Skip to main content

Location: Zambia

NSIMA: Seeding hope for smallholder farmers through partnerships

DSC_6274_loading-maize-seed-for-transportationTo achieve food security, smallholder farmers in Southern Africa require access to improved seed and inputs for higher yields. “Seed is one of the key movers in agricultural development,” says John MacRobert, New Seed Initiative for Maize in Southern Africa (NSIMA) leader, indicating the importance of going beyond developing improved seed varieties to encompass their dissemination, promotion, and adoption in developing strategies around seed development. These issues, together with NSIMA’s to date progress (the project is in its third phase) and strategies for the next phase, were discussed at a meeting in Lusaka, Zambia, during 7-9 August 2013. About 50 participants from institutions collaborating on the project led by CIMMYT and funded by the Swiss Agency for Development and Cooperation (SDC) were present; among them were representatives from national agricultural research institutes, seed companies, and institutions of higher learning from Angola, Botswana, Democratic Republic of the Congo, Lesotho, Malawi, Mozambique, Swaziland, South Africa, Zambia, and Zimbabwe.

“Some of the challenges of the maize crop can be addressed by research,” said Moses Mwale, Zambia Agricultural Research Institute (ZARI) director, during the opening ceremony. “The rest can be addressed by other players in the maize sector,” he added, emphasizing the importance of collaboration within the maize seed value chain. Challenges such as variable distribution of rainfall, low soil fertility, and heat and drought stress can be addressed by improved varieties from CIMMYT-led projects including the Drought Tolerant Maize for Africa (DTMA) and Improved Maize for African Soils (IMAS). Other climate-change related issues in small-scale farming could be confronted via conservation agriculture. For example, cover crops and crop residue left on the soil help to retain moisture and thus mitigate the impact of droughts.

DSC_6239_Seed-Cos-Edgar-Rupende-addressing-participantsBut do smallholder farmers have access to the new seeds, technologies, and information? The answer is often no. “Integrating stress tolerant maize and legumes, such as pigeon peas, beans, and cowpeas, leads to sustainable production systems. We need effective seed road maps to enhance access and availability of improved maize and legume seeds,” CIMMYT regional director for Southern Africa Mulugetta Mekuria said, giving an example of one such gap in the system.

Seed companies and community-based organizations producing seed play a very significant role in fixing these issues. Nelson Munyaka from the SDC Seeds and Markets Project spoke of the success of Zaka Superseeds, a nascent seed company that transformed from a community seed enterprise. MacRobert agreed: “In Benin and Congo, where we do not have seed companies, the community seed producers could learn from Zaka’s experience and grow into full-fledged seed businesses with the proper structures.” DTMA project leader Tsedeke Abate added that mainstreaming drought tolerant maize varieties in the product portfolio of seed enterprises could have a significant impact.

Policy makers in the seed value chain must be engaged as well. “Many projects do not seem to believe in smallholder ability,” said consultant Michael Jenrich. The policies that govern the seed trade tend to vary among the Southern African Development Community (SADC) countries. An SDC-funded initiative to implement harmonized seed laws in all SADC countries to facilitate easier intra-regional seed movement is currently under way. “So far, 10 countries have signed the memorandum of understanding,” said K C Kawonga, SADC Seed Centre interim coordinator. Such laws would enhance seed trade and contribute to food security by ensuring farmers’ access to improved seed, especially during times of disaster.

DSC_6338_plaque-for-Malawi“Private sector players steer away from smallholders viewing them as high risk because of their poor infrastructure, lack of credit, and land tenure, while governments may not view them as a viable investment,” Jenrich summarized the lack of interest in smallholders’ problems. Zaka Superseeds proves them wrong; cooperating with smallholders can, in fact, be beneficial for seed companies, as they can work more closely with the community consuming their seed. Zaka, for example, is removing a product from its selection after consultations with the community during which they found out the discussed maize variety has a long maturity period and is thus undesirable.

The meeting ended on a high note with the announcement of the 2012 DTMA Breeding and Dissemination Awards winners. Malawi won first prize for both categories; the breeding award runners-up were Zambia and Zimbabwe, and Zimbabwe also took second position in drought tolerant technologies dissemination.

Conservation agriculture: The Green Revolution for Africa?

SaidiThe Global Conservation Agriculture Program (GCAP) works closely with partners all over the world toward an ultimate vision of widespread use of sustainable systems by smallholder farmers, based on the principles of conservation agriculture (CA). Our key partner in Africa is the African Conservation Tillage Network (ACT). We asked their Executive Secretary, Saidi Mkomwa, about the current status and future of CA in Africa.

ACT was established in 1998. Has Africa seen a big change in CA adoption since then?

Mkomwa: The adoption rate isn’t very big, but we think it’s good. It took Brazil 17 years to get the first one million hectares under CA; it’s been a shorter time in Africa and we have almost reached one million hectares already. It is happening at a slower rate than we would want, but it’s getting there. We have seen partial adoption of CA principles across the continent. For example, during one of our exchange visits to Zambia, we met a woman – we nicknamed her Barefoot Woman – who had no shoes but she was rich and she was proud to be a farmer. She wasn’t practicing all three principles, only reduced tillage combined with some mechanization, but it’s a start.

Why do you think that CA is key in improving food security in Africa?

Mkomwa: The Green Revolution that has been so helpful in Asia has passed by and Africa has not benefited from it. We think it’s primarily because of the continent’s poor infrastructure: getting fertilizers to people is a problem because transportation is difficult; farmers don’t have cash and there are no banks to borrow from. But even when farmers can efficiently utilize fertilizers and improved seeds, their work is hampered by degraded soil, inadequate soil moisture, and inadequate access to water. For Africa to benefit, the soil has to improve. We believe that the Green Revolution in Africa has to start with smallholder rainfed farmers and CA is a possible intervention, more affordable than, for example, building irrigation schemes.

We have been promoting CA a lot by looking at the yields. A lot of people will ask how much the yield increase is. I’ll say that we should also be looking at the annual productivity of the land, annual productivity of labor. You can have a modest yield of 3 tons per hectare, but if you can have two crops in there instead of one, we’re looking at 6 tons per hectare per year in the end. This is affordable intensification. And it’s not only that: CA also increases the soil moisture retention, thus increasing annual productivity of the land and – through the use of crop residues – decreasing the dependency on external inputs, such as fertilizers, which farmers fail to acquire.

What are the biggest challenges you’re facing in your work?

Mkomwa: One is that people don’t know about CA. We organize a lot of awareness creation activities, from conferences to exchange visits. What makes this worse, though, is that many of our colleges are still training their graduates to work in conventional systems. We are telling people not to plough and the professors are training the next generation of extension staff to plough. We have established a community of practice of researchers and academia through which we try to sensitize the professors themselves so that they can change their curricula. Changing people’s mindset is another challenge. They have been farming a certain way all their lives and, all of a sudden, we come and tell them to do something different.

However, the challenges differ depending on the farming system and farmers’ resources. You cannot be prescriptive; you have to work with the farmers to create a solution relevant to them. In an agropastoralist system, you have to integrate livestock, although we have seen promoters of CA seeing livestock as a threat. In reality, livestock integration benefits the farming system; it can increase the value of our cereals: instead of taking grains to the market, you take milk or eggs. In West Africa, you literally can’t talk about leaving crop residues on the field as soil cover. People will think you’re crazy, since some of the crop residues have a higher value as livestock feed. Again, you have to look into alternatives, such as shrubs and trees.

Are there any downsides to CA?

Mkomwa: So far we have not encountered any. CA should create a win-win-win situation: provide more food for farmers, reverse environmental degradation, and arrest climate change for future generations.

Does the climate change argument help convince African farmers to adopt CA?

Mkomwa: It is one of the biggest promoters of CA. Farmers practicing CA have proven to their neighbors that they’re able to get some crop when conventional agriculture gets zero. Then we don’t need to say anything. The resilience of CA fields is much higher. The message is straightforward.

If I was an African smallholder farmer, how would you convince me to adopt CA?

Mkomwa: You’ve been farming for the last 40 years, can you tell me how far has this farming taken you? The reflection on how conventional farming has managed to feed farmers’ families is important: it has failed to feed them and they have to look at alternatives. And we’re offering one. But if you’re an African farmer, we should take you to your nearest neighbor who is doing well so that you can talk to them. If we talk to you as scientists or development workers, you might think we’re adding salt to the benefits. That’s the challenge we’re facing: having enough model farmers.

How is CIMMYT helping your work?

Mkomwa: CIMMYT is an important partner in capacity building and research. We don’t have a research system in place and GCAP is thus a great asset to our work. CIMMYT is also leading the ‘Farm power and conservation agriculture for sustainable intensification’ (FACASI) project. We are part of this project and as we see mechanization as one of the bottlenecks hindering CA adoption in Africa, it is a very valuable partnership. Furthermore, we are jointly organizing – with CIMMYT, FAO, and NEPAD – the upcoming Africa Congress on Conservation Agriculture (18-21 March 2014, Lusaka, Zambia). With farmers at the center of the Congress, we hope to hear about their problems and progress. We need them to move forward as we believe that an increase in CA adoption would have a great impact on food security on both national and continental level.

Curbing maize post-harvest losses continues

zambia2“Reducing post-harvest losses is key to increasing availability of food as it is not only important to increase domestic food production but also to protect what is produced by minimizing losses,” stated Zechariah Luhanga, Permanent Secretary, Provincial Administration at the Office of the President, Eastern Province, at the Provincial Stakeholders Workshop on Effective Grain Storage for Sustainable Livelihoods of African Farmers Project (EGSP-II) held in Chipata, Zambia, on 29 May 2013. “We as the key stakeholders and participants in the agricultural sector can enhance food security and improve incomes of resource poor farmers and artisans by promoting improved storage technologies such as metal silos and hermetic bags in Zambia.”

The workshop had five main objectives: (1) to provide a forum for exchange of ideas, information, and research outputs on EGSP-II among stakeholders in Chipata; (2) to raise awareness on post-harvest losses and dissemination of effective grain storage technologies among provincial stakeholders; (3) to consult provincial stakeholders on effective postharvest technologies, policy environment, and market issues for the purpose of refining, updating, and implementing EGSP-II; (4) to engage in policy dialogue on matters related to storage and find means of enhancing adoption of the technology; and (5) to acquaint key stakeholders in the province with the post-harvest technology and ways to enhance its adoption among farmers.

Maize suffers heavy post-harvest losses estimated at 20-30%. “The main underlying factor is that most of the small-scale farmers do not have access to improved storage facilities,” explains Tadele Tefera, CIMMYT entomologist and EGSP-II coordinator. Ivor Mukuka, EGSP national coordinator for Zambia, noted that since the larger grain borer was first found in Zambia in 1993, there have been sporadic outbreaks causing substantial losses in maize. “For instance, rapid loss assessments in Lundazi and Chama districts revealed losses ranging from 5-74%. Other studies indicate storage losses of between 45-90% based on farmers’ estimation,” he added.

Luhanga reminded participants that grain post-harvest management development requires active participation of all stakeholders, including government, research systems, non-governmental organizations, and the private sector in bringing the technologies to farmers’ doorsteps. “You need to make sure to set priority activities so that they address the challenges faced by smallholder farmers regarding maize grain post-harvest management, but also expand their opportunities in the maize sector,” Luhanga urged more than 50 stakeholders present in the meeting.

Besides post-harvest loss reduction, the metal silo technology provides huge business opportunities to artisans. “Engaging in metal silo fabrication and marketing can create jobs and rural enterprise development,” said Egbet Munganama, principal agricultural engineer at the Department of Mechanization, Ministry of Agriculture and Livestock, Zambia. According to Jones Govereh, EGSP policy analyst, artisans can earn over US$ 3,000 per year if they fabricates just five silos a month on average. “This is an attractive income for micro-entrepreneurs but commercially oriented entrepreneurs can earn much more,” he explained.

“Improved maize storage technologies have a great potential impact on food security as most households lose much of their maize due to poor storage facilities,” concluded CIMMYT principal economist Hugo De Groote, considering that maize is the major food crop in Zambia.

Tadele thanked the Swiss Agency for Development and Cooperation (SDC) for funding EGSP-II, a project aiming to reduce post-harvest losses, enhance food security, and improve incomes of resource-poor farmers in Zambia.

Extension personnel urged to lead by example in promoting metal silos

Metal-Silos5Agricultural extension service staff members in Zambia have been challenged to be the first adopters of metal silos to help promote the technology for effective grain storage. “I implore you, extension workers, to be the first adopters and users of the metal silo technology. As citizens that live side by side with farmers, go and be the first to practice what you will be preaching. You must lead by example,” stated Bert Mushala, the Permanent Secretary, Provincial Administration, Office of the President, Eastern Province, in a speech read on his behalf by his assistant Beenzu Chichuka at the official opening of the Improved Postharvest Management Training Workshop for Extension and Media Personnel held during 27- 28 May 2013 in Chipata, Zambia. “Farmers learn by seeing. Therefore, before they start using the metal silos, they want to see the chief executives, the business executives, extension workers, journalists, and other opinion leaders in the forefront, zealously storing maize in the metal silos,” he added.

The purpose of the training was to build technical capacity on hermetic grain storage technologies, such as metal silos and super grain bags, among extension and media staff in the project implementation districts of Chipata and Katete. The workshop intended to create awareness on the importance of grain post-harvest management, help gain insights into different factors affecting post-harvest management, and provide a better understanding of traditional and improved post-harvest technologies and their use in grain loss reduction, summarized Tadele Tefera, CIMMYT entomologist and the Effective Grain Storage for Sustainable Livelihoods of African Farmers Project (EGSP II) coordinator. Ivor Mukuka, EGSP national coordinator for Zambia and ZARI chief agricultural research officer, noted that this was part of the process of sharing information on EGSP as a means of promoting effective grain storage and thus helping smallholder farmers safely keep their grains for longer and sell when the time and price are right.

Reiterating the importance of the technology, Mushala noted that self-sufficiency in food grains in the country does not depend only on increased production and productivity, but also on minimizing losses both in the field and during storage. Over the years, supporting organizations and other partners, including the Ministry of Agriculture and Livestock, have poured colossal amounts of resources into the production component of the sector. “The resultant improved yield gains, especially in maize, have largely been wasted through post-harvest losses,” regretted Mushala, adding that “this project is therefore unique and outstanding to us in Zambia as it focuses on the comparatively neglected storage aspects. It is the first one of its kind and could not have come at a better time.”

Mushala then reminded the journalists that they had an enormous task of educating the masses on the new form of storage as many citizens, even in urban areas, are engaged in agriculture. “Go and empower the masses with this information so that together, we can reduce on-farm storage losses to zero,” Mushala urged the participants. Eastern Province Agriculture coordinator Obvious Kabinda called for commitment: “You must have confidence and belief in the technology if you are to successfully promote it to others.”

The messages did not get lost on the participants. “I have gained good knowledge of the technology and, like other trainees, will be using it to ensure that farmers are aware of its existence, have access to it, and are able to adopt the metal silos,” said Michelo Lubinda, a producer with the Zambia News and Information Services (ZANIS), confirming the usefulness of the workshop.

Tefera thanked the Zambia Agricultural Research Institute (ZARI) and the Ministry of Agriculture for their commitment in implementing the project in Zambia, and the Swiss Agency for Development and Cooperation (SDC) for funding the project.

The training was organized by CIMMYT, ZARI, and the Department of Mechanization, Ministry of Agriculture, and facilitated by Tefera, Mukuka, CIMMYT agricultural economist Hugo De Groote, EGSP policy economist Jones Govereh, and senior mechanization specialist Moffat Khosa and principal agricultural engineer Egbet Munganama from the Department of Mechanization Ministry of Agriculture, Zambia.

DTMA traveling workshop combines peer learning and evaluation

DSC_5209-Group-photo-at-trial-field-in-MozambiqueCovering 2,400 km, a multinational team toured Drought Tolerant Maize in Africa (DTMA) trial and demonstration plots in Malawi, Mozambique, Zambia, and Zimbabwe from 21–30 April in a traveling workshop that combined peer learning and project monitoring and evaluation. The team of 17 was made up of breeders from the national programs, DTMA scientists, and DTMA Advisory Board Chair Dave Westphal. Participants had the opportunity to compare notes, gain new knowledge based on the experiences of colleagues in other countries, and gauge themselves against their peers based on practical, real-life results. “Having a diverse group like this is very educational,” said DTMA Seed Systems Objective Leader John MacRobert.

DTMA addresses a real need in the region: “Drought is part and parcel of our farming systems,” said Zamseed veteran breeder Verma Bhoola when he hosted the team at the company’s farm. “Over 90% of maize grown in Zambia is rainfed, so prone to drought,” he said, emphasizing the importance of breeding for drought tolerance not only in Zambia but also in the rest of Africa, where most maize farming depends on rain patterns that are increasingly unpredictable as a result of climate change. “Twenty-five percent of maize production in Africa is threatened by frequent drought, while 40% is affected by occasional drought,” said DTMA project leader Tsedeke Abate during a feedback session at the end of the workshop.

The project is making significant strides. “We are on track in terms of overall production of drought-tolerant maize seed,” said Abate. More than 100 varieties have been released in 13 countries. “Zimbabwe is leading in seed production, with over 7,000 metric tons of drought-tolerant seeds produced by the end of 2012,” he said.

The tour ended with awards for the top-performing teams in breeding and dissemination. Malawi won top honors in both categories, for the trial plots at the research station and a well-managed demonstration plot in Mkanda Village, on the outskirts of Lilongwe, run by the Vibrant Mkanda Women’s Group. “This really demonstrates what DTMA is doing in partnership with the seed companies and national programs,” said Westphal. DTMA aims to produce and market 70,000 tons of seed annually by 2016.

Swiss Ambassador visits CIMMYT-Harare

Physiologist Jill Cairns talks about climate change with the Swiss Ambassador.
Physiologist Jill Cairns talks about climate
change with the Swiss Ambassador.

The Ambassador of Switzerland to Angola, Malawi, Zambia, and Zimbabwe, Luciano Lavizzari, accompanied by the Swiss Agency for Development and Cooperation (SDC) Food Security program officer for Zimbabwe Mkhululi Ngwenya, visited the CIMMYT Regional office for Southern Africa in Harare, Zimbabwe, on 23 April 2013. The CIMMYT-Harare staff provided a tour around the facilities and briefed them on CIMMYT’s work on food security geared towards finding solutions to challenges faced by farmers.

In the beginning of the visit, CIMMYT physiologist Jill Cairns discussed the issue of climate change. “As a result of climate change, the seasons are going to be much shorter,” explained Cairns, adding that in a region with the lowest maize yields globally, a lot more effort is required to deploy germplasm and farming systems adapted to respond to constraints in the region. Cairns discussed the work done by CIMMYT scientists in countering stresses such as low nitrogen, drought, and heat stress along the maize breeding pipeline from population development, pedigree breeding, to regional and on-farm trials in over 100 diverse locations. She also covered the phenotyping tools used in the research work and highlighted research gains in maize yields, many of which result from highly drought-tolerant maize lines and improved efficiencies of maize breeding pipeline in Eastern and Southern Africa.

John MacRobert, seed systems specialist, highlighted the importance of harmonizing seed systems in the region. “Some countries, like Zimbabwe, have very well developed seed sectors, while others are largely informal,” MacRobert said, stressing the negative consequences this may have on farmers. He then explained the importance of on-farm trials in incorporating farmer preferences such as grain texture in breeding work, using the example of SDC-funded New Seed Initiative for Maize in Southern Africa (NSIMA), a project whose acronym is fashioned after a popular maize staple dish in Zambia and Malawi known as nsima: “NSIMA targets a subset of smallholder farmers who consume the maize that they grow.” MacRobert also highlighted collaboration with other SDC projects whose seed systems encourage community-based seed companies targeting smallholder farmers.

Next on the agenda was conservation agriculture covered by agronomist Christian Thierfelder. “It is crucial to link improved varieties with the best management practices to ensure the sustainability of the cropping system,” stressed Thierfelder who then went on to demonstrate a range of sowing equipment from a stick to animal traction planters used in conservation agriculture.

Seed systems specialist Peter Setimela explains the importance of regional on-farm trials to the Swiss Ambassador Luciano Lavizzari (middle) and SDC Food Security program officer for Zimbabwe Mkhululi Ngwenya.
Seed systems specialist Peter Setimela explains the importance of regional on-farm trials to the Swiss Ambassador Luciano Lavizzari (middle) and SDC Food Security program officer for Zimbabwe Mkhululi Ngwenya.

Socioeconomist Girma T. Kassie turned attention to the consequences of lack of funding for smallholder farmers. For example, lack of funding programs to help the smallholder farmers acquire equipment limits uptake of improved planting practices. “Research on the impact of improved technologies aimed at improving livelihoods of smallholder farmers can help identify the gaps in technology transfer,” he added. Afterwards, the visitors toured CIMMYT trials where they observed the discussed technologies in the field.

CIMMYT has had a long-standing relationship with Switzerland through SDC, which currently funds several CIMMYT projects geared towards improving food security of smallholder farmers in East and Southern Africa. The projects, focusing on post-harvest losses reduction, conservation agriculture, and improved seed systems, include the Effective Grain Storage Project (EGSP), Seeds and Markets Project (SAMP), Harmonized Seed Security Project (HaSSP), and NSIMA. In addition, the SDC funds the ‘SDC-Junior Professional Officer’ supporting agronomist Stephanie Cheesman at the Global Conservation Agriculture Program team. CIMMYT highly appreciates the continued support from the Swiss government through SDC.

Successful partners’ day at CIMMYT-Harare showcasing research work

The value of CIMMYT’s research work is enhanced through partnerships supporting the development and dissemination of new maize production technologies. To encourage this collaboration, the CIMMYT Southern Africa regional office in Harare, Zimbabwe, holds an annual event during which stakeholders from the ministries of agriculture, academic institutions, seed companies, and donor representatives tour field trials and get acquainted with the station’s research outputs.

On 05 April 2013, the Australian ambassador Matthew Neuhaus together with donor representatives from the European Union, AusAID, and the Swiss Agency for Development and Cooperation joined stakeholders from Zimbabwe, Mozambique, Lesotho, Swaziland, South Africa, and the Democratic Republic of the Congo for a successful partners’ day. Over 200 visitors explored CIMMYT fields, observed various products on the maize breeding pipeline such as trials on drought tolerance, nitrogen use efficiency, and demonstrations on conservation agriculture. Visitors also learned about small-scale farm mechanization for conservation agriculture and management of post-harvest losses through the use of metal silos.

During the field tour, it was evident that CIMMYT is incorporating legumes into maize production systems. This not only includes cover crop that contributes to nitrogen fixing but also grain legumes to improve diversity in the farming households’ nutrition. “CIMMYT is keen to see farmers gain more yield per unit area as opposed to having them increase the acreage under maize,” explained Mulugetta Mekuria, regional liaison officer for southern Africa. “When the maize yield is increased on a small portion of the land, the family can then use the rest of the land to grow high value crops such as pigeon peas that are being successfully exported to India from Mozambique and Tanzania,” he added.

Nutrition was a topic of other parts of the partners’ day as well. Farmers in most of the African continent prefer white maize but where diets are predominantly based on maize, especially with weaned infants, nutritional deficiencies may arise. Two exciting options for overcoming such nutritional deficiencies are quality protein maize (QPM) and vitamin A maize (also called orange maize). The QPM varieties have increased amounts of the essential amino acids lysine and tryptophan thereby enhancing the protein quality of maize and contribute to reducing malnutrition that is often seen in children under five years of age who are commonly weaned on maize porridge. “The mothers may not be able to ensure their children’s nutrition needs with the food they currently have,” said seed systems specialist John MacRobert, as he explained the benefits of QPM varieties. The orange maize has improved levels of pro-vitamin A and may help in alleviating vitamin A deficiency. Two varieties have been released in Zambia and two are in pre-release in Zimbabwe. During the tour, seed company representatives were encouraged to identify pre-release materials in which they may be interested.

The tour elicited a lot of interest from the participants who engaged the scientists in discussions, asked questions, and commented on the benefits of new technologies. Kgotso Madisa, an extension officer from Botswana’s Ministry of Agriculture, highlighted the value of nitrogen use efficient maize for farmers who cannot afford to apply the recommended fertilizer doses. “Most of our smallholder farmers are resource poor, these varieties would be of benefit to them,” said Madisa with reference to the hybrids developed under the Improved Maize for African Soils (IMAS) project.

ArsĂ©nio Mutatisse from Mozambique’s Higher Polytechnic Institute of Manica confessed that he had been skeptical about conservation agriculture before the event. However, after hearing agronomist Christian Thierfelder explain how to implement conservation agriculture successfully and after observing the trial, Mutatisse said he was convinced about its benefits. “This event was really helpful for us to see how the varieties perform in trials as we work closely with CIMMYT to ensure they get to the farmers,” said Helene Dinova Nsolani, leader of a group of community seed producers in the Democratic Republic of the Congo.

The partners’ day was made possible through the help of CIMMYT’s national staff and intern students working at the station. Thanks to training provided by the regional office, the students have all the necessary knowledge and were thus instrumental in explaining the technologies on display. “We do capacity building to ensure that whenever we move on, we have people to continue with the breeding work,” explained maize breeder Cosmos Magorokosho.

DSC_3920The field day was followed by a feedback session and a technical seminar on the maize lethal necrosis (MLN) disease that has emerged recently in East Africa. During the seminar presented by Magorokosho and MacRobert, principal director of the Department of Agriculture Research Services Danisile Hikwa expressed her appreciation to CIMMYT for its efforts to develop MLN resistant varieties.

Provitamin A biofortified orange maize reaches farmers in Zambia

provitaminaA_HarvestPlusWith over 50% of Zambian children under five vitamin A deficient, Zambia faces a major public health problem. This has resulted in several government intervention programs including vitamin A supplementation and sugar fortification, efforts which will soon be complemented by the release of three orange maize hybrids with higher levels of provitamin A carotenoids (compounds converted to vitamin A when consumed) developed by CIMMYT in collaboration with the Zambia Agriculture Research Institute (ZARI) and funded by HarvestPlus.

The release, dissemination, and promotion plans of these new hybrids were discussed during 18-21 March 2013 when the HarvestPlus maize project held its 10th planning and review meeting in Lusaka, Zambia. The meeting was co-organized by CIMMYT and HarvestPlus and attended by experts from various disciplines including nutritionists, biochemists, biologists, social scientists, public health specialists, and crop development experts from Zambia and other countries in sub-Saharan Africa. CIMMYT was represented by scientists Kevin Pixley and Thanda Dhliwayo.

The first days of the meeting focused on knowledge sharing, identification of gaps in the development and dissemination of provitamin A maize, and lessons learned from the Zambian experience as the project plans to expand to other countries in the region. On 20 March participants visited a ZamSeed seed production site where one of the hybrids is being multiplied, an orange maize demonstration plot, and a provitamin A maize testing site at SeedCo Zambia. Later, they visited the Sibuyunji Agricultural Camp in the Sibuyunji District where farmers shared their thoughts on provitamin A orange maize. “We are very happy to have orange maize as an option to avert vitamin A deficiency in our children,” said a farmer growing one of the orange maize varieties. Taking advantage of the farmer-expert interactions, the day ended with a question-and-answer session between the farmers and the multidisciplinary expert team. The questions ranged from agronomy and orange maize production to its nutritional benefits.

The last day of the meeting was devoted to country presentations and the project’s expansion plans. It was also announced that after 10 years of dedicated culminating in the release of the 3 varieties in Zambia, Kevin Pixley would be unable to continue as HarvestPlus maize crop leader due to his appointment as CIMMYT Genetic Resources Director. Thanda Dhliwayo (CIMMYT) and Abebe Menkir (IITA) will co-lead the maize crop activities for HarvestPlus effective immediately.

SIMLESA progressing and gearing up for Phase II

IMG_0883Over 200 researchers, policy makers, donors, seed companies, and NGO representatives from Africa and Australia gathered in Chimoio, Mozambique, during 17-23 March 2013 for the third SIMLESA (Sustainable Intensification of Maize-Legume Systems for Food Security in Eastern and Southern Africa) annual regional planning and review meeting to discuss the project’s progress and achievements, share lessons learned throughout the last three years, and deliberate over better ways to design and implement future activities in the SIMLESA target (Ethiopia, Kenya, Tanzania, Malawi, and Mozambique) and spillover countries (Botswana, Uganda, South Sudan, and Zambia).

“SIMLESA had attained a ‘steady flight path’ and is on track to deliver significant impacts,” noted Derek Byerlee, Program Steering Committee (PSC) co-chair, and the Mid-Term Review (MTR) conducted last year supports his words: “The MTR Team has reviewed progress by objectives and the overall execution of the Program, and finds that in general it has made very good progress in its first two years.” Bekele Shiferaw, Program Management Committee chair, then highlighted MTR’s recommendations, including the following: SIMLESA should take concrete steps to overcome current socio-economic research capacity constraints in national agricultural research systems and in the areas of value chains, informal analyses, business management, participatory agronomy, and breeding research; focus on ‘smart’ sequences for testing conservation agriculture technologies with farmers resulting in step-wise adoption; and create representative and effective innovation platforms with clear roles, structures, and functions.

As SIMLESA Phase I is ending next year, participants brainstormed on key issues anticipated in Phase II, concluding that the overall approach should be holistic, flexible in dealing with complex systems, and should aim to devise effective ways to target different group of farmers, as one size does not fit all. Furthermore, it was noted that Phase II should focus on changing the mindset of farmers. “There are so many different technologies bombarding farmers. The real work therefore lies in dealing with the psychological, social, cultural, and environmental factors of the farmer that will determine the adoption of introduced technologies,” noted one of the participating groups during the plenary session. Following the discussion on Phase II, Byerlee shared PSC’s vision: apply a broader approach to system intensification (conservation agriculture elements, soil fertility, pest management, and diversification); be more country specific; create empowering, location-specific, and sustainable innovation platforms; and pay more attention to institutions and policies vis-à-vis technology.

In the words of Inacio Maposse, Agricultural Research Institute of Mozambique (IIAM) director general and PSC member, Phase II is not necessary only because Phase I is ending but also “because we want to add another dimension to the program, and perhaps a different philosophy, one that will lead us to success. And for me, success means to get farmers smile sustainably. Smile because they are better off. For this to happen, we have to design Phase II with heart and wisdom. We need Phase II because we are yet to produce significant adoption and impact on the farming communities.” John Dixon (senior advisor for cropping systems and economics and principal regional coordinator for Africa and South Asia, Australian Centre for International Agricultural Research) added another reason for why to continue with SIMLESA: “Where resources are limited, sustainable intensification is the only option to feed the extra two billion people by 2050.”

Mellissa Wood, Australian International Food Security Centre (AIFSC) director, then explained some of the reasons behind the close cooperation between Australia and Africa: “Australia and Africa share many common agricultural challenges, including limiting soils, highly variable climates, pests, and diseases.” Consequently, AIFSC aims to accelerate adoption; bridge the gap between research and development; find new ways to support African agricultural growth through adoption, policy, scale-out, improved market access, diversification, and nutrition.

In her closing remarks, Marianne BĂ€nziger (CIMMYT deputy director general for research and partnerships) called on the Phase II planners to design holistic packages that entail success and ensure SIMLESA provides farmers in the five target countries with diverse opportunities for improving their livelihoods. “Farmers should be able to get incomes not only from maize and legumes but also from other farm enterprises. You should come up with possible and realistic interventions in realistic time frames,” BĂ€nziger concluded.

Throughout the meeting, implementing partners, researchers, and seed companies showcased their achievements and products at the ‘SIMLESA poster village.’ Participants learned about farmers’ perspectives and practices through field visits to Sussudenga maize breeding and exploratory trial sites, participatory variety trials in Vanduzi and Polytechnic Institute of Manica, and conservation agriculture and innovation platforms scaling out sites in Makate.

Women entering the workforce raises wheat consumption

MasonNicole Mason is an assistant professor of International Development at the Department of Agricultural, Food, and Resource Economics at Michigan State University.

Currently on long-term assignment with the Indaba Agricultural Policy Research Institute in Lusaka, Zambia, Mason completed her PhD in Agricultural Economics at MSU in August 2011. Her research focuses on various dimensions of agricultural input and output subsidy programs in Africa, including political economy aspects as well as program effects on smallholder farmer behavior, poverty, inequality, and maize market prices. Prior to joining MSU, Mason served as a Peace Corps volunteer in Guinea and worked with the Partnership to Cut Hunger & Poverty in Africa. Mason was an invited speaker at the conference “Wheat for food security in Africa: Science and policy dialogue about the future of wheat in Africa,” held in Addis Ababa, Ethiopia, during October 2012, and organized by the Ethiopian Institute of Agricultural Research (EIAR), CIMMYT, ICARDA, IFPRI, the African Union, and WHEAT-the CGIAR research program.

What drew you to international development research and outreach?

During my undergraduate studies at Allegheny College, I took a class entitled “Understanding Environmental Problems in Africa,” taught by the applied economist and returned Peace Corps volunteer Dr. Terrence Bensel. He piqued my interest in Africa and the Peace Corps, and I decided to join the Peace Corps after college. I had the privilege of serving as a volunteer in the rural community of Dalein in the Fouta Djallon region of Guinea in West Africa. I worked with smallholder farmers and women’s gardening cooperatives and saw firsthand the critical role that agriculture plays in the livelihoods of so many rural Africans. These experiences inspired me to pursue a career in international agricultural development research, capacity building, and outreach.

What drew you to work on the trends and drivers of wheat consumption in sub-Saharan Africa?

In the summer of 2007, I worked with colleagues from the Food Security Research Project and the Zambia Central Statistical Office to implement an Urban Consumption Survey in four cities in Zambia (Lusaka, Kitwe, Mansa, and Kasama). We interviewed over 2,000 households and asked them about all of the food and non-food items they had consumed in the preceding 30 days. We also visited many food retail outlets in the four cities, including supermarkets, bakeries, small grocers, and roadside and mobile vendors. I was struck by how popular bread and other wheat products were among respondents of all income groups. It was also interesting to see the long queues for bread in the supermarkets and the vendors selling bread at a slight markup right outside the supermarket to people who wanted to avoid the long lines inside. I learned that similar things were happening in other African cities and towns, and decided to work with MSU agricultural economist Thomas S. Jayne and CIMMYT socioeconomist Bekele Shiferaw to delve into the factors driving rising wheat consumption in Africa.

What did you discover?

I expected urbanization to be a key factor driving rising wheat consumption in Africa but surprisingly, our results suggest that after controlling for other factors like GDP, total population, and the prices of bread and products that are complements or substitutes for bread, changes in the percentage of the total population that resides in urban areas don’t have a significant effect on country-level wheat consumption. This was surprising because in most countries in Africa (Ethiopia is an exception), wheat consumption is much higher in urban than in rural areas. We’re still investigating this finding to unpack what is going on. One possibility is that it’s not urbanization per se that drives wheat consumption but rather the demographic and socioeconomic changes that go along with it. These are things like rising incomes and increased labor force participation by women.

What did you observe about gender and wheat consumption in Africa?

A key finding of our study related to gender is that rising labor force participation by women—especially if it rises faster than labor force participation by men—has a significant, positive effect on country-level wheat consumption. We suspect that this is because wheat products (bread, pasta, chapati, etc.) take less time to prepare than many other popular staple carbohydrates like maize meal porridge (called nshima in Zambia and consumed widely in eastern and southern Africa). When women work more outside of the home, they have less time to devote to food preparation and may prefer quicker options like these wheat products.

What types of changes (policy, research, etc.) do you think would help women and families in sub-Saharan Africa?

This is really broad. But in general, I believe women provide most of the labor for agricultural production in Africa but often don’t have much control over the revenue from the sales of products they helped to produce. Women also tend to have less access to productive assets and technologies that could help raise agricultural productivity. Empowering women—for example, through formal education as well as adult education on improved farming practices and business/management skills, improving their access to credit, etc.—is critical not only for improving the well-being of women but also that of their children, families, and communities.

To see the full study on rising wheat consumption in sub-Saharan Africa by Mason, Jayne, and Shiferaw,  please visit http://fsg.afre.msu.edu/papers/idwp127.pdf

 

Published 2013

‘One cannot eat tobacco!’ SIMLEZA field tour in eastern Zambia

DSCN0425In rural areas surrounding Chipata in eastern Zambia, tobacco, cotton, and maize seem to dominate the agricultural landscape. If you look closer, you will also see smaller fields with groundnuts, cowpeas, soybeans, and sunflowers. But there is yet another dimension of diversity: the different growth stages and (inadequate) fertilization levels of the crops have resulted in a patchwork of yellow to deep green fields of many sizes and shapes, with various degrees of weed infestation. In this smallholder farming area with an average annual rainfall of more than 1,000 mm, it is neither easy to stay ahead of the weeds on all fields, nor to buy enough fertilizer for a healthy crop.

The SIMLEZA (Sustainable Intensification of Maize- Legume Systems Eastern Province of Zambia) project implemented by CIMMYT and partners seeks to address production and sustainability constraints through on-farm testing and demonstration of improved maize and legume varieties (soybeans and cowpeas) and agronomic practices that build on conservation agriculture (CA) principles. CA addresses the high labor demand of local agriculture. It can drastically reduce smallholder farmers’ workload at the beginning of the season, replacing hand-made ridge-and-furrows with direct seeding on the flat with a pointed stick (dibble-stick) and herbicide use for weed control. As a SIMLEZA demonstration farmer, who had been given the tool and herbicides for testing, exclaimed: “[up until now] I have been punishing myself!”

The second major issue – the need for higher fertilizer inputs – is more difficult to resolve. Zambia’s fertilizer subsidy program has increased fertilizer access for poor rural households, but the scheme provides only two bags at reduced prices and is thus insufficient to cover farmers’ total land area. SIMLEZA’s focus on improving intercropping and crop rotation with legumes seeks to decrease farmers’ reliance on cash-demanding fertilizers. Nitrogen fixed by legumes benefits the following year’s crop on that plot and reduces the need for expensive mineral fertilizers. But farmers will have to increase their land areas dedicated to legumes, if this is to really work at farm scale. The good news is that a short group discussion in the Khokwe community revealed farmers’ interest in doing just that.

When asked what the best crops for making money are, cotton and tobacco appeared to be the least popular. The simple explanation for the apparent contradiction between the large area dedicated to tobacco and farmers’ dislike of it was: “One cannot eat tobacco!” While legumes such as groundnuts, common beans, and soya topped the list of favorite cash crops, the volumes traded are small and do not reach the urban market of Chipata. In Chipata, farmers complain, buyers are few and prices low, despite the export demand for legumes. Thus, dedicating land to tobacco is the result of late payments to farmers and decreasing prices of legumes in the past years. Increasing smallholder farmers’ legume production and simultaneously linking them to more distant and profitable markets is one of the major challenges in the years to come.

In Malawi, a stone’s throw away, this shift towards increased legume production is already happening. The agricultural landscape has far less tobacco than before, as legumes such as soybeans and groundnuts are increasingly replacing it. Dwindling prices for tobacco and free provision of seeds by government have undoubtedly stimulated poor farmers’ uptake of these legumes and boosted volumes traded. Together with its partners, Total LandCare, the Ministry of Agriculture and Livestock, and the Zambia Agriculture Research Institute (ZARI), SIMLEZA aims to contribute to a similar productivity-enhancing change in the agricultural landscape of Zambia.

Improving postharvest grain storage and loss assessment methods

In November, twelve researchers and development practitioners implementing phase two of the Effective Grain Storage for Sustainable Livelihoods of African Farmers Project (EGSP II) travelled from Malawi, Zambia, Zimbabwe, and Kenya, for training on improved postharvest grain storage and loss assessment methods in Nairobi, Kenya.

The course was facilitated by Prof. Rick Hodges, University of Greenwich, UK, and CIMMYT Socioeconomist Hugo De Groote, Policy Economist Jones Govereh, and Project Leader Tadele Tefera. Practical and theory sessions covered topics such as hermetic storage, postharvest technologies, estimating storage losses, assessing ear and grain damage, economic data requirements and collection, and economic analysis of on-station and on-farm storage trials.

Participants were also introduced to the Africa Postharvest Loss Information Service (APHLIS); a system with an innovative framework for analyzing and computing quantitative postharvest losses under different farming and environmental conditions in eastern and southern Africa. It was discussed how using the APHLIS downloadable calculator can support loss reduction projects. According to Hodges, the advantages of this system are that its measure of percentage weight loss of grain is based on an actual reduction in the dry weight of grain; it does not account for changes in quality unless the grain is no longer fit for human consumption; and losses are cumulatively calculated from production and including each step in the postharvest chain.

Despite the importance of economically analyzing crop and storage pest losses, Govereh lamented that such analyses are not well established in the research community. “Economic analysis is rarely available, especially for on-farm losses. In most cases, crop losses are commonly overestimated with benefits often overstated and costs underestimated.”

Govereh outlined the economic analysis of crop and storage pests: estimating the extent of the problem (the area infested); estimating the intensity of the problem (infestation levels, damage, and crop loss); testing efficacy of control methods on-station and on-farm; basic economic analysis of new methods; farmer evaluation of new control methods; modeling and econometric analysis; and impact assessment. According to Hodges, estimating postharvest losses helps in influencing policy makers, improving the efficiency of value chains, and identifying opportunities for increasing food security.

Reiterating the economic benefits of storage, Govereh stated: “Most maize is produced by small-scale farmers in one major season and is meant for home consumption. However, consumption is continuous therefore storage is needed to buffer stocks and protect against price fluctuations.”

IMG_7829

Sharing experiences with effective grain storage in Africa

IMG_7756A delegation from Kenya, Malawi, Zimbabwe, and Zambia — the target countries of the Effective Grain Storage for Sustainable Livelihoods of African Farmers (EGSP) Phase-II Project— visited Malawi during 22-23 October and Kenya during 25-26 October 2012 to share experiences with project implementation and to learn about the project’s impact on the livelihoods of smallholder farmers. The delegation comprised of officials from ministries of agriculture and national agricultural research systems from the four EGSP countries, and implementing partners (Kenya Agricultural Research Institute and the Catholic Dioceses of Embu and Homa Bay in Kenya, World Vision in Malawi, Zambia Agricultural Research Institute, and University of Zimbabwe and the Department of Agricultural Mechanization in Zimbabwe).

The tour kicked off in Malawi with visits to Mchinji and Dowa districts. The delegates held discussions with the implementing partners and local artisans trained on metal silo fabrication, school representatives, farmer groups, and farmers who had benefitted from the first phase of the project. Everyone present praised the metal silo for its great results in protecting the grains against the larger grain borers and weevils. “This allows farmers to store maize more effectively and sell it when prices are as high as 47 kwacha [US$ 0.16] per kilogram and not when prices are at 18 kwacha [US$ 0.06] per kilogram,” says Andrew Kasalika, chairman of the Tayamba Group in Mlonyeni Extension Planning Area. “With metal silos, women do not have to climb into granaries, which is quite cumbersome,” added Christine Victory, Tayamba Group’s secretary, noting that the technology is also environmentally friendly, “Men do not have to cut trees to construct the granaries.”

In Kenya, the delegation visited Kamuthatha Boarding Primary School in Embu County, which has acquired six 2,700-kilogram metal silos. Nethy Kathungu, the deputy principal, shared the enormous benefits of metal silos: increased quality of grain and thus increased quality of food for the pupils; reduced postharvest losses (previously amounting to 60% of stored grain); price hikes no longer affecting the school during times of scarcity, as they can now store enough to feed all 450 pupils; no need for pesticides; and less storage space required to store the same amount of grain. As a result, the school saves about Ksh 300,000 (US$ 3,600) per year.

The delegates also visited Gikinyukia Agro-Enterprise Self-Help Group in Mbeere South District, Embu County. The Group participates in collective maize, sorghum, and green grams marketing, and owns three 1,800-kilogram metal silos. According to Gibson Wachira Muchiri, the Group chairman, the plan is to assist every member in acquiring a metal silo through the Group’s fund.

The delegates found the visit very educative and informative, especially officials from Zimbabwe and Zambia who will be implementing the project for the first time. The visit allowed them to witness the implementation of EGSP in Kenya and Malawi as well as the role of different partners in the process. The visits also helped the delegates to identify issues that need to be addressed for the second phase to be successful. These include cost-sharing for sustainability of the project, creating a sense of ownership, and producing a sufficient amount of maize for the metal silos to be fully utilized.

Speaking to the delegates, B.M. Prasanna, CIMMYT’s Global Maize Program director, reiterated the importance of the project in enhancing nutrition and food security of smallholder farmers and consumers. He called on the delegates to be the champions of the project and asked them to take it to the next level: “We can only be a catalyst, but we would like you to be the drivers of this movement. You should stimulate demand for the technology. CIMMYT derives its strength from people like you.” Noting that awareness was critical to the success of the project, Prasanna also encouraged the officials to raise awareness among the target beneficiaries, women, women self-help groups, schools, and women-dominated organizations in particular.

IMG_7719

Training to build maize breeding capacity in Africa

CursoAfrica2Thirty-six senior maize breeders from fifteen African countries participated in a course in Nairobi, Kenya, from 1 to 4 October 2012. The course attracted participants from national agricultural research systems, private seed companies, and universities collaborating within the Drought Tolerant Maize for Africa (DTMA) Initiative, Improved Maize for African Soils (IMAS) Project, Sustainable Intensification of Maize- Legume Systems for Food Security in Eastern and Southern Africa (SIMLESA) initiative, Sustainable Intensification of Maize-Legume Systems for the Eastern Province of Zambia (SIMLEZA), Water Efficient Maize for Africa (WEMA), and a USAID-funded project on heat stress in maize.

Throughout the course, breeders were introduced to new germplasm, recent advances in maize breeding for biotic and abiotic stresses, breeding informatics tools (e.g. IMIS-Fieldbook and IB-Fieldbook developed by the Generation Challenge Program), approaches to improving quality of phenotyping, molecular breeding tools, and the use of doubled haploid technologies in maize breeding. They also visited fields in Kiboko to assess breeding nurseries and yield trials and to interact with CIMMYT breeders.

The course participants had the opportunity to attend presentations by a private-sector representative. Walter Trevisan from WEMA/ Monsanto covered the origin of maize and importance of the heterotic pools in maize breeding around the world. “We learn from the partnership that we can work as a team and, most of the time, reach goals ahead of time,” said Trevisan, stating that he is looking forward to the future projects such as WEMA II. “We really enjoy working with CIMMYT and the national agricultural research systems,” he added.

According to Ntji Coulibaly from Mali, training for breeders helps to build capacity within African countries. “Mali has only five seed companies serving the country, thus it is imperative to build the skill base in breeding,” he explained. Coulibaly then praised CIMMYT for its leadership role in breeding in Africa: “It has raised the bar for private institutions to improve and develop better products in the region.” Bhola Verma from ZAMSEED, a private seed company operating in Zambia, also appreciated the training initiative. “We need to train more people,” he said, reiterating the importance of training the next generation of breeders to ensure the continent does not lag behind. Zubeda Mduruma, Tanzanian maize breeder from Aminata Quality Seed, was excited about -her newly gained knowledge on doubled haploid breeding technology. “It is very handy and will shorten our time for breeding,” said Mduruma. Doubled haploid technology enables breeders to save time and labor costs associated with conventional breeding, while allowing them to get varieties benefiting farmers within a shorter period of time.

Simon Gichuki, Kenya Agriculture Research Institute (KARI) Biotechnology Program coordinator, urged participants to explore and use the technological tools, and to train breeders working with them. Gichuki said that the key challenges facing African agriculture include diseases, pests, and climate change. “We feel that we can contribute to mitigating these [challenges] by engaging in science,” said Gichuki, adding that this could be achieved by ensuring that breeders regularly update their knowledge. “In crop science things move very fast,” he explained. Sylvester Oikeh, WEMA project manager at the African Agricultural Technology Foundation, urged participants to embrace mentorship and share their knowledge and skills with young breeders. Oikeh also appreciated the opportunity to see what DTMA is doing in relation to WEMA’s breeding work.

Shehu Ado from the Institute for Agricultural Research, Samaru, Nigeria, said the training would benefit his students. “I will encourage my students to apply it in their own work,” said Ado about Fieldbook, “my students are going to gain a lot as analysis will be simplified.” Thokozile Ndlela, Zimbabwean Ministry of Agriculture, expressed her excitement about the developments made in Fieldbook, as well as the new advancements in maize breeding.

The course facilitators were drawn from CIMMYT, Generation Challenge Program, and Monsanto. The course was coordinated by Cosmos Magorokosho and Stephen Mugo, CIMMYT maize breeders from Zimbabwe and Kenya, respectively.

CursoAfrica3

DTMA III holds annual meeting

The Drought Tolerant Maize for Africa (DTMA) Initiative held its first annual meeting of phase 3 during 24- 28 September 2012 at the Nairobi Safari Club Hotel in Kenya. The meeting was attended by 83 participants representing national programs, training institutions from DTMA partner countries (Angola, Benin, Ethiopia, Ghana, Kenya, Malawi, Mali, Mozambique, Nigeria, Tanzania, Uganda, Zambia, and Zimbabwe), project’s advisory board members, and seed companies. The participants reviewed and discussed the progress made during the first year of the project, and visited the Western Seed company production fields in Rongai, Nakuru County.

DTMA has produced 105 maize varieties, 48 hybrids, and 57 open-pollinated varieties between 2007 and 2012. In addition, the project has trained technicians, breeders, and seed companies in seed business management in Eastern, Western, and Southern Africa. The meeting highlighted the varieties developed by DTMA for drought-prone areas, whose performance also matches or exceeds that of commercial varieties under optimum conditions. In Southern Africa, on-farm trials of drought-tolerant (DT) hybrids produced 20-30 % more yield than the common check variety. In Western Africa, DT open-pollinated varieties produced up to 40 % more yield than farmer varieties during on-farm trials.

There is a surge in new DT varieties, particularly hybrids, being registered and coming into production in all DTMA countries. In addition, uptake of DT lines by companies holding important market shares (e.g. Seed Co and Kenya Seed Company) is increasing. The total production of DT varieties in the 13 DTMA countries reached more than 25,000 MT in 2012, with the largest amount being produced in Kenya, Zimbabwe, Zambia, and Malawi. Seed policy workshops have created conditions for national governments to address maize seed sector development.

drying-maize-seed-in-the-sun