Skip to main content

Location: Argentina

Achieving sufficiency and sustainability in maize production

The International Maize and Wheat Improvement Center (CIMMYT) Director General, Bram Govaerts, participated in a panel discussion on applied maize science to sustainably feed the world as part of the International Maize Congress on October 19-20, 2022 in Argentina. 

The congress was organized by the governments of Córdoba and of the Central Region provinces of Argentina, together with the Argentine Maize and Sorghum Association (MAIZAR) and the Córdoba Grain Exchange. 

Other panelists for the session included representatives from Argentina’s National Agricultural Technology Institute (INTA), the National Scientific and Technical Research Council (CONICET), and the National University of Mar del Plata. 

In his presentation, Govaerts highlighted CIMMYT’s scientific efforts to improve the resilience of grain-based systems and produce sufficient, nutritious, and sustainable diets. He also shared CIMMYT’s determination to adopt a collaborative and future-proof approach to research, factoring in climate change to support effective decision-making processes for food producers and to meet demand for innovations and technologies. 

CGIAR Initiative to increase resilience, sustainability and competitiveness in Latin America and the Caribbean

(Photo: CIMMYT)
(Photo: CIMMYT)

Este artículo también está disponible en español.

With the participation of more than 30 researchers from four CGIAR Centers located in the Americas, a planning workshop for a new CGIAR Research Initiative, AgriLAC Resiliente, was held on April 4–6, 2022. Its purpose was to define the implementation of activities to improve the livelihoods of producers in Latin America, with the support of national governments, the private sector, civil society, and CGIAR’s regional and global funders, and partners.

“This workshop is the first face-to-face planning meeting aimed at defining, in a joined-up manner and map in hand, how the teams across Centers in the region will complement each other, taking advantage of the path that each Center has taken in Latin America, but this time based on the advantage of reaching the territories not as four independent Centers, but as one CGIAR team,” says Deissy Martínez Barón, leader of the Initiative from the Alliance of Bioversity International and CIAT.

AgriLAC Resiliente is an Initiative co-designed to transform food systems in Latin America and the Caribbean. It aims to increase resilience, ecosystem services and the competitiveness of agrifood innovation systems in the region. Through this Initiative, CGIAR is committed to providing a regional structure that enhances its effectiveness and responds better to national and regional priorities, needs and demands.

This Initiative is one of a number that the CGIAR has in Latin America and the Caribbean and consists of five research components:

  1. Climate and nutrition that seeks to use collaborative innovations for climate-resilient and nutritious agrifood systems;
  2. Digital agriculture through the use of digital and inclusive tools for the creation of actionable knowledge;
  3. Competitiveness with low emissions, focused on agroecosystems, landscapes and value chains, low in sustainable emissions;
  4. Innovation and scaling with the Innova-Hubs network for agrifood innovations and their scaling up;
  5. Science for timely decision making and the establishment of policies, institutions and investments in resilient, competitive and low-emission agrifood systems.

The regional character of these CGIAR Initiatives and of the teams of researchers who make them a reality in the territories with the producers, was prominent in the minds of the leadership that also participated in this workshop. Martin Kropff, Global Director, Resilient Agrifood Systems, CGIAR; Joaquín Lozano, Regional Director, Latin America and the Caribbean, CGIAR; Óscar Ortiz, Acting Director General of the International Potato Center; Jesús Quintana, Manager for the Americas of the Alliance of Bioversity International and CIAT; and Bram Govaerts, Director General of the International Maize and Wheat Improvement Center (CIMMYT), all stated the importance of CGIAR being central to every discussion in which the teams are co-constructing a greater consensus on what AgriLAC Resliente is, what it wants to achieve, the approach it will use, and the goals it aims to achieve through synergies among its five components.

Acting as an integrated organization is also an opportunity for CGIAR to leverage co-developed solutions and solve local challenges in the global South related to climate change and agrifood systems transformation. “Building the new CGIAR involves tons of collaboration and coordination. In this AgriLAC Resiliente workshop, we have had a dialogue full of energy focused on achieving real impact” highlighted Bram Govaerts. He continued, “this is an occasion to strengthen teamwork around this CGIAR Initiative in which the Integrated Agrifood System Initiative approach will be applied in the Latin American region, which is a very interconnected region” he pointed out.

One of the main results of this workshop is an opportunity to carry out the integration of the CGIAR teams in the implementation of the AgriLAC Resiliente Initiative, with applied science and the decisive role of the partners at each point of the region, as mechanisms for change.

In 2022, the research teams will begin to lay the groundwork for implementing the Initiative’s integrative approach to strengthen the innovations to be co-developed with partners and collaborators in the Latin American region, that encompass the interconnected nature of the global South.

Learn more about the Initiative:
AgriLAC Resiliente: Resilient Agrifood Innovation Systems in Latin America and the Caribbean

This article, authored by the AgriLAC Resiliente team, was originally published on CGIAR.org.

Taming wheat blast

As wheat blast continues to infect crops in  countries around the world, researchers are seeking ways to stop its spread. The disease — caused by the Magnaporthe oryzae pathotype Triticum — can dramatically reduce crop yields, and hinder food and economic security in the regions in which it has taken hold.

Researchers from the International Maize and Wheat Improvement Center (CIMMYT) and other international institutions looked into the potential for wheat blast to spread, and surveys existing tactics used to combat it. According to them, a combination of methods — including using and promoting resistant varieties, using fungicides, and deploying strategic agricultural practices — has the best chance to stem the disease.

The disease was originally identified in Brazil in 1985. Since then, it has spread to several other countries in South America, including Argentina, Bolivia and Paraguay. During the 1990s, wheat blast impacted as many as three million hectares in the region. It continues to pose a threat.

Through international grain trade, wheat blast was introduced to Bangladesh in 2016. The disease has impacted around 15,000 hectares of land in the country and reduced average yields by as much as 51% in infected fields.

Because the fungus’ spores can travel on the wind, it could spread to neighboring countries, such as China, India, Nepal and Pakistan — countries in which wheat provides food and jobs for billions of people. The disease can also spread to other locales via international trade, as was the case in Bangladesh.

“The disease, in the first three decades, was spreading slowly, but in the last four or five years its pace has picked up and made two intercontinental jumps,” said Pawan Singh, CIMMYT’s head of wheat pathology, and one of the authors of the recent paper.

In the last four decades, wheat blast has appeared in South America, Asia an Africa. (Video: Alfonso Cortés/CIMMYT)

The good fight

Infected seeds are the most likely vector when it comes to the disease spreading over long distances, like onto other continents. As such, one of the key wheat blast mitigation strategies is in the hands of the world’s governments. The paper recommends quarantining potentially infected grain and seeds before they enter a new jurisdiction.

Governments can also create wheat “holidays”, which functionally ban cultivation of wheat in farms near regions where the disease has taken hold. Ideally, this would keep infectable crops out of the reach of wheat blast’s airborne and wind-flung spores. In 2017, India banned wheat cultivation within five kilometers of Bangladesh’s border, for instance. The paper also recommends that other crops — such as legumes and oilseed — that cannot be infected by the wheat blast pathogen be grown in these areas instead, to protect the farmers’ livelihoods.

Other tactics involve partnerships between researchers and agricultural workers. For instance, early warning systems for wheat blast prediction have been developed and are being implemented in Bangladesh and Brazil. Using weather data, these systems alert farmers when the conditions are ideal for a wheat blast outbreak.

Researchers are also hunting for wheat varieties that are resistant to the disease. Currently, no varieties are fully immune, but a few do show promise and can partially resist the ailment depending upon the disease pressure. Many of these resistant varieties have the CIMMYT genotype Milan in their pedigree.

“But the resistance is still limited. It is still quite narrow, basically one single gene,” Xinyao He, one of the co-authors of the paper said, adding that identifying new resistant genes and incorporating them into breeding programs could help reduce wheat blast’s impact.

Wheat spikes damaged by wheat blast. (Photo: Xinyao He/CIMMYT)
Wheat spikes damaged by wheat blast. (Photo: Xinyao He/CIMMYT)

The more the merrier

Other methods outlined in the paper directly involve farmers. However, some of these might be more economically or practically feasible than others, particularly for small-scale farmers in developing countries. Wheat blast thrives in warm, humid climates, so farmers can adjust their planting date so the wheat flowers when the weather is drier and cooler. This method is relatively easy and low-cost.

The research also recommends that farmers rotate crops, alternating between wheat and other plants wheat blast cannot infect, so the disease will not carry over from one year to the next. Farmers should also destroy or remove crop residues, which may contain wheat blast spores. Adding various minerals to the soil, such as silicon, magnesium, and calcium, can also help the plants fend off the fungus. Another option is induced resistance, applying chemicals to the plants such as jasmonic acid and ethylene that trigger its natural resistance, much like a vaccine, Singh said.

Currently, fungicide use, including the treatment of seeds with the compounds, is common practice to protect crops from wheat blast. While this has proven to be somewhat effective, it adds additional costs which can be hard for small-scale farmers to swallow. Furthermore, the pathogen evolves to survive these fungicides. As the fungus changes, it can also gain the ability to overcome resistant crop varieties. The paper notes that rotating fungicides or developing new ones — as well as identifying and deploying more resistant genes within the wheat — can help address this issue.

However, combining some of these efforts in tandem could have a marked benefit in the fight against wheat blast. For instance, according to Singh, using resistant wheat varieties, fungicides, and quarantine measures together could be a time-, labor-, and cost-effective way for small-scale farmers in developing nations to safeguard their crops and livelihoods.

“Multiple approaches need to be taken to manage wheat blast,” he said.

Winners of 2019 MAIZE Youth Innovators Awards – Latin America announced

The CGIAR Research Program on Maize (MAIZE) is pleased to announce the winners of the 2019 MAIZE Youth Innovators Awards – Latin America. These awards recognize the contributions of young women and men under 35 who are implementing innovations in Latin American maize-based agri-food systems, including research for development, seed systems, agribusiness, and sustainable intensification.

The winners will attend the 23rd Latin American Maize Reunion (XXIII Reunión Latinoamericana del Maíz) in Monteria, Colombia, where they will receive their awards and present their work. Award recipients may also get the opportunity to collaborate with MAIZE and its partner scientists in Latin America on implementing or furthering their innovations.

This is the third instalment of the awards, following Asia in October 2018 and Africa in May 2019.

Congratulations to this year’s winners, seven exceptional young people working in Latin American maize-based systems:

Eduardo Cruz Rojo.
Eduardo Cruz Rojo.

Eduardo Cruz Rojo (Mexico) – Farmer category

Eduardo Cruz Rojo is a young agricultural entrepreneur, worried about rural out-migration in his region and about the poor agricultural practices that have led farming to cease to be profitable. He has a degree in logistics, and is originally from Alfajayucan, in Mexico’s state of Hidalgo. For the past four years he has been working on maize research and production, with a focus on improved agronomic practices that help farmers increase their yields. This includes soil improvement, organic fertilizers, earthworm compost and biological pest control. Through research and testing, he has shown smallholder farmers the cost-benefit of improved agricultural practices. This has been reflected in local farmers achieving improved soils and yields in an environmentally friendly manner.

 

Yésica Chazarreta.
Yésica Chazarreta.

Yésica Chazarreta (Argentina) – Researcher category

Yésica Chazarreta has a degree in genetics and is currently a doctoral fellow at the Scientific and Technologic Fund, working with the Crop Ecophysiology group at the National Agricultural Technology Institute (INTA) Pergamino in Buenos Aires, Argentina. Her work centers on understanding the genetic and environmental control of the physiological determinants of filling, drying and quality of maize grains in genotypes destined for grain or silage. The objective is to generate knowledge to continue advancing in maize production improvement and to open the possibility of establishing improvement programs differentiated by planting times for her region, as well as to provide valuable information for the creation of mechanistic models to predict the evolution of humidity in maize grains. This information can help farmers make more informed decisions about the best time to harvest. In addition, Chazarreta hopes to deepen understanding of maize biomass quality for animal feed, a practice that has increased in her native country, Argentina, due to changes in crop management practices related to delays in planting dates.

 

Omar Garcilazo Rahme.
Omar Garcilazo Rahme.

Omar Garcilazo Rahme (Mexico) – Researcher category

Omar Garcilazo Rahme is a postgraduate student researching sustainable management of agro-ecosystems at the Meritorious Autonomous University of Puebla (BUAP).

A food engineer by training, he has a profound interest in Mexico’s bio-cultural heritage and maize as a staple food in his native country, as well as the various methods to produce and conserve the crop. His research project seeks to improve the economic, nutritious and sociocultural benefits associated with the production of maize.

He is currently collaborating in a technology transfer and innovation agency on the topics of nutritional labeling, big data and applied technology solutions for the agri-food industry.

 

Lucio Reinoso.
Lucio Reinoso.

Lucio Reinoso (Argentina) – Researcher category

Lucio Reinoso is an agronomist with a master’s degree in agricultural sciences from the National Southern University, Argentina. He has worked as a professor at the National University of Rio Negro since 2019. Reinoso was a fellow and researcher for 12 years at the National Institute for Agricultural Technology (INTA).

He works on sustainable models of maize production under irrigation in the irrigated valleys of Northern Patagonia, Argentina. Reinoso is specifically investigating the adaptation of maize to the soil and climatic conditions of the region, highlighting the water and nutritional needs to maximize production while also caring for the environment.

He works with local farmers to adapt no-till farming to scale and adjust irrigation management to improve water use efficiency while preserving the physical, chemical and biological characteristics of soil, increasing resilience.

 

Viviana López Ramírez.
Viviana López Ramírez.

Viviana López Ramírez (Colombia) – Researcher category

Viviana López Ramírez is a biological engineer with a master’s degree in environmental studies from the National University of Colombia in Medellin.

She is currently a doctoral student in biological sciences at the National University in Río Cuarto, Argentina, studying the application of bacteriocins for the biological control of phytopathogens.

This work on bacteriosis in maize is conducted by a multidisciplinary team and focuses on the identification of pathogenic bacteria isolated from a diverse maize population.

 

José Esteban Sotelo Mariche.
José Esteban Sotelo Mariche.

José Esteban Sotelo Mariche (Mexico) – Change Agent category

José Esteban Sotelo Mariche is an agronomist from the coastal region of Oaxaca, Mexico. He studied at Chapingo Autonomous University and is certified in rural development and food security.

Since 2012 he has offered capacity building to smallholder maize farmers in his region. In 2014 he formed Integradora Agroempresarial del Rio Verde to promote the production and commercialization of agricultural products. The group now has 80 members, including indigenous and Afro-Mexican farmers. In 2016 he began working with tortilla company Masienda to help local farmers export native maize to gourmet restaurants in the United States.

Most recently he has worked on the integration of the Center for Rural Technology Transfer and Validation (Centro de Validación y Transferencia de Tecnología Rural) to evaluate conservation agriculture systems, efficient water use and agroforestry. This space also serves to provide training activities and technical assistance to local farmers.

 

Carlos Barragan.
Carlos Barragan.

Carlos Barragan (Mexico) – Change Agent category

Carlos Barragan has a degree in agroecological engineering from Chapingo Autonomous University.

He collaborates with the MasAgro project in Mexico’s state of Oaxaca, helping to adapt small-scale production systems to climate change.

He also contributes to work on soil fertility as well as inclusive business models for smallholder farmers working in agri-food value chains.

 

 

Special mention for CIMMYT wheat poster

A poster on a CIMMYT-led project to establish a system for assessing wheat grain quality in the main wheat-producing areas of Mexico received special mention at the 1st Latin American International Conference on Cereals and Cereal Products Quality and Safety in Rosario, Argentina, 23 September 2007. CIMMYT is partnering with several federal and Mexican state-level organizations (INIFAP, SIAP, SAGARPA and CONASIST-CONATRIGO) and the private sector (GRANOTEC) to determine the varieties cultivated and the quality of wheat grain lots from commercial fields in the North West and the Central Highlands of Mexico.

The two-year project, funded by COFUPROSAGARPA- CONACYT, aims to assess which varieties are being cultivated and what new and improved wheat varieties should be planted to better suit local markets. The poster describes how CIMMYT and partners conducted the analysis of grain from commercial fields in the country’s major wheat lands, to provide potential users with a clear idea of its quality. “The use of old varieties and inappropriate crop management are the main factors influencing crop quality variability,” says Javier Peña, who is head of CIMMYT’s cereal quality laboratory and leader in the project. “With a crop quality assessment system, we will know which varieties to improve for manufacturers of wheat-based products.”