a professor at Russia’s Omsk State Agrarian University who conducts research with the Kazakhstan-Siberia Network on Spring Wheat Improvement.

“Although field trials across some of the hottest wheat growing environments worldwide have demonstrated that yield losses are in general associated with an increase in average temperatures, minimum temperatures at night — not maximum temperatures — are actually determining the yield loss,” said Gemma Molero, the wheat physiologist at CIMMYT who conducted the research in Sonora, in collaboration with colleague Ivan Ortiz-Monasterio.

“Of the water taken up by the roots, 95% is lost from leaves via transpiration and from this, an average of 12% of the water is lost during the night. One focus of genetic improvement for yield and water-use efficiency for the plant should be to identify traits for adaptation to higher night temperatures,” Molero said, adding that nocturnal transpiration may lead to reductions of up to 50% of available soil moisture in some regions.

Wheat fields at CIMMYT's experimental station near Ciudad Obregón, Sonora, Mexico. (Photo: M. Ellis/CIMMYT)
Wheat fields at CIMMYT’s experimental station near Ciudad Obregón, Sonora, Mexico. (Photo: M. Ellis/CIMMYT)

Climate challenge

The Intergovernmental Panel on Climate Change (IPCC) reported in October that temperatures may become an average of 1.5 degrees Celsius warmer in the next 11 years. A new IPCC analysis on climate change and land use due for release this week, urges a shift toward reducing meat in diets to help reduce agriculture-related emissions from livestock. Diets could be built around coarse grains, pulses, nuts and seeds instead.

Scientists attending the International Wheat Congress in Saskatoon, the city at the heart of Canada’s western wheat growing province of Saskatchewan, agreed that a major challenge is to develop more nutritious wheat varieties that can produce bigger yields in hotter temperatures.

CIMMYT wheat physiologist Gemma Molero presents at the International Wheat Congress. (Photo: Marcia MacNeil/CIMMYT)
CIMMYT wheat physiologist Gemma Molero presents at the International Wheat Congress. (Photo: Marcia MacNeil/CIMMYT)

As a staple crop, wheat provides 20% of all human calories consumed worldwide. It is the main source of protein for 2.5 billion people in the Global South. Crop system modeler Senthold Asseng, a professor at the University of Florida and a member of the International Wheat Yield Partnership, was involved in an extensive study  in China, India, France, Russia and the United States, which demonstrated that for each degree Celsius in temperature increase, yields decline by 6%, putting food security at risk.

Wheat yields in South Asia could be cut in half due to chronically high temperatures, Molero said. Research conducted by the University of New South Wales, published in Environmental Research Letters also demonstrates that changes in climate accounted for 20 to 49% of yield fluctuations in various crops, including spring wheat. Hot and cold temperature extremes, drought and heavy precipitation accounted for 18 to 4% of the variations.

At CIMMYT, wheat breeders advocate a comprehensive approach that combines conventional, physiological and molecular breeding techniques, as well as good crop management practices that can ameliorate heat shocks. New breeding technologies are making use of wheat landraces and wild grass relatives to add stress adaptive traits into modern wheat – innovative approaches that have led to new heat tolerant varieties being grown by farmers in warmer regions of Pakistan, for example.

More than 800 global experts gathered at the first International Wheat Congress in Saskatoon, Canada, to strategize on ways to meet projected nutritional needs of 60% more people by 2050. (Photo: Matthew Hayes/Cornell University)
More than 800 global experts gathered at the first International Wheat Congress in Saskatoon, Canada, to strategize on ways to meet projected nutritional needs of 60% more people by 2050. (Photo: Matthew Hayes/Cornell University)

Collaborative effort

Matthew Reynolds, a distinguished scientist at CIMMYT, is joint founder of the Heat and Drought Wheat Improvement Consortium (HeDWIC), a coalition of hundreds of scientists and stakeholders from over 30 countries.

“HeDWIC is a pre-breeding program that aims to deliver genetically diverse advanced lines through use of shared germplasm and other technologies,” Reynolds said in Saskatoon. “It’s a knowledge-sharing and training mechanism, and a platform to deliver proofs of concept related to new technologies for adapting wheat to a range of heat and drought stress profiles.”

Aims include reaching agreement across borders and institutions on the most promising research areas to achieve climate resilience, arranging trait research into a rational framework, facilitating translational research and developing a bioinformatics cyber-infrastructure, he said, adding that attracting multi-year funding for international collaborations remains a challenge.

Nitrogen traits

Another area of climate research at CIMMYT involves the development of an affordable alternative to the use of nitrogen fertilizers to reduce planet-warming greenhouse gas emissions. In certain plants, a trait known as biological nitrification inhibition (BNI) allows them to suppress the loss of nitrogen from the soil, improving the efficiency of nitrogen uptake and use by themselves and other plants.

CIMMYT's director general Martin Kropff speaks at a session of the International Wheat Congress. (Photo: Matthew Hayes/Cornell University)
CIMMYT’s director general Martin Kropff speaks at a session of the International Wheat Congress. (Photo: Matthew Hayes/Cornell University)

Scientists with the BNI research consortium, which includes Japan’s International Research Center for Agricultural Sciences (JIRCAS), propose transferring the BNI trait from those plants to critical food and feed crops, such as wheat, sorghum and Brachiaria range grasses.

“Every year, nearly a fifth of the world’s fertilizer is used to grow wheat, yet the crop only uses about 30% of the nitrogen applied, in terms of biomass and harvested grains,” said Victor Kommerell, program manager for the multi-partner CGIAR Research Programs (CRP) on Wheat and Maize led by the International Maize and Wheat Improvement Center.

“BNI has the potential to turn wheat into a highly nitrogen-efficient crop: farmers could save money on fertilizers, and nitrous oxide emissions from wheat farming could be reduced by 30%.”

Excluding changes in land use such as deforestation, annual greenhouse gas emissions from agriculture each year are equivalent to 11% of all emissions from human activities. About 70% of nitrogen applied to crops in fertilizers is either washed away or becomes nitrous oxide, a greenhouse gas 300 times more potent than carbon dioxide, according to Guntur Subbarao, a principal scientist with JIRCAS.

Hans-Joachim Braun,
Director of CIMMYT’s Global Wheat Program and the CGIAR Research Program on Wheat, speaks at the International Wheat Congress. (Photo: Marcia MacNeil/CIMMYT)

Although ruminant livestock are responsible for generating roughly half of all agricultural production emissions, BNI offers potential for reducing overall emissions, said Tim Searchinger, senior fellow at the World Resources Institute and technical director of a new report titled “Creating a Sustainable Food Future: A Menu of Solutions to Feed Nearly 10 Billion People by 2050.”

To exploit this roots-based characteristic, breeders would have to breed this trait into plants, said Searchinger, who presented key findings of the report in Saskatoon, adding that governments and research agencies should increase research funding.

Other climate change mitigation efforts must include revitalizing degraded soils, which affect about a quarter of the planet’s cropland, to help boost crop yields. Conservation agriculture techniques involve retaining crop residues on fields instead of burning and clearing. Direct seeding into soil-with-residue and agroforestry also can play a key role.

The new challenges of wheat improvement

CIMMYT scientist Velu Govindan (right) is interviewed by Michael Condon of ABC Rural at the International Wheat Conference in Sydney, Australia, 2015. (Photo: Julie Mollins/CIMMYT)
CIMMYT scientist Velu Govindan (right) is interviewed by Michael Condon of ABC Rural at the International Wheat Conference in Sydney, Australia, 2015. (Photo: Julie Mollins/CIMMYT)

In the Green Revolution era, the focus for wheat breeders was on boosting yields to feed more people, but today the challenge is not only to increase production on smaller plots of land, but also to improve nutritional quality, said CIMMYT wheat breeder Velu Govindan, during an interview on BBC Newsday.

Interview starts at 43:23:
https://www.bbc.co.uk/sounds/play/w172wpkb45wcm4t

Govindan was speaking from the International Wheat Congress in the city of Saskatoon in Canada’s breadbasket province on the prairies, Saskatchewan.

Top scientists from CGIAR to present latest research at International Wheat Congress in Canada

FOR IMMEDIATE RELEASE

SASKATOON, Canada (CIMMYT) — Amid global efforts to intensify the nutritional value and scale of wheat production, scientists from all major wheat growing regions in the world will gather from July 21 to 26, 2019 at the International Wheat Congress in Saskatoon, the city at the heart of Canada’s western wheat growing province, Saskatchewan. The CGIAR Research Program on Wheat (WHEAT), led by the International Maize and Wheat Improvement Center (CIMMYT), is a founding member of the G20 Wheat Initiative, a co-host of the conference.

Wheat provides 20% of all human calories consumed worldwide. In the Global South, it is the main source of protein and a critical source of life for 2.5 billion people who live on less than $2 (C$2.60) a day.

In spite of its key role in combating hunger and malnutrition, the major staple grain faces threats from climate change, variable weather, disease, predators and many other challenges. Wheat’s vital contribution to the human diet and farmer livelihoods makes it central to conversations about the rural environment, agricultural biodiversity and global food security.

More than 800 delegates, including researchers from the CGIAR Research Program on Wheat, CIMMYT, the International Center for Agricultural Research in the Dry Areas (ICARDA), the International Wheat Yield Partnership (IWYP), Cornell University’s Delivering Genetic Gain in Wheat project (DGGW), the University of Saskatchewan and many other organizations worldwide will discuss the latest research on wheat germplasm.

“We must solve a complex puzzle,” said Martin Kropff, CIMMYT’s director general. “Wheat must feed more people while growing sustainably on less land. Wheat demand is predicted to increase 60% in the next three decades, while climate change is putting an unprecedented strain on production.”

“The scientific community is tackling this challenge head-on, through global collaboration, germplasm exchange and innovative approaches. Researchers are looking at wheat’s temperature response mechanisms and using remote sensing, genomics, bio-informatics and other technologies to make wheat more tolerant to heat and drought,” Kropff said.

The congress is the first major gathering of the wheat community since the 2015 International Wheat Conference in Sydney, Australia.

CGIAR and CIMMYT scientists will share the latest findings on:

  • State-of-the-art approaches for measuring traits to speed breeding for heat and drought tolerance
  • Breeding durum (pasta) wheat for traits for use in bread products
  • New sources of diversity — including ancient wheat relatives — to create aphid-resistant wheat and other improved varieties
  • DNA fingerprinting to help national partners identify gaps in improved variety adoption

For more details on schedule and scientists’ presentations, click here.

Research shows that more than 60% of wheat varietal releases since 1994 were CGIAR-related.

Low- and middle-income countries are the primary focus and biggest beneficiaries of CGIAR wheat research, but high-income countries reap substantial rewards as well. In Canada, three-quarters of the wheat area is sown to CGIAR-related cultivars and in the United States almost 60% of the wheat area was sown to CGIAR-related varieties, according to the research.


WHEN

July 21-26, 2019

The opening ceremony and lectures will take place on
Monday, July 22, 2019 from 08:50 to 10:50 a.m.

WHERE

TCU Place
35 22nd Street East,
Saskatoon, SK S7K 0C8, Canada
https://g.page/TCUPlace


CONTACTS

For further information, or to arrange interviews, please contact:

Marcia MacNeil: m.macneil@cgiar.org

Julie Mollins: j.mollins@cgiar.org


About CGIAR

CGIAR is a global research partnership for a food secure future dedicated to reducing poverty, enhancing food and nutrition security, and improving natural resources.

About the CGIAR Research Program on Wheat

Joining advanced science with field-level research and extension in lower- and middle-income countries, the Agri-Food Systems CGIAR Research Program on Wheat (WHEAT) works with public and private organizations worldwide to raise the productivity, production and affordable availability of wheat for 2.5 billion resource-poor producers and consumers who depend on the crop as a staple food.  WHEAT is led by the International Maize and Wheat Improvement Center (CIMMYT), with the International Center for Agricultural Research in the Dry Areas (ICARDA) as a primary research partner.  Funding for WHEAT comes from CGIAR and national governments, foundations, development banks and other public and private agencies, in particular the Australian Centre for International Agricultural Research (ACIAR),  the UK Department for International Development (DFID) and the United States Agency for International Development (USAID). www.wheat.org

About CIMMYT

The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of CGIAR and leads the CGIAR Research Programs on Maize and Wheat, and the Excellence in Breeding Platform. The center receives support from national governments, foundations, development banks and other public and private agencies.

Maize and wheat Super Women campaign highlights diversity

IWDbuttonEL BATAN, Mexico (CIMMYT) – A social media crowd sourcing campaign initiated to celebrate the achievements of women has led to more than a dozen published blog story contributions about women in the maize and wheat sectors.

Each year, International Women’s Day gives the world a chance to inspire women and celebrate their achievements. This year, the International Maize and Wheat Improvement Center (CIMMYT) put out a call asking for blog contributions from the social media community.

CIMMYT asked readers to submit stories about women who have made a difference in the maize and wheat sectors, including women involved in conservation agriculture, genetic resources, research, technology and related socio-economics.

The “Who is Your Maize or Wheat Super Woman?” stories are featured on the CIMMYT website from Monday, March 2, 2015 in the lead up to International Women’s Day on Sunday, March 8, 2015.

Contributions include blog stories about women from Britain, Canada, Guatemala, India, Indonesia, Kenya, Mexico, and the United States. Their stories will also be made available in Spanish-language.

SUPER WOMEN BLOG POSTS:

CIMMYT

CIMMYT and the Canadian wheat alliance join forces to fight durum wheat diseases

By Mike Listman/CIMMYT

CIMMYT and the Canadian Wheat Alliance (CWA) launched a collaboration on 9 June to apply genomics-assisted breeding to develop new durum wheat varieties that are more resistant to wheat rust, Fusarium head blight and other diseases. The work will benefit Canadian farmers and durum wheat producers in developing countries.

CIMMYT wheat breeder Karim Ammar

“The world uses more than 25 million tons of durum wheat each year, either for pasta or as a key food staple and source of livelihoods in North Africa and the Middle East. This collaboration will help to assure sufficient durum wheat production and quality to meet rising global demand,” said Hans Braun, director of CIMMYT’s Global Wheat Program.

The CWA is a project of the government of Saskatchewan, the National Research Council Canada and Agriculture and Agri-Food Canada. It is focused on accelerating variety development, sustainable yields with variable climates, increased productivity and sustainable profitability.

“Our collaboration with CIMMYT, one of the world’s most reputable organizations in the field of wheat improvement, will allow Canadian wheat farmers to benefit from the Center’s world-class and extensive research,” said Roman Szumski, chair of the CWA Steering Committee.

Transparency and transmission: wheat quality in the marketplace

According to Erika Meng, CIMMYT economist and organizer of a workshop on wheat quality held at El Batán during 7-8 December 2006: ‘“We’ve worked on wheat quality at CIMMYT for a long time, but usually from the supply side. What we tried to do at this workshop is bring information from the supply and demand sides closer together, because with urbanization and income growth in developing countries, a more segregated demand for types of wheat products and quality is emerging.” The 20 participants included experts from the US and Canada, to draw on their expertise in enabling wheat quality demands to be transparent and transmitted through the marketplace. Outcomes included a prioritized agenda for research and outlines for three concept notes to seek funding for the work.