Skip to main content

Location: Uganda

Drought Tolerant Maize for Africa (DTMA)

The Drought Tolerant Maize for Africa project aims to mitigate drought and other constraints to maize production in sub-Saharan Africa, increasing maize yields by at least one ton per hectare under moderate drought and with a 20 to 30 percent increase over farmers’ current yields, benefiting up to 40 million people in 13 African countries. The project brings together farmers, research institutions, extension specialists, seed producers, farmer community organizations and non-governmental organizations. It is jointly implemented by CIMMYT and the International Institute for Tropical Agriculture, in close collaboration with national agricultural research systems in participating nations. Millions of farmers in the region are already benefiting from the outputs of this partnership, which includes support and training for African seed producers and promoting vibrant, competitive seed markets.

Achievements:

  • Between 2007 and 12, participants marketed or otherwise made available 60 drought tolerant hybrids and 57 open-pollinated varieties to smallholder farmers
  • In addition to drought tolerance, the new varieties and hybrids also possess such desirable traits as resistance to major diseases
  • Engage government officials in policy dialogue to help fast-track varietal releases and fosters competitive seed markets and more
    widespread access to quality seed at affordable prices
  • Help ensure farmers’ access to the best possible products and services, coordinate various capacity-building events and
    activities for maize breeders, technicians, seed producers, extension workers, non-government organizations and farmer groups
  • Provide technical and advisory support to 50 African undergraduate and 28 African graduate students
  • Expand smallholder farmers’ use of drought and other stress tolerant maize seed to benefit 30 to 40 million people and provide added grain worth $160-200 million each year in drought-affected areas of sub-Saharan Africa

Principal coordinator

Tsedeke Abate

Exploring young Africans’ role and engagement in the rural economy

Tabitha Kamau checks the maize at her family’s farm in Machakos County, Kenya. (Photo: Joshua Masinde/CIMMYT)
Tabitha Kamau checks the maize at her family’s farm in Machakos County, Kenya. (Photo: Joshua Masinde/CIMMYT)

How do young rural Africans engage in the rural economy? How important is farming relative to non-farm activities for the income of young rural Africans? What social, spatial and policy factors explain different patterns of engagement? These questions are at the heart of an interdisciplinary research project, funded by the International Fund for Agricultural Development (IFAD), that seeks to provide stronger evidence for policy and for the growing number of programs in Africa that want to “invest in youth.”

One component of the Challenges and Opportunities for Rural Youth Employment in Sub-Saharan Africa project, led by the Institute of Development Studies (IDS), draws on data from the World Bank’s Living Standard Measurement Study – Integrated Surveys on Agriculture (LSMS-ISA) to develop a more detailed picture of young people’s economic activities. These surveys, covering eight countries in sub-Saharan Africa, were conducted at regular intervals and in most cases followed the same households and individuals through time. While the LSMS-ISA are not specialized youth surveys and therefore may not cover all facets of youth livelihoods and wellbeing in detail, they provide valuable knowledge about the evolving patterns of social and economic characteristics of rural African youth and their households.

LSMS-ISA data are open access, aiming to help national governments and academics analyze the linkages between poverty and agricultural productivity in developing countries,” said Sydney Gourlay, Survey Specialist in the Development Data Group of the World Bank. She explained that LSMS-ISA datasets cover rural and urban livelihoods — including asset ownership, education, farm and non-farm incomes — and contain detailed information on farming practices and productivity. “LSMS-ISA data have untapped potential for valuable youth analyses that could lead to evidence-based youth policy reform,” Gourlay said.

To stimulate greater use of LSMS-ISA data for research on these issues, the International Maize and Wheat Improvement Center (CIMMYT), IDS, and the LSMS team of the World Bank organized a workshop for young African social scientists, hosted by CIMMYT in Nairobi from February 4 to February 8, 2019.

Early-career social scientists from Ethiopia, Ghana, Kenya, Nigeria, Uganda, and Zimbabwe explored the potential of LSMS-ISA data, identified research issues, and developed strategies to create new analyses. The workshop was also a chance to uncover potential areas for increased data collection on youth, as part of the LSMS team’s IFAD-funded initiative “Improving Data on Women and Youth.”

What does that data point represent?

The workshop stressed the importance of getting to know the data before analyzing them. As explained by World Bank senior economist Talip Kilic in The Crowd and the Cloud, “Every data point has a human story.” It is important to decipher what the data points represent and the limits within which they can be interpreted. For instance, the definition of youth differs by country, so comparative studies across countries must harmonize data from different sources.

“Because LSMS-ISA survey locations are georeferenced, it is possible to integrate spatial information from multiple sources and gain new insights about patterns of interest, as well as the drivers associated with such patterns,” said Jordan Chamberlin, spatial economics expert at CIMMYT. “For example, in all countries we’ve examined, the degree of non-farm economic engagement is strongly associated with distance from urban centers.”

Chamberlin noted that georeferencing also has limitations. For instance, to ensure privacy, LSMS-ISA coordinates for households are randomly offset by as much as 5 km. Nonetheless, diverse geospatial data from the datasets — distance to the nearest tarmac road or population density, among other information — may be integrated via the location coordinates.

A young farmer holding a baby participates in a varietal assessment exercise on a maize trial plot in Machakos County, Kenya. (Photo: Joshua Masinde/CIMMYT)
A young farmer holding a baby participates in a varietal assessment exercise on a maize trial plot in Machakos County, Kenya. (Photo: Joshua Masinde/CIMMYT)

One key variable to assess farm productivity is harvested area. The LSMS team’s research has revealed high, systematic discrepancies between farmers’ self-assessments of area, GPS measurements, and compass and rope, which is considered the most accurate method. Methodological validation data from Ethiopia, Nigeria, and Tanzania show that on average farmers overestimate the area of plots smaller than 200 m2 by more than 370 percent and underestimate the size of plots larger than 2 hectares by 13 percent, relative to compass and rope measurements. Such errors can skew yield analyses and the accuracy of assessments of national agricultural research programs’ impact.

Several workshop participants expressed interest in using the LSMS dataset for studies on migration, given that it contains information about this variable. In the case of internal migrants — that is, persons who have moved to another area in the same country — LSMS enumerators will find and interview them and these migrants will continue to be included in future rounds of the panel survey. In Malawi, for example, about 93 percent of individuals were tracked between the 2010/11 and the 2013 Integrated Household Surveys. Plot characteristics — such as type of soil, input use, and crop production — include information on the person who manages the plot, allowing for identification and analysis of male and female managed plots.

Following the training, the participants have better articulated their research ideas on youth. Prospective youth studies from the group include how land productivity affects youth opportunities and whether migration induces greater involvement of women in agriculture or raises the cost of rural labor. Better studies will generate more accurate knowledge to help design more effective youth policies.

 

How gender equity and social inclusion are improving the lives of rural families in Africa

Women have the potential to be drivers of agricultural transformation in Africa, holding the key to improving their families’ livelihoods and food security. However, constraints such as lack of access to initial capital, machinery, reliable markets, and knowledge and training are difficult to overcome, leading to restricted participation by women and young people in agricultural systems in Africa.

A new video from the Sustainable Intensification of Maize-Legume Systems for Food Security in Eastern and Southern Africa (SIMLESA) project highlights the importance of gender equity and social inclusion to achieving project impacts and outcomes, helping to drive transformative change towards securing a food-secure future for Africa. Case studies and interviews with women and men farmers — including young people — detail how SIMLESA’s approach has re-shaped their maize-based farming lives.

The video is aligned with the theme for International Women’s Day 2019, Think Equal, Build Smart, Innovate for Change,” which places the spotlight on innovative ways in which we can advance gender equality and the empowerment of women.

“This video is intended to educate the agricultural community and wider public on the importance of applying sustainable intensification agricultural practices and technologies in order to bridge the gender gap in agricultural productivity and achieve agricultural transformation for smallholder farmers in Africa,” said Rahma Adam, Gender and Development Specialist with CIMMYT in Kenya. “We hope stakeholders will be able to see the benefits of these practices and technologies, and work towards finding ways to implement them into their agricultural practices or programs.”

Launched in 2010, SIMLESA is led by the International Maize and Wheat Improvement Center (CIMMYT) and funded by the Australian Center for International Agricultural Research (ACIAR). It is implemented by national agricultural research systems, agribusinesses and farmers in partner countries including Ethiopia, Kenya, Malawi, Mozambique, Rwanda, Tanzania and Uganda.

SIMLESA lead farmer Agnes Sendeza harvests maize cobs from a stook on her farm in Tembwe, Salima district, Malawi. (Photo: Peter Lowe/CIMMYT)
SIMLESA lead farmer Agnes Sendeza harvests maize cobs from a stook on her farm in Tembwe, Salima district, Malawi. (Photo: Peter Lowe/CIMMYT)

Putting equal opportunities at the center

Following a participatory research for development approach, the SIMLESA team works alongside farmers and partner organizations to achieve increased food production while minimizing pressure on the environment by using smallholder farmers’ resources more efficiently and empowering women, men and young people to make decisions.

The SIMLESA project achieves impact by integrating gender sensitivity into all project activities and developing a deep understanding of social contexts and factors that constrain access to, and adoption of, improved technologies. Initiatives are able to reach all individuals in the project’s target communities, leaving no one out.

“The benefits of fostering equal opportunities for women, men and young people through SIMLESA’s work are enormous,” said Adam. Equal opportunities mean better access to information, markets, and improved varieties of seeds; participation in field trials, demonstrations and training; and the provision of leadership opportunities in local innovation platforms.

Central to the success of the SIMLESA project is the concept of Agricultural Innovation Platforms. “Being members of these platforms, farmers can access credits, which they can use to purchase farm inputs,” explained Adam. “They are able to take part in collective marketing and get a better price for their crops. The Agricultural Innovation Platforms also facilitate training on better agribusiness management practices and the sharing of ideas about other productive investment opportunities to better farmers’ lives. All these benefits were hard to come by when the women and youth farmers were farming on their own without being associated to the SIMLESA project or part of the platforms.”

The words of Rukaya Hasani Mtambo, a farmer from Tanzania, are a testimony to the power of this idea. “As a woman, I am leader of our group and head of my household. I always encourage my fellow women, convincing them we are capable. We should not underestimate what we can do.”

To watch the full video, click here.

To watch other videos about the SIMLESA project, click here.

Q&A: Expanding CIMMYT’s research agenda on markets and business

TEXCOCO, Mexico (CIMMYT) — Food security is heavily dependent on seed security. Sustainable seed systems ensure that a variety of quality seeds are available to farming communities at affordable prices. In many developing countries, however, farmers still lack access to the right seeds at the right time.

In the past, governments played a major role in getting improved seed to poor farmers. These days, however, the private sector plays a leading role, often with strong support from governments and NGOs.

“Interventions in formal seed systems in maize have tended to focus on improving the capacity of seed producing companies, which are often locally owned small-scale operations, to produce and distribute quality germplasm,” says Jason Donovan, Senior Economist at International Maize and Wheat Improvement Center (CIMMYT). “These local seed companies are expected to maintain, reproduce and sell seed to underserved farmers. That’s a pretty tall order, especially because private seed businesses themselves are a fairly new thing in many countries.”

Prior to the early 2000s, Donovan explains, many seed businesses were partially or wholly state-owned. In Mexico, for example, the Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP) produced seed and supplied it to a market-oriented entity which was responsible for distribution. “What we’re seeing now is locally owned private seed businesses carving out their space in the maize seed market, sometimes in direct competition with multinational seed companies,” he says. In Mexico, around 80 locally owned maize seed producing businesses currently exist, most of which have been involved in CIMMYT’s MasAgro Maize project. These are mostly small businesses selling between 150,000 and 500,000 kg of hybrid maize per year.

In the following Q&A, Donovan discusses new directions in research on value chains, the challenges facing private seed companies, and how new studies could help understand their capacities and needs.

Seed storage warehouse at seed company Bidasem in Celaya, Guanajato state, México. (Photo: X. Fonseca/CIMMYT)
Seed storage warehouse at seed company Bidasem in Celaya, Guanajato state, México. (Photo: X. Fonseca/CIMMYT)

How does research on markets and value chains contribute to CIMMYT’s mission?

We’re interested in the people, businesses and organizations that influence improved maize and wheat seed adoption, production, and the availability and quality of maize and wheat-based foods. This focus perfectly complements the efforts of those in CIMMYT and elsewhere working to improve seed quality and increase maize and wheat productivity in the developing world.

We are also interested in the nutrition and diets of urban and rural consumers. Much of the work around improved diets has centered on understanding fruit and vegetable consumption and options to stimulate greater consumption of these foods. While there are good reasons to include those food groups, the reality is that those aren’t the segments of the food market that are immediately available to or able to feed the masses. Processed maize and wheat, however, are rapidly growing in popularity in both rural and urban areas because that’s what people want and need to eat first. So the question becomes, how can governments, NGOs and others promote the consumption of healthier processed wheat and maize products in places where incomes are growing and tastes are changing?

This year, CIMMYT started a new area of research in collaboration with A4NH, looking at the availability of processed maize and wheat products in Mexico City — one of the world’s largest cities. We’re working in collaboration with researchers form the National Institute of Public Health to find out what types of wheat- and maize-based products the food industry is selling, to whom, and at what cost. At the end of the day, we want to better understand the variation in access to healthier wheat- and maize-based foods across differences in purchasing power. Part of that involves looking at what processed products are available in different neighborhoods and thinking about the dietary implications of that.

Your team has also recently started looking at formal seed systems in various locations. What direction is the research taking so far?

Our team’s current priority is to advance learning around the private sector’s role in scaling improved maize varieties. We are engaged with three large projects: MasAgro Maize in Mexico, Stress Tolerant Maize for Africa (STMA) and the Nepal Seed and Fertilizer Project (NSFP). We are looking to shed light on the productive and marketing capacities of the privately owned seed producing businesses and their ability to get more seed to more farmers at a lower cost. This implies a better understanding of options to better link seed demand and supply, and the business models that link seed companies with agro-dealers, seed producing farmers, and seed consumers.

We are also looking at the role of agro-dealers — shops that sell agricultural inputs and services (including seed) to farmers — in scaling improved maize seed.

At the end of the day, we want to provide evidence-based recommendations for future interventions in seed sectors that achieve even more impact with fewer resources.

Farmers purchase seed from an agro-dealer in Machakos, Kenya. (Photo: Market Matters Inc.)
Farmers purchase seed from an agro-dealer in Machakos, Kenya. (Photo: Market Matters Inc.)

This research is still in its initial stages, but do you already have an idea of what some of the key limiting factors are?

I think one of the main challenges facing small-scale seed producing businesses is the considerable expense entailed in simultaneously building their productive capacities and their market share. Many businesses simply don’t have a lot of capital. There’s also a lack of access to specialized business support.

In Mexico, for example, a lot of people in the industry are actually ex-breeders from government agencies, so they’re very familiar with the seed production process, but less so with options for building viable businesses and growing markets for new varieties of seed.

This is a critical issue if we expect locally owned seed businesses to be the primary vehicle by which improved seeds are delivered to farmers at scale. We’re currently in the assessment phase, examining what the challenges and capacities are, and hopefully this information will feed into new approaches to designing our interventions.

Is the study being replicated in other regions as well?

Yes, in East Africa, under the Stress Tolerant Maize for Africa (STMA) project. We’re working with seed producing businesses and agro-dealers in Ethiopia, Kenya, Tanzania, and Uganda to understand their strategies, capacities, and needs in terms of providing improved seed to more farmers. We’re using the same basic research design in Mexico, and there is also ongoing work in the Nepal Seed and Fertilizer Project. Given that we are a fairly small team within CIMMYT, comparable cross-regional research is one way to punch above our weight.

Why is this research timely or important?

The research is critical as CIMMYT’s impact relies, in part, on partnerships. In the case of improved maize seed, that revolves around viable seed businesses.

Although critical, no one else is actually engaged in this type of seed sector research. There have been a number of studies on seed production, seed systems and the adoption of improved seed by poor farmers. A few have focused on the emergence of the private sector in formal seed systems and the implications for seed systems development, but most have been pretty broad, examining the overall business environment in which these companies operate but not much beyond that. We’re trying to deepen the discussion. While we don’t expect to have all the answers at the end of this study, we hope we can shift the conversation about options for better support to seed companies and agro-dealers.

Jason Donovan joined CIMMYT in 2017 and leads CIMMYT’s research team on markets and value chains, based in Mexico. He has some 15 years of experience working and living in Latin America. Prior to joining CIMMYT he worked at the Peru office of the World Agroforestry Center (ICRAF), where his research focused on business development, rural livelihoods, gender equity and certification. He has a PhD in development economics from the University of London’s School of Oriental and African Studies (SOAS).

“Bazooka” maize makes a bang in Uganda

Photo: Christopher Bendana
Photo: Christopher Bendana

Unprecedented droughts have hit Uganda’s farmers hard in recent years, affecting household income and food security by drastically cutting maize yields, a staple crop in the country. In 2016, at least 1.3 million people in Uganda faced hunger and urgently needed food aid after a dry spell decimated harvests, leaving some with less than one meal per day. When MLN, a maize disease with the ability to cause extreme or complete crop loss in maize, arrived in Uganda in 2013, farmers needed a variety that could cope.

Enter, “bazooka,” a new maize variety that is giving hope to Ugandan farmers facing climate change-related drought and MLN.

Developed by Uganda’s National Crops Research Resources Institute (NaCRRI) and National Agricultural Research Organization (NARO) using traditional breeding methods and materials from the CGIAR Research Program on Maize (MAIZE) and the International Maize and Wheat Improvement Center (CIMMYT), bazooka maize has natural resistance to drought and MLN. Produced and distributed by the Naseco seed company, bazooka is gaining immense popularity in Uganda.

300 million people depend on maize as their main food source in sub-Saharan Africa, where many smallholder farmers do not have access to irrigation systems, and extended drought can be a death sentence for their crops. Now, with new drought tolerant varieties such as bazooka, they can expect better harvests.

 

To read the full story, please click here to view the original article from Seed World and CS Monitor.

CIMMYTNEWSlayer1

New online portal offers information to curb maize lethal necrosis in Africa

Artificial inoculation of maize germplasm at the Naivasha MLN screening site, Kenya. (Photo: B.Wawa/CIMMYT)
Artificial inoculation of maize germplasm at the Naivasha MLN screening site, Kenya. (Photo: B.Wawa/CIMMYT)

The new maize lethal necrosis (MLN) online portal provides up-to-date information and surveillance tools to help researchers control and stop the spread of the deadly disease.

MLN was first reported in Kenya in 2011 and has since then been reported in several countries in eastern Africa, especially the Democratic Republic of the Congo, Ethiopia, Kenya, Rwanda, Tanzania and Uganda. The disease kills plants before they can grow, and the pathogens are transmitted by insects or contaminated seed. Serious damage to the region’s maize production from MLN has impacted household food security.

The online portal, found at mln.cimmyt.org, details the spread of MLN, where the disease has been managed and controlled, and how to identify it in the field. It also provides key MLN publications, surveillance software, MLN incidence maps, information on the MLN Screening Facility, and MLN-tolerant hybrids that are either released or in pipeline.

One tool on the portal is the MLN surveillance and monitoring system that provides real-time data to identify the presence and spread of the disease across five endemic countries in eastern Africa, and three selected non-endemic countries in southern Africa. The system was developed by scientists collaborating with the International Maize and Wheat Improvement Center (CIMMYT), with support from the United States Agency for International Development (USAID).

In 2016, MLN surveillance was successfully conducted in Malawi, Zambia and Zimbabwe – three major seed producing countries in Africa – and the data is presented in the portal, detailing MLN’s status across 652 surveyed maize fields. Future data gathered in other affected countries will also be uploaded to the portal as surveillance teams conduct fieldwork using Global Positioning System online survey tools, to assess the spread and severity of the disease in these countries. Ongoing surveillance in endemic countries allows stakeholders to see real-time updates on the spread of MLN.

MLN susceptible hybrids compared to a CIMMYT-derived MLN-tolerant hybrid. Photo: CIMMYT
MLN susceptible hybrids compared to a CIMMYT-derived MLN-tolerant hybrid. Photo: CIMMYT

Since the disease was first reported, collaborative efforts have resulted in the establishment of a MLN Screening Facility at the Kenya Agricultural & Livestock Research Organization (KALRO) center at Naivasha in 2013. The facility, managed by CIMMYT, has so far screened nearly 100,000 maize germplasm entries — 56 percent from CIMMYT — against MLN under artificial inoculation over the last four years.

Nine CIMMYT-derived MLN-tolerant hybrids have been already released in three countries – seven in Kenya, one in Uganda and one in Tanzania. Eleven second generation hybrids are currently in national performance trials in these countries. Intensive efforts are currently being made by seed companies in Kenya, Tanzania and Uganda to expand the delivery of MLN-tolerant maize seed to the smallholders.

The MLN portal enables researchers to comprehensively assess the situation with regard to MLN, helps strengthen the national disease monitoring and diagnostic systems by providing faster and accurate data, and offers access to CIMMYT-offered MLN phenotyping services.

Fall armyworm devastates crops in sub-Saharan Africa: A quick and coordinated regional response is required

The recent appearance of the fall armyworm, an insect-pest that causes damage to more than 80 crop species in 14 countries in sub-Saharan Africa, poses a serious challenge and significant risk to the region’s food security.

In a recent interview, B.M. Prasanna, director of the Global Maize Program at International Maize and Wheat Improvement Center (CIMMYT) and the CGIAR Research Program on MAIZE, who is working at the forefront of CGIAR’s response, highlights the potential impact of the pest and how CGIAR researchers are contributing to a quick and coordinated response across the region.

Q: What is the fall armyworm and why is it so destructive?  

The fall armyworm (Spodoptera frugiperda) is an insect-pest which causes major damage to more than 80 crop species, including economically important crops, such as maize, rice, sorghum, wheat, sugarcane, several other vegetable crops and cotton.

It was first officially reported in Nigeria in early 2016 and has been officially confirmed in 11 and suspected in at least 14 other African countries, as of April 2017.

Q: What are the potential impacts of the pest in sub-Saharan Africa?

The fall armyworm poses a serious challenge and a significant, ongoing risk to Africa’s food security.

The pest’s ability to feed on a range of crop species means that smallholder farming systems in Africa, which are based on intercropping, are particularly vulnerable. Also, the rapid damage and migratory capacity of the pest, combined with its capacity to reproduce quickly in the right environmental conditions and its ability to rapidly evolve resistance to synthetic pesticides increase the region’s vulnerability.

In sub-Saharan Africa, where fall armyworm is currently devastating maize crops, estimates indicate 13.5 million tons of maize valued at $3 billion are at risk in 2017-2018, which is equivalent to over 20 percent of total production for the region (based on data from CABI, April 2017).

Q: What are the key challenges that countries in sub-Saharan Africa will face?

There is no doubt that smallholder farmers, particularly maize farmers, in sub-Saharan Africa will face a significant and ongoing risk from the fall armyworm. In particular, resource-poor smallholders will be severely affected due to their inability to control the pest using synthetic pesticides, currently the only way to effectively respond, which are very costly.

Q: What are three ways that countries in sub-Saharan African can strengthen resilience of food and agricultural systems to the potential effects of Fall Armyworm?

  1. Working groups need to be established quickly to develop and implement strategies to respond to the issue.  In particular, we need to develop a comprehensive, regional response centered on: Monitoring and early warning; Social and economic assessments of impacts, and forecasting; Integrated Pest Management (IPM); Development and dissemination of low-cost, effective and sustainable solutions and development of appropriate regulatory tools and policies to support the response.
  2. As this process unfolds, gaps, challenges and successes will need to be documented to inform capacity-building needs with a focus on understanding the capacity of individual countries to respond. While fall armyworm outbreaks across Africa is an emergency situation, it should also be an opportunity to review and understand regional food production and food security issues and as an opportunity to improve on systematic approaches to build capacity to prevent and respond to future threats of transboundary pests and pathogens in Africa.
  3. Strong coordination across different levels of government is required: “political coordination” (among the local governments, NPPOs, and sub-regional organizations), and “technical coordination” (fast-tracked testing and deployment of relevant technologies).

Q: What role do CIMMYT and CGIAR have in building capacity in the region’s ability to respond to Fall Armyworm?

CGIAR institutions, including CIMMYT and the International Institute of Tropical Agriculture (IITA), have significant strengths in building the region’s ability to respond to trans-boundary pathogens (e.g., previous examples include Maize Lethal Necrosis, wheat rust and insect-pests, such as fall armyworm.

Specific examples of CGIAR/CIMMYT expertise that will be important in the fall armyworm response include:

  1. Development and dissemination of crowd-source based tools and digital surveillance systems and analysis of the data collected across countries for a strong monitoring and early warning system.
  2. Systematic and large-scale assessment of the present and potential socio-economic impact of fall armyworm in Africa, and the development of forecasting tools to understand potential losses
  3. Review of the efficacy of different fall armyworm management options (learning from experiences of the United States, Brazil and Mexico), and adapting this information to the African context
  4. Determining the efficacy of cultural control options against fall armyworm, including early versus late planting of crops like maize, handpicking, soil and habitat management, crop hygiene, etc.
  5. Evaluating the impacts on-going integrated pest management (IPM) initiatives and the impacts of the fall armyworm invasion on the effectiveness of these interventions
  6. Developing and implementing appropriate insect resistance monitoring and management strategy in fall armyworm affected countries
  7. Analysis of the effects of conservation agriculture on fall armyworm management and the influence of fall armyworm incidence on diverse cropping systems
  8. Testing and introgression of conventionally-derived resistance (from identified CIMMYT and U.S. Department of Agriculture-Agricultural Research Service [USDA-ARS] germplasm sources) into Africa-adapted maize germplasm, followed by fast-tracked varietal release, seed scale-up and delivery of improved maize hybrids/varieties through public-private partnerships (e.g., MLN is a great example of this).
  9. Developing a “Fall Armyworm Information Portal”, similar to the MLN Information Portal and Wheat Rust Tracker (led by CIMMYT), as a one-stop portal for relevant information.

Q: CIMMYT recently co-hosted an emergency meeting on the strategy for effective management of fall armyworm in Africa. What were the key outcomes and next steps for the response to this issue?

The emergency meeting was an opportunity to assess the present and potential damage due to fall armyworm and to devise a holistic control strategy.

CIMMYT, Alliance for a Green Revolution in Africa (AGRA) and the U.N. Food and Agriculture Organization (FAO) jointly hosted a Stakeholders Consultation Meeting in Nairobi, Kenya (April 27-28, 2017). About 150 experts and stakeholders from 24 countries in Africa, and five outside Africa (Italy, Spain, Switzerland, Britain and the United States) participated, with participants from government, national plant protection agency, national agricultural research systems in Africa, as well as scientists from international agricultural research organizations, and representatives of service providers, non-governmental organizations, development partners, donor agencies and the media.

Discussions covered the present status of the pest in Africa as well as contingency plans to manage the pest, assessment of current control options being used. Experts from the U.S. and U.K. provided expertise and insight on the response to fall armyworm in the U.S. and Brazil.

Action points and recommendations on four key areas were developed to ensure an effective, coordinated response:

  • Contingency planning and awareness generation;
  • Fall armyworm monitoring and early warning;
  • Socio-economic impact assessments and modeling of potential losses;
  • Development and Dissemination of fall armyworm management options;
  • Coordination of Institutional Interventions for fall armyworm management in Africa.

FAO is expected to convene a regional workshop in early June to engage and coordinate with relevant regional organizations who will be involved in the response.

CIMMYT and CGIAR have responded and will continue to address the issue over the following months. For more information see these recent publications: Multi pronged approach key for effectively defeating fall army worm in Africa; Scientists tackle deadly fall armyworm infestation devastating maize in Southern Africa and Global experts and stakeholders meet to develop fall armyworm emergency strategy for Africa.

Similarly, international coverage of the fall armyworm crisis has been extensive and includes the following:

This article was originally posted by CGIAR.

 

As climate change threatens to increase the incidence of plant pests and diseases, action must be taken to protect smallholder farmers and global food security.

At this year’s UN Climate Talks, CIMMYT is highlighting innovations in wheat and maize that can help farmers overcome climate change. Follow @CIMMYT on Twitter and Facebook for the latest updates.

Gender and development specialist Rahma Adam: Aiding African women to build household food security

Women account for over 50 percent of farmers in many parts of Africa. Photo: CIMMYT/Peter Lowe
Women account for over 50 percent of farmers in many parts of Africa. Photo: CIMMYT/Peter Lowe

EL BATAN, Mexico (CIMMYT) — In a special interview to mark International Women’s Day, International Maize and Wheat Improvement Center (CIMMYT) gender and development specialist, Rahma Adam, detailed how her research aims to improve the agricultural productivity of women in southern and eastern Africa.

With women making up over 50 percent of farmers in many parts of Africa, it is essential to understand how gender roles, relations and responsibilities encourage and hinder their agricultural productivity, said Adam.

Understanding gender relations improves the work of researchers and development specialists to target programs in the correct areas and with right people in order to get the most impact, she said.

Adam works with the Intensification of Maize and Legume Systems for Food Security in Eastern and Southern Africa (SIMLESA) project to investigate gender relations to best promote sustainable intensification agricultural practices that will improve household food security.

Conservation agriculture systems involve crop rotations and inter-cropping with maize and legumes to increase yields. In the photograph, conservation agriculture practitioner Lughano Mwangonde with the gender development specialist Rahma Adam in Balaka district, Malawi. Photo: CIMMYT/Johnson Siamachira.
Conservation agriculture systems involve crop rotations and inter-cropping with maize and legumes to increase yields. Pictured here are conservation agriculture practitioner Lughano Mwangonde (L) and  gender and development specialist Rahma Adam in Balaka district, Malawi. Photo: CIMMYT/Johnson Siamachira.

Sustainable intensification agriculture practices are aimed at enhancing the productivity of labor, land and capital without damaging the environment. In practice, sustainable intensification involves such conservation agriculture practices as minimal soil disturbance, permanent soil cover and the use of inter-cropping and crop rotation to simultaneously maintain and boost yields, increase profits and protect the environment. It contributes to improved soil function and quality, which can improve resilience to climate variability.

Through SIMLESA, supported by the Australian Center for International Agricultural Research (ACIAR), Adam shares her findings with a network of stakeholders, such as governments and non-governmental organizations, aiding the delivery of agricultural technologies, taking into account gender norms to hold a greater chance of adoption.

We spoke to about her work in a short interview listen here or read below:

Q: Please explain a bit about your work. What is SIMLESA, where does it operate and what are its key objectives?

A: SIMLESA stands for, Sustainable Intensification of Maize and Legume Systems for Food Security in Eastern and Southern Africa, we are now in the second phase of the project. We focus on several things, providing the needed knowledge in terms of technology, improved varieties of seeds for maize and legumes and how to use them in the practice of sustainable intensification practices. The idea is to improve crop yields from current levels, that’s the basic idea of SIMLESA.

The project operates in mainly five countries, Tanzania, Kenya, and Ethiopia for Eastern Africa and Malawi and Mozambique for southern Africa. But we have three spill over countries where SIMLESA also have some activities, they are Rwanda, Botswana and Uganda.

We want to make sure farmers know the practices of sustainable intensification, they are able to use them, able to adapt them for the benefit of improving food security of the household and increase their livelihoods.

Q: Why is gender analysis important in meeting SIMLESA’s objectives?

A: Women in sub-Saharan Africa play a lion’s share of farming, the literature shows on average they farm as much as men, they make up 60 percent of farmers or more in some countries. Because they are the majority, there is no way we could put them on the back-burner, and not address or try to understand what are their constraints for agricultural production and agricultural marketing and all the other things that go with an agricultural household being successful in terms of their livelihoods.

It is very important to think about women, not alone, but also their relationships with men, we also have to think about who are their husbands. In sub-Saharan Africa most households are patriarchal, so they are male dominated, meaning a husband has much more say than the wife in terms of decision making in regards to what to grow, how much money should be spent that they have collected from agriculture, among other things.

It is important to not only think about how to improve the lives of women but also to understand the norms that go on. The institutional norms within a community, within a household and how they can play some sort of role that can either make a women successful or make a woman unsuccessful in terms of bringing up her household, in terms of the betterment of nutrition and schooling, etc.

It is a very complex issue. That’s why we cannot ignore gender itself as it sits in the rural households of Africa, because it is the nucleus of it. Once we understand how the relationship works between husband and wife or man and woman working within a society then we will be able to say how we can really propel sustainable intensification in these communities.

Q: Although rural women in southern and eastern Africa play crucial role in farming and food production why are they less likely to own land or livestock, adopt new technologies, or access credit?

A: Most of the problem of women’s lack of ownership of assets, such as land, among others stems from the institutional social norms of the communities in which they reside. Usually for patriarchal societies in sub-Saharan Africa, women are married into their husband’s home, and thus nearly all assets including land, livestock, improved or new technologies and money belong to their husbands and in some occasions, wives have very little say, with regards to those assets.

Because the major assets of the households are under the hands of the husband, it is hard for the wife to be able to access credit facilities, without involving the husband. As most of the credit and financial facilities, require a collateral, before they provide one a loan.

 

Ugandan farmer boosts profits from improved maize

Olum looks at the WE2115 variety that has transformed his microfinance business. Photo: B.Wawa/CIMMYT

LIRA, Uganda (CIMMYT) – Sam Olum started commercial maize farming three years ago in Lira District, situated approximately 340 km north of Uganda’s capital, Kampala.

As an out-grower, Olum owns and manages 25 acres of land, which he has been planting with hybrid maize for sale to seed companies. He was able to earn more profit using hybrid varieties, which yield more, and put this money into his microfinance business – Aninolal Investment Ltd.

A large number of seed companies in Africa use out-growers, also known as contract farmers, who ensure there will be supply for the companies’ agricultural products. Out-growers produce seed on their own land under contract with the seed company, and are guaranteed purchase of the produce.

Olum first came across hybrid maize two years ago when his uncle Gilbert Owuor introduced him to Otis Garden Seed Company that produces and markets improved drought tolerant varieties WE2114, WE2115, UH5051 and Longe 7H. Olum decided to invest his entire 25 acres of land on WE2115, and hasn’t looked back since.

“I have faithfully planted this variety for two years since it got into the market and the amount of yield I harvest each season is worth the money put into this work,” said Olum. Every season he planted WE2115 his farm was filled with at minimum 350 bags of 120 kg each.

His biggest praise for this variety is that it matures fast, the cobs are big and it is high yielding. In addition, given that Otis Garden Company provides Olum with a ready market for his produce, he is guaranteed a stable income that has transformed him into a successful businessman.

Returns from the WE2115 yield have enabled Olum to bolster his microfinance business that is now worth UGX 200 million (approximately $55,000).

Olum with his uncle Owuor who introduced him to the WE2115 variety, and James Olwi, seed production officer at Otis Garden Seed Company. Photo: B.Wawa/CIMMYT

“The profits from this variety have made a very big difference in my business,” Olum said. He has expanded his clientele beyond his hometown and now reaches farmers from other districts. “At the moment we loan out between 50 and 80 million shillings ($ 14,000 and 22,000) to about 200 farmers in Amolatar, Dokolo, Lira, Masindi and Oyam,” added Olum.

The interest of eight percent he charges on the loans is quite affordable for many farmers compared to the interest rates charged by other financial institutions that range from 12 to 15 percent. Besides supporting farmers, Olum has created job opportunities for 15 people employed full time at his company.

WE2115 along with 15 other improved drought tolerant varieties are reaching smallholders in Uganda through seed companies with access to breeding resources to produce these high yielding varieties. This has been made possible through close collaboration with the International Maize and Wheat Improvement Center (CIMMYT), the African Agricultural Technology Foundation (AATF) and the National Agricultural Research Organisation (NARO).

WE2115 and other similar varieties are marketed under the brand name DroughtTEGO, currently grown in four other countries in Africa (Kenya, Mozambique, South Africa and Tanzania). In 2016, Uganda’s national variety release committee approved the release of an additional four DroughtTEGO varieties: WE1101, WE3103, WE3106 and WE3109, expected to get into the market by 2018.

Maize seed systems in Africa: Understanding the basics

CIMMYT maize seed system specialist James Gethi inspects a maize field in Nzega, Tanzania. Photo: Kelah Kaimenyi/CIMMYT.
CIMMYT maize seed system specialist James Gethi inspects a maize field in Nzega, Tanzania. Photo: Kelah Kaimenyi/CIMMYT.

Maize is not only a staple in diets across sub-Saharan Africa – it is a cash crop that supports millions of farmer households. Maize is grown on over 33 million hectares in just 13 of 48 countries in the region – accounting for 72% of all maize produced in the region. This crop, without a doubt, is king.

However, rising temperatures and erratic rainfall patterns threaten maize production across the continent. Total crop loss occurs if there’s little or no rainfall at the flowering stage, when maize is most vulnerable. And when temperatures increase, soil moisture is quickly depleted and farmers have to resort to prolonged irrigation, a costly undertaking for smallholders.

Drought-tolerant (DT) maize varieties produce better yields both in good and bad seasons compared to most commercial varieties available in the region. Since 2006, CIMMYT has developed 200 drought-tolerant varieties and hybrids, many of which also possess desirable traits such as resistance to major diseases.

quick#In addition to developing quality maize that is high yielding and disease resistant, the Drought Tolerant Maize for Africa Seed Scaling (DTMASS) project led by CIMMYT is working to ensure these improved varieties are affordable and attractive to farmers. Two and a half million smallholder farmers in Ethiopia, Kenya, Mozambique, Tanzania, Uganda and Zambia are expected to benefit from in-country partnerships and networks that boost production and distribution of DT maize seed. These countries account for 25 percent (or 252 million) of the population in sub-Saharan Africa, and 41 percent of maize production areas.

To access quality improved seed, farmers in Africa face various constraints such as high prices, low supply and limited knowledge about improved seeds. Through surveys conducted among nearly 5,000 farmer households in Kenya, Mozambique and Zambia, CIMMYT learned that when farmers buy seed, the traits they care most about are early crop maturity, yield, and tolerance/resistance to stresses such as drought and disease. In most cases, long-term use and preference for a particular seed variety influence buying habits, but now farmers are increasingly focusing on tolerance/resistance to drought, pests and diseases.

“Our key focus is on sustainable seed production and increasing demand,” said Kate Fehlenberg, DTMASS project manager. “This means building market skills for producers and creating an environment to entice risk-averse farmers to try new drought-tolerant varieties.”

Gender in seed systemsCIMMYT is working with partners to increase farmer preference for DT seed by supporting promotional and marketing activities, and improving seed production capacity. CIMMYT will also work to ensure local institutions have the technological and production capacity to independently produce and distribute seed throughout DTMASS target countries.

Scaling activities will allow DT seed to spread across various geographical areas (scaling “out”) and build the capacity of local institutions to independently control sustainable seed production (scaling “up”). Both scaling up and out rely on giving stakeholders in the maize value chain compelling reasons to continue producing, distributing and consuming DT maize varieties.

Over 50 selected small- and medium-scale seed companies will be supported through training workshops on seed production and seed business management. Seed companies will also receive financial grants to support expansion activities such as purchasing special seed processing and packing equipment, restoring seed storage and other facilities, and marketing.

The next big challenge for DTMASS is to increase adoption of drought-tolerant maize, which will strengthen seed systems in Africa. Photo: Kelah Kaimenyi/CIMMYT.
The next big challenge for DTMASS is to increase adoption of drought-tolerant maize, which will strengthen seed systems in Africa.
Photo: Kelah Kaimenyi/CIMMYT.

 

From A to Z: Developing nutritious maize and wheat at CIMMYT for 50 years

This story is one of a series of features written during CIMMYT’s 50th anniversary year to highlight significant advancements in maize and wheat research between 1966 and 2016.

EL BATAN, Mexico (CIMMYT) – Maize and wheat biofortification can help reduce malnutrition in regions where nutritional options are unavailable, limited or unaffordable, but must be combined with education to be most effective, particularly as climate change jeopardizes food security, according to researchers at the International Maize and Wheat Improvement Center (CIMMYT).

Climate change could kill more than half a million adults in 2050 due to changes in diets and bodyweight from reduced crop productivity, a new report from the University of Oxford states. Projected improvement in food availability for a growing population could be cut by about a third, leading to average per-person reductions in food availability of 3.2 percent, reductions in fruit and vegetable intake of 4 percent and red meat consumption of .07 percent, according to the report.

Over the past 50 years since CIMMYT was founded in 1966, various research activities have been undertaken to boost protein quality and micronutrient levels in maize and wheat to help improve nutrition in poor communities, which the Oxford report estimates will be hardest hit by climate change. As one measure of CIMMYT’s success, scientists Evangelina Villegas and Surinder Vasal were recognized with the prestigious World Food Prize in 2000 for their work developing quality protein maize (QPM).

“We’ve got a lot of balls in the air to tackle the ongoing food security crisis and anticipate future needs as the population grows and the climate changes unpredictably,” said Natalia Palacios, head of maize quality, adding that a key component of current research is the strategic use of genetic resources held in the CIMMYT gene bank.

“CIMMYT’s contribution to boosting the nutritional value of maize and wheat is hugely significant for people who have access to these grains, but very little dietary diversity otherwise. Undernourishment is epidemic in parts of the world and it’s vital that we tackle the problem by biofortifying crops and including nutrition in sustainable intensification interventions.”

Undernourishment affects some 795 million people worldwide – meaning that more than one out of every nine people do not get enough food to lead a healthy, active lifestyle, according to the U.N. Food and Agriculture Organization (FAO).  By 2050, reduced fruit and vegetable intake could cause twice as many deaths as under-nutrition, according to the Oxford report, which was produced by the university’s Future of Food Programme.

As staple foods, maize and wheat provide vital nutrients and health benefits, making up close to one-quarter of the world’s daily energy intake, and contributing 27 percent of the total calories in the diets of people living in developing countries, according to FAO.

“Nutrition is very complex and in addition to deploying scientific methods such as biofortification to develop nutritious crops, we try and serve an educational role, helping people understand how best to prepare certain foods to gain the most value,” Palacios said.  “Sometimes communities have access to nutritious food but they don’t know how to prepare it without killing the nutrients.”

The value of biofortified crops is high in rural areas where people have vegetables for a few months, but must rely solely on maize for the rest of the year, she added, explaining that fortified flour and food may be more easily accessed in urban areas where there are more dietary options.

Some of the thousands of samples that make up the maize collection in the Wellhausen-Anderson Plant Genetic Resources Center at CIMMYT's global headquarters in Texcoco, Mexico. (Photo: Xochiquetzal Fonseca/CIMMYT)
Some of the thousands of samples that make up the maize collection in the Wellhausen-Anderson Plant Genetic Resources Center at CIMMYT’s global headquarters in Texcoco, Mexico. (Photo: Xochiquetzal Fonseca/CIMMYT)

PROMOTING PROTEIN QUALITY

Conventional maize varieties cannot provide an adequate balance of amino acids for people with diets dominated by the grain and with no adequate alternative source of protein. Since the breakthrough findings of Villegas and Vasal, in some areas scientists now develop QPM, which offers an inexpensive alternative for smallholder farmers.

CIMMYT scientists also develop QPM and other nutritious conventionally bred maize varieties for the Nutritious Maize for Ethiopia (NuME) project funded by the government of Canada. NuME, which also helps farmers improve agricultural techniques by encouraging the deployment of improved agronomic practices, builds on a former seven-year collaborative QPM effort with partners in Ethiopia, Kenya, Tanzania and Uganda.

In Ethiopia, where average life expectancy is 56 years of age, the food security situation is critical due in part to drought caused by a recent El Nino climate system, according to the U.N. World Food Programme. More than 8 million people out of a population of 90 million people are in need of food assistance.  Almost 30 percent of the population lives below the national poverty line, 40 percent of children under the age of 5 are stunted, 9 percent are acutely malnourished and 25 percent are underweight, according to the 2014 Ethiopia Mini Demographic and Health Survey. The NuMe project is helping to shore up sustainable food supplies and boost nutrition in the country, where the vast majority of people live in rural areas and are engaged in rain-fed subsistence agriculture.

INCREASING MICRONUTRIENTS

CIMMYT maize and wheat scientists tackle micronutrient deficiency, or “hidden hunger,” through the interdisciplinary, collaborative program HarvestPlus, which was launched in 2003 and is now part of the Agriculture for Nutrition and Health program managed by the CGIAR consortium of agricultural researchers.

Some 2 billion people around the world suffer from micronutrient deficiency, according to the World Health Organization (WHO). Micronutrient deficiency occurs when food does not provide enough vitamins and minerals. South Asia and sub-Saharan Africa are most affected by hidden hunger, which is characterized by iron-deficiency anemia, vitamin A and zinc deficiency.

Work at CIMMYT to combat micronutrient deficiency is aligned with the U.N. Sustainable Development Goals (SDGs) — in particular Goal 2, which aims to end all forms of malnutrition by 2030. The SDG also aims to meet internationally agreed targets on stunting and wasting in children under 5 years of age, and to address the nutritional needs of adolescent girls, older people, pregnant and lactating women by 2025.

WHOLESOME WHEAT

The wheat component of the HarvestPlus program involves developing and distributing wheat varieties with high zinc levels by introducing genetic diversity from wild species and landraces into adapted wheat.

Zinc deficiency affects about one-third of the world’s population, causing lower respiratory tract infections, malaria, diarrheal disease, hypogonadism, impaired immune function, skin disorders, cognitive dysfunction, and anorexia, according to the WHO, which attributes about 800,000 deaths worldwide each year to zinc deficiency. Additionally, worldwide, approximately 165 million children under five years of age are stunted due to zinc deficiency.

A project to develop superior wheat lines combining higher yield and high zinc concentrations in collaboration with national agriculture program partners in South Asia has led to new biofortified varieties 20 to 40 percent superior in grain zinc concentration.

“We’re playing a vital role in this area,” said CIMMYT wheat breeder Velu Govindan. “Our research has led to new varieties agronomically equal to, or superior to, other popular wheat cultivars with grain yield potential at par or — in some cases – even superior to popular wheat varieties adopted by smallholder farmers in South Asia where we’ve been focused.”

Scientists are studying the potential impact of climate-change related warmer temperatures and erratic rainfall on the nutritional value of wheat. An evaluation of the effect of water and heat stress with a particular focus on grain protein content, zinc and iron concentrations revealed that protein and zinc concentrations increased in water and heat-stressed environments, while zinc and iron yield was higher in non-stressed conditions.

“The results of our study suggest that genetic gains in yield potential of modern wheat varieties have tended to reduce grain zinc levels,” Govindan said. “In some instances, environmental variability might influence the extent to which this effect manifests itself, a key finding as we work toward finding solutions to the potential impact of climate change on food and nutrition security.”

Additionally, a recent HarvestPlus study revealed that modern genomic tools such as genomic selection hold great potential for biofortification breeding to enhance zinc concentrations in wheat.

IMPROVING MAIZE

Scientists working with HarvestPlus have developed vitamin A-enriched “orange” maize. Orange maize is conventionally bred to provide higher levels of pro-vitamin A carotenoids, a natural plant pigment found in such orange foods as mangoes, carrots, pumpkins, sweet potatoes, dark leafy greens and meat, converted into vitamin A by the body.

Vitamin A is essential for good eyesight, growth and boosting immunity. Almost 200 million children under the age of 5 and 19 million pregnant women are vitamin A deficient, and increasing levels through maize kernels is an effective means of boosting it in the diet.

Maize breeders, who are currently working on developing varieties with 50 percent more pro-vitamin A than the first commercialized varieties released, identified germplasm with the highest amounts of carotenoids to develop the varieties. In Zambia, Zimbawe and Malawi, 12 varieties, which are agronomically competititve and have about 8ppm provitamin A, have been released.

Provitamin A from maize is efficiently absorbed and converted into vitamin A in the body.  Stores of Vitamin A in 5 to 7 year old children improved when they ate orange maize, according to HarvestPlus research. The study also shows preliminary data demonstrating that children who ate orange maize for six months experienced an improved capacity of the eye to adjust to dim light. The findings indicate an improvement in night vision, a function dependent on adequate levels of vitamin A in the body.

Researchers are also developing maize varieties high in zinc.

Efforts on this front have been a major focus in Latin America, especially in Nicaragua, Guatemala and Colombia. Scientists expect the first wave of high zinc hybrids and varieties will be released in 2017. Further efforts are starting in such countries as Zambia, Zimbabwe and Ethiopia. Results from the first nutrition studies in young rural Zambian children indicate that biofortified maize can meet zinc requirements and provide an effective dietary alternative to regular maize for the vulnerable population.

African ambassadors to Zimbabwe support improved agriculture technologies

HARARE — Several African nation ambassadors to Zimbabwe pledged to step up support for improved agriculture technologies during a visit to The International Maize and Wheat Improvement Center’s (CIMMYT) Southern Africa Regional Office (CIMMYT-SARO) in Harare, Zimbabwe, in April.

The special field day and meeting, held as part of CIMMYT 50 celebrations, gave ambassadors from 12 African countries (Algeria, Botswana, Democratic Republic of Congo, Ethiopia, Namibia, Nigeria, Sudan, South Sudan, Tanzania, Uganda, South Africa and Zambia) the opportunity to learn about CIMMYT projects that are helping to strengthen food systems in sub-Saharan Africa and discuss future initiatives.

During the visit, the need to develop policies that promote smallholder farmers’ access to technologies that enable them to increase yields and improve crop resilience in the face of challenges such as droughts, as well as policies to address poverty, food security and economic growth surfaced as main priorities for the countries represented.

African ambassadors learned about CIMMYT-promoted agricultural technologies while visiting the CIMMYT-Southern Africa Regional Office (CIMMYT-SARO) in Harare, Zimbabwe. Photo: Johnson Siamachira/CIMMYT
African ambassadors learned about CIMMYT-promoted agricultural technologies while visiting the CIMMYT-Southern Africa Regional Office (CIMMYT-SARO) in Harare, Zimbabwe. Photo: Johnson Siamachira/CIMMYT

In his welcome address, Mulugetta Mekuria, CIMMYT-SARO regional representative, pointed out, “Sub-Saharan Africa’s food security faces numerous challenges, but drought is the most devastating because our farmers rely on rainfed agriculture. As you will see, CIMMYT’s work has created high-level impacts. But a host of challenges still hamper socioeconomic growth, such as reduced funding of agricultural research.”

According to Mekuria, CIMMYT’s work in sub-Saharan Africa aims to ensure farmers can access improved maize seed with drought tolerance and other relevant traits that contribute to higher, more stable yields, as well as technologies such as optimal fertilizer application. He noted that farmers in sub-Saharan African countries lag behind other regions in fertilizer application, applying, on average, less than 10 kg per hectare, which is 10 percent of the world average.

Another issue brought up was the lack of funding of agricultural research for development by most bilateral agencies on which African governments depend. The diplomats pledged to advise their governments of the need to increase support for improved agricultural technologies. They agreed that funding agricultural research work in line with the 2006 Abuja Declaration to allocate at least 1 percent of the donor country’s gross domestic product to agricultural research is of the utmost importance. Enhancing access to markets, extension services and inputs and supporting women and youth in agriculture were also identified as fundamental policy issues that need to be urgently addressed. Strong partnerships and collaborative efforts between various African governments, CIMMYT and the private sector were also called for.

The ambassadors were briefed on CIMMYT’s achievements in the region, and how, in partnership with national agricultural research systems  and private seed companies, they have released more than 200 drought-tolerant maize varieties that perform significantly better under moderate drought conditions than varieties already on the market, while yielding the same – or better – in a normal season. More than 6 million farmers in sub-Saharan Africa grow improved drought tolerant maize varieties developed by CIMMYT and partners.

A wide range of CIMMYT-SARO technologies were also showcased, including sustainable intensification strategies based on the principles of conservation agriculture. Compared to conventional cropping practices, conservation agriculture increases yields after two to five cropping seasons due to the combined benefits of minimum soil disturbance, crop residue retention and crop rotation. Conservation agriculture has been successfully promoted in Malawi, Mozambique, Zambia and Zimbabwe for the past 10 years. For example, yield increases of 20-60 percent were recorded in trials in farmers’ fields in Malawi, while in Zambia and Zimbabwe, yields increased by almost 60% using animal traction innovation agriculture technologies.

Other technologies demonstrated were pro-vitamin A maize and quality protein maize. The diplomats learned that CIMMYT had released eight pro-vitamin A hybrids with 28% more vitamin A content in Zambia (4), Malawi (3) and Zimbabwe (1). On improved varieties, CIMMYT sent 823 seed shipments (1.3 million envelopes) to 835 institutions worldwide over the last four years.

“The success of our projects goes beyond the breeding work. Through the value chain approach, our work now is to ensure that seed companies and, ultimately, maize farmers benefit from the seed that is developed with their needs in mind. Getting drought-tolerant maize and other improved seeds to the markets and farmers is a critical next step,” said James Gethi, CIMMYT seed systems specialist.

Harnessing maize biodiversity for food security, improved livelihoods in Africa

STMA PostcardHARARE (CIMMYT) — As CIMMYT joins the world in celebrating the International Day for Biological Diversity on 22 May, it can take pride in the diverse maize varieties it develops which have improved the livelihoods and health of smallholder farmers globally.

These varieties have brought tremendous benefits to smallholders in sub-Saharan Africa (SSA). Over 90 percent of agricultural production in SSA is rainfed, which puts farmers at risk for drought and heat in addition to the poor soil fertility, pests and diseases they face. Drought alone damages about 40 percent of all maize crops in SSA, endangering the livelihoods and food security of millions of smallholder farmers.

Stress tolerant maize not only reduces risks for farmers in the face of unpredictable environmental and biological conditions, it also allows more stable crop production. The International Maize and Wheat Improvement Center (CIMMYT) breeds high-yielding, locally-adapted maize varieties with farmer-preferred traits such as drought tolerance, nitrogen use efficiency, and disease and insect pest resistance. Many of these varieties also have increased nutritional traits such as high protein quality and increased provitamin A content, which help increase children’s weight and height growth rates and reduce childhood blindness.

“Since working with CIMMYT, we have unlocked our production potential, ‘’ said Sylvia Horemans, Marketing Director of Zambian-based Kamano Seeds. Since its establishment in 2012, Kamano Seeds has benefitted from CIMMYT to strengthen its work in maize breeding besides technical support on maize seed production and marketing. Photo: Johnson Siamachira/CIMMYT
“Since working with CIMMYT, we have unlocked our production potential,” says Sylvia Horemans, marketing director of Zambia-based Kamano Seeds. Since 2012 Kamano Seeds has benefitted from CIMMYT to strengthen its work in maize breeding, seed production and marketing. Photo: CIMMYT

“Increasing adoption of these stress tolerant maize varieties is helping African farmers cope with drought and climate change, improve yields at household level and thereby enhance the livelihoods and food security of tens of millions of farmers,” said Cosmos Magorokosho, CIMMYT-Southern Africa maize breeder.

These drought-tolerant varieties have proven resistant despite harsh conditions brought on in southern Africa by an intense El Niño, according to Magorokosho. “Significant impacts have been observed in plots of smallholder farmers who grow these varieties.”

In 2014, over 54,000 metric tons of certified seed of the stress tolerant maize varieties were produced and delivered by partner seed companies for planting by smallholders. By the end of that year, more than five million smallholders had planted the improved drought tolerant varieties on over two million hectares, benefiting more than 40 million people in 13 countries in SSA.

Today, there are more than 200 stress tolerant maize varieties that yield the same or more than commercial varieties under average rainfall, and more importantly, produce up to 30 percent more than commercial varieties under moderate drought conditions. Armed with these improved varieties, CIMMYT is assuming a greater role to ensure stress tolerant maize reaches nearly five and a half million smallholder households in SSA by the end of 2019.

“The rain is very little here, but even with a little rain, this seed does well,” says a smallholder farmer Philip Ngolania, in south-central Kenya, referring to a drought-tolerant maize variety he planted during the 2015 crop season. “Without this seed, I would have nothing. Nothing, like my neighbours who did not use the variety." Photo: Johnson Siamachira/CIMMYT
“Even with a little rain, this seed does well,” says a smallholder farmer Philip Ngolania, in south-central Kenya, referring to a drought-tolerant maize variety he planted during the 2015 crop season. “Without this seed, I would have nothing. Nothing, like my neighbours who did not use the variety.” Photo: Johnson Siamachira/CIMMYT

“In close collaboration with our partners, we were able to create excitement about what can be achieved with drought tolerant maize in Africa,” said Tsedeke Abate, leader of CIMMYT’s Stress Tolerant Maize for Africa project. CIMMYT is working with national agricultural research systems, international research centers, and other development programs to disseminate improved maize seed to smallholder farmers in SSA through small-and medium-sized seed companies.

“The work we have undertaken on drought tolerant maize has created significant impacts. However, several challenges still remain,” cautioned B.M. Prasanna, Director of CIMMYT’s Global Maize Program and the CGIAR Research Program MAIZE. One of these challenges is maize lethal necrosis (MLN), which emerged in Kenya in 2011 and has since devastated maize crops across East Africa. CIMMYT is working to generate improved stress tolerant maize varieties with resistance to MLN and other major diseases.

Maize production in Africa is growing rapidly, making maize the most widely cultivated crop on the continent, and the staple food of more than 300 million people. Providing farmers with diverse, improved seed choices will thus strengthen food security, health and livelihoods in SSA.

Millions of smallholders in Africa benefit from climate resilient drought-tolerant maize

Traditional maize storage in Tete province in Mozambique, April 27, 2015. CIMMYT/Tsedeke Abate
Traditional maize storage in Tete province in Mozambique, April 27, 2015. CIMMYT/Tsedeke Abate

NAIROBI, Kenya (CIMMYT) – At least 40 million smallholder farmers throughout sub-Saharan Africa are profiting from more than 200 new drought-tolerant varieties of maize produced as part of the Drought Tolerant Maize for Africa (DTMA) Project, according to scientists at the Center for International Maize and Wheat Improvement (CIMMYT).

The project, underway between 2007 and 2015, led to the development of varieties with traits preferred by farmers that have successfully made smallholders in 13 countries more resilient to the erratic effects of climate change on growing conditions.

“Smallholder farmers in this region plant maize varieties that are obsolete and end up getting poor harvests, but that’s changing now thanks to the gallant efforts of the DTMA team that has released and commercialized a large number of modern varieties,” said Tsedeke Abate, the CIMMYT scientist who led the project. “Thanks to the new drought-tolerant varieties, many families have managed to overcome harsh growing conditions and boost yields substantially.”

In 2014 alone, more than 5 million smallholder farmer households planted the new varieties on 2.1 million hectares (5.2 million acres), an area roughly the size of El Salvador. Overall, 54,000 metric tons of high quality seed were produced in 2014 through the DTMA project, which received funding from the Bill & Melinda Gates Foundation, Britain’s Department for International Development, the Howard G. Buffet Foundation and the U.S. Agency for International Development (USAID).

COMPLEX CHALLENGES

“The adoption of the improved drought tolerant seed varied from one country to another and each county had unique challenges that made it difficult for some farmers to take up the new varieties. Some farmers were not aware of the availability of the seed in their markets, for some the seed was not available or the price was high,” Abate said. “We worked with national seed companies in these countries to increase production of certified seed so that many more farmers can buy the seed at an affordable price as well as demonstrating the benefits of the new varieties.”

Anthony Mwega, a farmer and leader in Olkalili village, in Hai district a semi-arid area in northern Tanzania about 600 kilometers (370 miles) from the capital Dar es Salaam, beat the price constraint by mobilizing 66 farmers from his village and neighboring villages Makiwaru and Ngaikati to pool resources and buy 5 metric tons of HB513 – a drought-tolerant and nitrogen-use efficient variety – at a very affordable price from Meru Agro Tours and Consultant Seed Company.

“The overall purchasing price we bought the seed for was about 50 percent less than the market price because we bought it in bulk,” said Mwega. “I saw how good the maize performed in demonstrations organized by Meru Agro during the 2014 planting season with extremely low rains, and knew this is a variety that my people would definitely benefit from.”

Scientists project that millions more farmers will gain access to and plant the new varieties due to collaborations with more than 100 national seed companies, which continue to make a significant contribution to the improvement of seed systems in Angola, Benin, Ethiopia, Ghana, Kenya, Malawi, Mali, Mozambique, Nigeria, Tanzania, Uganda, Zambia, Zimbabwe.

“Collaboration with CIMMYT through the DTMA project has been extremely instrumental in facilitating me to release my own varieties,” said Zubeda Mduruma of Aminata Seed Company in Tanga, Tanzania who has collaborated with CIMMYT both in maize breeding and production work since 1976.

“I was able to get some of the best germplasm, evaluate them through on-farm and on-station trials, and successfully released three of the best drought tolerant varieties in the market, including one quality protein DT variety that is very popular among women because of its nutritional value. With the quality of maize we get from CIMMYT, it’s very possible to release new improved varieties every year with much better yield compared to popular commercial varieties in our shops.”

The story of this success is told through a series of pictures and profiles of DTMA target countries. Each country profile illustrates the context of national maize production and the changes underway thanks to released drought-tolerant varieties.

The DTMA project will continue, first as the Drought Tolerant Maize for Africa Seed Scaling (DTMASS) initiative. Under the project, which is funded by USAID, CIMMYT scientists aim to facilitate the production of close to 12,000 metric tons of certified seed for use by about 2.5 million people, in Ethiopia, Kenya, Malawi, Mozambique, Tanzania, Uganda and Zambia.

In partnership with the International Institute of Tropical Agriculture who partnered with CIMMYT in DTMA work, the new Stress Tolerant Maize for Africa project will also carry forward the success and invaluable lessons from DTMA and CIMMYT’s Improved Maize for Africa Soils project, to develop new stress tolerant varieties to help farmers mitigate multiple stresses that occur concurrently in farmers’ fields.

Read more:

The legacy of drought tolerant maize for Africa

Going further down the path to bolster Africa’s maize sector

Latest DT Maize Bulletin

Climate change’s surprising opportunity for East African maize farmers

By 2050, seasonal temperatures are expected to increase over 2°C in all maize producing regions of eastern Africa. Africa is one of the most vulnerable continents in the world to rising temperatures and rainfall variability due to climate change, with 96% of Sub-Saharan African (SSA) farmers depending on rainfall to water their crops.

While climate change is expected to decrease maize yields in most parts of Africa by a margin of 6-12%, some countries like Ethiopia and Kenya may see overall maize yields increase under climate change, according to CIMMYT climate and crop models.

“Our results suggest that the likely maize yield increase in Ethiopia and Kenya is due to anticipated temperature increases in the highland regions,” says Jill Cairns, maize physiologist at CIMMYT. Current temperatures in this area are too low to produce good yields, so an increase in temperature could positively affect maize farmers’ harvests in the future.

“New maize varieties will be needed to capitalize on these potential yield gains in the highlands,” adds Cairns. Commercial maize varieties currently grown in the East African highlands will not tolerate future higher temperatures. Varieties that are adapted to the region’s future climate coupled with recommended agronomic practices and correct timing for planting will be necessary to increase farmers’ yields.

Maize production overall has been declining in Kenya since 1982, due largely to drought conditions experienced across Africa and lack of varieties that can withstand this stress. CIMMYT estimates that 40% of Africa’s maize growing areas face occasional drought stress, resulting in yield losses of 10-25%. As a result of these climate shocks, Africa yields just two tons per hectare of maize, compared to the world’s average of nearly five tons per hectare.

CIMMYT is currently developing climate and crop models to predict the impact of future climate on maize production, and has also established the world’s largest tropical maize stress screening network under public domain. This network is being used by partners, including national agricultural organizations in SSA, to develop improved varieties that will tolerate current and future climate challenges. Currently being addressed are drought, heat, low soil fertility, insect pests and diseases such as maize lethal necrosis (MLN).

Improved maize hybrids with drought tolerance and nitrogen use efficiency are already on the market across eastern Africa and in the larger SSA region. Significant efforts have been made in recent years to develop heat tolerant and MLN resistant maize varieties in Ethiopia, Kenya, Tanzania and Uganda. These improved varieties yield much more than current commercial varieties and most have stress tolerant traits that help farmers tackle multiple abiotic and biotic stresses.

CIMMYT, with the support of its partners, has developed 57 improved drought tolerant (DT) maize varieties for eastern Africa’s market, each with farmer-favored traits. Over 12 million people have benefited from DT maize varieties across Ethiopia, Kenya, Tanzania and Uganda. Through public and private seed companies, nearly 17,300 tons of certified DT maize seeds have been produced.

“With this work on climate resilient maize, we are playing an important part in making Africa a food-secure continent,” says Stephen Mugo, CIMMYT’s Regional Representative for Africa.