Skip to main content

Location: Zimbabwe

For more information, contact CIMMYT’s Zimbabwe office.

Bringing mechanization to farmers’ doorsteps

It is a winter morning in Ward 12 of Mutare Rural district in Zimbabwe. Farmers brave the cold weather to gather around several tents lined with a range of new agricultural machinery. The number of farmers increases, and the excited chatter gets louder as they attempt to identify the different machines on display. “That is a tractor, but it just has two wheels,” says one farmer. With enthusiasm, another identifies a multi-crop thresher and peanut butter machine and asks for the prices.

The scene typifies one of several settings for an awareness meeting conducted under the Feed the Future Zimbabwe Mechanization and Extension (Mechanization) Activity, funded by the United States Agency for International Development (USAID). The project operates in Zimbabwe’s Manicaland and Masvingo provinces and addresses the pressing need to improve farm power and machinery access for smallholder farmers in ten districts: Buhera, Chimanimani, Chipinge, Mutare rural, Bikita, Chiredzi, Chivi, Masvingo rural, Mwenezi and Zaka.

Awareness meetings provide community members the opportunity to interact with the Mechanization Activity Team and learn more about the machinery suitable for their farm operations. (Photo: CIMMYT)

In recent years, farmers in the region have faced a decline in cattle populations due to tick-borne diseases—the devastating ‘January disease’ (Theileriosis) hitting hardest—causing significant draft power losses. In addition, on-farm and off-farm activities have notoriously been identified as labor-intensive, time consuming and back-breaking due to the level of effort required to execute certain tasks. Activities such as post-harvest processing have also been traditionally carried out by women, who are thus disproportionally affected by drudgery. Collectively, these challenges have affected not only food production and the quality of farm yields, but also drastically impacted farming families’ potential to realize sufficient household food and income security.

“Finding the best model of extension of appropriate machinery and developing financing mechanisms for smallholder farmers has been the work of previous projects on appropriate-scale mechanization,” says Christian Thierfelder, research director for the Mechanization Activity. “In this activity, we are implementing a service provider model in Zimbabwe and are aiming to reach 150 service providers and 22,500 users of these machines in the next two years.”

Despite previous successes under initiatives such as FACASI and R4/ZAMBUKO, there remains a huge demand for affordable machines that improve farm labor and generate income for smallholder farmers. “We already see hundreds of farmers demanding to mechanize agricultural activities in our intervention areas,” explains Leon Jamann, chief of party for the project. “That is why our activity aims to collaborate with banks and microfinance institutions to bank these farmers at fair rates so that they can buy the machinery that they need and want.”

A launchpad for success

The awareness meetings have served as launchpads to acquaint farmers with appropriate machinery right at the ‘farm gate’ while affording them a chance to explore the full range on offer. Since its inception, the Mechanization Activity has showcased through live demonstrations the operation and performance of machinery including the two-wheel tractor and trailer, ripper, basin digger, boom sprayer, multi-crop thresher, feed chopper-grinder, groundnut sheller and peanut butter machine. Each machine harmonizes with on-farm and off-farm activities, easing the labor burden and improving efficiency in land preparation, harvesting and post-harvest tasks. The aim is to create demand for and trigger business interest in the machinery through a service provision model.

The model centers on the service provider, typically an individual who owns machinery and extends their services to others for a fee. In some cases, organized Internal Savings and Lending (ISAL) and Production, Productivity Lending and Savings (PPL) groups have expressed, through the awareness meetings, interest in procuring a machine for use within the group. This symbiotic relationship empowers service providers economically, while granting communities access to crucial services that improve their land and labor productivity.

In the next step, service providers are then linked with banks to finance their machinery. This ensures a sustainable approach, as the mechanization solutions are locally produced, financed and used. Enhancing these local capacities and linkages is at the core of the activity and ensures impact beyond the project life cycle.

From awareness to demand

So far, a total of 32 awareness meetings have been held across three operational hubs in Masvingo and Manicaland provinces reaching 1,637 farmers—843 females and 794 males. The impact is evident, with 475 service providers identified across 20 implementation wards.

232 participants are keen to acquire a two-wheel tractor, with a further 191 opting for trailers, 63 for rippers, 125 for multi-crop threshers, 166 for chopper grinders, 178 for peanut butter machines and 31 for groundnut shellers. Among the prospective service providers are those opting to purchase a single unit while others are choosing two, three or more units from the machinery on offer.

Beyond the numbers, the Mechanization and Extension Activity continues to appeal to women and youth through sustainable and climate-smart intensification of crop production using conservation agriculture practices, opportunities for employment creation and enhancing profitability.

Graduate intern Titos Chibi demonstrates the two-wheel tractor during an awareness meeting in Ward 10 in Bikita. (Photo: CIMMYT)

“I enjoyed learning about the service provider approach and learning about the machinery on display,” reflected Nyarai Mutsetse, a female farmer from Ward 12. “Other women even got the chance to try out the two-wheel tractor. From now on, we are going to save money in our groups and purchase some of these machines.”

Echoing the same sentiments, Patience Chadambuka was fascinated by the two-wheel tractor demonstration, and impressed that it could serve multiple purposes. “I can use it for different tasks—ferrying wood, land preparation and it can also help us raise money to take our children to school through service provision,” she said. “We are beginning to save the money, together with my husband because we would like to purchase the tractor and use it for our business.”

The Mechanization Activity awareness meetings paint a vivid picture of collaboration with other Feed the Future Zimbabwe Activities such as the Fostering Agribusiness for Resilient Markets (FARM), Resilience Anchors and Farmer to Farmer, among others. The activity harmonizes smallholder farmers with private sector enterprises, including machinery manufacturers, local mechanics, financial institutions and the Government of Zimbabwe. This collective cooperation is pivotal in helping smallholder farmers realize their mechanization business goals.

Empowering women smallholder farmers in Africa with climate-resilient and nutritious maize varieties

In the vast landscapes of sub-Saharan Africa, where agriculture is the backbone of many communities, the quest for improved maize varieties is a vital step for ensuring food security in the face of climate change. Women, who represent approximately half the clients of maize breeding programs, have been essential in the realm of agricultural research. While significant gender-based differences in trait preferences exist in many African-staple crops, these appear less drastic in maize. However, there are gendered differences in management practices and productivity in maize-based systems.

After decades of work on maize improvement projects, CIMMYT has made a bigger commitment to researching, supporting and delivering drought and heat tolerant maize to smallholders in Zimbabwe. (Photo: CIMMYT)

Recognizing the need to bridge this gap, the CIMMYT-NARES (National Agricultural Research and Extension Systems) regional maize breeding networks in eastern and southern Africa have embarked on a transformative journey to empower farmers, especially women, through their innovative approach to maize breeding. The breeding networks are focused on ensuring smallholder farmers have access to a steady stream of climate-resilient and nutritionally enriched maize varieties that thrive in today’s stress-prone environments. To ensure these new maize varieties meet the needs of diverse users, including women, the breeding networks continue to adapt approaches to increase gender-responsiveness.

Linking science with the realities on the ground

Testing the performance of potential new maize hybrids coming from the breeding pipelines within farmers’ realities is critical to the ultimate success of these new varieties. In collaboration with over 400 farmers in southern Africa, the CIMMYT-NARES maize breeding network conducts extensive on-farm trials to evaluate the performance of these new maize varieties. A similar approach is adopted in eastern Africa. What sets these trials apart is the fact that over 40% of these trials are led by female plot managers. Farmers evaluate these varieties within the context of their own realities, including their own management practices, and provide valuable feedback to the breeding teams on the potential of new varieties.

By involving women in decision-making processes, CIMMYT-NARES networks ensure that their preferences and needs are considered when selecting the most promising hybrids for product advancement, announcement to partners, varietal releases and ultimately commercialization. This inclusive approach not only empowers women but also harnesses the collective knowledge and experience of the farming community. CIMMYT’s research recently showed that there is a relatively high degree of joint management within maize plots, and since 2022, the on-farm trials included a target of approximately 30% jointly managed plots.

Gender is only one axis of social difference that impacts agricultural production, variety selection, and end uses. Social differences including marital status, age, education level, ethnicity, wealth, access to capital, market access and livelihood orientation do play a role in the adoption of new varieties and farm productivity. By embracing the diversity within farming communities, CIMMYT-NARES networks are actively working towards understanding different farm types, while ensuring that the improved maize varieties are tailored to meet the diverse demands of the regions.

As the CIMMYT-NARES maize breeding networks continue to make innovative strides in breeding climate-resilient and nutritionally enriched maize varieties, they are not only transforming agriculture but also empowering individuals and communities. Through collaborative efforts, with the woman farmer at the heart of the approach, they are paving the way for a future where farming communities can thrive and contribute to food and nutritional security.

Exploring alternative solutions: the case for synthetic mulch in a changing world

Food security remains elusive for most smallholder farmers reliant on rainfed crop production, given the erratic rainfall patterns induced by climate change in Southern Africa. Among others, conservation agriculture (CA) is a concept often considered to be effective to adapt to these erratic rainfall patterns, enabling farmers to cope better with the prolonged dry spells that are characteristic of the semi-arid regions in Zimbabwe.

Conservation agriculture essentially involves three key pillars, namely, reduced soil disturbance, the use of crop rotations or intercrop associations, and the provision of permanent soil cover. The soil-cover component often requires the use of previous crop residues or other organic materials as a surface mulch. However, local farmers consider this task to be the most laborious aspect of implementing CA, which poses a significant challenge to its widespread uptake.

Collecting insights on influence of synthetic mulch. (Photo: CIMMYT)

Traditionally, farmers are advised to use organic mulch, such as maize residues, for soil cover. However, in most communal areas, there is a growing scarcity of organic mulches as they are predominantly used as livestock feed in mixed crop-livestock farming systems. Ironically, semi-arid regions that benefit from the use of crop residues as soil cover are also regions where the residues are the scarcest due to competing uses as livestock feed or as firewood. These competing interests pose a dilemma, as it is essential to cover the soil while also necessary to feed the animals. In neighboring countries like Malawi, maize residues are also used as fuel for firewood, further increasing the demand. It is clearly important, therefore, to develop alternative solutions to address this pressing issue.

“Since I embarked on my journey in conservation agriculture back in 1998, the matter of residues has been a topic of discussion. It is imperative that we walk the talk and develop practical solutions to meet the needs of farmers who rely on residues to feed their animals. One potential solution we are exploring is the use of synthetic mulches to cover the soil. By employing this method, we can cover the soil, apply fertilizer, and hopefully witness a positive impact. We certainly must develop synthetic materials that can be used sustainably as surface mulches in the semi-arid environments where organics are most scarce yet most needed,” stated Isaiah Nyagumbo, regional cropping systems agronomist.

To test such innovations, some water-conservation experiments were established in Buhera and Mutoko, Zimbabwe, during the last two seasons, and the results have been encouraging.

“I am grateful to work with the CIMMYT team on these water conservation trials, and I hope they continue. Before the trials, we were using organic mulch, but after using the synthetic approach and comparing it with organic mulches and none at all, we are seeing so many positive results. But there are challenges we can’t escape, including affordability. But I have seen higher yield returns this year as I harvested close to 15 by 50kgs of maize,” said Nyawasha, a farmer from Mutoko, Zimbabwe, ward 16.

Further detailed studies to understand these systems have also been established in the current dry season at the CIMMYT campus in Harare, to test the effectiveness of these synthetic mulches under conditions of severe moisture stress. The different treatments include clear synthetic mulch, black synthetic mulch, organic mulch and no mulch. So far, for the maize crop now at flowering stage, the growth and yield are strikingly better in plots under the synthetic mulches compared with the organic and no mulch plots. This clearly shows the importance of finding viable alternatives. The crop with synthetic mulches also developed much faster, all the way from crop emergence.

Exploring the tied-ridging system

In these trials, mulching treatments are being tested in conventionally tilled plots, CA basins (pfumvudza basins) and under the tied-ridging system. Tied ridging has been developed in Zimbabwe for use by smallholder farmers since the 1980s and is well known for its effectiveness in reducing sheet erosion and water run-off. This system employs ridges 15–20 cm high, with crossties in the furrows at 1–2 m intervals that trap rainwater and prevent runoff and soil erosion. However, in a typical rainfed system, poor germination challenges can arise when planting on top of these ridges due to excessive drying of moisture from the raised ridges. Furthermore, during prolonged dry spells, the exposed ridges tend to cause crops to wilt more than flat-planted conventional crops. To address these issues, scientists at CIMMYT in Zimbabwe are also exploring innovative ways to improve the tied-ridging system through ways that minimize water loss through direct soil evaporation.

“This has been one of the shortcomings of the tied-ridging system, and we need ways to overcome this excessive moisture evaporation. Once the water has gone into the soil, it should only leave through plant uptake and not be wasted through direct soil evaporation,” said Nyagumbo.

Integrating synthetic mulch into the tied-ridge system. (Photo: CIMMYT)

One approach being considered is incorporating mulch into the system to reduce evaporation and ensure that captured water is retained. The results are evident in the vibrant greenery of the plants with mulch compared with those without. Observing the number of plants with tassels and silk, it is clear that the plots with clear synthetic material have faster growth and reach maturity sooner compared with the plots with black synthetic mulch.

“My outlook on the use of synthetic mulch on ridges is that they are much more effective, as it makes the soil very loose for good aeration to the plant and encourages high growth rate. I noticed that plants germinated in three days and the little water provided will directly benefit the plant without escaping. I am encouraged to continue doing this tied ridge approach using synthetic material,” said Nyekete, a farmer in Buhera, Zimbabwe, ward 7.

While exploring various options, it has also been important to prioritize and focus on one aspect at a time. The initial focus has been on maize residue, as it is a valuable resource for both soil cover and livestock feed. However, the scarcity of maize residue poses a significant challenge for many farmers, especially in regions like Buhera, Mberengwa and Shurugwi, where animals consume all available resources. Placing maize residues in open fields is not a very viable solution, as freely roaming livestock will just consume it. Fencing or creating structures to protect the residues from livestock also requires substantial effort and resources, thereby making this mulching a daunting task for farmers.

Food for thought

While the challenges faced in providing mulch for conservation agriculture are multifaceted, there is a growing need to develop innovative solutions that address the scarcity of organic mulch and explore alternative methods such as synthetic coverings. By continuously adapting and refining our practices, we can ensure the sustainability of agriculture in this region and improve the livelihoods of farmers.

CIMMYT takes part in the 113th edition of the Zimbabwe Agricultural Show

CIMMYT scientists, researchers and subject experts participated in the Zimbabwe Agricultural Show (ZAS) from August 28–September 2 in Harare, Zimbabwe. The 113th edition ran under the theme “Sustained Growth. Adaptation. Productivity. Linkages.”

“CIMMYT has a long history of working with local partners in Zimbabwe. Together with these partners, we work to improve the livelihoods and resilience of smallholder farmers, through innovations we develop like stress resilient maize or wheat varieties, together with conservation agriculture technologies,” said Mainassara Zaman-Allah, CIMMYT Zimbabwe country representative.

Smallholder farmers and practitioners learned about the latest mechanization technologies. (Photo: CIMMYT)

With an average of 200 visitors per day at CIMMYT’s stand, stemming from small-scale farmers, government representatives, seed companies, university personnel, NGOs and media among others, this platform continues to pave the way for synergies, learning and networking. Beyond raising awareness on the progressive work being done, CIMMYT used this opportunity to interact with local seed companies (SEEDCo, Agriseeds, K2, among others) and get valuable feedback from farmers, including those involved in the maize regional on-farm variety evaluation.

The place to be for agricultural development in Zimbabwe

The Zimbabwe Agricultural Show, organized by the Zimbabwe Agricultural Society, is a dynamic event that serves as the premier platform for the facilitation and promotion of agricultural development in Zimbabwe. With over 550 commercial exhibitors, 700 farmers, 200 micro enterprises, the show presents a unique business opportunity for national and regional organizations.

The event provides a platform to showcase brands, market services, and engage in various business discussions targeting important sectors. The show is capped by the Annual National Agribusiness Conference.

Advancing innovation in Zimbabwe

The Zimbabwe Agricultural Show served as an ideal platform for CIMMYT to share its research findings, exchange knowledge and foster collaborations with farmers, policymakers and other stakeholders in the agriculture sector.

CIMMYT staff provided information regarding its ongoing initiatives and the transformative potential of innovations. We encouraged participants, partners and value chain players to visit the CIMMYT booth to engage with researchers, explore our latest research and discuss innovative agricultural practices.

CIMMYT staff shared research highlights and new partnerships. (Photo: CIMMYT)

“Our work in Zimbabwe, like promoting the increased adoption of climate-resilient innovations in mixed crop-livestock production systems and strengthening local food systems through agroecological advances, would not be possible without the strong collaborations with local partners,” said Isaiah Nyagumbo, regional cropping systems agronomist. “And the Zimbabwe Agricultural Show is the best place to continue those partnerships and start new linkages.”

ZAS and CIMMYT

Established in 1895 and operating from The Business Hub (Formerly Exhibition Park), the ZAS is the epicenter for the promotion and facilitation of national agricultural development. It is the oldest convenor and host of agricultural, commercial, and industrial shows in Zimbabwe.

CIMMYT is a core CGIAR Research Center dedicated to reducing poverty, enhancing food and nutrition security, and preserving natural resources in the Global South.

Feed the Future Mechanization and Extension Activity

In 2015, the General Assembly of the African Union committed to retiring the hand hoe to museums and pushing for sustainable agricultural mechanization on the African continent.

Today, approximately 75-82% of smallholder farmers in eastern and southern Africa rely on human or animal draft power for primary tillage operations. Mechanization helps to reduce drudgery, increases productivity, and contributes to food security and increased livelihoods.

What is Feed the Future Mechanization and Extension Activity?

The Feed the Future Mechanization and Extension Activity, funded by the United States Agency for International Development (USAID), aims to improve smallholder farmers’ access to farm power and machinery to enhance their land and labor productivity.

This is achieved through three integrated components that stimulate demand for scale-appropriate machinery.

Components:

  1.  Identification of demand-driven smallholder farm machinery and building capacity of manufacturing companies to produce, repair, and import machinery for smallholder agricultural production systems.
  2. Building the capacity of local service providers to purchase, operate, and maintain farm machinery to provide mechanized services to small-scale agricultural value chain actors.
  3. Coordinate and collaborate with other FTF activities to build the capacity of interested local service providers.

What are the objectives?

  • Assess and build the capacity of smallholder machinery manufacturers and suppliers to manufacture demand-driven farm machinery.
  • Enhance land and labor productivity and income through the establishment of mechanization service provision to small scale agricultural value chain actors.
  • Promote the use of the machinery through demonstrations and other demand creation activities, and inclusive training of rural women and youth in post-harvest processing of agricultural produce to generate increased income.
  • Coordinate and collaborate with other mechanization and Feed the Future activities to build capacity of the interested service providers to be agricultural extension agents to their customers during the cropping season.
  • Support service providers, manufacturers, and distributors to access credit to acquire machinery or mechanized services.

The project sites are located in Zimbabwe’s Manicaland and Masvingo provinces with project presence implemented across 10 districts.

The Mechanization and Extension Activity will directly benefit 150 service providers who in turn will reach up to 22,500 women and men smallholder farmers through provision of mechanized services. In addition, the mechanization activity will identify and build the capacity of 30 rural mechanics and 30 technicians drawn from local farm machinery manufacturing companies and/or small and medium enterprises.

Show that you can thrive and excel in all environments

On August 29, CIMMYT held the latest installment of its seminar series on women’s leadership—Catalysts of Change: Women Leaders in Science. The online event featured a presentation from Lindiwe Majele Sibanda, an animal scientist by training, who has previously worked as policy advisor for numerous African governments and global institutions and currently serves as chair of the CGIAR System Board.

In her opening talk, Sibanda outlined the many and varied roles she has held throughout her career, including professor, farmer, and business owner. Discussing her early education in a segregated colonial Zimbabwe (then Rhodesia), her time as an undergraduate student in Egypt, or the challenge of starting a family alongside developing her career, Sibanda was keen to highlight the lessons learned at each stage of life and emphasized the importance of creating cross-cultural friendships, nurturing professional networks, establishing priorities, and promoting continuous learning.

A learning spirit

Sibanda has over 15 years of experience working as a governor at national, regional, and international levels, but it took some time to initially build her confidence in the role. She recalled feeling daunted during her very first meetings because she had not been trained, but her learning spirit helped carry her through. “I always looked around the room and chose my mentors—based on something I liked about their values—something I liked about the way they asked questions, or something I liked about their demeanor and how they engaged with others—and I started learning.”

This approach has garnered her a large circle of mentors—and friends—and having served on more than 12 different boards she now feels this is a space that she enjoys, particularly as there are still opportunities for learning. “I think it’s the spirit of continuous thirst for knowledge, for new information, that has kept me going.”

“And it’s all about integrity,” she added. “What people see in me is what they get. I’ve never had to be fake. What I know, I make sure I know very well. What I don’t know, I’m not shy to say I don’t know.”

Convince each other that it can be done

Having unpacked her life as a scholar, mother, working professional, and governor, Sibanda explained that her current focus is on giving back. For her, supporting the next generation of women in the workplace is a key part of leadership. She cited Graça Machel and Mama Mary Robinson as inspirations, both for their work ethic and their ability to connect with people at different levels. “But most importantly, they give it to other women,” she said. “They love mentoring girls and other women.”

In her own experience, some of the major obstacles she faces as a woman, a farmer, and an African are the specific biases associated with each of those three things. “Women need to be helped, they are disadvantaged; farmers are poor, especially if they come from Africa; and mothers need to spend more time at home and not be globetrotting to meetings.” To counter these biases, she explained, it is important to show that you can thrive and excel in all environments. “It’s not about either or, it’s about showing we can do it, regardless of the circumstances.”

“Women are natural agents of change, and all they need is a conducive environment. As women, we should be spending more time with other women, making sure we share our stories, our successes, and our struggles. The whole idea is to convince each other that it can be done.”

Sibanda’s presentation was followed by a Q&A session led by Ana Luisa Garcia Rivera, senior regional genotyping coordinator at CIMMYT. Watch the recorded session below.

Harnessing new high-resolution satellite imagery to plant breeding

In plant breeding, efforts to increase the rate of genetic gains and enhance crop resilience to the effects of climate change are often limited by the inaccessibility and costs of phenotyping methods. The recent rapid development of sensors, image-processing technology and data analysis has provided new opportunities for multiple scales phenotyping methods and systems. Among these, satellite imagery may represent one of the best ways to remotely monitor trials and nurseries planted in multiple locations, while standardizing protocols and reducing costs.

This is because relevant data collected as part of crop phenotyping can be generated from satellite images. For instance, the sensors onboard the SkySat satellite constellation of Planet Labs have four spectral bands—blue, green, red, and infrared—which can be used to calculate the normalized difference vegetation index (NDVI), which is a measure of vegetation and its greenness, and various canopy traits like ground cover, leaf area index and chlorosis. It can also be used to monitor plot establishment and phenological parameters.

High-resolution RGB orthomosaic of wheat experiments, assessing the effect of plot size and spacing in the spectral signature, collected from SkySat satellite images. (Photo: Gilberto Thompson)

The use of satellite-based phenotyping in breeding trials has typically been restricted by low resolution, high cost and long intervals between fly-overs. However, the advent of a new generation of high-resolution satellites—such as the SkySat constellation—now offers multispectral images at a 0.5m resolution with close to daily acquisition attempts on any place on Earth. This could be a game changer in terms of the scale at which yield trials can be conducted, enabling more precise variety placement and thereby increasing genetic diversity across farmer’s fields and reducing the probability of disease epidemics. It could also revolutionize the capacity for research in realistic field conditions, since traits can be measured throughout the cycle in a highly standardized way, over multiple sites at low cost. For example, an image which covers 25 km2 can monitor an entire research station at a cost of about US$300.

To test the suitability of this technology, a team of researchers from CIMMYT set out to evaluate the reliability of SkySat NDVI estimates for maize and wheat breeding plots of different sizes and spacing, as well as testing its capacity for detecting seasonal changes and genotypic differences.

Both their initial findings, recently published in Frontiers in Plant Science, and more recently acquired data, show that the SkySat satellites can be used to monitor plots commonly used in wheat and maize nurseries. While wheat yield plots usually are 1.2m wide, maize plots tend to consist of at least two rows, resulting in a width of 1.5m. Plot length ranges from 2-4m. The authors also discuss on other factors to be considered when extracting and interpreting satellite data from yield trials, such as plot spacing.

Through the successful collection of six satellite images in Central Mexico during the rainy season and parallel monitoring of a maize trial in Zimbabwe, the researchers demonstrate the flexibility of this tool. Beyond the improvement of spatial resolution, the researchers suggest that the next challenge will be the development and fine-tuning of operational procedures that ensure high quality, standardized data, allowing them to harness the benefits of the modern breeding triangle, which calls for the integration of phenomics, enviromics and genomics, to accelerate breeding gains.

Read the full study: Satellite imagery for high-throughput phenotyping in breeding plots

This research was supported by the Foundation for Food and Agriculture Research, the CGIAR Research Program on Maize, the CGIAR Research Program on Wheat, and the One CGIAR Initiatives on Digital Innovation, F2R-CWANA, and Accelerated Breeding.

Appropriate farm scale mechanization can aid in agroecological transformation

A bale of grass and maize stalks made in a bailer. (Photo: CGIAR Initiative on Agroecology)

A case of the CGIAR Initiative on Agroecology in Zimbabwe

Authors: Vimbayi Chimonyo (CIMMYT – scientist, crop modeler); FrĂ©dĂ©ric Baudron (CIMMYT – cropping systems agronomist); Dorcas Matangi (CIMMYT – assistant research associate)

Food systems in marginal areas of Zimbabwe are vulnerable to climate variability and economic shocks. During the COVID-19 outbreak, governments imposed strict lockdowns that adversely affected local food systems and supply chains. Rural communities that already had difficulty feeding their families found themselves in a more desperate situation. The recurring challenges and the COVID-19 outbreak made it clear that there is a need to transform local food systems to achieve sustainable food and nutrition security. The transition is even more urgent owing to the acute labor shortages due to the accelerated trend of rural labor outmigration and an aging population in smallholder farming communities of the country. Agroecology has emerged as an approach to facilitate and champion a transformative shift to sustainable local food systems.

Mower cutting grass. (Photo: CGIAR Initiative on Agroecology)

The Agroecological Initiative is at the forefront of providing science-based evidence for the transformative nature of agroecology and its potential to bring about positive changes in food, land, and water systems, including identifying institutional innovations to promote uptake. Agroecology is a holistic approach to agriculture that emphasizes integrating ecological principles and practices into farming systems. The 13 principles of agroecology guide sustainable and regenerative agricultural practices.

 

Thirteen consolidated agroecology principles (Wezel et al. 2020)

The initiative employs a multi-disciplinary approach, integrating ecological and social methods to co-create and manage localized food systems and monitor the 13 interconnected principles. While agroecological methods hold promise, the transition process is labor and knowledge-intensive and requires addressing power dynamics within and beyond households to address food and nutrition security. Building on the findings of the completed ACIAR-funded project Farm Mechanization and Conservation Agriculture for Sustainable Intensification (FACASI) and Harnessing Appropriate-scale Farm Mechanization in Zimbabwe (HAFIZ), CIMMYT is working in Zimbabwe with 200+ farmers and four service providers in Murehwa and Mbire districts as ambassadors of the community through Agroecological Living Landscapes (ALLs).

Trailer for transportation. (Photo: CGIAR Initiative on Agroecology)

Mechanization plays a crucial role in the initiative implementation in Zimbabwe, covering a wide range of farming and processing equipment. The equipment ranges from simple and basic hand tools to more sophisticated and motorized tools. The machinery eases and reduces drudgery associated with agricultural practices, relieves labor shortages, improves productivity and timeliness of agricultural operations, optimizes resource utilization, enhances market access, and helps mitigate climate-related hazards.

“Machinery supports synergies, reduces labor, and reduces human and wildlife conflict as it reduces livestock grazing time because you can now make feed for your cattle and cutting grass reduces veld fires,” said Musandaire.

Within the Agroecology Initiative, CIMMYT considers mechanization in its technological, economic, social, environmental and cultural dimensions when contributing to the sustainable development of localized food systems and actors. In Mbire and Murehwa, a service provider model was adopted to introduce appropriate scale machinery within the respective communities. The service providers were equipped with a two-wheel tractor, ripper, mower, chopper grinder, and bailer. Training was offered on equipment operation, repair, and maintenance.

The business aspects were also discussed to broaden the participants’ knowledge of service provision. Important aspects covered include business model, entrepreneurship, record keeping, cost and profit calculations, customer care, target setting, and machinery operation planning.

To date, the service providers offer services including ripping, transportation, chopper grinding for livestock feeds and humans, and baling and mower for grass cutting at a fee.

“Mechanization has proven efficient and relevant in our district since livestock is one of our main value chains. Our service providers make hay bales for us, which we buy to feed our livestock. They also grind feed which is good for pen-fattening,” said Chimukoro, councilor in Mbire.

Preliminary findings indicate that appropriate scale mechanization enhances synergies in smallholder farming systems by facilitating more efficient and integrated agricultural practices.

“Our trailer reduces labor and saves time better than scotch carts. We used to leave much biomass in the fields because we didn’t know how to transport and process it after aggregation. But now we can recycle our biomass,” mentioned Mushaninga, local leadership in Murehwa.

By streamlining labor-intensive tasks and promoting holistic farm management, mechanization encourages complementarity among various elements of agroecosystems, contributing to more sustainable and productive smallholder farming. Target communities can pave the way for a more resilient and sustainable food system through the Agroecological Initiative.

CIMMYT at the AIM for Climate Summit

Sieg Snapp, Tek Sapkota, and partners photographed during AIM for Climate (Photo: CIMMYT)

As climate change threats accelerate, new technologies, products, and approaches are required for smallholder farmers to mitigate and adapt to current and future threats. Targeting smallholder farmers will benefit not only the farmers but the entire agri-food system through enhanced locally relevant knowledge that harnesses handheld sensors and advisories on management options, soil status, weather, and market information.

The Agriculture Innovation Mission for Climate (AIM for Climate / AIM4C) seeks to address climate change and global hunger by uniting participants to significantly increase investment in, and other support for, climate-smart agriculture and food systems innovation over five years (2021–2025).

The International Maize and Wheat Improvement Center (CIMMYT), as a partner of AIM for Climate, organized a breakout session titled “Smart Smallholder Fertilizer Management to Address Food Security, Climate Change, and Planetary Boundaries” during the AIM for Climate Summit in Washington DC, May 8-10, 2023.

Fertilizers are essential for increasing crop yields and ensuring food security, yet fertilizer use for food and fodder is severely skewed at the global level, leading to over-fertilization in some regions and under-fertilization in others.

Farmers in low-income countries are highly vulnerable to fertilizer supply shortages and price spikes, which have direct consequences for food prices and hunger. Improving fertilizer efficiency and integrated organic and inorganic sources is important globally as nutrient loss to the environment from inappropriate input use drives greenhouse gas emissions and pollution.

Innovation Sprint

Because smallholder farmers are the primary managers of land and water, the CIMMYT-led AIM4C Innovation Sprint, Climate-Resilient soil fertility management by smallholders in Africa, Asia, and Latin America is designed to implement and scale-up a range of climate robust nutrient management strategies in 12 countries, and to reach tens of millions of smallholder farmers in close collaboration with nearly 100 public-private partners organizations.

Sieg Snapp called for more investments in data synthesis (Photo: CIMMYT)

Strategies include innovations in extension where digital tools enable farmer-centered private and public advisories to increase the uptake of locally adapted nutrient management practices. Connecting farmers to investors and markets provides financial support for improved nutrient management.

By tailoring validated fertility management practices to their specific conditions, and integrated use of legumes and manure, smallholders will optimize productivity, enhance climate resilience, and mitigate greenhouse gas emissions. Research from other organizations has determined that improved fertilizer management can increase global crop yield by 30% while reducing greenhouse gas emissions.

Right place, right time

“We need locally adapted fertilizer management approaches that work for smallholder farmers. By tailoring validated fertility management practices to their specific conditions, smallholders will optimize productivity, enhance climate resilience, and mitigate greenhouse gas emissions,” said Sieg Snapp, CIMMYT’s Sustainable Agricultural Systems Program Director. She continued, “What is needed now is major investment in data synthesis. Through this SPRINT we are exploring options to enable taking sensors to scale, to reach tens of millions of farmers with hyper-local soils information.”

Inequality is the core of the problem in fertilizer management: some regions apply more than the required amount, where in other regions fertilizer application is insufficient for plant needs, leading to low yields and soil degradation.

Tek Sapkota spoke on fertilizer management (Photo: CIMMYT)

“Fertilizer efficiency can be improved through application of the right amount of fertilizer using the right source employing the right methods of application at the right time of plant demand,” said Tek Sapkota, CIMMYT Senior Scientist, Agricultural System/Climate Change.

The session included presentations by the Foundation for Food & Agriculture Research (FFAR), UN Foundation, Pakistan Agricultural Research Council (PARC), Stockholm International Water Institute (SIWI), USDA, and Alliance of CIAT-Bioversity. Highlights sustainable and climate-smart practices in Pakistan, novel plant genetics for improved nitrogen cycling, and soil water and nutrient management in the Zambezi to tackle food security and climate change challenges.

On-farm-Maize Select

The On-farm-Maize Select project will pilot a new genomics-driven selection method based on on-farm performance of Stage 1 maize breeding materials that is expected to deliver increased rates of genetic gain to the farmers through:

  • More accurate selection for the conditions of small-scale producers in Sub-Saharan Africa (SSA), especially women and the poorest farmers, who often apply fewer inputs.
  • Improved sampling of the diversity of on-farm conditions across the entire target population of environments (TPE).
  • Improved understanding of the diversity of socio-economic factors, agronomic management (especially by women), and environmental on-farm conditions across the TPE.
  • Genomic-assisted rapid recycling of parents (population improvement) to reduce breeding cycle time.
  • Improved social inclusion in breeding processes, leading to greater gender responsiveness and wider appeal of breeding outputs.

The hypothesis is that generating genomic estimated breeding values (GEBVs) based on on-farm phenotyping will lead both to increased selection accuracy for performance under farmer management, including challenging conditions that women and the poorest farmers face, and enable rapid cycling of parents by reducing the number of years of testing before new crosses are made. This hypothesis will be initially tested by estimating expected genetic gain on-station and on-farm based on the genetic correlation between on-station and gender-disaggregated on-farm performance of the same set of genotypes, as well as the repeatability of selection on-station versus on-farm. The value of on-farm versus on-station testing for estimating GEBVs for parent selection and early-stage advancement will be confirmed in two selected CIMMYT maize breeding pipelines (one each in eastern and southern Africa – EA-PP1 and SA-PP1) by comparing the performance on-farm of a sample of Stage 1 breeding lines from the second cycle of on-farm vs on-station selection. The efficacy and costs of undertaking on-farm genomic selection versus on-station selection at Stage 1 of the two selected breeding pipelines will also be evaluated.

Key Outputs

  • The genetic correlation between, and accuracy of estimation of, on-farm and on-station breeding values will be measured in terms of ability to predict performance under farmer management. This will enable comparison of the relative efficiency of direct selection on-farm versus indirect selection on-station. We expect that increased on-farm genetic gains will be achieved if the genetic correlation between on-farm and on-station performance is 0.8 or less.
  • Elite breeding populations improved for on-farm performance will be generated, and products extracted from them will be compared on-farm with those selected the same founder populations using conventional on-station selection (comparison of the products of the pipelines will not be possible until the second project phase, if approved).
  • Separate GEBVs generated for lines under the management of male and female farmers, with genetic correlations estimated to ensure that performance on female-managed farms is adequately weighted in selection indices.
  • Genomic-assisted on-farm sparse testing network, experimental design and capacity developed.
  • Improved representativeness of results due to enhanced gender and social inclusion approaches in the on-farm trial design.

Expected Outcomes

  • Greater rates of genetic gain delivered on-farm through more extensive sampling of TPEs
  • Improved accuracy of selection based on performance in farmers’ fields in the TPE.
  • Incorporation of farmer-preferred traits in selection decisions supports faster replacement of older hybrids with newer products.

CGIAR Initiative: Accelerated Breeding

Resource-poor farmers in low-income and middle-income countries will hugely benefit from improved crop varieties that perform better in terms of nutritional quality, income generation, water and nutrient use, stability of yields under climate change, and the needs of both women and men as farmers and as consumers.  

However, many smallholder farmers still grow old varieties, in part because they derive inadequate benefits from recent breeding efforts. To trigger timely adoption, new varieties must be widely available and affordable to farmers, and offer a step-change in performance through higher rates of genetic gain. A faster pace of varietal turnover is critical – to enable farmers to adapt and advance rapidly as climatic and market conditions change. 

Breeding programs also need a greater focus on developing farmer- and consumer- preferred varieties adapted to distinct production environments, markets and end uses. This can be facilitated by smarter design of breeding programs; stronger partnerships between CGIAR, National Agricultural Research and Extension Systems (NARES) and small and medium enterprises (SMEs); and strengthened organizational capacity.

This Initiative aims to develop better-performing, farmer-preferred crop varieties and to decrease the average age of varieties in farmers’ fields, providing real-time adaptation to climate change, evolving markets and production systems. 

The objective will be achieved through:

  • Re-focusing breeding teams and objectives on farmers’ needs, in particular the needs of women, through achievable product profiles and breeding pipelines targeting prioritized regions and market segments. 
  • Reorganizing breeding teams to drive efficiency gains through the coordinated engagement of specialists and processes using a common organizational framework, stage gates, key performance indicators and handover criteria. 
  • Transforming towards inclusive, impactful CGIAR-NARES-SME breeding networks with empowered partners, along with customized capacity building, standardized key performance indicators, and by dividing labor and resources across partners according to comparative advantage and aligned with national priorities. 
  • Discovering optimum traits and deployments through agile, demand-driven and effective trait discovery and deployment pipelines, and development of elite donor lines with novel and highly valuable traits. 
  • Accelerating population improvement and variety identification through optimizing breeding pipelines (trailing, parent selection, cycle time, use of Breeding Resources tools and services, etc.), with the goal of assuring all programs deliver market-demanded varieties that deliver greater rates of genetic gain per dollar invested. 

Engagement

This Initiative will work with breeding programs serving countries in Sub-Saharan Africa, and South Asia, along with Asia and Latin America. Priority countries for the Initiative include Ghana, Kenya, Nigeria, Senegal, Tanzania, Uganda, Zambia and Zimbabwe in Africa, and Bangladesh and India in South Asia. 

Outcomes

Proposed 3-year outcomes include:

  1. At least 75% of breeding pipelines are oriented towards specific market segments, enabling greater focus on farmers’ needs, drivers of adoption, distinct impact areas and the strategic allocation of resources. 
  2. At least 70% of breeding pipelines use a revised organizational framework that provides operational clarity and effectiveness for specialized teams pursuing breeding outputs. 
  3. At least 80% of the breeding networks have implemented documented steps toward stronger partnership models where NARES and SMEs have increased breeding capacity, and make greater scientific, operational and decision-making contributions to the breeding process. 
  4. At least 50% of breeding pipelines are supported by a dedicated trait discovery and deployment program that delivers high-impact traits in the form of elite parental lines. 
  5. At least 70% of breeding pipelines have increased the rate of genetic gain in the form of farmer-preferred varieties, with at least 50% providing significantly improved varieties delivered to seed system recipients.    

Building towards a climate-smart agriculture future through harnessing crop modeling

Participants of the crop modeling simulation workshop in Harare, Zimbabwe. (Photo: Tawanda Hove/CIMMYT)

Anticipating appropriate and timely responses to climate variability and change from an agricultural perspective requires forecasting and predictive capabilities. In Africa, climate-related risks and hazards continue to threaten food and nutrition security.

Crop simulation models are tools developed to assist farmers, agronomists and agro-meteorologists with insights on impacts to possible management decisions. Such tools are enablers for taking an appropriate course of action where complexity exists relating to both crop and livestock production. For example, a new variety can be introduced to Zimbabwe, but its performance will differ depending on the agroecological zones of the country and the respective treatments a farmer may apply. Applying modeling tools to assess its performance can predict yield differences and facilitate the generation of recommendations for which region is most suited to the variety, water use efficiency, and crop combinations.

Earlier this month, the International Maize and Wheat Improvement Center (CIMMYT) hosted a crop modeling simulation workshop with delegates from various African countries in Harare, Zimbabwe.

“The CGIAR Initiatives of Excellence in Agronomy (EiA) and Sustainable Intensification of Mixed Farming Systems (SI-MFS) have recognized the need to enhance modeling capacity in Africa to allow African scientists to lead in solving challenges within agricultural systems,” said CIMMYT crop scientist and coordinator of the workshop, Vimbayi Grace Petrova Chimonyo.

The workshop was facilitated by renowned global crop modeling experts to provide critical coaching support to upcoming modelers. These experts included Sue Walker, a professor at the University of the Free State, Tafadzwa Mabhaudhi, a professor at the International Water Management Institute (IWMI), KPC Rao, a lead scientist at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Dirk Raes (KU Leuven), Diego Peqeuno (CIMMYT)  and Siyabusa Mukuhlani from the International Institute of Tropical Agriculture (IITA).

Crop models are scientific presentations of statistical knowledge about how a crop will grow in interaction with its environment. They use mathematical equations representing processes within a predefined plant system and the interactions between crops and the environment. The discipline is based on the premise that agricultural system environments are complex and not homogenous. Crop models enable decision-makers to make data-driven decisions by simulating possible outcomes to changes in a system and the configuration of production systems.

“It is quite apparent that modeling skills are scarce on the African continent. This workshop is a step toward consolidating existing capacities on the continent. If we are going to be able to close the already existing food deficit gap on the continent and meet the food requirements needed by 2050, with an estimated global population of nine billion, then we need to take modeling seriously,” said Chimonyo in her opening address at the workshop.

Due to the lack of crop modeling expertise in African states, there is a gap in capacity to build relevant crop advisory tools for farmers at a local level. This leads to poor policy formulation as decisions are based on a high degree of generalizations.

“In this modern era, we need advisories that are context specific. For example, just because a maize variety achieved a certain yield in one context doesn’t mean the same variety will achieve the same yields even if the rainfall patterns are the same. Other factors come into play, such as the soil type, temperature and other related aspects affecting the yield. Crop modeling affords advisory managers some specifications necessary to achieve high yields in different environments,” said Walker.

Vimbayi Chimonyo from CIMMYT making opening remarks at the workshop. (Photo: Tawanda Hove/CIMMYT)

Speakers at the workshop focused on three models, APSIM, AquaCrop and DSSAT, and participants had the opportunity to take part in activities and ask questions face-to-face. The workshop also covered key modeling aspects such as the minimum data requirements needed to run a model, calibration and validation of models, confidence testing of results, the science involved in simulating phenological development and growth processes, water and nitrogen cycles, and the use of multi-modeling approaches.

The workshop was particularly useful for young scientists, according to Rao, allowing more experienced modelers to share their expertise. “With such an interactive platform, experienced modelers like me can demonstrate multi-modeling approaches.”

Rao presented on two main approaches. The first involved the application of different simulation models to simulate one component of a system such as crops. The second simulated the complete system by integrating various models, such as crops, livestock, and economic models, providing an opportunity to understand the synergies and trade-offs between different components of the whole farm.

Participants at the workshop expressed their satisfaction with the training provided and left with practical knowledge that they could apply in their work both in the field and in the lab.

“When I first arrived, I knew very little about modeling, but as the workshop progressed, my confidence in applying models increased. I intend to immediately apply this knowledge for the forthcoming season such that we can start making impactful contributions to the country’s food and nutrition security status,” said Birhan Abdulkadir Indris, a research officer at CIMMYT.

“I am leaving this workshop with the confidence that I will advise farmers in my circle of influence with services tailored to their needs. I have learned that crop modeling can be used for many purposes and that different models address different issues,” said Connie Madembo, a research technician at CIMMYT. “I intend to teach other fellow PhD students at the University of Zimbabwe the same things I have learnt here. As a country, we need to be at the forefront of using these models, considering Zimbabwe’s high weather variability.”

As a way forward, the trained scientists were encouraged to apply the modeling skills they had gained to address short-term problems such as yield gaps and water use efficiency and long-term challenges such as the local impacts of climate change.

“While more capacity training is required, starting somewhere is better than never starting,” said Mabhaudi.

Farmers in Buhera gear up for climate-smart agriculture

Isaiah Nyagumbo engages extension officers and host farmers on the water harvesting technologies under trial in Buhera district, Zimbabwe. (Photo: Tawanda Hove/CIMMYT)

As climate change effects intensify, new innovations that enable smallholder farmers to adapt are no longer an option but a necessity. Significant parts of Zimbabwe are semi-arid, receiving less than 600mm of rainfall per year. Smallholder farming communities in districts such as Buhera have embraced feed production and water conservation innovations deployed by the International Maize and Wheat Improvement Center (CIMMYT) as part of the Livestock Production Systems in Zimbabwe project (LIPS-Zim). The project, funded by the European Union and led by the International Livestock Research Institute (ILRI) and CIMMYT, champions the crop-related aspects of interventions and aims to increase livestock productivity in Zimbabwe’s semi-arid regions. The project specifically aims to promote increased adoption of climate-relevant innovations in livestock-based production systems and improved surveillance and control of livestock diseases. While focused on livestock, the project is based on the premise that the performance of the livestock sector depends heavily on crop husbandry. By the same token, the livestock sector has bi-products that directly impact the productivity of crops.

Zimbabwe is a country that is well suited to mixed farming systems. Most smallholder farmers have treated livestock and crop production as mutually exclusive, but the two enterprises can have a significant complementary effect on each other.

CIMMYT Cropping Systems Agronomist Isaiah Nyagumbo is leading the development of crop husbandry innovations aimed at increasing feed production that are poised to benefit smallholder farmers’ crop productivity and enhance the conditioning of livestock, especially cattle.

Despite extension recommendations for farmers not to grow maize in these regions, studies show that 60% of the arable land is still occupied by maize. This is due to maize’s popularity among farmers thanks to its diverse uses.

One solution is to support farmers with the most appropriate cultivars and most effective production technologies to help them be more resilient to climate change induced challenges. To contribute towards LIPS-Zim’s objective for increased feed production, CIMMYT scientists are testing and demonstrating the use of drought tolerant and nutritious maize varieties along with a wide range of leguminous species such as mucuna, dolichos lab-lab and cowpea, which are grown mostly as intercrops. Efforts are also being made to develop innovative water conservation options through reduced or no-till planting basins and tied ridging systems reinforced with different mulching options including conventional organic and synthetic artificial mulches. These are then being compared to traditional conventional mouldboard ploughing systems.

The Nyeketes, proud hosts of the CIMMYT water harvesting technology trial, in Buhera, Zimbabwe. (Photo: Tawanda Hove/CIMMYT)

So far, the results are exciting and helping farmers to see the productivity gains from applying different technologies. Mr. and Mrs. Nyekete, smallholder farmers who volunteered to work with CIMMYT on these innovations, are optimistic about widespread adoption once the trials are concluded as the technologies can suit different levels of investment by farmers.

“We have a lot of farmers visiting us as they observe a diversity of technologies on our plot. The artificial mulch concept is one which is very new, and farmers are curious as to how it works. They can observe for themselves that, especially when used with tied ridges, it is very effective in retaining moisture,” said Mr and Mrs Nyekete.

“The same applies to organic mulch. Government extension workers have, over the years, been encouraging us to plant our maize under the Pfumvudza conservation agriculture model, and in it is the use of organic materials as mulch. The level of compliance in areas such as Buhera has been low, where people practice Pfumvudza without fully applying all the principles, especially soil cover. The water conservation trials are providing evidence that when one dedicates themselves to mulching their crop, whether using organic or synthetic mulches, the maize productivity is comparatively higher. As you can see, the maize plots with these water harvesting technologies are showing high vegetative growth in comparison to conventionally planted maize.”

Over the years, there has been a slow adoption of new innovations emanating from scientific research usually conducted on research stations. The use of on-farm research trials and demonstrations helps smallholder farmers to participate in the research process and co-create technologies, which shortens the adoption period and stimulates adoption at scale. This approach enables more farmers, who are not hosts, to benefit from the technologies showcased in the trials and to observe and learn from the trials. As the saying goes, “seeing is believing” and farmers can choose the options most relevant to their own circumstances.  As such, farmers can conclude for themselves which technologies bear results compelling enough for them to adopt.

Despite the artificial mulching technology demonstrating impressive results so far, Nyagumbo cautions that before the technology can be promoted at scale, more research, as well as proof of concept for these systems are needed.

“Firstly, we see that the quality of the material used has a big bearing on the ability to reduce evaporation from the soil. Secondly, some farmers have observed germination challenges due to the synthetic materials creating an attractive habitat for rodents that eat the maize seed before it germinates. Thirdly, the returns from such investments need to be justified by highly attractive economic returns arising from high yields that will also enable farmers to intensify their production systems by producing their food needs from much smaller areas. Further studies and analyses therefore need to be conducted,” said Nyagumbo.

“Furthermore, so far the idea of tied ridging combined with organic mulches also seems to offer a highly attractive option for farmers that will contribute to increased feed productivity from the enhanced grain and crop residues, since increased biomass output also means increased livestock feed availability.”

While breeding excellence is proving to be an effective method for responding to climate change through improved seed varieties and high-performance livestock breeds, new crop and livestock production technologies are required to complement the genetic gains from breeding. The crop production technologies being showcased in in Buhera along with drought tolerant and nutritious maize varieties and legumes, promise to be transformative for semi-arid regions for both crop and livestock systems.

Government of Zimbabwe recognizes CIMMYT for beneficial collaborations

Dr Dumisani Kutwayo (second left) receives state of art Maize Lethal Necrosis test kits from Dr Wegary Dagne (second from right). (Photo: Tawanda Hove/CIMMYT)

The best results in combating pests and diseases exacerbated by climate change and protecting agricultural food systems originate from strategic partnerships between national governments and international research organizations. Such a synergy between Zimbabwe’s Department of Research and Specialist Services (DRSS) and the International Maize and Wheat Improvement Center (CIMMYT) was recognized for its effectiveness at an event hosted by Zimbabwe Plant Quarantine Services on January 9, 2023.

“The mandate of ensuring that Zimbabwe is protected from plant diseases and invasive pests is one which cannot be attained by government alone, but together with partners such as CIMMYT,” said Dumisani Kutywayo, Chief Director of DRSS.

Dagne Wegary Gissa, CIMMYT senior scientist in maize breeding, presented Kutywayo with the latest advanced PCR testing kits for detecting maize lethal necrosis. “We are committed to ensuring that we support Zimbabwe with improved maize and wheat varieties but also with rapid disease detection,” said Gissa.

Kutywayo and senior directors were given a tour of the plant quarantine services station, where they observed where all introduced maize seed is quarantined and tested before being incorporated into the local seed systems. Tanyaradzwa Sengwe, a seed health and quality expert, summarized the quarantine procedures and explained how the day-to-day operations between the two institutes are being implemented. This involves the management of imported seed, protocols of seed management and biosafety measures for the quarantine facility.

Government officials take part in a field visit of the quarantine facility set up by CIMMYT in Mazowe, Zimbabwe. (Photo: Tawanda Hove/CIMMYT)

Expanding partnerships

Zimbabwe can now accelerate its crop improvement programs, Gissa indicated, because CIMMYT has provided the government access to doubled haploid (DH) technology. This technology significantly shortens the breeding cycle from seven years to approximately 3-4 years. DH technology has become an integral part of many commercial maize breeding programs, as DH lines offer several economic, logistic and genetic benefits over conventional inbred lines. Further, new advances in DH technology continue to improve the efficiency of DH line development and fuel its increased adoption in breeding programs worldwide.

CIMMYT-Zimbabwe has facilitated access for Zimbabwe’s maize breeding program to a CIMMYT DH facility in Kenya. Busiso Mavankeni, the head of the Crop Breeding Institute, related how it was very expensive for governments of developing countries to keep up with the latest breeding technology trends and so collaborating with CIMMYT is helping Zimbabwe. “Having access to the DH facility has been a great boon to our breeding program,” said Mavankeni.

CIMMYT and Zimbabwe are also engaged in capacity building exercises; involving training sessions across a variety of food system frameworks. Nhamo Mudada, Head of Plant Quarantine Services, acknowledged the multiple trainings ranging from disease identification and prevention systems to entomology related concepts. “Our technical capabilities have increased significantly, and we strongly attribute this to CIMMYT’s knowledge sharing mandate,” Mudada said.

“This sustainability is enabled by ensuring that our systems can screen genetic materials coming into the country and detect diseases which may be foreign to the agroecological region. CIMMYT has, over the years, supported the government not only from a financial perspective but also from a technical capacity perspective.

“Having reliable partners such as CIMMYT who generously invest in government priorities helps our country to be well positioned against threats to our food security,” said Kutywayo, “The key for creating and maintaining sustainable innovation is for development partners like CIMMYT to work within existing national frameworks,” said Kutywayo. “As the adverse effects of climate change intensify, such strategic partnerships are the only way to establish appropriate responses.”

“Our goal is to serve as critical partners for Zimbabwe’s agrifood programs. We have dedicated ourselves to be a long-term partners and will provide as much support as we can to ensure Zimbabwe’s food security,” Gissa said.