Skip to main content

Location: Uganda

Researchers learn use of equipment for improved phenotyping

By Wandera Ojanji/CIMMYT

Andrew Chavangi demonstrates the use of a seed counter.

Amini Mataka, a research officer for CIMMYT’s Southern Africa Regional Office in Zimbabwe, was one of many Water Efficient Maize for Africa (WEMA) scientists and technicians who experienced difficulty using data generation and processing equipment.

But after attending the “Towards Quality Data through Effective and Efficient Use of Equipment in WEMA” training course held in Nairobi, Kenya, on 15-22 March, this is no longer the case. “I can now confidently and competently use the Motorola Scanner, make it compatible with computers and use Fieldbook to analyze data and prepare nurseries and trials,” Mataka said.

According to Stephen Mugo, CIMMYT Global Maize Program principal scientist and CIMMYT-WEMA team leader, these difficulties encouraged WEMA to train 28 scientists and technicians from CIMMYT and national agricultural research systems from the five WEMA countries – Kenya, Mozambique, South Africa, Tanzania and Uganda. The training provided participants with skills in the preparation of nurseries and trial design and seed preparation using Fieldbook; the printing of seed packet and field labels in Fieldbook; the basics of data collection using equipment and data analysis using appropriate software; and the use and care of computers, printers, seed counters, threshers and data collection equipment.

Patrick Chomba demonstrates how the bulk sheller operates. Photo: Wandera Ojanji

Caroline Thatelo, senior research technician for the Agricultural Research Council-South Africa, learned how to use Fieldbook, a tool developed by CIMMYT maize breeders for managing experiments and data analysis using the open-source data analysis software “R.” “We had problems using Fieldbook when we started,” Thatelo said. “But the practical demonstrations we have gone through have now made me perfect in the use of Fieldbook. I can now create an inventory, a seed increase nursery, a nursery to form single crosses, a stock list, consolidate inventories, generate trials and analyze data for single- and multi-location sites using Fieldbook.”

To some, like Gabriel Ambani, senior technician at the Kenya Agricultural Research Institute (KARI)-Kakamega, Kenya, the training was an eye-opener. “Before this training, I had no hands-on experience on the use of most of the equipment we were trained on, particularly the Motorola Scanner, label printers and bulk sheller,” he said. “I now have increased competence and am looking forward to applying my gained knowledge and skills to effectively use the equipment.”

Caroline Thatelo receives her certificate of completion from Sylvester Oikeh.

Sylvester Oikeh, WEMA project manager, called on the participants to put their new skills into use. “I want to see improvements in data collection and analysis. Do not be afraid to use the equipment and Fieldbook,” he said. “You are bound to make mistakes. But through the mistakes, you will figure out the right way to operate the equipment and use Fieldbook. You will get it right after several attempts.”

Several CIMMYT scientists and technicians helped organize and facilitate the workshop, including breeders Stephen Mugo and Yoseph Beyene; technicians Andrew Chavangi, John Gakunga and Collins Juma; and Joel Mbithi, CIMMYT-Kiboko farm manager. WEMA Phase II is funded by the Bill & Melinda Gates Foundation, the United States Agency for International Development-Feed the Future initiative and the Howard G. Buffett Foundation.

Uganda team shines at DTMA awards for eastern Africa

By Florence Sipalla/CIMMYT

The Drought Tolerant Maize for Africa (DTMA) project recognized country teams that demonstrated excellence in breeding and disseminating drought-tolerant maize varieties during the Regional Maize Working Group (MWG) meeting held in Addis Ababa, Ethiopia, from 17 to 19 February.

For the third time since 2011, Uganda’s National Agricultural Research Organization (NARO) won the breeding award while breeders from the Ethiopian Institute of Agricultural Research (EIAR) came in second. The Uganda team, comprised of partners from the public and private sector, also won the prize for disseminating drought-tolerant maize varieties, a category in which the Tanzania team came in second.

The combined efforts of the national agriculture research institutes and the seed companies were recognized. The awards were given after a systematic evaluation of the breeding and dissemination programs in the participating countries. “The strength of breeding programs was assessed based on existence of short-, intermediate- and long-term objectives,” said DTMA administrator Kimani Kamau. Kamau cited as selection criteria the layout and management of trials, inbred line development, testing of new hybrids and open-pollinated varieties and efficient use of germplasm from regional and international testing programs. “Efficient use of appropriate software in managing and analyzing trial data and the existence of a clear framework showing how the seed would reach the farmers was also considered,” Kamau added.

Breeders from the Ethiopian Institute of Agricultural Research display the plaque they received at the award ceremony. They were runners up in the breeding category. Photos: Florence Sipalla/CIMMYT

Finally, teams were also assessed on institutional representation, variety registration and release, certified seed production, companies that had taken up and were promoting drought-tolerant maize varieties and awareness building activities and events. The winning teams received plaques and certificates presented to individual members by a team led by DTMA project leader Tsedeke Abate, assisted by Aberra Debelo, Sasakawa – Global 2000 country director for Ethiopia; Stephen Njoka, director of the Kenya Agricultural Research Institute (KARI) Embu; and Alemayehu Mekonnen, a commercial farmer. “It is good to be appreciated and recognized for the work we are doing,” said Godfrey Asea, crop breeder and cereal research leader at the National Crops Resources Research Institute (NaCRRI) and the Uganda Maize Working Group chair. “We are happy the breeding work is also translating into products to improve farmers’ incomes and food security.”

The breeders indicated that they still face challenges in increasing farmers’ productivity because of the high costs of inputs and fertilizer. The team’s efforts in disseminating drought-tolerant maize varieties are backed by research. According to a recent adoption survey coordinated by the socioeconomics team, the adoption of drought-tolerant maize between 2007 and 2013 was at 28 percent. “The survey indicated that a total of 83 percent of households had adopted drought-tolerant varieties including those developed before 2007 and varieties developed during the current phase of the DTMA project,” said CIMMYT socioeconomist Monica Fisher.

These statistics are derived from a survey carried out on a sample of 400 maize farmers in four districts in Uganda where DTMA seed has been disseminated. The Ugandan team credits their success in disseminating the drought-tolerant varieties to a combination of factors. “Farmers have quickly adopted drought-tolerant maize seed as they have seen its response to climate change,” said Cliff-Richard Masagazi, managing director for Pearl Seeds. “We have the advantage of having two maize seasons which enables us [seed companies] to quickly build seed volumes and move them.” The strong partnership among researchers, nongovernmental organizations (NGOs) and seed companies also enables them to reach more farmers. Masagazi said NGOs were instrumental in enabling the seed companies to reach more farmers in different parts of the country.

“The struggle still continues,” said Hillary Rugema, Sasakawa-Global 2000 coordinator for crop productivity improvement, an NGO partner. “We shall keep reaching out to bring more farmers and partners on board.” “We appreciate the consistent support and recognition from CIMMYT,” said Gezagn Bogale, EIAR maize breeder based in Melkassa, Ethiopia, whose team won the breeding award from 2007 to 2010. Bogale also thanked CIMMYT for providing his team with tablets that would allow them to digitize data collection on the breeding trials. “This encourages us to work hard in the future.”

Breeders trained on molecular markers data analysis in Tanzania

By Kassa Semagn/CIMMYT

 

A training course held in Tanzania provided maize breeders with hands-on experience in using molecular markers for quality control analysis (genetic identity, genetic purity and parentage verification), germplasm characterization, marker-assisted backcrossing and marker-assisted recurrent selection.

Continue reading

Partners recognize achievements in insect-resistant maize delivery

By Wandera Ojanji/CIMMYT

The Insect Resistant Maize for Africa (IRMA) project received praise for significant progress on field and post-harvest insect pest research at its conclusion last month.

“Several new maize hybrids and open pollinated varieties with substantial insect resistance have been produced that will greatly benefit maize growers in eastern and southern Africa,” said Mike Robinson, program officer for the Syngenta Foundation for Sustainable Agriculture (SFSA) at the IRMA End-of-Project Conference in Nairobi, Kenya, from 24-26 February. Robinson congratulated CIMMYT and project partners and wished the participating organizations continued success. The purpose of the conference was to share experiences, achievements and lessons from IRMA III and discuss future prospects in the release, dissemination and use of insect-resistant maize in eastern and southern Africa.

It drew more than 80 participants from CIMMYT, national agricultural research systems, national universities, donors and the seed industry. The Developing Maize Resistant to Stem Borer and Storage Insect Pests for Eastern and Southern Africa project, known as IRMA III Conventional Project 2009-2013, was managed by CIMMYT and funded by SFSA. Building on progress and breakthroughs of IRMA I and II, IRMA III contributed to food security by developing and availing field and post-harvest insect-resistant maize varieties in Ethiopia, Kenya, Malawi, Mozambique, Tanzania, Uganda, Zambia and Zimbabwe.

(Photo: Wandera Ojanji)

Collectively, these countries produce about 26 million tons and consume 32 million tons of maize annually. Relatively low maize productivity in the countries – about 1.3 tons per hectare (t/ha) compared to 4.9 t/ha worldwide – can be attributed in part to stem borers, according to Stephen Mugo, CIMMYT principal scientist and IRMA project leader. Stem borers destroy as much as 15 percent of maize crops, while maize weevils and the larger grain borer destroy 20 to 30 percent of harvested maize. Hugo De Groote, CIMMYT economist, estimated the losses from stem borers at 13.5 percent, or 4 million tons, and those from storage pests at 11.2 percent, or 3.5 million tons, with the total value of these losses estimated at just over US$1 billion in the region. “Addressing the challenges that farmers face in producing and storing maize is vital to the future food security of the region,” Robinson said. “Minimizing such losses in an economically sustainable way will significantly contribute to nutrition and food security.”

IRMA III addressed these challenges through identification and commercial release of major insect-resistant maize cultivars; identification of new germplasm sources of resistance to stem borer and post-harvest insect pests among landraces, open pollinated varieties (OPVs) and CIMMYT lines (CMLs); and development of new insect-resistant germplasm. Kenya released 13 stem borer-resistant (SBR) conventional maize varieties (three OPVs and 10 hybrids) and four storage pest-resistant (SPR) hybrids. Kenya has also nominated nearly 10 stem borer- and four postharvest- resistant hybrids to national performance trials.

Three insect-resistant varieties —two hybrids (KH 414-1 SBR and KH 414-4 SBR) and one OPV (Pamuka) – were commercialized in Kenya by Monsanto, Wakala Seeds and the Kenya Agricultural Research Institute Seed Unit. De Groote estimated the annual value of project benefits at between US$ 19 million and US$ 388 million. He put the benefit-cost ratio at 94 in the optimistic scenario, meaning that for each dollar the project spent, farmers would gain 95, indicating very good returns.

“These results justify the important role that breeding for resistance could play in reducing maize losses, and the high potential returns to such programs in the future,” De Groote stated. Looking to the future, Mugo emphasized the need to ensure farmers have access to the insect-resistant varieties. “We must, from now on, engage in variety dissemination and commercialization of the new SBR and SPR varieties,” Mugo said. “We need a more targeted breeding program that incorporates drought, nitrogen use efficiency and maize lethal necrotic disease tolerance.”

WEMA releases record number of maize varieties in Africa

By Wandera Ojanji/CIMMYT

The Water Efficient Maize for Africa (WEMA) project is on-track to produce and distribute at least 25 drought-tolerant maize hybrids for farmers in Kenya, Mozambique, South Africa, Tanzania and Uganda during its second phase.

In 2013, the project commercially released 15 drought-tolerant maize hybrids, with 84 more nominated for national performance trials. “This is a rare feat,” said Sylvester Oikeh, WEMA project manager, during the project’s Sixth Annual Review and Planning meeting from 7 to13 February. “In the history of maize research in Africa, only one entity – WEMA – has released 15 hybrids in a single year.”

At its inception in 2008, WEMA promised to develop and deploy maize varieties that would not only tolerate moderate drought but also provide 20 to 35 percent more grain yield than currently available commercial hybrids. Buoyed by the success of the breeding pipelines in Phase I (2008-2013), the partnership set the 25-hybrid target in February 2013 for Phase II (2013-2017).

 

Also in 2013, WEMA helped smallholder farmers harvest the drought-tolerant maize variety WE1101, sold under the brand name DroughtTEGOℱ, said Denis Kyetere, executive director of the African Agricultural Technology Foundation (AATF). The hybrid recorded impressive sales in Kenya, according to Gospel Omanya, AATF’s seed systems manager and WEMA deployment team leader. From September 2013 to January 2014, farmers purchased 42.5 tons of the 72 total tons of seed distributed to seed companies. Omanya expects additional sales and adoption of the hybrid, due to its outstanding performance – an average yield of 4.5 tons per hectare (t/ha) during the short rain season, compared to Kenya’s average maize yield of 1.8 t/ha. WE1101 is one of the hybrids developed using breeding lines from the Drought Tolerant Maize for Africa (DTMA) project. Natalie DiNicola, vice president for Europe and Africa for Monsanto, lauded WEMA partners for the achievement. “Thank you for making it happen, for getting the products into the hands of farmers,” DiNicola said.

 

Uganda Minister of State for Agriculture Nyiira Zerubabel also praised the progress. “Your effort in addressing maize production constraints and increasing productivity levels are highly commendable,” stated Nyiira in a speech read on his behalf by Okaasai Opolot, Uganda’s director of crop resources, during the official opening of the meeting. He urged the project partners to deliver a holistic package to the farmers. “Your work should ensure that the varieties you develop achieve the expected performance that delivers high quantities and qualities by addressing these issues: good crop and post-harvest management practices and productivity, access to markets for rural farmers, efficient seed systems to boost productivity, and value addition initiatives that will improve rural incomes.”

 

Participants experienced the best of WEMA breeding and testing in Uganda when they visited Namulonge Research Station, where confined field trials of MON810 and other WEMA conventional hybrids are under way. Lawrence Kent, senior program officer of agriculture, science and technology for the Bill & Melinda Gates Foundation, urged WEMA partners to aim for higher impact over the next four years. “We must generate and reach more farmers with products. I am excited about the promising MON810 results so far and I urge you to seize the opportunity and forge ahead with commercializing it and making it available to needy farmers.”

(Seated from right) John MuMurdy, international research and biotechnology advisor, USAID; Natalie DiNicola, Monsanto’s vice president for Europe and Africa; Lawrence Kent, senior program officer, Agriculture, Science and Technology, the Bill & Melinda Gates Foundation; Okaasai Opolot, Uganda’s director of crop resources; and Denis Kyetere, executive director, the Africa Agricultural Technology Foundation. Speaking is B.M. Prasanna, director of CIMMYT’s global maize program. Photos: Wandera Ojanji/CIMMYT

 

B.M. Prasanna, director of CIMMYT’s global maize program, noted that maize lethal necrosis (MLN) disease had serious consequences on seed production and delivery and crop production in 2013. “Seed shipments were restricted,” said Prasanna, “and maize cultivation was shut down in affected areas, limiting seed production and breeding activities.” At the same time, said Prasanna, the MLN threat is an opportunity to replace old varieties on the market with higher-yielding, resistant ones. More than 2,000 maize lines were screened under natural infections of MLN in two seasons in Kenya during 2013. “We found clear-cut responses and identified some very promising resistance,” Prasanna said.

 

He added that the resistance would be speedily incorporated into breeding lines and populations through screening at the MLN facility in Naivasha and use of the doubled haploid facility in Kiboko, both inaugurated in March 2013. Partners are also following protocols circulated by CIMMYT to ensure the pathogen-free production and exchange of maize breeding materials. The WEMA advisory board has recommended that the project intensify the breeding of conventional maize varieties for Mozambique and Tanzania, engage large seed companies to use WEMA products, develop exclusive licensing for current products and encourage governments to facilitate trials of transgenic maize.

 

WEMA Phase II is funded by the Bill & Melinda Gates Foundation, the U.S. Agency for International Development (USAID) and the Howard G. Buffett Foundation.

Seed systems team strategizes and plans for Africa

By Florence Sipalla/CIMMYT

 

The CIMMYT-Africa seed systems team met in Nairobi, Kenya, on 7 February to take stock of progress in 2013, identify challenges and brainstorm on turning those challenges into opportunities. Global Maize Program (GMP) Director B.M. Prasanna and members of the breeding, communications and socioeconomics teams also attended.

Continue reading

CIMMYT partners to combat parasite

By Brenna Goth/CIMMYT

A partnership launched on 3 February by the U.S. Agency for International Development (USAID) Feed the Future Partnering for Innovation and led by the African Agricultural Technology Foundation (AATF) will help CIMMYT and other partners to fight a parasitic plant affecting maize production.

Known locally as “witchweed,” the parasitic plant Striga spp. casts no spells but uses needle-like tendrils to suck nutrients from maize roots. The weed is prevalent in Nyanza and Western Provinces of Kenya, where it grows on some 200,000 hectares and causes crop damage worth an estimated US$ 80 million per year. Photo: CIMMYT
Known locally as “witchweed,” the parasitic plant Striga spp. casts no spells but uses needle-like tendrils to suck nutrients from maize roots. The weed is prevalent in Nyanza and Western Provinces of Kenya, where it grows on some 200,000 hectares and causes crop damage worth an estimated US$ 80 million per year. Photo: CIMMYT

The three-year, performancebased grant of US$ 3 million is the largest grant awarded by Feed the Future Partnering for Innovation to date, according to an AATF press release. Feed the Future Partnering for Innovation supports projects increasing the productivity of smallholder farmers while AATF promotes sustainable agricultural technology for smallholder farmers in Sub-Saharan Africa.

The funding will help improve maize production in east Africa by “upscaling the commercialization of StrigAwayTM – an herbicidetolerant seed and treatment that controls the infestation of Striga – a parasitic weed that often results in total crop loss and even abandonment of arable land,” the press release said. Striga – commonly known as witchweed – can cause 20 to 80 percent crop loss in maize and affects 1.4 million hectares in Kenya, Tanzania and Uganda, according to the release.

CIMMYT helped develop the StrigAwayTM technology package along with partners including the Weizmann Institute of Science in Israel. An herbicide-tolerant maize variety is coated with an herbicide that kills Striga when the seed is sown and sprouts.

Other partners, including the agrochemical company BASF and six local seed companies, will promote the project in the three target countries. The project aims to create 4,000 demonstration plots and sell 1,000 metric tons of seed to 20,000 smallholder farmers. Partners will also offer technical support on how to use the seed and launch campaigns and promotion of StrigAwayTM.

Learning to breed insect-resistant maize at CIMMYT-Kenya

IMG_2264“The trip was an eye opener for me. We have no mass rearing facility in Ethiopia; neither do we practice artificial infestation of stem borers. We only undertake natural infestation for our trials, which does not give uniform infestation, leading us to wrong conclusions,” said Midekssa Ardessa from Bako Agricultural Research Center at the Ethiopian Institute of Agricultural Research (EIAR), who visited CIMMYT-Kenya during 21-27 July 2013 with a team of scientists from Ethiopia, Uganda, Tanzania, and Mozambique, to gain hands-on experience in breeding insect-resistant maize. “We are now very knowledgeable on mass rearing of stem borers and on running an insectary after our visit and practical sessions at the CIMMYT Katumani Insectary,” added Abiy Dibaba from EIAR’s Melkasa Agricultural Research Center. “At the CIMMYT Kiboko Postharvest Lab, we learned a lot about maize weevils and the larger grain borer, and how to screen maize for resistance against these postharvest pests.”

The visit, organized and facilitated by the Insect Resistant Maize for Africa (IRMA III Conventional) and the Water Efficient Maize for Africa (WEMA) projects, aimed to build capacity in maize breeding for insect resistance using conventional approaches, insect resistance screening, and management of field and lab infestations. Participants came from EIAR; Kenya Agricultural Research Institute (KARI); Selian Agricultural Research Institute (SARI), Tanzania; National Biological Control Program, Tanzania; Ministry of Agriculture, Tanzania; National Crops Resources Research Institute (NACRRI) of the National Agricultural Research Organization (NARO), Uganda; and National Institute of Agronomic Research (IIAM), Mozambique.

“The visit provided an opportunity for the scientists to understand IRMA’s and WEMA’s research work in Kenya and a forum to share experiences in mass rearing, breeding, and pest control among participating countries,” said Stephen Mugo, CIMMYT principal scientist/maize breeder and IRMA and WEMA projects coordinator. It is also a learning process for CIMMYT scientists, he added. The team visited CIMMYT insect pests resistant germplasm nurseries and trials at the Embu, Kirinyaga University College, and Kiboko sites where they learned how to set up, infest, manage, and take data on stem borer trials and nurseries. At the KARI-Katumani IRMA III Conventional collaborative stem borer mass rearing facilities, participants learned to set up, equip, and manage stem borer mass rearing; in Kiboko they focused on the set up, management, and data collection for storage pests screening. The field and lab practical sessions were facilitated by CIMMYT scientist/entomologist Tadele Tefera.

IMG_2327The annual IRMA project’s program has trained more than 50 scientists since its inception in 2009. “Most of us talk very easily and confidently about insect rearing. However, it is quite a challenge when we engage in the practical aspects,” said Tefera. “What we have exposed you to is just a tip of the iceberg in the business of mass rearing of insects. There is still a lot to learn, much of it by yourself as you engage in the practical aspects of it.” The participants appreciated the effort taken by the organizers. One of them, Egas Nhamucho of IIAM, said: “Infestation of maize with stem borers was a real learning point for me, a real delicate task of picking out very tiny 10 insect larvae, ensuring that you do not pierce and kill them with the camel brush, and carefully and strategically placing them on each maize plant. The practical sessions really made me appreciate some of the tasks we have always taken for granted.”

Concluding the event, CIMMYT scientist/maize breeder Yoseph Beyene called on the participating scientists to ensure that as many people as possible get access to the knowledge they gained. “Invest in people to effectively and successfully undertake your research,” he said.

WEMA project manager Sylvester Oikeh thanked CIMMYT scientists for the support they provided to the Ugandan team in setting up the Namulonge Insectary. “I am looking forward to other countries emulating Uganda and setting up their insectaries,” Oikeh added.

Stepping up the fight against maize lethal necrosis in Eastern Africa

MLN-Eastern-Africa1“I can now identify with accuracy plants affected with maize lethal necrotic disease,” stated Regina Tende, PhD student attached to CIMMYT, after attending the CIMMYT-Kenya Agricultural Research Institute (KARI) “Identification and Management of Maize Lethal Necrosis” workshop in Narok, Kenya, during 30 June-3 July 2013. This was not the case a few weeks ago when Tende, who is also a senior research officer at KARI-Katumani, received leaf samples from a farmer for maize lethal necrosis (MLN) verification.

Tende is one of many scientists and technicians who experienced difficulty in differentiating MLN from  other diseases or abiotic stresses with similar symptoms. According to Stephen Mugo, CIMMYT Global Maize Program (GMP) principal scientist and organizer of the workshop, this difficulty encouraged CIMMYT and KARI to organize this event to raise awareness about MLN among scientists, technicians, and skilled field staff; provide training on MLN diagnosis especially at field nurseries, trials, and seed production fields; train on MLN severity scoring to improve the quality of data generation in screening trials; and introduce MLN management in field screening sites to scientists, technicians, and skilled staff. The workshop brought together over 80 scientists and technicians from CIMMYT, KARI, and other national agricultural research systems (NARS) partners from Tanzania, Uganda, Rwanda, and Zimbabwe.

“It is important that all the people on the ground, particularly the technicians who interact daily with the plants and supervise research activities at the stations, understand the disease, are able to systematically scout for it, and have the ability to spot it out from similar symptomatic diseases and conditions like nutrient deficiency,” stated GMP director B.M. Prasanna.

Proper and timely identification of the MLN disease, which is a pre-requisite for effective control, is not easy. CIMMYT maize breeder Biswanath Das explains: “First of all, the disease is caused by a combination of two viruses, Maize chlorotic mottle virus (MCMV) and Sugarcane mosaic virus (SCMV). Secondly, its symptoms –severe mottling of leaves, dead heart, stunted growth (shortened internode distance), leaf necrosis, sterility, poor seed set, shriveled seeds– are not always unique to MLN but could be due to other fungal diseases and abiotic conditions.”  The training workshop was one of CIMMYT/KARI initiatives to combat the disease threatening all the gains made so far in maize breeding. “With nearly 99% of the commercial maize varieties so far released in Kenya being susceptible to MLN, it is important that institutions like CIMMYT and KARI, in strong collaboration with the seed sector, develop and deploy MLN disease resistant varieties in an accelerated manner,” stated Prasanna. One of the key initiatives in this fight is the establishment of a centralized MLN screening facility under artificial inoculation for Eastern Africa at the KARI Livestock Research Farm in Naivasha. Plans are also underway to establish a network of MLN testing sites (under natural disease pressure) in the region to evaluate promising materials from artificial inoculation trials in Naivasha. The state of the art maize doubled haploid (DH) facility currently under construction in Kiboko will also play a crucial role in accelerating MLN resistant germplasm development. “The DH technology, in combination with molecular markers, can help reduce by half the time taken for developing MLN resistant versions of existing elite susceptible lines,” stated Prasanna.

MLN-Eastern-Africa2During his opening speech, Joseph Ng’etich, deputy director of Crop Protection, Ministry of Agriculture, noted that about 26,000 hectares of maize in Kenya were affected in 2012, resulting in an estimated loss of 56,730 tons, valued at approximately US$ 23.5 million. Seed producers also lost significant acreages of pre-basic seed in 2012: Agriseed lost 10 acres in Narok; Kenya Seed lost 75; and Monsanto 20 at Migtyo farm in Baringo, according to Dickson Ligeyo, KARI senior research officer and head of Maize Working Group in Kenya.

While this loss represents only 1.7%, Ligeyo assured everyone that Kenya is not taking any chances and has come up with a raft of measures and recommendations: farmers in areas where rainfall is all year round or maize is produced under irrigation are advised to plant maize only once a year; local quarantine has been enforced and farmers are to remove all infected materials from the fields and stop all movement of green maize from affected to non-affected areas; seed companies must ensure that seeds are treated with appropriate seed dressers at recommended rates, they must also promote good agricultural practices, crop diversification, and rotation with non-cereal crops.

Throughout the workshop, participants learned about theoretical aspects of MLN, such as the disease dynamics, management of MLN trials and nurseries, and identification of germplasm for resistance to MLN. They also participated in practical sessions on artificial inoculation, and identification and scoring. Several CIMMYT scientists played an active role in organizing the workshop, including breeders Stephen Mugo, Biswanath Das, Yoseph Beyene, and Lewis Machida; entomologist Tadele Tefera; and seed systems specialist Mosisa Regasa. They were accompanied by KARI scientist Bramwel Wanjala, KEPHIS regulatory officer Florence Munguti, and NARS maize research leaders Claver Ngaboyisonga (Rwanda), Dickson Ligeyo (Kenya), Julius Serumaga (Uganda), and Kheri Kitenge (Tanzania). During his closing remarks, KARI Food Crops program officer Raphael Ngigi, on behalf of KARI director, urged participants to rigorously implement what they had learnt during the workshop in their respective countries or Kenya regions to help combat MLN at both research farms and farmers’ fields.

Commenting on the usefulness of the workshop, technical officer at KARI-Embu Fred Manyara stated: “I will no longer say I do not know or I am not sure, when confronted by a farmer’s question on MLN.”

Building capacity of East African seed companies through training

Seed production workshop participants visited a hybrid seed field at East African Seeds in Uganda.
Seed production workshop participants visited a hybrid seed field at East African Seeds in Uganda.

In recent years seed companies in Tanzania and Uganda have seen tremendous growth, resulting largely from the uptake of new drought tolerant maize varieties from both national and international organizations (see Table 1). This is accompanied by an increasing number of improved maize varieties taken up by the companies, growth in seed production, and general expansion of the companies’ work volume, which results in need for more well-trained technical staff. Recognizing this, several companies in the region turned to CIMMYT with a request for a training course to equip seed technicians with skills to produce seed of various classes and to supply farmers with quality seeds. In response to the request, CIMMYT organized two training sessions: from 8-10 January 2013 in Tanzania and from 10-12 June 2013 in Uganda.

Click on the table to zoom in.
Click on the table to zoom in.

Delivered by James Gethi, Biswanath Das, and Mosisa Worku Regasa, together with Godfrey Asea in Uganda, the course covered all aspects of the seed value chain, including seed processing, quality control of seed production, customer service, contracting growers, maize varieties and their characteristics, seed storage, marketing strategies, and handling of unsold stock; it also touched on agronomy.

In Tanzania the course attracted 25 participants from 8 seed companies; in Uganda there were 39 attendees from 14 seed companies, the Uganda Seed Trade Association (USTA), and the National Crops Resources Research Institute (NaCRRI).

“Capacity building in local seed companies is important,” said Bob Shuma, executive director of the Tanzania Seed Trade Association (TASTA), encouraging participants to seek opportunities to enhance their skills and knowledge of the seed business from CIMMYT and other partners. “Products and services of good quality are key in the process of building customers’ trust, which contributes to the success of the company. This can only be achieved through training and adherence to laws and regulations set by the government,” he added.

To determine the effectiveness of the course and delivery methods, participants were evaluated before and after the course. The pre- and post-course quizzes indicated an improvement of knowledge in both countries by over 34%. Those with top scores on the quiz were recognized for their outstanding performance, and all participants received a CD with resource materials and a copy of The Seed Business Management in Africa (MacRobert 2009).

Godfrey Asea, crop breeder and cereal research leader at NaCRRI, and Masagazi Cliff-Richard, USTA chairman and managing director of Pearl Seeds Ltd, who participated in the course in Uganda, thanked CIMMYT for organizing the training and urged everyone to use the newly-acquired knowledge to produce and supply quality seed to Ugandan farmers. “Uganda needs an improved seed industry,” said Cliff-Richard emphasizing the value of the course.Tanzania-Group-photograph2

The CRP MAIZE will be hosting a side event on the role of maize in Africa at the Africa Agriculture Science Week (15-20 July) on 16 July in Accra, Ghana. Join us if you can and follow the AASW Blog and #AASW6 on Twitter.

Promising CIMMYT maize inbreds and pre-commercial hybrids identified against maize lethal necrosis (MLN)

maize-inbreds-against-MLNThe maize lethal necrosis (MLN) disease first appeared in Kenya’s Rift Valley in 2011 and quickly spread to other parts of Kenya, as well as to Uganda and Tanzania. Caused by a synergistic interplay of maize chlorotic mottle virus (MCMV) and any of the cereal viruses in the family, Potyviridae, such as Sugarcane mosaic virus (SCMV), Maize dwarf mosaic virus (MDMV), or Wheat streak mosaic virus (WSMV), MLN can cause total crop loss if not controlled effectively.

A regional workshop on MLN and the control strategies was organized by CIMMYT and KARI during February 12-14, 2013 in Nairobi, which was attended by some 70 scientists, seed company breeders and managers, and representatives of ministries of agriculture and regulatory authorities in Kenya, Uganda, Tanzania, and the USA. The Workshop led to identification of important action points steps for effectively controlling the disease.

CIMMYT scientists have been working closely with virology experts from USDA-ARS and Kenya Agricultural Research Institute (KARI) to develop suitable protocols for testing the responses of maize germplasm against MLN, and to identify promising inbred lines and hybrids with resistance to MLN. During the 2012-2013 crop season, the CIMMYT-KARI team undertook extensive screening of inbred lines, pre-commercial and commercial hybrids in Naivasha and Narok in Kenya, under high natural disease pressure and artificial inoculation, respectively.

A trial featuring 119 commercial maize varieties (released in Kenya) under artificial inoculation during 2012-2013 revealed that as many as 117 varieties were susceptible to MLN. Another set of trials including 335 elite inbred lines, 366 pre-commercial hybrids and 7 commercial hybrids (as checks) under MLN artificial inoculation in Narok, and another set of trials comprising 350 elite inbred lines and 135 pre-commercial hybrids under natural disease pressure in Naivasha, led to identification of some promising CIMMYT inbred lines as well as pre-commercial hybrids showing resistance or moderate resistance. These results offer considerable hope to combat, through breeding efforts, the deadly MLN disease that has severely affected maize harvests and discouraged farmers from growing maize in eastern Africa.

Table 1
Table 1

Notes on trial results

The details of the promising CIMMYT elite inbred lines and pre-commercial hybrids against MLN are presented in Table 1 and Table 2, respectively. The results presented in Table 1 are based on evaluation of CIMMYT inbred lines in four independent trials, two under artificial inoculation (Narok) and two under natural disease pressure (Naivasha) during 2012-2013. In each trial, entries were replicated (minimum two), and MLN severity scores (on a 1-5 scale basis) were recorded three or more times during the crop cycle, from the vegetative to the reproductive stage. The highest average MLN severity score (max. MLN score), recorded at any stage during the trial, is presented as representative of a given entry.

Table 2
Table 2

The data must be critically assessed and cautiously used by stakeholders and partners. More weight should be given to data from artificially inoculated trials, since trials under natural disease pressure are more liable to ‘disease escapes’ and identification of false positives. Caution must be exercised when using specific lines identified as potentially resistant (R) or moderately resistant (MR), especially when classification is based on data from only one trial (even under artificial inoculation). Please note that in such cases, the responses of the lines need to be validated by CIMMYT through further trials.

CIMMYT is working closely with both public and private sector partners to significantly expand the MLN evaluation network capacity in eastern Africa, and will continue the intensive efforts to identify/develop and deliver new sources of resistance to MLN.

For further information on:
MLN research-for-development efforts undertaken by CIMMYT, please contact: Dr BM Prasanna, Director, Global Maize Program, CIMMYT, Nairobi, Kenya; Email: b.m.prasanna@cgiar.org.
Availability of seed material of the promising lines and pre-commercial hybrids, please contact: Dr Mosisa Regasa (m.regasa@cgiar.org) if your institution is based in eastern Africa, or Dr James Gethi (j.gethi@cgiar.org) if your institution is based in southern Africa or outside eastern and southern Africa.

Additional resources

UPDATE: Promising CIMMYT maize inbreds and pre-commercial hybrids identified against maize lethal necrosis (MLN) in eastern Africa
Maize lethal necrosis (MLN) disease in Kenya and Tanzania: Facts and actions (Download )
KARI-CIMMYT maize lethal necrosis (MLN) screeing facility (1.43 MB)
Maize lethal necrosis: Scientists and key stakeholders discuss strategies as the battle continues

Videos

MLN: A farmer's pleaMLN: A farmer’s plea
Maize lethal necrosis disease: A new challenge for maize scientists in eastern AfricaMaize lethal necrosis disease: A new challenge
for maize scientists in eastern Africa 

Media coverage

Deadly maize disease resurfaces in N. Rift. Business Daily, 31 May 2013.

Fresh viral maize disease worries farmers. Daily Nation, 31 May 2013.

Alert out in Coast over maize disease. Daily Nation, 31 May 2013.

Table 2Download table in pdf format

SIMLESA progressing and gearing up for Phase II

IMG_0883Over 200 researchers, policy makers, donors, seed companies, and NGO representatives from Africa and Australia gathered in Chimoio, Mozambique, during 17-23 March 2013 for the third SIMLESA (Sustainable Intensification of Maize-Legume Systems for Food Security in Eastern and Southern Africa) annual regional planning and review meeting to discuss the project’s progress and achievements, share lessons learned throughout the last three years, and deliberate over better ways to design and implement future activities in the SIMLESA target (Ethiopia, Kenya, Tanzania, Malawi, and Mozambique) and spillover countries (Botswana, Uganda, South Sudan, and Zambia).

“SIMLESA had attained a ‘steady flight path’ and is on track to deliver significant impacts,” noted Derek Byerlee, Program Steering Committee (PSC) co-chair, and the Mid-Term Review (MTR) conducted last year supports his words: “The MTR Team has reviewed progress by objectives and the overall execution of the Program, and finds that in general it has made very good progress in its first two years.” Bekele Shiferaw, Program Management Committee chair, then highlighted MTR’s recommendations, including the following: SIMLESA should take concrete steps to overcome current socio-economic research capacity constraints in national agricultural research systems and in the areas of value chains, informal analyses, business management, participatory agronomy, and breeding research; focus on ‘smart’ sequences for testing conservation agriculture technologies with farmers resulting in step-wise adoption; and create representative and effective innovation platforms with clear roles, structures, and functions.

As SIMLESA Phase I is ending next year, participants brainstormed on key issues anticipated in Phase II, concluding that the overall approach should be holistic, flexible in dealing with complex systems, and should aim to devise effective ways to target different group of farmers, as one size does not fit all. Furthermore, it was noted that Phase II should focus on changing the mindset of farmers. “There are so many different technologies bombarding farmers. The real work therefore lies in dealing with the psychological, social, cultural, and environmental factors of the farmer that will determine the adoption of introduced technologies,” noted one of the participating groups during the plenary session. Following the discussion on Phase II, Byerlee shared PSC’s vision: apply a broader approach to system intensification (conservation agriculture elements, soil fertility, pest management, and diversification); be more country specific; create empowering, location-specific, and sustainable innovation platforms; and pay more attention to institutions and policies vis-à-vis technology.

In the words of Inacio Maposse, Agricultural Research Institute of Mozambique (IIAM) director general and PSC member, Phase II is not necessary only because Phase I is ending but also “because we want to add another dimension to the program, and perhaps a different philosophy, one that will lead us to success. And for me, success means to get farmers smile sustainably. Smile because they are better off. For this to happen, we have to design Phase II with heart and wisdom. We need Phase II because we are yet to produce significant adoption and impact on the farming communities.” John Dixon (senior advisor for cropping systems and economics and principal regional coordinator for Africa and South Asia, Australian Centre for International Agricultural Research) added another reason for why to continue with SIMLESA: “Where resources are limited, sustainable intensification is the only option to feed the extra two billion people by 2050.”

Mellissa Wood, Australian International Food Security Centre (AIFSC) director, then explained some of the reasons behind the close cooperation between Australia and Africa: “Australia and Africa share many common agricultural challenges, including limiting soils, highly variable climates, pests, and diseases.” Consequently, AIFSC aims to accelerate adoption; bridge the gap between research and development; find new ways to support African agricultural growth through adoption, policy, scale-out, improved market access, diversification, and nutrition.

In her closing remarks, Marianne BĂ€nziger (CIMMYT deputy director general for research and partnerships) called on the Phase II planners to design holistic packages that entail success and ensure SIMLESA provides farmers in the five target countries with diverse opportunities for improving their livelihoods. “Farmers should be able to get incomes not only from maize and legumes but also from other farm enterprises. You should come up with possible and realistic interventions in realistic time frames,” BĂ€nziger concluded.

Throughout the meeting, implementing partners, researchers, and seed companies showcased their achievements and products at the ‘SIMLESA poster village.’ Participants learned about farmers’ perspectives and practices through field visits to Sussudenga maize breeding and exploratory trial sites, participatory variety trials in Vanduzi and Polytechnic Institute of Manica, and conservation agriculture and innovation platforms scaling out sites in Makate.

Maize lethal necrosis: Scientists and key stakeholders discuss strategies as the battle continues

29A recently-emerged disease in Eastern Africa, maize lethal necrosis (MLN), remains a serious concern. A regional workshop on the disease and its management strategies was held during 12-14 February 2013 in Nairobi, Kenya. Organized by CIMMYT and the Kenya Agricultural Research Institute (KARI), the workshop brought together nearly 70 scientists, seed company breeders and managers, and representatives of ministries of agriculture and regulatory authorities in Kenya, Uganda, and Tanzania, as well as experts from the U.S.A.

The key objective of the meeting was to “establish a strong interface between research and regulatory institutions in Eastern Africa to effectively tackle the MLN challenge, including the ongoing efforts and further steps to identify and deploy disease-resistant germplasm, and to create a system that can ensure a constant flow of varieties,” explained B.M. Prasanna, CIMMYT Global Maize Program director. Prasanna highlighted the difficulties faced by the maize farming community from the disease, and emphasized the need to accelerate deployment of MLN resistant maize varieties and to generate necessary awareness among the relevant stakeholders on management strategies. “It is necessary to break the MLN disease cycle and tackle the problem from multiple perspectives,” added KARI director Ephraim Mukisira. He mentioned that besides partnering with CIMMYT on breeding for MLN resistant varieties, KARI will also be distributing seed of alternative crops to farmers in affected areas. “As a dairy farmer, I will be planting napier grass instead of maize this season,” noted Mukisira.

The first signs of a new disease appeared in 2011 and 2012 in the Rift Valley Province, Kenya. A team of CIMMYT and KARI scientists identified it as MLN, a disease caused by a double infection of the maize chlorotic mottle virus (MCMV) and the sugarcane mosaic virus (SCMV) and transmitted by insects. According to Godfrey Asea, plant breeder and head of the Cereals Program at the National Crops Resources Research Institute (NaCRRI), Kampala, MLN was also identified in Uganda. Furthermore, symptoms of MLN have been cited in Tanzania, said Kheri Kitenge, maize breeder at the Selian Agricultural Research Institute (SARI), Arusha.

Scientists, particularly breeders, have made significant progress in tackling the disease. Studies are already underway at two field sites (Naivasha and Narok) where responses of a wide array of inbred lines and pre-commercial hybrids are being evaluated under high natural disease pressure and artificial inoculation. Participants visited the Sunripe Farm in Naivasha, where they observed KARI-CIMMYT MLN trials under natural disease pressure. A trial under artificial inoculation in Naivasha featuring nearly 175 commercial maize varieties is showing high levels of susceptibility to MLN. Researchers remain hopeful as some of the elite inbred lines and pre-commercial hybrids developed under projects such as the Drought Tolerant Maize for Africa (DTMA) or Water Efficient Maize for Africa (WEMA) are showing resistance to the disease.

During the farm visit, KARI pathologist Anne Wangai and her team showed how to generate artificial inoculum for MCMV and SCMV, as well as the enzyme-linked immunosorbant assay (ELISA) based technique for pathogen diagnosis at the national agricultural research laboratories at the KARI campus. The participants observed an artificial inoculation of maize seedlings in the field, followed by a discussion on some of the major changes in maize seed demand resulting from MLN incidence. “The maize seed industry is under stress in Kenya due to the need to replace some popular but MLN-vulnerable varieties as soon as possible,” explained Evans Sikinyi, Seed Trade Association of Kenya (STAK) executive officer. All stakeholders agreed that the foremost priority is to identify and speed deployment of MLN resistant maize varieties. “We also have to enhance the diagnostic capacity in the labs and ensure there is a rapid response and surveillance on MLN,” added Esther Kimani, general manager of phytosanitary services at the Kenya Plant Health Inspectorate Service (KEPHIS).

In the concluding session of the workshop, stakeholders identified key research areas and discussed partnership opportunities.

High expectations among stakeholders as WEMA Phase II kicks off

IMG_9890During 4-8 February 2013, stakeholders of the Water Efficient Maize for Africa (WEMA) project gathered in Nairobi, Kenya, for the Fifth Review and Planning Meeting to discuss achievements and challenges of the recently concluded WEMA Phase I (2008-2013) and to plan for the second phase of the project (2013-2017) which begins in March this year. In the past four years, WEMA has made several key achievements, including the successful application and approval of permits to conduct confined field trials for transgenic varieties in Kenya, Uganda, and South Africa. Kenya and Uganda are now in their third year of trials, South Africa in its fourth. The project has also managed to submit conventional drought tolerant maize hybrids into the national performance trials in Kenya. “It is expected that farmers will have these WEMA conventional maize seeds by 2014,” says Denis Kyetere, African Agricultural Technology Foundation (AATF) executive director. CKH110078, one of the hybrids developed from the Drought Tolerant Maize for Africa (DTMA) materials, is in its final stage of approval in Kenya.

Emily Twinamasiko, Uganda’s National Agricultural Research Organization director general and WEMA Executive Advisory Board chair, was pleased with the achievements made in 2012 and commended all teams and the operations committee for their great efforts. Natalie DiNicola, Monsanto vice president for Africa and Europe, commented on the indicators of success: “The project will never be successful until the farmer has a product to plant and options to choose from.” Getting the seed to the farmers was stressed also by Ephraim Mukisira, Kenya Agricultural Research Institute (KARI) director, who called for speedy deployment of the varieties: “KARI wants to see the product with the farmer. The scientists must work hard so that impact can be seen and be seen today.”

B.M. Prasanna, Global Maize Program director, thanked Monsanto for donating the drought tolerant and Bt genes. “This is a tremendous opportunity to address some of the biggest challenges to African smallholder farmers [drought and stem borer infestation]. MON810 presents yet another great opportunity for WEMA to tap into the products from the Insect Resistant Maize for Africa project to develop a product that addresses many of the insect related constraints.” He added that new but exciting challenges were posed by maize lethal necrosis, particularly because it has allowed the WEMA team to assure partners that the materials being produced are resistant to the disease. During a visit to trials at KARI-Kiboko, stakeholders observed WEMA varieties, many of which have outperformed some of the best local hybrid checks on the market. They also visited the confined field trials for Bt MON810 and drought tolerant MON87460 that are in their first and fourth seasons of trials, respectively.

Shifting attention from successes to challenges, Stephen Mugo, CIMMYT principal scientist and co-chair of the WEMA Product Development team, spoke of the major lessons learnt by the team in Phase I that are crucial for the success of the second phase: continuous training in trials modernization and modern breeding techniques is necessary, as is a good quality assurance program for the exchange of germplasm between the private and public sectors to minimize the risk of inappropriate germplasm exchange. The stage is now set for Phase II after the meeting streamlined WEMA II milestones and developed the WEMA II 2013 work plans.

Lawrence Kent from the Bill & Melinda Gates Foundation noted that “with great privilege comes lots of responsibilities. We therefore expect great success from WEMA.” This sentiment was shared by other stakeholders, who were impressed by the achievements of Phase I and thus have high expectations for Phase II. “WEMA continues to be a success because of the combined and dedicated efforts within the partnership: the national agricultural research systems, CIMMYT, Monsanto, and AATF. All these partners have continued to work together, celebrating project gains and resolving any challenges together for the good of the larger goal and promise to smallholder farmers, a promise of food security and better livelihoods,” stated Kyetere. “A food secure continent is among the greatest inheritance and legacy we can leave the generations that are coming after us, our children and to our children’s children.”

Ugandan farmers also coating seed for Striga control

A Striga infested maize field in Tororo, Uganda.
A Striga infested maize field in Tororo, Uganda.

In Tororo, Uganda, farmers have been losing most of their maize crop to witchweed. However, they now feel that there is hope as research by CIMMYT and its partners is pro viding a solution. During a recent field day in Tororo, farmers Selina and Charles Emoit hosted their peers at an on-farm demonstration of 15 improved maize varieties. Farmers had the opportunity to observe the trial and select the best performing varieties.

Having planted the maize coated with the chemical imazapyr, Selina said she had seen wonderful results on her farm. Previously, the couple would get almost nothing from the farm as a result of Striga infestation. “What used to be seen from my farm is not what is seen today,” said Selina expressing her joy at being able to save her crop. To ensure that the experiment was successful, Selina explained that they had a different person planting each plot to avoid mix-ups; after germination, some variations were observed on the crops in the field. “Despite all the variations, each one of them has a cob which is better than what I used to get,” said Selina urging fellow farmers to collaborate with researchers to ensure good yields. Selina thanked all the Striga project collaborators who had collectively made it possible to fight the weed on her farm.

Farmers-selecting-varietiesThe field day was attended by James Ogwang, director of National Crops Resources Research Institute (NaCRRI) at Namulonge; Godfrey Asea, maize breeder and head of the Cereals Program; Pearl and NASECO seed companies representatives; Sammy Waruingi from BASF; and CIMMYT maize breeder Dan Makumbi and research assistant Edna Mageto. Ogwang urged the farmers to plant only certified seed and move beyond border issues to work together in Striga management. Asea thanked the government and farmers for their support in the fight against Striga. He said the farmers had become good project ambassadors.

“Striga is a big challenge to maize production,” said Eva Musenero, District Production Officer, thanking the partners for the efforts towards eliminating the pest. She also urged farmers to embrace new weed management technologies. The farmers who participated in the field day were keen to know how they could access the best performing varieties.