Skip to main content

Location: Zimbabwe

For more information, contact CIMMYT’s Zimbabwe office.

Rural women of eastern and southern Africa gain ground

Join us on this visual journey across Ethiopia, Kenya, Malawi and Zimbabwe, where you will meet farmers who demonstrate every day what it means to be RURAL: Resilient, United, Reaping benefits, Adopter and Learner.

These women have adopted climate-smart practices in their production systems to ensure optimal yields while learning about drought-tolerant varieties of maize to counter the harsh effects of dry spells, heat stress, pests and diseases. These rural women are exemplary leaders in their communities, as evidenced by their successful farming practices and the food and income they secure for their families.

R is for Resilient

Lughano Mwangonde (center) holds her granddaughter and stands for a portrait with her daughters. (Photo: Shiela Chikulo/CIMMYT)
Lughano Mwangonde (center) holds her granddaughter and stands for a portrait with her daughters. (Photo: Shiela Chikulo/CIMMYT)

Farming families in southern Africa are confronted with the adverse effects of climate change, particularly in Malawi, Mozambique and Zimbabwe. A report by FEWS NET indicates negative impacts like declining yields, increase in grain prices during peak lean seasons and widespread food insecurity. However, Lughano Mwangonde from Malula, southern Malawi, has been practicing climate-smart agriculture since 2004 through a CIMMYT project, which has improved the food security of her family. In the midst of increasing climate variability, Lughano is cushioned against the harsh effects of droughts and heavy downpours through the practices she adopted. For example, she uses crop rotation of maize and legumes, like cowpea and pigeon pea.

Sequare Regassa sorts maize grain. (Photo: Simret Yasabu/CIMMYT)
Sequare Regassa sorts maize grain. (Photo: Simret Yasabu/CIMMYT)

Climate change affects men and women differently. Rural women farmers tend to be more susceptible to drought and the additional labor associated with household tasks. As such, building resilience against climate change is critical. For Sequare Regassa, in Ethiopia’s Oromia region, this means shifting to drought-tolerant maize varieties such as BH661, which have better performance and increased yield, even under heat and other stress conditions.

U is for United

Sequare Regassa (wearing green) and her family stand for a group photo at their farm. (Photo: Simret Yasabu/CIMMYT)
Sequare Regassa (wearing green) and her family stand for a group photo at their farm. (Photo: Simret Yasabu/CIMMYT)

Sequare Regassa is the family’s breadwinner, looking after her four children and working closely with her extended family on their 8-hectare farm in Ethiopia’s Oromia region. “Getting a good maize harvest every year, even when it does not rain much, is important for my family’s welfare,” she says. Although her children are now grown and living with their own families, the family farm unites them all in producing adequate grain to feed themselves. Read more about how Regassa and other farmers are weatherproofing their livelihoods.

R is for Reaping benefits

Tabitha Kamau examines drought-tolerant KDV4 maize in her plot in the village of Kavilinguni, Machakos County, Kenya. (Photo: Joshua Masinde/CIMMYT)
Tabitha Kamau examines drought-tolerant KDV4 maize in her plot in the village of Kavilinguni, Machakos County, Kenya. (Photo: Joshua Masinde/CIMMYT)

Rural women farmers are taking up improved drought-tolerant and high yielding varieties with early maturity thanks to participatory maize varietal selection. “If I am able to harvest in three and a half months or less, compared to four months or more for other varieties, I can sell some grain to neighbors still awaiting their harvest who want to feed their families,” says Tabitha Kamau. She is a smallholder farmer in Machakos County, Kenya, who plants drought-tolerant maize on her plot. Read about how farmers in her area are choosing the varieties that work best for them.

Rose Aufi shows some of her maize grain reserves. (Photo: Shiela Chikulo/CIMMYT)
Rose Aufi shows some of her maize grain reserves. (Photo: Shiela Chikulo/CIMMYT)

Rose Aufi explains how her family of seven children and three grandchildren are food-secure thanks to the climate-smart agriculture techniques she practices on her farm in Matandika, southern Malawi. She and her husband have obtained a good harvest since they started participating in a CIMMYT project and adopted climate-smart agricultural practices. Aufi says technologies such as mulching and crop rotation are there to simplify the workload in the field.

A is for Adopter

Alice Nasiyimu holds four large cobs of maize harvested at her family farm in Bungoma County, in western Kenya. (Photo: Joshua Masinde/CIMMYT)
Alice Nasiyimu holds four large cobs of maize harvested at her family farm in Bungoma County, in western Kenya. (Photo: Joshua Masinde/CIMMYT)
Dolly Muatha shows maize from her farm in Makueni County, eastern Kenya. (Photo: Joshua Masinde/CIMMYT)
Dolly Muatha shows maize from her farm in Makueni County, eastern Kenya. (Photo: Joshua Masinde/CIMMYT)

Dolly Muatha, a 49-year-old farmer with four children in Kenya’s Makueni County, has been growing SAWA drought-tolerant maize for three years. She has witnessed the performance of this variety in her demo plot. “It matures early and yields two to three beautiful cobs per plant” she says.

L is for Learner

Ruth Kanini Somba (left) stands for a portrait with her husband Alex and their 8-year-old son. (Photo: Jerome Bossuet/CIMMYT)
Ruth Kanini Somba (left) stands for a portrait with her husband Alex and their 8-year-old son. (Photo: Jerome Bossuet/CIMMYT)

Ruth Kanini Somba adopted SAWA maize in 2017 after seeing a demonstration plot at Dolly Muatha’s farm. She points out that SAWA performs better than other varieties because of its early maturity and resistance to grey leaf spot and weevils. The drought-tolerant attribute of the SAWA maize also makes the maize crop cope well when rainfall is erratic.

Agnes Nthambi (left) and other farmers evaluate maize varieties developed through CIMMYT’s Stress Tolerant Maize for Africa (STMA) project. (Photo: Joshua Masinde/CIMMYT)
Agnes Nthambi (left) and other farmers evaluate maize varieties developed through CIMMYT’s Stress Tolerant Maize for Africa (STMA) project. (Photo: Joshua Masinde/CIMMYT)

Improved agricultural techniques, such as optimum spacing, enables farmers such as Agnes Nthambi to get better crops. This farmer from Kenya’s Machakos County hosted a demonstration plot she and other farmers in her area were able to learn new growing techniques. “On this trial, I learned that spacing was about two times shorter than we are generally used to. Even with the more constricted spacing, the maize has performed much better than what we are used to seeing,” Nthambi explained.

Climate-smart agriculture: A winning strategy for farming families in El Niño seasons

Approaching the homestead of Joseph Maravire and his wife, Reason, on a warm late August afternoon in Bvukururu, Zaka district, Zimbabwe, heaps of dry straw in their farmyard are prominent. ‘’This is for mulching for the forthcoming cropping season,’’ explains Reason. Maize stalk residues from last harvest are also stored to feed their livestock and to mix into the manure or for bedding the herd of cattle. These practices have become the norm for the Maravire family as they prepare for the next maize planting season in Zaka, one of the hottest areas of southern Zimbabwe.

“We never knew of mulching until we interacted with CIMMYT scientists in 2009. Now I cannot imagine working in my field without applying mulch,” says Reason. As one of five families selected in their village to participate in the scaling out of climate-smart agricultural technologies since 2009, the Maravire family demonstrates the evident transformative power of climate-smart agriculture.

Joseph and Reason by their heap of dry straw which is collected in preparation for mulching in the forthcoming 2019-20 season. In this drought-prone region, the Maravire learned the benefits of mulching to protect crops from recurrent dry spells. (Photo: Shiela Chikulo/CIMMYT)

Climate-smart agriculture involves farming practices that improve farm productivity and profitability, help farmers adapt to the negative effects of climate change and mitigate climate change effects, e.g. by soil carbon sequestration or reductions in greenhouse gas emissions. Climate-smart practices, such as the locally practiced conservation agriculture, aim at conserving soil moisture, retaining crop residues for soil fertility, disturbing the soil as minimally as possible and diversifying through rotation or intercropping.

As CIMMYT research shows, these practices can boost production and make farmers more food secure.  This is good news for Zimbabwean farmers such as the Maravires. During an episode of El Niño in the 2015-16 and 2018-19 cropping seasons, large parts of southern Africa experienced prolonged dry spells, erratic rainfall and high temperatures initially with floods towards the end of the cropping season. A recent humanitarian appeal indicated that at least 2.9 million people in Zimbabwe were severely food insecure due to poor or no harvests that year.

Under the “Out-scaling climate-smart technologies to smallholder farmers in Malawi, Zambia & Zimbabwe’’ project — funded by the German development agency GIZ and the Centre for Coordination of Agricultural Research and Development for Southern Africa (CCARDESA), and implemented under the leadership of the Zambian Agriculture Research Institute (ZARI) with technical oversight by CIMMYT and other collaborating partners from Malawi and Zimbabwe —  farmers from 19 rural communities in the three target countries received training and guidance on climate-smart agriculture practices and technologies, such as mulching, rotation and the use of direct seeders and ripper tines to practice no tillage.

Mastering climate-smart techniques, season by season

On their 0.4-hectare plot dedicated to the project activities, Joseph and Reason practiced four different planting techniques: direct seeding (sowing directly into crop residue), ripline seeding (sowing in lines created by animal draft-powered rippers), basin planting (sowing manually into planting basins created by hand hoes), and the traditional ox drawn plowing and seeding. They then planted one traditional and three drought-tolerant maize varieties.

“It soon became clear to us that using a direct seeder or ripper tine, combined with mulching, was the best option, as these sections of the field retained more moisture and produced more maize than the conventional system,” explained Joseph Maravire. Beginning in 2013, the family also started rotating maize and cowpeas and observed a significant increase in their yields. They decided to apply climate-smart agriculture practices on the rest of their 2.5-hectare farm.

“We learned that cowpeas leave nitrogen in the soil and by the time of harvesting, the leaves from the cowpeas also fall to the ground as residue and add to the mulch for the soil. The shade of cowpea also reduces weed pressure and manual weeding,” said Maravire.

Yields and food security

With these practices, the family has harvested remarkably, even during the dry seasons. In 2015-16, the worst El Niño on record, they harvested 2 tons of maize, despite the severe drought, while other households barely got anything from their fields. In good years, like the last cropping season, the family harvests 3.5 to 4 tons of maize from their entire field, three times more than their annual family food needs of approximately 1.3 tons. The additional cowpea yields of both grain and leaves provide protein-rich complementary food, which improves the family’s nutrition. To share some of these benefits with their community, the Maravire family donates up to 10% of their produce to poor elderly households in their village.

Overcoming challenges and building resilience

However, the new farming practices did not come without challenges.

“In the early days of the project, the ripper tine was not simple to use because we could not get the right depth to put manure and the maize seeds,” said Joseph Maravire.

They found a solution by making rip lines around October or November, applying manure at the onset of the rains, ripping again and placing the seed to mix with the manure.

Fall armyworm was another devastating challenge for their plot, as was the case around Zimbabwe. Like other farmers in Zimbabwe, the Maravires had access to pesticides, but the caterpillar showed some resistance to one type of pesticide. Maravire expressed interest in learning biological control options to reduce the pest’s spread.

Scaling climate smart technologies beyond the Maravire homestead

After several years of consistently good harvests with climate-smart agriculture options, the Maravire family has become a model within their community. Working closely with their agricultural extension officer, they formed a CSA farmer support group of 20 families. Joseph Maravire provides services for direct seeding and ripping to the CSA group and ensures that all of their land is prepared using no-tillage planting techniques. The couple regularly demonstrates climate-smart practices to peers during field days, where an average of 300 villagers attend. They also share their knowledge about green manure cover crops — crops such as lablab, jackbean, sunhemp, and velvet bean which, retained on the soil surface, serve as organic fertilizer — a practice they learned from project activities.

For Reason and Joseph Maravire, the rewards for adopting climate-smart agriculture benefit the family beyond food security. The income earned from maize grain sales and cowpea marketing has helped them acquire assets and rebuild one of their homes that was destroyed by Cyclone Idai in March 2019.

Joseph is confident that his family will always produce well on the replenished soil and the technologies they have learned through the project will continue to define their farming practices.

The house of Maravire homestead was damaged by Cyclone Idai in March. Joseph is nearing completion of rebuilding the house using proceeds from recent cowpea sales. (Photo: Shiela Chikulo/CIMMYT)

More photos of the Maravire family can be seen here.

Breaking Ground: Munyaradzi Mutenje tailors innovations to farmers needs

Sometimes innovations fail to make an impact. Take 3D televisions, for example; launched at a large scale more than a decade ago, they did not achieve the expected commercial success. On paper, the technology was an affordable and thrilling breakthrough in home entertainment, but in practice many viewers failed to embrace it due to poor implementation. Today, it has largely fallen by the wayside.

Farming innovations can suffer similar fates if product designers do not consider the overall socioeconomic picture during development, warns Munyaradzi Mutenje, an agricultural economist with the Socioeconomics program of the International Maize and Wheat Improvement Center (CIMMYT).

“When the direct seed drill was first launched in Zimbabwe, farmers did not take to it,” Mutenje explains. “Here was a technology that could reduce the drudgery of hand sowing — vastly reducing labor costs and saving time — but no one wanted it. The scientists asked ‘why is no-one adopting this seed drill we designed? It solves so many production challenges… Why don’t people want it?’”

It transpired that women, who constitute a significant portion of the farming community in Zimbabwe, simply found the direct seed drill too heavy and awkward for practical use. They chose to stick with traditional farming methods and were skeptical of the new technology. In short, the product was not designed with the end user in mind.

Design that meets farmers’ needs

Mutenje stands next to a demonstration plot of maize during a field day organized by CIMMYT and Agriseeds. (Photo: CIMMYT)
Mutenje stands next to a demonstration plot of maize during a field day organized by CIMMYT and Agriseeds. (Photo: CIMMYT)

Mutenje works in close association with CIMMYT’s sustainable intensification team in Zimbabwe, adding value by opening a dialogue with many different types of farmers. “From the basket of sustainable intensification technologies available, which one is appropriate for each type of farmer?” she asks herself when designing new interventions.

Technologies can seem good to scientists, but they might not be suitable for farmers, who operate within a system of which agriculture is only one component.

“You have to look at the situation from the farmers’ perspective,” Mutenje explains. “In order to assess the economic viability of innovations and to understand how and where to target them, we have to look at factors like social acceptance and cultural barriers that might constrain adoption within farming communities.”

Once technologies are rolled out to farmers, it is vital to seek feedback about the demand for new, and reviews of existing, technologies. This allows scientists to tailor their innovations to the needs and objectives of farmers.

“When we design technologies that meet farmers’ needs because we have interacted with them and understood the whole system; that is our greatest impact.”

All roads lead to CIMMYT

Growing up on a farm in rural Zimbabwe instilled in Mutenje a deep respect for women’s role in agriculture in southern Africa. With her father engaged in off-farm work, her mother tended the farm. She grew curious about household decision-making and was inspired to pursue a career in agricultural science, first studying at the University of Zimbabwe before obtaining her doctoral degree at the University of KwaZulu-Natal in South Africa with a thesis on the effects of AIDS on rural livelihoods.

“I was inspired by the multidisciplinary nature of science and how its application to farming allows scientists to directly help feed people and really transform people’s lives.”

During her undergraduate studies, Mutenje learned from CIMMYT scientists who offered her class practical agronomic examples and taught the students how to apply data analysis to solve complex problems. Fascinated by the power of data to elucidate patterns that can help scientists, she resolved, “One day I will work for CIMMYT to address food and nutritional security issues in southern Africa!”

In 2012, her aspirations became reality as she joined CIMMYT in Zimbabwe as a postdoctoral fellow. Today, she is a CIMMYT scientist.

Work that sparks joy

Working with the CIMMYT sustainable intensification program on projects spanning five countries in southern Africa, Mutenje finds joy in working alongside partners as part of a large team. “You become one big family,” she reflects.

She feels pride in working with smallholder farmers and transforming their livelihoods through science. By boosting the knowledge and potential of women in particular, she believes that sustainable, positive change is possible.

“Women are the custodians of food and nutritional security, so we need to understand their challenges and opportunities. If you help women and offer them training, their impact will go far since they will pass their knowledge on to their children.”

Mutenje carries out a qualitative vulnerability assessment in Bvukuru community, Masvingo province, Zimbabwe, to feed into a study for a project funded by the Centre for Coordination of Agricultural Research and Development for Southern Africa (CCARDESA) and Gesellschaft fuer Internationale Zusammenarbeit GmbH (GIZ). (Photo: CIMMYT)
Mutenje carries out a qualitative vulnerability assessment in Bvukuru community, Masvingo province, Zimbabwe, to feed into a study for a project funded by the Centre for Coordination of Agricultural Research and Development for Southern Africa (CCARDESA) and Gesellschaft fuer Internationale Zusammenarbeit GmbH (GIZ). (Photo: CIMMYT)

Policy change to help farmers

Although working directly with farmers is what Mutenje enjoys the most, she concedes that prompting widespread change often calls for deeper scrutiny of the value chain, to identify bottlenecks that constrain adoption. Gathering empirical data and presenting evidence of the complete story to policymakers has enabled Mutenje to influence policy change on a national scale.

“In Mozambique, we discovered fertilizer costs were too high for farmers, so they were missing out on a technology that would enable increased yields.”

Mutenje’s work analyzed the whole system and found the import tax on fertilizer component materials was too high and that manufacturers were simply handing that cost down to the farmers. By highlighting this issue to government representatives, she triggered a change in import tax policy. This initiative resulted in fertilizer prices that are affordable to farmers, facilitating improved yields and livelihoods.

“An evidence-based approach, based on quantitative and qualitative data from multiple sources allows scientists to present the complete story,” she explains. “Armed with this, we can convince policymakers to make changes to help farmers and improve food security.”

Women and youth find profitable business pathways through small-scale mechanization

Mechanization demonstration during a field visit to Makonde, Zimbabwe, as part of the FACASI Phase 2 final review meeting. Photo: Shiela Chikulo/CIMMYT

African farmers have ten times fewer mechanized tools per farm area than farmers in other developing regions, according to the Malabo Panel’s mechanization report. For the past six years, the Australian Centre for International Agricultural Research (ACIAR) funded Farm Mechanization and Conservation Agriculture for Sustainable Intensification (FACASI) project has explored ways to address poor access to appropriate mechanization solutions, which is costing smallholders a lot in lost productivity.

“One of the key outcomes of the FACASI initiative has been to present women and youth with pathways into diverse profitable income generating businesses using small mechanization,” says Alice Woodhead, professor in rural economies at the University of Southern Queensland in Australia. Woodhead shared her impressions following a field visit to Makonde, in northwestern Zimbabwe, as part of the FACASI Phase 2 final review meeting held in May. Almost 40 public and private sector project partners from Zimbabwe and Ethiopia attended the event in Harare as well as ACIAR representatives.

Farm machinery: women entrepreneurs thrive on two wheels

Agatha Dzvengwe and Marianne Jaji shared their business experience as two-wheel tractor (2WT) service providers in Makonde. The 2WT, which can be used for multiple purposes from transporting, planting, fertilizer application and shelling, allows them to plant efficiently and provides additional income through hiring out their tractors to neighboring farmers. For instance, during the 2018/19 season, Dzvengwe used the Fitarelli planter to plant ten hectares of maize, two hectares of sugar beans and five hectares of soybeans. Because of the planter’s efficiency, she had enough extra time to hire out planting services to neighboring farmers, earning $100 for one hectare of maize, and double for the planting of soybean or sugar beans.

Marianne Jaji provides 2WT based shelling services, which she says generates steady income for her household, enabling her to contribute to important household decisions. Despite the 2018/19 season being characterized by drought, Jaji was confident that she could still earn a decent income from neighboring farmers engaging the 2WT harvesting services. Other women service providers reported relief from labor drudgery and empowerment. “We have been freed from the burden of toiling in the field. Now that I own a 2WT, the society respects me more.”

“In a business dominated by men, women like Agatha and Marianne can become successful entrepreneurs, providing crucial farming services for the community such as shelling, planting and transport,” explains Bertha Tandayi, a FACASI research assistant at the University of Zimbabwe, where she studies the adoption of 2WT based technologies by women entrepreneurs in Makonde and Nyanga districts.

Small-scale mechanization has higher adoption rates in areas where the most profitable services are provided, such as shelling. The benefits for entrepreneurs and the community are visible and include the creation of employment, home renovations, asset accumulation, livestock rearing, borehole drilling and the purchasing of agricultural inputs.

Mechanization demonstration during a field visit to Makonde, Zimbabwe, as part of the FACASI Phase 2 final review meeting. Photo: Shiela Chikulo/CIMMYT

Sustainable shelling enterprise for Mwanga youth group

Since establishing their enterprise in 2016 following training under the FACASI project, the Mwanga youth group is still going strong in Makonde. During a live demonstration of the medium sized sheller, Masimba Mawire remarked that the shelling business has provided steady and reliable income for the group. Brothers Shepherd and Pinnot Karwizi added that the group has gained from further training in maintenance, facilitated through the FACASI project. “It is evident that the youths have found a way to work as a business team, giving them purpose and to realize aspirations of being a business owner and not just an employee,” said Woodhead.

Of the services provided through the 2WT technologies, shelling services are in greatest demand, as this simple technology significantly reduces the time spent on shelling maize cobs. A medium sized sheller, for example, produces between five and six tons of shelled maize grain per day, over ten times more than manual shelling.

The combined benefits of income, reduced drudgery and high efficiency of the 2WT based technologies have transformed the lives of the youths and women services providers. Confident in their future, they plan to expand their business portfolios, looking at value addition options such as post-harvest processing of other crops.

Fodder for thought

A recent study shows the slow adoption of conservation agriculture practices in sub-Saharan Africa, despite their multiple benefits for smallholder farmers. In Zimbabwe, it is estimated that no more than 2.5% of cropland is cultivated under conservation agriculture principles.

One of the constraints is the lack of appropriate machinery and tools that reduce drudgery. “Addressing a wide set of complementary practices, from nutrient and weed management and judicious choice of crop varieties to labor demand, is key to making conservation agriculture profitable and feasible for a greater number of farmers,” said Christian Thierfelder, Principal Scientist at the International Maize and Wheat Improvement Center (CIMMYT).

Farmers in the district of Murehwa, in Zimbabwe’s Mashonaland East Province, have embraced sustainable farming systems. They are benefitting from higher yields and new sources of income, and they are improving soil fertility.

Netsai Garwe (left) and Cosmas Garwe in their maize field, Ward 4, Murewa district, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)
Netsai Garwe (left) and Cosmas Garwe in their maize field, Ward 4, Murewa district, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)

Cosmas and Netsai Garwe’s homestead copes well despite the erratic weather. They own a lush one-acre field of maize and well-fed livestock: 18 cows, 9 goats and 45 free-range chickens. Two years after a crop-livestock integration initiative funded by the Australian Centre for International Agricultural Research (ACIAR) ended, the family still benefits from the conservation agriculture practices they learnt.

“We were taught the value of minimum tillage using direct seeding, rotation, mulching and weeding to ensure that our maize crop thrived,” explained Cosmas Garwe. “Intercropping and crop rotation with legumes like soybean, pigeon pea and velvet beans really improved our soil,” said Netsai Garwe.

Like the Garwes, more than 2,000 farmers in Murehwa district are scaling the production of lablab and velvet beans, which implies almost complete adoption. Effective extension support, local innovation platforms, and access to profitable crop and livestock markets have been key drivers for widespread adoption.

Better soil and cash cows

Many of these smallholder farmers’ fields have been under cultivation for generations and the granitic sandy soils, predominant in the area, have become very poor in soil organic matter, a key component of soil fertility.

“Nitrogen-fixing green manure cover crops such as velvet beans, lablab and jack beans can provide an affordable way for smallholder farmers to bring back soil fertility, especially nitrogen, into the soil,” explained Thierfelder. “Once the soils become responsive to mineral fertilizer again, a combination of leguminous crop rotations, manure use and in-organic fertilizer will provide stable and sustained crop yields of maize, their main food crop, even under a changing climate.”

Starting the second year the Garwes tried conservation agriculture on a 0.4-hectare plot, their yields improved, realizing 1.2 tons. As an additional benefit, the cover crops could be used as new animal feed sources, so they could keep maize crop residues as soil cover and increase the amount of organic matter in the soils.

Adoption of green manure cover crops was not easy at first, but farmers from Murehwa quickly realized that lablab and velvet beans improved the fattening of cattle and poultry. Drying the cover crop, they were able to produce protein-rich hay bales, sought-after in winter when other fodder stocks usually run low.

Better-fed, healthier animals meant better sales, as the Garwes could now get around $1,200 for one cow. Neighboring farmers soon found this new crop-livestock system appealing and joined the initiative.

Cattle fattening pens at Cosmas and Netsai Garwe's homestead. (Photo: Shiela Chikulo/CIMMYT)
Cattle fattening pens at Cosmas and Netsai Garwe’s homestead. (Photo: Shiela Chikulo/CIMMYT)

Saving for a dry day

The economic opportunities for farmers in Murehwa go beyond cow sales. In 2013, the Klein Karoo (K2) seed company offered contracts to farmers for the production of lablab seed. Suddenly the crop became highly profitable, which trigged adoption by almost all the farmers in the area.

As explained by extension officer Ngairo, “there is lablab and velvet beans grown everywhere, at homestead plots, school gardens… using ripline seeding techniques and showing the widespread adoption of conservation agriculture practices in the ward.”

Better incomes from livestock, fodder and lablab seeds had ripple effects for these Murehwa communities.

Lilian Chimbadzwa shows the house they were able to build in 2013 using proceeds from lablab sales. (Photo: Shiela Chikulo/CIMMYT)
Lilian Chimbadzwa shows the house they were able to build in 2013 using proceeds from lablab sales. (Photo: Shiela Chikulo/CIMMYT)

Since they adopted lablab and conservation agriculture practices in 2013, Kumbirai and Lilian Chimbadzwa transformed their asset base. They were able to complete their four-bedroom house, connect their homestead with the national electricity network and send their daughter to a nearby boarding school.

Despite prolonged dry spells during the last season and the threat of fall armyworm, these farmers have been coping much better than those practicing conventional tillage farming.

“Farmers taking up lablab and other leguminous cover crops have not only improved their incomes, but also the resilience of their farming systems,” explained Isaiah Nyagumbo, Cropping Systems Agronomist at CIMMYT. “Conservation agriculture practices such as mulching help retain soil moisture, while pests and diseases are less prominent in diversified fields planted with stress tolerant maize varieties and legume cover crops.”

Crop rotation of maize and velvet bean at Kumbirai and Lilian Chiambadzwa's plot has guaranteed high yields in an El Nino season. (Photo: Shiela Chikulo/CIMMYT)
Crop rotation of maize and velvet bean at Kumbirai and Lilian Chiambadzwa’s plot has guaranteed high yields in an El Nino season. (Photo: Shiela Chikulo/CIMMYT)

For CIMMYT and other institutions willing to scale sustainable intensification practices in Africa, there is plenty to learn from the farmers in Murehwa.

New research in the district has started to test how climate-adapted push-pull systems support smallholder farmers in overcoming the invasive fall armyworm using biological means. These systems involve conservation agriculture, green manure and legume intercropping, and planting high-productivity fodders surrounding the plots. This would also reduce the reliance on pesticides, which may be harmful for humans and the environment.

Fact sheet debunking labor and mechanization myths presented in Zimbabwe

A new fact sheet debunking myths about agricultural labor and mechanization has been presented at the Farm Mechanization and Conservation Agriculture for Sustainable Intensification (FACASI) end of project review meeting in Harare, Zimbabwe.

The fact sheet, based on a recent study by the International Maize and Wheat Improvement Center (CIMMYT), shows African farming households are far more dependent on hire labor markets, and much more inclined to hire mechanization services, than previously assumed.

Download the fact sheet “Debunking myths about agricultural labor and mechanization in Africa”.

FACASI review meeting

Over 50 agriculture for development specialists are gathering from May 11 to 17, 2019, to review the FACASI project’s progress. The project investigated how small-scale mechanization, such as two-wheel tractors with attachments, can be used to improve farm power balance, reduce labor drudgery, and promote sustainable intensification in Eastern and Southern Africa. The project also built the capacity of farmers to use size-appropriate machinery and trained hire service providers, to increase the equitable availability of mechanization services.

At the review meeting, participants will focus on widening the availability and use of small mechanization through commercialization, social inclusion, policy implications, and how to best use research outputs. They will also get to see two-wheel tractors in action and meet project farmers in visits to different districts around Zimbabwe.

In attendance are representatives from the project’s funder, the Australian Centre for International Agricultural Research (ACIAR), and partners including Ethiopia’s Ministry of Agriculture, the University of Zimbabwe, Zimbabwe’s Ministry of Lands Agriculture Water Climate and Rural Resettlement, the University of Southern Queensland, service providers and training centers from Zimbabwe, and private sector representatives from Zimbabwe and Ethiopia.


For further information on CIMMYT’s agricultural mechanization work in Africa:

FACASI knowledge platform

Appropriate mechanization for African smallholders: A pathway to sustainable intensification and rural development.

Training manual greases the wheels for mechanization entrepreneurs

African youth find entrepreneurial opportunity in agricultural mechanization

Research busts common myths about agricultural labor in Africa, suggests a shift in mechanization policy

CIMMYT and GOAL team up to help farmers in Zimbabwe fight fall armyworm

DUN LAOGHAIRE, Ireland and TEXCOCO, Mexico — Irish humanitarian aid agency GOAL has joined CIMMYT (the International Maize and Wheat Improvement Center) in the fight against fall armyworm, a devastating insect pest that experts say threatens the food security of millions of people in Africa.

The fall armyworm has caused significant damage to maize crops in sub-Saharan Africa since its arrival to the region in 2016.

A study on the impact of the fall armyworm in eastern Zimbabwe reveals that nearly 12 percent of crops are lost annually due to the infestation. And the study states that if the problem spreads throughout the entire country tonnes of grain to the value of $32 million could be lost.

GOAL Zimbabwe has now teamed up with CIMMYT to identify conditions that promote fall armyworm infestation in order to educate farmers on best practices to fight the problem.

Regular weeding, conservation agriculture, use of manure and compost, and ending pumpkin intercropping have been found to help prevent infestation.

Mainassara Zaman-Allah, co-author of the study and abiotic stress phenotyping specialist at CIMMYT said, “Given the limited coverage of the study in terms of area and season, it would be interesting to replicate it all over the country through the involvement of governmental agricultural departments, so that we get the full picture around the fall armyworm problem at a larger scale.”

Gift Mashango from GOAL Zimbabwe, said, “The fall armyworm has further worsened the food security situation of smallholder farmers who are already coping with an ailing economy and climate change. Besides the adverse effects posed to the environment by chemical methods of combating the pest, the smallholder farmer cannot afford to meet the associated costs, hence the need to come up with innovative cost-effective farming systems like climate smart agriculture.”


About CIMMYT

CIMMYT – the International Maize and Wheat Improvement Center – is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty.

CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat, and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies.

For more information about CIMMYT, please visit https://staging.cimmyt.org/.

About GOAL

GOAL is an international humanitarian aid agency working in 13 countries to ensure that the poorest and most vulnerable in our world, and those affected by humanitarian crises, have access to the fundamental rights to life. With its head office in Ireland, GOAL envisions a world where poverty and hunger no longer exist; where communities are prepared for seasonal shocks; where structural and cultural barriers to growth are removed and where every man, woman and child has equal rights and access to resources and opportunities.

To learn more about GOAL, please visit https://www.goalglobal.org/.

Media contacts

CIMMYT: Genevieve Renard, Head of Communications. G.Renard@cgiar.org

GOAL: Miriam Donohoe, Senior Communications Manager. mdonohoe@goal.ie

New study identifies best agronomic practices to reduce fall armyworm damage

Foliar damage to maize leaves due to adult fall armyworm in Zimbabwe. (Photo: C. Thierfelder/CIMMYT)
Foliar damage to maize leaves due to adult fall armyworm in Zimbabwe. (Photo: C. Thierfelder/CIMMYT)

The fall armyworm, an invasive insect-pest native to the Americas, has caused significant damage to maize crops in sub-Saharan Africa since its arrival to the region in 2016. An integrated approach, including improved agronomic practices, is necessary in order to fight against the invasive caterpillar. However, little is known about the most effective agronomic practices that could control fall armyworm under typical African smallholder conditions. In addition, more information is needed on the impact of fall armyworm on maize yield in Africa, as previous studies have focused on data trials or farmer questionnaires rather than using data from farmer fields. In a new study published by researchers with the International Maize and Wheat Improvement Center (CIMMYT), investigators set out to understand the factors influencing fall armyworm damage and to quantify yield losses due to fall armyworm damage.

The study examined damage in smallholder maize fields in two districts of eastern Zimbabwe. “We estimated the yield losses due to fall armyworm damage at 11.57 percent in the study area. Extrapolated to the whole of Zimbabwe, this would amount to a loss of 200,000 tons of grain, or a value of more than $32 million using the average global price of maize of $163 per ton in 2018,” said Frederic Baudron, cropping systems agronomist at CIMMYT and main author of the study.

Practices such as infrequent weeding or planting on land that had previously been fallow were found to increase fall armyworm damage to maize — most likely because they increased the amount of fall armyworm host plants other than maize. Conversely, practices hypothesized to increase the abundance of natural enemies of fall armyworm — such as minimum and zero tillage or the application of manure and compost — were found to decrease fall armyworm damage. Intercropping with pumpkins was found to increase damage, possibly by offering a shelter to moths or facilitating plant-to-plant migration of the caterpillar. Fall armyworm damage was also higher for some maize varieties over others, pointing to the possibility of selecting for host plant resistance.

“Given the limited coverage of the study in terms of area and season, it would be interesting to replicate it all over the country through the involvement of governmental agricultural departments, so that we get the full picture around the fall armyworm problem at a larger scale,” said Mainassara Zaman-Allah, co-author of the study and abiotic stress phenotyping specialist at CIMMYT.

This study is unique in that it is the first to collect information on agronomic practices that can affect fall armyworm damage using data taken directly from smallholder farmer fields. “Many papers have been written on pest incidence-damage-yield relationships, but with researchers often having control over some of the potential sources of variation,” said Peter Chinwada, TAAT Fall Armyworm Compact Leader at the International Institute of Tropical Agriculture (IITA), another co-author of the study.

“Our study was driven by the desire to determine fall armyworm incidence-damage-yield relationships under typical African smallholder farmer conditions which are characterized by a diversity of cropping systems, planting dates and “pest management practices” that may have been adopted for purposes which have nothing to do with managing pests. Unravelling such relationships therefore requires not only institutional collaboration, but the meeting of minds of scientists from diverse disciplines.”

The results of the study suggest that several practices could be promoted to control fall armyworm in its new home of Africa. “Farmers have already been informed of the results by their extension agents; the NGO GOAL, present in Zimbabwe, shared the findings,” Baudron said. “The next step is to test some of the recommendations suggested in the paper to control fall armyworm such as good weed management, conservation agriculture, use of manure and compost, and stopping pumpkin intercropping. These approaches will need to be refined.”

This work was implemented by the International Maize and Wheat Improvement Center (CIMMYT), GOAL, and the University of Zimbabwe. It was made possible by the generous support of Irish Aid, Bakker Brothers and the CGIAR Research Program on Maize (MAIZE). Any opinions, findings, conclusion, or recommendations expressed in this publication are those of the authors and do not necessarily reflect the view of Irish Aid, Bakker Brothers and MAIZE.

 

Improved Maize for African Soils (IMAS)

African maize farmers must deal with drought, weeds, and pests, but their problems start with degraded, nutrient-starved soils and their inability to purchase enough nitrogen fertilizer. Maize yields of smallholder farmers in sub-Saharan Africa are a fraction of those in the developed world, due mainly to the region’s poor soils and farmers’ limited access to fertilizer or improved maize seed. On average, such farmers apply only 9 kilograms of fertilizer per hectare of cropland. Of that small amount, often less than half is captured by the crop; the rest is leached deep into the soil where plants cannot recover it or otherwise lost.

The Improved Maize for African Soils Project (IMAS) develops maize varieties that are better at capturing the small amount of fertilizer that African farmers can afford, and that use the nitrogen they take up more efficiently to produce grain. Project participants will use cutting-edge biotechnology tools such as molecular markers—DNA “signposts” for traits of interest—and transgenic approaches to develop varieties that ultimately yield 30 to 50 percent more than currently available varieties, with the same amount of nitrogen fertilizer applied or when grown on poorer soils.

The varieties developed will be made available royalty-free to seed companies that sell to the region’s smallholder farmers, meaning that the seed will become available to farmers at the same cost as other types of improved maize seed.

In four years or less, African farmers should have access to IMAS varieties developed using conventional breeding that offer a 20 percent yield advantage over current varieties. Improved varieties developed using DNA marker techniques are expected to be introduced within seven to nine years, and those containing transgenic traits are expected to be available in approximately 10 years, pending product performance and regulatory approvals by national regulatory and scientific authorities, according to the established laws and regulatory procedures in each country.

IMAS is being led by CIMMYT and funded with $19.5 million in grants from the Bill & Melinda Gates Foundation and the U.S. Agency for International Development. The project’s other partners — DuPont-PioneerKenya Agricultural Livestock and Research Organization and the Agricultural Research Council of South Africa — are also providing significant in-kind contributions including staff, infrastructure, seed, traits, technology, training, and know-how.

The second phase of IMAS continues to be implemented through the Seed Production Technology for Africa (SPTA) project.

OBJECTIVES

  • Conventional and marker assisted breeding to develop hybrids and OPVs with improved nitrogen use efficiency (NUE) adapted to southern and eastern Africa
  • Identification and deployment of native trait alleles to enhance yield under low nitrogen conditions through association mapping and Quantitative Trait Loci mapping
  • Development of transgenic maize varieties adapted to southern and eastern Africa with increased yield under severe nitrogen limitation
  • Managing NUE varieties for sustainability in African maize cropping systems
  • Project stewardship, public awareness and capacity building
  • NUE variety registration, release and dissemination in southern and eastern Africa

Farm Mechanization and Conservation Agriculture for Sustainable Intensification (FACASI)

Agricultural intensification is both a need and an opportunity for countries in sub-Sahara Africa. For intensification to occur sustainably — with minimum negative environmental and social consequences — it is widely recognized that resources must be used with much greater efficiency. Although much emphasis is being placed in current research for development work on increasing the efficiency with which land, water and nutrients are being used, farm power appears as the “forgotten resource.” However, farm power in countries sub-Saharan Africa is declining due to the collapse of most hire tractor schemes, the decline in number of draft animals and the decline in human labor related to rural-urban migration. Another aspect of low farm power is high labor drudgery, which affects women, who generally due the majority of threshing, shelling and transport by head-loadings, disproportionally. Undoubtedly, sustainable intensification in these countries will require an improvement of farm-power balance through increased power supply — via improved access to mechanization — and/or reduced power demand – via energy saving technologies such as conservation agriculture techniques.

The Farm Mechanization and Conservation Agriculture for Sustainable Intensification project examines how best to exploit synergies between small-scale-mechanization and conservation agriculture. The overall goal of the project is to improve farm power balance, reduce labour drudgery, and minimize biomass trade-offs in Eastern and Southern Africa, through accelerated delivery and adoption of two-wheel-tractor-based technologies by smallholders.

This project is now in the second phase, which began on June 1, 2017.

OBJECTIVES

  • To evaluate and demonstrate two wheel tractor-based technologies in the four selected sites of Eastern and Southern Africa, using expertise/knowledge/skills/implements from Africa, South Asia and Australia
  • To test site-specific market systems to deliver two wheel tractor-based mechanization in the four countries
  • To identify improvements in national markets and policies for wide delivery of two wheel tractor-based mechanization
  • To create awareness on two wheel tractor-based technologies in the sub-region and share knowledge and information with other regions

Water Efficient Maize for Africa (WEMA)

The Water Efficient Maize for Africa partnership was launched in March 2008 to help farmers manage the risk of drought by developing and deploying maize varieties that yield 24 to 35 percent more grain under moderate drought conditions than currently available varieties. The higher and more reliable harvests will help farmers to feed their families and increase their incomes.

The varieties are being developed using conventional breeding, marker-assisted breeding, and biotechnology, and will be marketed royalty-free to smallholder farmers in Sub-Saharan Africa through African seed companies. The current, second phase of the project (2013–2017) includes breeding for resistance to stem borers—insect pests that seriously damage maize crops in the field—as well as product and production management, promotion with seed companies and farmers, and product stewardship activities.

The project focuses on Kenya, Mozambique, South Africa, Tanzania, Uganda, Zambia and Zimbabwe. The second phase of the project began on February 1, 2013.

OBJECTIVES

  • Product development. Develop and test drought tolerant and and insect-pest resistant maize varieties through conventional, molecular, and genetic engineering breeding approaches.
  • Regulatory affairs and compliance. Support multi-location testing and commercial release of drought tolerant and insect-pest resistant maize hybrids in the Water Efficient Maize for Africa partner countries.
  • Product deployment: Product and production management. Facilitate the marketing and stewardship of drought tolerant and insect-pest resistant hybrid maize seeds, and stimulate private sector investments for sustainable seed production, distribution and us
  • Communications and outreach. Support testing, dissemination, commercialization, adoption, and stewardship of conventional and transgenic drought tolerant and insect-pest resistant hybrids in the five target countries.
  • Legal and licensing support. Develop and implement appropriate licensing and intellectual property protection mechanisms for Water Efficient Maize for Africa products.

FUNDING INSTITUTIONS

  • Bill & Melinda Gates Foundation
  • Howard G. Buffett Foundation
  • U.S. Agency for International Development

PRINCIPAL COORDINATOR

Stephen Mugo

What’s new in southern Africa?  

The director of Zimbabwe's Department of Research and Specialist Services, Cames Mguni, gives official remarks during the CIMMYT field day. (Photo: Catherine Magada/CIMMYT)
The director of Zimbabwe’s Department of Research and Specialist Services, Cames Mguni, gives official remarks during the CIMMYT field day. (Photo: Catherine Magada/CIMMYT)

On March 14, 2019, over 200 of the International Maize and Wheat Improvement Center’s (CIMMYT) partners in southern Africa, including national research organisations, private seed companies and funders, attended the annual partners field day in Harare, Zimbabwe.

“For the last 34 years, CIMMYT’s regional office has expanded its research work, from maize breeding to sustainable cropping practices and recently appropriate mechanization and post-harvest,’’ said Cames Mguni, Director of Zimbabwe’s Department of Research and Specialist Services. “The development of drought and heat tolerant maize varieties helps farmers get better yields and cope better during drought years such as the current 2018/19 season.”

Elijah Nyabadza, Dean of the University of Zimbabwe’s Faculty of Agriculture, highlighted the strong collaboration between the University and CIMMYT in conducting joint research and building cutting-edge skills of the next generation of agricultural scientists and practitioners in the region.

Welthungerhilfe country director Regina Feindt said the partner field day was ‘’a very valuable experience and a great opportunity to gain technical know-how and exchange with colleagues across the region.’’

CIMMYT showcases research impact

At the event, CIMMYT country representative for Zimbabwe Cosmos Magorokosho walked partners through breeding lines that include special lines testing for resistance to diseases such as fall armyworm, maize streak virus and weevil. Maize breeder Amsal Tarekegne explained how, in product development, various inbred lines are combined to create new hybrids. These new hybrids, added seed systems specialist Peter Setimela, are made available to smallholder farmers for performance testing for stress tolerance and nutritional traits under different environments before being released to seed companies for multiplication.

Two Zimbabwean seed companies present at the field day highlighted the benefits of collaboration with CIMMYT. Chrispen Nyamuda, an agronomist from Zadzamatura seed company, explained that many varieties popular with farmers, which are heat-tolerant and resistant to diseases like maize streak virus and grey leaf spot disease, were developed thanks to their collaboration with CIMMYT. Another partner from Mukushi Seeds described the working partnership with CIMMYT as mutually beneficial. “We exchange lines, plant in different environments and share the results,” he explained. “We are also tapping germplasm from the world through CIMMYT’s global reach.”

Mainassara Zaman-Allah and Jill Cairns, CIMMYT’s high throughput phenotyping experts, elaborated on how cost-effective remote sensing technologies significantly reduce costs for screening for specific traits and assessing the potential extent of damage caused by pests such as fall armyworm.

Over the last couple of years, CIMMYT has intensified maize breeding efforts aimed at improving the nutritional value of maize, particularly higher content in provitamin A and better quality protein. Maize breeder Thokozile Ndhlela explained that more than 15 new hybrids with higher levels of provitamin A have been released in southern Africa, including five in Zimbabwe.

Thokozile Ndhlela (first from right) shares advances in provitamin A maize breeding in Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)
Thokozile Ndhlela (first from right) shares advances in provitamin A maize breeding in Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)

Agronomists Christian Thierfelder and Isaiah Nyagumbo shared some conservation agriculture techniques adopted by smallholder farmers. Farmers can realize better yields and improve their climate resilience by combining conservation agriculture principles such as minimum soil disturbance, crop rotation and soil cover, with use of stress tolerant maize varieties, appropriate mechanization and other complementary practices. Frederic Baudron, who leads the Farm Mechanization and Conservation Agriculture for Sustainable Intensification (FACASI) initiative, explained how small mechanization like two-wheel planters could address labour shortages, reduce drudgery and generate opportunities for rural youth. Significant drudgery reductions have already been observed in wheat planting in Rwanda, and in post-harvest operations like shelling and threshing in Ethiopia and Zimbabwe.

CIMMYT researcher Isaiah Nyagumbo explains conservation agriculture techniques during the annual partners field day. (Photo: Catherin Magada/CIMMYT)
CIMMYT researcher Isaiah Nyagumbo explains conservation agriculture techniques during the annual partners field day. (Photo: Catherin Magada/CIMMYT)

The International Maize Improvement Consortium one year on

Following the annual partners field day, members of the International Maize Improvement Consortium (IMIC) held a field day to select varieties from the IMIC Southern Africa demo plot, which carries a wider selection of materials. Launched in May 2018, IMIC is a public-private partnership initiative established as part of CIMMYT’s mission to increase seed breeding and production innovations.

Participating IMIC members came from seed companies based in Angola, Egypt, Ethiopia, Kenya, Nigeria, Tanzania, Uganda, Zambia and Zimbabwe. At the field day, they were advised by research associate Obert Randi on the layout of the demonstrations for materials under development for different traits, resilience to fall armyworm and maize streak virus, materials improved for vitamin A and quality protein and stress tolerant lines.

After going through the selections, participating IMIC members proceeded to the Quarantine Facility in Mazoe, where they explored around 2,300 double haploid lines undergoing screening maize lethal necrosis (MLN) as well as multiplication for distribution to non-MLN prevalent countries.

The final part of the field day provided space for the members to share research learnings and input on how to move the consortium forward. The field day concluded with an inaugural meeting of the steering committee chaired by CIMMYT regional representative for Africa Stephen Mugo, where participants discussed a number of issues including membership, procedures for conducting field days, training and research prioritization.

Both field days offered an opportunity to highlight the extended impact of CIMMYT’s research in southern Africa through strong partnerships and commitment to research on maize breeding, sustainable farming practices, mechanization and socio-economic impacts of all programming.