CIMMYT has received a grant of USD 17.8 million from the United States Agency for International Development (USAID) to implement a new project dubbed Drought Tolerant Maize for Africa Seed Scaling (DTMASS). The three-year project officially started on 15 March 2015.
The project aims to produce and deploy affordable and improved drought-tolerant, stress-resilient and high-yielding maize varieties for 1.8 million smallholder farmers in Ethiopia, Kenya, Tanzania, Uganda, Mozambique and Zambia by the end of the project. Similarly, DTMASS plans to produce approximately 7,900 metric tons of maize varieties with a strategic goal of improving food security and income for the farmers.
“This is a great achievement for the project team, which worked tirelessly to develop the project proposal that has just been approved for implementation”, remarked Tsedeke Abate, DTMASS project leader. He added that the project will go a long way in supporting farmers to increase their returns from maize farming, while at the same time giving them good-quality maize for consumption. “This is a good day for maize in Africa,” said Tsedeke.
DTMASS will be implemented in close collaboration with USAID’s Feed the Future program, building on experience, successes and lessons from the Drought Tolerant Maize for Africa and other complementary CIMMYT maize projects in Africa like Improved Maize for African Soils and Water Efficient Maize for Africa, to strengthen production and delivery of maize seeds to farmers in the seven target countries.
CIMMYT will also work with the respective countries’ extension wings of the ministries of agriculture, public and private seed companies, national agricultural research organizations, community-based organizations and non-governmental organizations. More on DTMASS
Targeting increasing farm-level food security and productivity to mitigate the effects of climate risk and change: Through the SIMLESA Project, smallholder farmers practice sustainable intensification principles, such as zero or minimum tillage, maize–legume intercropping, and maize–legume rotations. In the photo, Mr. Ringson Chitsiko (standing), Permanent Secretary (PS), Ministry of Agriculture, Mechanisation and Irrigation Development, officially opens CIMMYT–SARO’s 30th anniversary celebrations. On the extreme left is the International Livestock Research Institute’s Representative for Southern Africa, Dr. Sikhalazo Dube. To the PS’s left is the Principal Director in the Department of Research and Specialist Services, Mrs. Denisile Hikwa. Dr. Olaf Erenstein (in striped shirt), Director of CIMMYT’s Socioeconomics Program; and partly in the picture is Dr. Eric Craswell, SIMLESA Project Steering Committee Member.
On March 18, CIMMYT Southern Africa Regional Office (SARO) celebrated 30 years of agricultural research and development.
The colourful ceremony, held amid pomp and fanfare, was attended by more than 300 people representing donors, non-governmental organizations, research institutions, Zimbabwe government departments, seed companies and farmer associations. The celebration included an on-station tour, with CIMMYT–SARO showcasing its work.
CIMMYT–SARO has been operating in Zimbabwe since March 1985 with the support of the government of Zimbabwe, and other public and private-sector partners, including the University of Zimbabwe and the Department of Research and Specialist Services. In Zimbabwe, CIMMYT conducts experiments at its main station, as well as at Muzarabani and Chiredzi sub- stations. There are also on-farm trials across the country.
Officially commemorating CIMMYT–SARO’s 30-year anniversary (SARO@30), Zimbabwe’s Minister of Agriculture, Mechanisation and Irrigation Development, Dr. Joseph Made, said, ‘’The regional office has been focusing on developing new maize varieties adapted to smallholder farmers in Zimbabwe and the mid-altitude agroecologies in sub-Saharan Africa. Since then, the office has expanded to include development of research technologies for conservation-agriculture systems, sustainable intensification of production of smallholder farms and postharvest research activities.”
Stay on course, but also look beyond yield
In a speech read on his behalf by Mr. Ringson Chitsiko, the Ministry’s Permanent Secretary, Made applauded CIMMYT’s research work on developing a stock of maize since this was a major staple in the country, and beyond. Although CIMMYT and its partners had introduced various technologies for increasing yields, the Center had to develop more technologies to mitigate the effects of climate change and other challenges.
The minister advised: “CIMMYT needs to work harder and be alert, especially in the face of the ever-growing population, climate change and variability, and new threats through maize diseases and pests. I urge CIMMYT to continue pursuing its mandate for the benefit of the Southern African region.”
In support of this goal and in recognition of CIMMYT’s sustained presence and commitment to the SADC region and Zimbabwe, the Zimbabwe government in 2012 renewed the Host Country Agreement, according CIMMYT–SARO diplomatic status. ‘’We are jointly working towards signing a new collaborative agreement to strengthen maize research to combat a new threat in the form of maize lethal necrosis [MLN] disease recently discovered in East Africa and which has a potential to wipe out an entire maize crop if it spreads to Southern Africa,’’ Made said.
MLN caused 100 percent crop loss for some Kenyan farmers between 2011 and 2012, and cases were also reported in Uganda and Tanzania.
Speaking at the same occasion, Dr. Olaf Erenstein, Director of CIMMYT’s Socioeconomics Program who represented Dr. Thomas Lumpkin, CIMMYT Director General, said CIMMYT, since its establishment in Mexico in 1966 currently has 13 representative offices around the world. Its mandate and mission is to sustainably increase the productivity of maize and wheat systems to ensure global food security and reduce poverty. The regional office, he said, is serving its purpose in contributing to increasing food security.
Just one year shy: John Chifamba (foreground, in blue shirt, and cap, facing the camera), receives his long-service certificate. With 29 years of service under his belt, he’s been with CIMMYT–SARO for almost as long as it has existed.
‘Easy Friday’: Reflect, Celebrate, Play, Plan for The Future
As part of the continued celebrations, March 27 was ‘Easy Friday: CIMMYT–SARO hosted a luncheon and sports day for its staff. Thirteen long-serving employees who served for between 15 and 29 years were honored for their commitment. The employees were from administration, finance, Global Maize Program and Conservation Agriculture Program.
Sixty-two year-old Mr. John Chifamba, a recorder who has worked for CIMMYT for 29 years, said, “CIMMYT is my home. I have gained considerable on-the-job experience in maize research. “Any plans of leaving CIMMYT?” To this, Chifamba said an emphatic no. “Very soon, it will be retirement time and I will find a plot to utilize the good agricultural practices I have seen and learned at CIMMYT.“
Joining hands: From Zambia to Afghanistan
Mekuria continued: ‘’Our partnership approach will give us more capacity to meet with our constituents at the highest level, strengthening our relationships with governments as they formulate the most effective agricultural policies for the good of their people and natural resources.”
CIMMYT says ‘Thank You!’ CIMMYT–SARO staff who have served the Center for between 15 and 29 years each received a long-service certificate, which they display here.
CIMMYT–SARO is part of the world’s largest public drought and low nitrogen stress research network. Every year 500,000 envelopes of maize seeds are sent to over 70 institutions worldwide. The demand for CIMMYT–SARO maize germplasm extends from Zambia to Afghanistan.
During the past 10 years, sustainable intensification strategies based on the principles of conservation agriculture (CA) have been successfully promoted in Malawi, Mozambique, Zambia and Zimbabwe. Making use of the combined benefits of minimum soil disturbance, crop residue retention and crop rotation, CA increases yields when compared to conventional agricultural practices after two to five cropping seasons. Trials on farmers’ fields in Malawi, for example, increased yields by 20 to 60 percent. In Zambia and Zimbabwe, yields were increased by almost 60 percent using animal traction CA technologies.
Major highlights during the 30 years existence of CIMMYT in Zimbabwe include the development and release of more than 50 maize hybrids and open pollinated varieties (OPVs) adapted to drought-prone regions. These new varieties are expected to benefit almost 12 million people, helping to enhance food security, increase livelihoods and reduce poverty in Southern Africa.
CIMMYT’s seed system activities and support in training and technical assistance have led to the emergence of smaller domestic seed companies in the various Southern African countries. Farmers’ access to seed has improved. In addition, the Center has trained more than 200 technicians and graduate students through short- and long-term training in their various disciplines. Nearly 30 percent of these trainees are women. Trainees are drawn from southern Africa, the rest of Africa, and beyond.
A study published early this month in the Journal of Nutrition shows that biofortified maize can meet zinc requirements and provide an effective dietary alternative to regular maize for children in vulnerable areas of rural Zambia.
Photo: CIMMYT
“This adds to the growing body of evidence supporting the efforts of HarvestPlus, a CGIAR global effort to end hidden hunger and to which CIMMYT contributes through the development of maize and wheat with enhanced levels of vitamin A, zinc, and iron,” said Natalia Palacios, CIMMYT Maize Nutrition Quality Specialist and co-author in the study. “Maize is an important staple food for 900 million people living on less than $2 each day, but a diet rich in maize cannot always provide the nutrients needed by the body.”
Zinc plays important roles in human health, and zinc deficiencies are associated with stunting and a weak immunological system, making the malnourished more susceptible to common infections. More than 17 percent of the global population is at risk of zinc deficiency.
The study found that when the biofortified maize provided by CIMMYT was fed as a staple to Zambian children, their zinc intake was more than sufficient for their dietary needs.
The higher zinc level (34 µg zinc per gram, versus 21 µg) meant that the biofortified maize greatly outperformed the control diet, while biofortified grain was shown to be more efficient than Zn-enriched flour at getting the nutrient absorbed into the body.
This research joins another study in Zambia that revealed orange maize to be an effective way of reducing vitamin A deficiency in young children, which globally causes 500,000 to go blind each year. HarvestPlus has supplied 10,000 farming households in Zambia with orange maize, supported by government recognition of the value of biofortification in its National Food and Nutrition Strategic plan.
Born out of the Drought Tolerant Maize for Africa (DTMA) Initiative and other CIMMYT-Africa maize projects, the Drought Tolerant Maize for Africa Seed Scaling (DTMASS) project will improve the demand for and availability of high-quality, affordable, certified seed of drought-tolerant maize varieties for small-scale farmers across eastern and southern Africa.
“DTMASS aims to produce close to 12,000 tons of certified seed of drought-tolerant maize varieties by the end of its fifth year,” said Tsedeke Abate, DTMA project leader who will also lead DTMASS, speaking at the Uganda launch of the project in Kampala on 4 February. “This will benefit approximately 2.5 million people through the increased production and productivity of maize and the adoption of improved certified seed.”
According to Abate, DTMASS will strengthen the formal seed system, thereby reducing counterfeit seed use, lowering the risk of seed-borne maize diseases and helping to maintain productivity as climates change.
Working in Ethiopia, Kenya, Malawi, Mozambique, Tanzania, Uganda and Zambia, DTMASS will encourage cross-country learning and collaboration, Abate explained: “We have the knowledge and technology – what remains is translating knowledge to action.”
DTMASS countries account for 41 percent of maize area and production, and over 252 million people in sub-Saharan Africa.
A pillar of the project will be its strong partnerships with private and public seed companies, community-based organizations, non-governmental organizations and national extension systems. Fifty-three seed companies have already agreed to produce seed of 71 drought-tolerant varieties.
These partnerships enable increased and improved certified seed to reach small-scale farmers, increase farm production and enhance productivity, according to Dr. Imelda Kashaija, deputy director at Uganda’s National Agricultural Research Organization (NARO). “This project is at the right place at the right time,” she said.
DTMASS launched officially on 17-18 November 2014 in Addis Ababa, Ethiopia. The goal for Uganda in 2015 is to produce 1,800 tons of improved maize seed.
Malnutrition and micronutrient deficiency, which can cause blindness and stunting, increased infant and maternal mortality and lower IQs, are at epidemic levels in some parts of Asia. People across Asia depend on maize, rice and wheat but they do not fulfil daily dietary requirements and are deficient in vitamin A and essential micronutrients such as iron and zinc.
Biofortified maize varieties have been bred to include considerably high concentrations of essential micronutrients. Maize in Asia is largely used for feed, but direct human consumption is increasing. Scientists at the 12th Asian Maize Conference highlighted several collaborative interventions to utilize the genetic variability in maize for the development of biofortified maize. Promoting biofortified maize in rural areas and developing new food products has been part of this research. The nutritional benefits of biofortified maize can come directly from eating the crop itself or indirectly by consuming eggs from hens that are fed with provitamin A ProVA-enriched maize. Biofortified maize use for feed may also represent economic benefits for farmers.
Breeding efforts in Asia are currently focused on quality protein maize (QPM) and ProVA-enriched varieties. QPM was first developed by former CIMMYT scientists and World Food Prize Laureates Dr. Evangelina Villegas and Dr. Surinder Vasal. CIMMYT QPM inbred lines have been used in several breeding programs in China, India, Vietnam and elsewhere.
Joint efforts between CIMMYT and numerous partner scientists under HarvestPlus have shown that breeding for increased concentrations of ProVA is especially promising because of the genetic variation available in maize germplasm. New hybrids released in 2012 in Zambia showed ProVA levels 400 percent higher than common yellow maize, with the potential to bring widespread health benefits.
The Effective Grain Storage for Sustainable Livelihoods of African Farmers Project (EGSP) Phase II is conducting a study to help understand gender dynamics in maize post-harvest management in Kenya, Malawi, Zambia and Zimbabwe. The results of the study, Gender Analysis for Maize Post Harvest Management, will guide the project implementation team to develop a strategy that will ensure equitable processes and outcomes for men and women farmers in target communities.
Maureen Shuma, a research assistant with the study leads a discussion with female participants in Shamva, Zimbabwe. Photos: Wandera Ojanji
Vongai Kandiwa, CIMMYT gender specialist and the study team leader, spoke of the need to understand how cultural norms such as gender roles and rights influence patterns of access to and control of the metal silos, Super Grainbags and other resources. “The study will help the project team to develop a better understanding of the communities in which EGSP II is implemented. It will also help improve the team’s capacity to develop strategies to foster gender equality and anticipate unintended negative outcomes for particular groups in communities,” Vongai said.
Vongai said the study will help the project team in four ways: First, at the household level, a gender analysis will reveal the roles that men, women and youth play in post-harvest management, as well as technology preferences, aspirations and constraints.
Vongai Kandiwa (left), CIMMYT gender specialist, and Sunungurai Chingarande, the study team leader for Zimbabwe, lead a focus group discussion with men.
Second, a gender analysis at the technology design level will help the project team to understand metal silo artisans’ capacity to develop and implement strategies that ensure both business growth and equitable access across different social groups, including women.
Third, CIMMYT collaborates with many partners such as NGOs in disseminating and testing improved post-harvest technologies. A gender analysis will reveal evidence on the capacity of partners to carry out gender-responsive technology and information dissemination activities.
Lastly, the study will reveal existing knowledge and knowledge gaps on gender in post-harvest management and how they might be filled.
The gender analysis study draws on survey data as well as qualitative data. Part of the qualitative data is collected through sex-disaggregated focus group discussions. Vongai said those discussions open up possibilities and space for amplifying women’s voices because issues of post-harvest, especially grain management and control, are inherently influenced by household power relations. Moreover, technology preferences are seldom gender-neutral.
EGSP-II (2012-2016) builds on the previous phase (2008-2011) and aims to improve food security and reduce the vulnerability of resource-poor farmers – particularly women – in Eastern and Southern Africa through the dissemination of effective grain storage technology. The project is funded by the Swiss Agency for Development and Cooperation (SDC) and will help smallholder farmers in Kenya, Malawi, Zambia and Zimbabwe acquire more than 16,000 metal silos and 24,000 Super Grainbags, which will reduce grain losses from storage pests.
Afriseeds´ David Lungu displays a cob of the company’s maize at an outgrower’s farm in Chongwe, Zambia. Photos: Florence Sipalla
Seed companies play an important role in providing smallholder farmers access to improved seed.
CIMMYT’s breeding and seed systems teams have been supporting Afriseed – a brand produced under the flagship of Stewards Globe Limited – to build its product offering and give farmers more options. The company has recently added high-yielding, drought-tolerant maize hybrids (GV635 and GV638) to its portfolio, which includes open-pollinated varieties (OPVs) and legumes such as beans, cowpeas, groundnuts and soybeans. Stewards Globe has received technical assistance through the CIMMYT-led Drought Tolerant Maize for Africa (DTMA) and Sustainable Intensification of Maize-Legume Systems for the Eastern Province of Zambia (SIMLEZA) projects.
“We don’t have a breeding program, and we need the partnership until we are big enough to develop one,” said Stephanie Angomwile, the acting chief executive officer at Stewards Globe, which has been working with the Alliance for a Green Revolution in Africa (AGRA) since 2010. Both AGRA and DTMA are funded by the Bill & Melinda Gates Foundation (B&MGF), while SIMLEZA is funded by the United States Agency for International Development (USAID).
CIMMYT seed systems specialist Peter Setimela has a discussion with Stewards Globe acting chief executive officer Stephanie Angomwile, center, and production manager Emma Sekelechi at the Agriseeds production field on the outskirts of Lusaka, Zambia.
Afriseed production manager Emma Sekelechi got practical training on seed production and hand-pollination techniques during a visit to the CIMMYT-Harare research station in Zimbabwe, where she learned how to synchronize the flowering dates of the male and female parents. The training is important because the company is now making the transition from growing OPVs to hybrids, and hybrid production needs more technical skills than OPV production does. She also attended a weeklong training session for maize technicians held at the Natural Resources Development College (NRDC) in Lusaka, Zambia, supported by DTMA and SIMLEZA projects.
Afriseed works with approximately 170 smallholder farmers on contract to multiply seed, but it is exploring the option of working with fewer farmers who have larger plots of land. “On-farm cleaning and storage of seed” are challenges, Angomwile said. The company is working on an aggressive marketing drive to popularize the new varieties through demonstration plots, providing demonstration packs (100 grams each), working with more agro dealers and holding field days for farmers to evaluate the crops. “Fake seed will not give you anything,” Afriseed marketing manager Mike Chungu told the farmers. “Use seed that comes from a reputable dealer and is approved by the Seed Control and Certification Institute (SCCI).”
The Effective Grain Storage for Sustainable Livelihoods of African Farmers Project (EGSP) Phase-II held a series of field days in Malawi and Zambia to raise awareness and demonstrate the efficacy of metal silos in protecting stored grains against weevils and larger grain borers – the two most destructive storage insect pests of maize. The project is funded by the Swiss Agency for Development and Cooperation (SDC).
Farmers feel properly stored grain from a metal silo during the field day at Banda Jessy’s farm in Chimtende Camp, Katete District, Zambia. Photos: Wandera Ojanji
During the events, farmers compared the good-quality grain stored in a silo to the damaged grain stored in traditional structures and gunny bags. Artisans and extension officers also demonstrated the proper use and handling of a metal silo. The first field day was held on 8 April at Banda Jessy’s farm in Chimtende Camp, Katete District, Eastern Province, Zambia. More than 160 farmers, metal silo artisans, agricultural officers and local leaders attended the event.
Metal silos have many benefits, said Dolan Mulumbu, Chimtende camp officer. They have the ability to store grain for many years without damage, don’t require insecticides, are portable and are insect- and rodent-proof. They also give farmers flexibility on when to sell their grain and allow them to store grain for their families. Greyson Phiri, Sambira Village headman, thanked CIMMYT for bringing the metal silo technology to farmers.
The second field day in Zambia was held on 9 April at Peter Mwanza’s homestead in the Kamlaza Agricultural Camp, Chipata District, Eastern Province. The field day was attended by more than 270 farmers from the camp. Most farmers in the area sell their grain immediately after harvest for fear of it being destroyed by post-harvest pests.
Moffat Khosa, of the Zambian Ministry of Agriculture’s Department of Mechanization, urged farmers to adopt the technology to help them avoid selling their grain immediately after harvest – when the prices average US$ 10 per 50 kilogram bag – and sell at a higher price later in the season. He challenged farmers to invest in post-harvest technologies as much as they are investing in other farm inputs, such as seed and fertilizer.
Chilese Mabengwa and Zidana Mbewe, district extension officers for Katete and Chipata, respectively, demonstrate proper use and handing of metal silos during the field day at Banda Jessy’s farm in Chimtende Camp, Katete District, Zambia.
More than 240 farmers attended the third field day on 11 April at Frank Renadi’s farm in Kapsala Village, Chigonti Extension Planning Area, Lilongwe District, Malawi. It was attended by Wilfred Lipita, controller of Agriculture Extension and Technical Services; Godfrey Ching’oma, director of Crop Development; his deputy, Bartholomew Ngauma; Penjani Theu, program manager, Lilongwe Agricultural Development Division; district development officers from Lilongwe and Mchinji; and local leaders from Chigothi. Lipita urged farmers to take advantage of the 50-50 cost-sharing offer from the project to acquire metal silos, adding that those who cannot afford to pay 50 percent can opt for cheaper super grain bags.
The project intends to distribute 7,500 super grain bags to smallholder farmers in the Lilongwe and Mchinji districts for demonstration. “The crop in the field needs to be protected from maize weevils and larger grain borers, rodents and ambient moisture fluctuations,” Lipita said. “Where the crop has done well, there is need for farmers to jealously guard the crop so that there are no post-harvest losses.”
By Walter Mupangwa and Christian Thierfelder/CIMMYT
The quiet Khokwe village in the Chanje Central Block in Chipata district, Zambia, was buzzing with activity on 2 April when six traditional chiefs visited the Sustainable Intensification of Maize-Legume Systems for the Eastern Province of Zambia-Africa Rising (SIMLEZA-Africa Rising) project.
Traditional leaders in African societies hold deep-rooted power in the communities, make important decisions on land use and distribution and guide villagers in times of change and uncertainty. Smallholder farmers in the Eastern Province face high labor costs and low labor availability and are confronted with the negative effects of climate variability, which require climate-resilient, low-cost alternatives to improve farm productivity. Conservation agriculture (CA)- based management practices, combined with drought-tolerant maize varieties, as suggested by SIMLEZA-Africa Rising, can reduce production costs and improve resource-use efficiency, productivity and profitability. Farmers from communities surrounding Khokwe warmly welcomed the six chiefs drawn from Chewa- and Tumbuka-speaking tribes of eastern Zambia.
CIMMYT’s Walter Mupangwa explains how the animal-drawn direct seeder works while Duncan Tembo of Agro-Chemicals shows the chiefs the different herbicides and pesticides available to farmers.
Nyao traditional dancers known as “Gule Wankulu” and Ngoni dancers also joined the farmers in welcoming and entertaining the chiefs, who were accompanied by two representatives from the Ministry of Chiefs Affairs, village headmen, councilors and officers from the District Agricultural Coordinator’s Office (DACO). They were invited by the SIMLEZA-Africa Rising project team with representatives from CIMMYT, community agricultural committees, the International Institute of Tropical Agriculture (IITA), the Ministry of Agriculture and Livestock (MAL), the National Agricultural Information Service (NAIS), Total LandCare (TLC) and the Zambia Agricultural Research Institute (ZARI). SIMLEZA-Africa Rising is funded by USAID-Feed the Future. The chiefs visited trial sites in Khokwe, including a maize regional on-farm trial.
Farmers are directly involved in selecting the best maize varieties from the 20 that are being tested, which was emphasized in explaining participatory varietal selection. Most crops appeared stressed by drought, as the area had not received any rain for one month. ‘’These varieties are really drought-tolerant,’’ remarked Chief Magodi as participants left the maize regional on-farm trial to visit a maize mother-baby trial, where 12 drought-tolerant maize varieties are being tested. At the CA trial, the chiefs studied maize crops planted under zero tillage in rotation or intercropped with cowpeas.
The chiefs observed that maize in the ridge and furrow system was severely moisture-stressed while maize on the CA plots was still green and growing well. ‘’I never knew that there are such activities happening in our district,’’ exclaimed Chief Misholo from the Chiparamba block in Chipata district, adding that the visit was an “eye-opener” for him.
Chiefs wearing yellow and white SIMLEZA-Africa Rising T-shirts and caps visit a conservation agriculture field during a tour of SIMLEZA-Africa Rising project. Photos: Walter Mupangwa
CIMMYT’s Walter Mupangwa highlighted environmentally-friendly products used on CA fields and the procedures farmers should follow when using herbicides. for weed control. Next to the CA field, new animal traction seeding equipment was showcased, including the animal traction direct seeder, Magoye ripper tines and a hand-held no-till planter. An agro-dealer from ATS Agro-Chemicals, part of the SIMLEZA-Africa Rising innovation network, displayed the herbicides and pesticides available for smallholder farmers in the region. Farmers were keen on interacting with the traditional leaders on farming-related issues. Main discussion points included the need to improve market links and information flow for soybean and maize crops.
Chief Mban’gombe encouraged farmers to diversify the crops they grow in the face of low prices for maize. The chiefs strongly advocated for SIMLEZA-Africa Rising to set up trials in their areas to help disseminate technology to more farming households within their jurisdiction. The chiefs’ visit is a major breakthrough for the SIMLEZA-Africa Rising project. The support of traditional leaders is a main driver of change toward more sustainable intensification.
Regular training sessions are a key component of capacity building for partners CIMMYT works with in breeding and seed systems. On 24-27 March, 28 maize technicians, including 10 women, participated in a week-long training program at the Natural Resources Development College (NRDC) in Lusaka, Zambia. A joint seed systems, breeding and seed business development team from the CIMMYT-Southern Africa Regional Office in Harare and staff from the Zambia Research Institute (ZARI) conducted the training.
CIMMYT breeder Cosmos Magorokosho explains pollination to participants at the Zambian Agricultural Research Institute in Lusaka. Photo: Peter Setimela
The participants were drawn from selected seed companies and various government units in the Ministry of Agriculture (MoA). The course was supported by two CIMMYT projects, Drought Tolerant Maize for Africa (DTMA) and Sustainable Intensification of Maize- Legume Systems for the Eastern Province of Zambia (SIMLEZA), in collaboration with ZARI. The training gave the participants insights into key processes in germplasm development using conventional and molecular tools, variety testing and release, seed production and seed business development. Emphasis was given to new phenotyping tools, the importance of trial uniformity and good agronomic management. Course organizers include Kambamba Mwansa, Zambian maize coordinator, and Franscico Miti from ZARI, the MoA and CIMMYT’s Peter Setimela, Cosmos Magorokosho, Kennedy Lweya, Zaman-Allah Mainassara and Obert Randi.
The Insect Resistant Maize for Africa (IRMA) project received praise for significant progress on field and post-harvest insect pest research at its conclusion last month.
“Several new maize hybrids and open pollinated varieties with substantial insect resistance have been produced that will greatly benefit maize growers in eastern and southern Africa,” said Mike Robinson, program officer for the Syngenta Foundation for Sustainable Agriculture (SFSA) at the IRMA End-of-Project Conference in Nairobi, Kenya, from 24-26 February. Robinson congratulated CIMMYT and project partners and wished the participating organizations continued success. The purpose of the conference was to share experiences, achievements and lessons from IRMA III and discuss future prospects in the release, dissemination and use of insect-resistant maize in eastern and southern Africa.
It drew more than 80 participants from CIMMYT, national agricultural research systems, national universities, donors and the seed industry. The Developing Maize Resistant to Stem Borer and Storage Insect Pests for Eastern and Southern Africa project, known as IRMA III Conventional Project 2009-2013, was managed by CIMMYT and funded by SFSA. Building on progress and breakthroughs of IRMA I and II, IRMA III contributed to food security by developing and availing field and post-harvest insect-resistant maize varieties in Ethiopia, Kenya, Malawi, Mozambique, Tanzania, Uganda, Zambia and Zimbabwe.
(Photo: Wandera Ojanji)
Collectively, these countries produce about 26 million tons and consume 32 million tons of maize annually. Relatively low maize productivity in the countries – about 1.3 tons per hectare (t/ha) compared to 4.9 t/ha worldwide – can be attributed in part to stem borers, according to Stephen Mugo, CIMMYT principal scientist and IRMA project leader. Stem borers destroy as much as 15 percent of maize crops, while maize weevils and the larger grain borer destroy 20 to 30 percent of harvested maize. Hugo De Groote, CIMMYT economist, estimated the losses from stem borers at 13.5 percent, or 4 million tons, and those from storage pests at 11.2 percent, or 3.5 million tons, with the total value of these losses estimated at just over US$1 billion in the region. “Addressing the challenges that farmers face in producing and storing maize is vital to the future food security of the region,” Robinson said. “Minimizing such losses in an economically sustainable way will significantly contribute to nutrition and food security.”
IRMA III addressed these challenges through identification and commercial release of major insect-resistant maize cultivars; identification of new germplasm sources of resistance to stem borer and post-harvest insect pests among landraces, open pollinated varieties (OPVs) and CIMMYT lines (CMLs); and development of new insect-resistant germplasm. Kenya released 13 stem borer-resistant (SBR) conventional maize varieties (three OPVs and 10 hybrids) and four storage pest-resistant (SPR) hybrids. Kenya has also nominated nearly 10 stem borer- and four postharvest- resistant hybrids to national performance trials.
Three insect-resistant varieties —two hybrids (KH 414-1 SBR and KH 414-4 SBR) and one OPV (Pamuka) – were commercialized in Kenya by Monsanto, Wakala Seeds and the Kenya Agricultural Research Institute Seed Unit. De Groote estimated the annual value of project benefits at between US$ 19 million and US$ 388 million. He put the benefit-cost ratio at 94 in the optimistic scenario, meaning that for each dollar the project spent, farmers would gain 95, indicating very good returns.
“These results justify the important role that breeding for resistance could play in reducing maize losses, and the high potential returns to such programs in the future,” De Groote stated. Looking to the future, Mugo emphasized the need to ensure farmers have access to the insect-resistant varieties. “We must, from now on, engage in variety dissemination and commercialization of the new SBR and SPR varieties,” Mugo said. “We need a more targeted breeding program that incorporates drought, nitrogen use efficiency and maize lethal necrotic disease tolerance.”
Food security in Zambia is negatively affected by postharvest losses, said Chileshe Mulenga, permanent secretary of the country’s Eastern Province, at a training workshop for agricultural extension officers and agro-dealers on hermetic post-harvest technologies in Chipata, Zambia, on 29 January. “It is disheartening that, despite the successful efforts to increase crop production, low household food security and hunger still affect some of our people, due to a lack of effective storage,” Mulenga explained. “We must do everything possible to change this, as food security is a matter of national and regional security.”
Moffat Khosa (right) and an artisan demonstrate how to properly seal a metal silo using a rubber band. Photos: Wandera Ojanji/CIMMYT
Protecting harvested grain rather than using new land and chemical fertilizers to increase production also has economic and environment benefits, he said. “This project and training is therefore very important to us in Zambia because it focuses on the comparatively neglected storage aspect,” Mulenga said. “It is the first one of its kind and I wish it could have come at a much earlier time than now.”
The Effective Grain Storage for Sustainable Livelihoods of African Farmers Project (EGSP) Phase-II organized the workshop in collaboration with the Zambian Ministry of Agriculture. Building on the successes of the previous phase (2008-2011), EGSP-II (2012-2016) is improving food security and reducing the vulnerability of resource-poor farmers – particularly women farmers – in Eastern and Southern Africa through the dissemination of metal silos and super grain bags. The project is funded by the Swiss Agency for Development and Cooperation (SDC).
The goal of the training event was to impart knowledge and skills to extension staff and agro-dealers on managing metal silos and super grain bags, said Tadele Tefera, CIMMYT entomologist and coordinator of EGSP-II. It also raised awareness about the importance of correct post-harvest management of grain, helping extension workers and agro-dealers gain insights into different factors affecting post-harvest management.
Finally, participants learned about traditional and improved post-harvest technologies and their importance for reducing grain losses, and agro-dealers gained a greater appreciation regarding investment opportunities in the market or the technologies. “As agro-dealers, you already know that it is agriculture which is driving the economy of Eastern Province and all your businesses,” Mulenga said. “Your businesses can only grow as the farmers also grow. I therefore implore you, agro-dealers and extension staff, to use the knowledge and skills gained form this training to make these technologies available to farmers.”
Participants attend a hermetic post-harvest technologies training in Zambia.
The event drew more than 60 participants, including government extension officers, agro-dealers and artisans from Katete and Chipata Districts. Training facilitators included Tefera; Addis Tishome, CIMMYT entomologist; Jones Govereh, CIMMYT policy economist; Ivor Mukuka, EGSP national coordinator from the Zambia Agricultural Research Institute; and Moffat Khosa, of the Zambian Ministry of Agriculture’s Department of Mechanization.
Topics included grain storage technologies and practices; on-farm use and handling of metal silos; innovative agriculture extension systems, approaches and methodologies; and opportunity entrepreneurship and business sustainability. Kennedy Kanenga, provincial coordinator of Eastern Province, reminded the extension officers that their main job is to facilitate dissemination of information and appropriate technologies for improved agriculture.
He urged the project partners to take advantage of existing entry points to promote the adoption of the technology through agriculture camp committees, organized groups, lead farmers and institutions. He called for the formation of farmer field schools, holding field days and participation in agricultural shows to increase awareness and adoption of the technologies.
“With these strategies, we expect the adoption rates to improve,” he said. “We would like to see a situation where our farmers are keeping their grains in the metal silos for more than just a season and avoid a situation similar to the 2010-11 season when we had a bumper harvest but lost much of the grain during storage.”
CIMMYT researchers in eastern Zambia have discovered that farmers continue to grow land races alongside new, higher-yielding varieties as a risk-avoidance strategy. The Sustainable Intensification of Maize-Legume Systems for the Eastern Province of Zambia (SIMLEZA)- Africa Rising project, funded by the USAID Feed the Future Initiative, hosted a field tour for researchers and journalists at the end of January.
They visited on-station experiments at the Msekera research station and trials on farmer fields, including conservation agriculture, cowpea, maize and soy variety trials. The Katete District, bordering Mozambique, looks very different from last year’s field tour. In 2013, the trial plots featured green maize ready to tassel; this year, the plots have maize plants measuring 30cm. Maize in the trial plots was planted only a month ago due to the rainy season’s late start. Outside of the trial plots is maize as it commonly looks in Eastern Zambia; it varies in color, from dark green to yellow, and has an uneven crop stand.
SIMLEZA-Africa Rising staff, farmers and journalists visit a CA agronomy trial with hybrid maize in front of a field with dry-planted local maize in the Katete District, Eastern Zambia. Photo: Jens A. Andersson
Different planting dates and the levels and timing of fertilizer application are the major reasons for this variability. Among this variation one also observes very tall and already tasseling maize. These are low-yielding landraces that were dry-planted in October. Farmers will be able to harvest them in the next few weeks. Why would Zambian smallholder farmers plant low-yielding landraces when high-yielding, open-pollinated varieties (OPV) and hybrid varieties are available? The answer is usually sought at the household level; smallholder farmers are taken to prefer landraces for their taste and storability.
Yet, those reasons are only part of the answer. In Zambia, most farmers do grow and eat OPVs and hybrids. Certified seed is widely available from agrodealers and is distributed through the government’s Farm Input Subsidy Programme (FISP), which provides smallholders with a package of 100 kilograms (kg) of basal fertilizer, 100 kg of top dressing fertilizer and 10 kg of hybrid maize seed for a nominal price. In addition, the Zambian government has instituted a good market for maize. Its Food Reserve Agency (FRA) offers high prices and buys locally and has turned maize into a lucrative cash crop.
Zambian farmers have responded to these institutional changes; they dedicate larger plots to the cultivation of hybrid maize. The SIMLEZA-Africa Rising project builds on these changes; in addition to improving agronomic practices for maize and legume cultivation in Eastern Zambia, it introduces and demonstrates new maize varieties, including drought-tolerant maize hybrids. The project expands farmers’ options for increased maize production. Three new varieties were recently released while collaboration from seed companies ensures that farmers can access them for fair prices.
A recent survey by the project found that once farmers are aware of SIMLEZA maize varieties, nearly half cultivate them. Why do farmers in this part of rural Zambia continue to grow landraces next to high-yielding ones, instead of switching to high-yielding varieties altogether? For farmers in Kawalala village, it is about agronomic and institutional risks. Dry-planting is a gamble, as limited first rains may result in crop failure and necessitate replanting. Zambian farmers are therefore reluctant to use expensive seeds and fertilizer when dry-planting; they often only apply basal fertilizer after the maize has germinated. “We only plant certified seed with good rains; otherwise, you lose money,” explained farmer Gertrude Banda.
But the highly uneven maize crop stand in Kawalala is not merely a difference between early-planted, tallgrowing landraces and late-planted hybrids. Farmers also delayed planting hybrids on account of late payments by the FRA for last season’s crop; they lacked the cash to buy seeds and fertilizers in time. Others had to wait for the FISP input packages that were distributed late – even now, as their maize turns yellow, some farmers are still waiting for their FISP top dressing fertilizer.
With institutional risks such as late payment and input delivery, it is clear that there remains a niche for local maize varieties. But this niche may soon be filled by OPVs that cost less and produce greater yield, such as the MV409 variety, introduced by SIMLEZA-Africa Rising. OPVs do not require farmers to purchase new seed annually. New hybrid varieties may take time to be adopted by the majority of farmers, but farmers in Kawalala involved in the project are convinced that they will increasingly be grown.
The wide adoption of metal silos for grain storage by smallholder farmers in eastern and southern Africa requires the identification of policy gaps, incentives and disincentives and institutional partnerships, according to CIMMYT policy economist Jones Govereh.
Metal silos are effective long-term storage facilities, protecting grain from pests such as grain borers and maize weevils. While lauding the decision of some governments to reduce the corporate tax on farming from 30 percent to 25 percent in 2010, Govereh called on them to include galvanized metal sheets imported solely for grain storage silos under the tax exemptions in place for other agricultural imports. “Farmers are not going to realize the benefits of storage investments without proper policies in place,” Govereh said. “Governments in the region need marketing and storage policies that support a liberalized marketing environment and avoid a maize marketing monopoly, which distorts investments in storage technologies. We also need policies that facilitate better coordination of public-private operations to avoid overlaps and conflicts.”
Govereh spoke during the regional annual review and planning meeting of the Effective Grain Storage for Sustainable Livelihoods of African Farmers (EGSP) Phase-II Project held in Nairobi, Kenya, from 20-21 August. Building on the successes of the previous phase (2008-2011), EGSP-II (2012-2016) is improving food security and reducing the vulnerability of resourcepoor farmers – particularly women farmers – in eastern and southern Africa through the dissemination of metal silos. The project is funded by the Swiss Agency for Development and Cooperation (SDC). The annual review had three main objectives: to evaluate progress, achievements and challenges; to exchange ideas, information and research outputs among CIMMYT, SDC and other key partners; and to plan for the future.
The meeting was attended by implementing partners in Kenya, Malawi, Zambia and Zimbabwe, CIMMYT project staff and SDC representatives. The meeting allowed participants to share ideas and information on implementation, raise awareness on promotion and dissemination of effective grain storage technologies and consult stakeholders on effective post-harvest technologies, policy environment and market issues. The project also held exchange visits to Kenya and Malawi for key partners. Participants shared experiences on project implementation, learned about the project’s impact on smallholder farmers’ livelihoods and discussed challenges. Tadele Tefera, CIMMYT entomologist and project coordinator, praised national teams and partners for achieving research and dissemination targets for the year.
Jones Govereh speaks during a meeting.
Hugo De Groote, CIMMYT economist, said metal silos have a major impact on farmers’ livelihoods. Those who have not adopted the technology sell most of their maize at harvest (when prices are at their lowest because the supply is at its peak) while adopters sell much of their grain in the fifth month at higher prices, he said. Adopters stored their maize for two months longer than non-adopters and were food secure for one month longer. Vongai Kandiwa, CIMMYT gender and development specialist, noted the importance of mainstreaming gender in the project to minimize the risk of creating, maintaining or exacerbating gender gaps.
Stakeholders also reported several challenges, including an inadequate number of skilled and competent artisans with entrepreneurship skills; lack of fabrication materials; expensive materials; low awareness and knowledge of the technology; and inadequate extension services.To overcome these challenges, stakeholders agreed to boost awareness through promotional events, engage in capacity building of collaborators and strengthen the artisan network. Olaf Erenstein, director of CIMMYT’s Socioeconomics Program, thanked the implementing partners and other stakeholders for their dedication and commitment and SDC for its continued support.
Delegates stand with a modified metal silo at a workshop at the Baraka Agricultural College in Molo, Nakuru County, Kenya. Photos: Wandera Ojanji/CIMMYT
Officials from Malawi and Zambia learned about the benefits of effective grain storage for the livelihoods of smallholder farmers during a visit to Kenya from 7 to 12 October. Malawi and Zambia are target countries of CIMMYT’s Effective Grain Storage for Sustainable Livelihoods of African Farmers (EGSP) Phase II Project. EGSP-II (2012-2016) builds on the previous phase (2008-2011) to improve the food security and reduce the vulnerability of resource-poor farmers – particularly women – in eastern and southern Africa through the dissemination of effective grain storage technology. The project is funded by the Swiss Agency for Development and Cooperation (SDC) and will help smallholder farmers in Kenya, Malawi, Zambia and Zimbabwe acquire more than 16,000 metal silos, which reduce grain losses from storage pests.
The visiting delegation included officials from ministries of agriculture, the Chitedze Research Station in Malawi, the Zambia Agricultural Research Institute and silo artisans from the two EGSP countries. They were accompanied by implementing counterparts in Kenya from the Catholic Dioceses of Embu and Nakuru and the Kenya Agricultural Research Institute.
The tour started in Embu County in eastern Kenya with a visit to the homestead of Gladys Nthiga, a farmer who recently acquired two metals silos with a capacity of 450 kg each. She had not used the silos before but was excited to find technology to protect her harvests from maize weevils and the larger grain borer. “Despite treating my grains with pesticides, I was still losing about nearly half a ton of maize every year,” said Nthiga, whose annual maize harvest averages 1.8 tons. “If what I have been told about the technology is true, then my problems with these pests are over.” Peter Njiiru, the principal of Kierie Secondary School in Embu County, said he purchased a metal silo in June for maize storage and planned to add three more.
The delegation then visited Nakuru County. Grace Githui, the county liaison officer, noted that Nakuru is a primary maize-producing area and experiences high post-harvest losses due to smallholder farmers’ ineffective storage options. “We are very grateful to CIMMYT for introducing the metal silo technology in this area,” Githui said. “The silos’ effectiveness has been demonstrated against weevils and the larger grain borer, the two pests that are responsible for much of the county’s post-harvest losses. The silos provide enormous benefits to the farmers who have adopted them. We are urging widespread adoption and investing heavily to create awareness among farmers.” Maize is a major component of the diet in Kenyan schools.
Paddy Likhayo, an entomologist with KARI, explains to the delegation the on-station demonstration trials at the Nakuru Agricultural Technology Development Center. Photo: Wandera Ojanji/CIMMYT
Jane Obwocha, the deputy principal of Uhuru High School in Nakuru, noted the school avoids purchasing maize in bulk due to heavy losses during storage, a factor she attributed to poor storage facilities. “The metal silo is indeed a timely and critical intervention in maize storage as most schools, just like ours, lack effective storage facilities,” Obwocha said. The delegation also met with members of BOLESA, a group for women living with HIV/AIDS and former commercial sex workers under rehabilitation. The members, drawn from Boror, Lelechwet and Salgaa villages in Nakuru, are using a 900 kg-capacity metal silo acquired last year to store their maize. At Baraka Agricultural College, the delegation saw a new metal silo prototype that facilitates removing the grain stored.
The college has also started creating awareness about the technology and promotes it to farmers from Kenya and other parts of eastern Africa. The visiting delegates were impressed by the adoption of metal silos by farmers, grain dealers, vulnerable people, schools and colleges to protect their grain and avoid purchasing expensive storage chemicals. The visit also helped the delegates identify issues to address for successful project implementation.