Skip to main content

Location: Uganda

Spraying locusts before they can fly key for effective control

The locust invasion is the biggest in Ethiopia and Somalia in 25 years, and the biggest in Kenya in 70 years, according to the FAO. Photo: Ben Curtis/AP

East African countries are battling the worst desert locust invasion in decades. The locusts are devouring crops and pasture leaving in their wake a region that is staring at a potential food crisis. The swarms have swept across Djibouti, Eritrea, Ethiopia, Kenya, South Sudan, Somalia, Sudan, Tanzania and Uganda, with some of these countries reporting the worst outbreak in 70 years.

Experts have warned of a second round of the flare-up, as the eggs laid along the locust path hatch. Both aerial and ground spraying with insecticides continue but such interventions have not yielded much success.

Stephen Njoka, Director of the Desert Locust Control Organization for Eastern Africa (DLCO-EA) and Hugo De Groote, Agricultural Economist at the International Maize and Wheat Improvement Center (CIMMYT) share some insights on the outbreak, effective control measures and what can be done to mitigate the damage currently and in potential future outbreaks.

Q: What is your opinion on the locust invasion across the eastern Africa region?

A: The current locust invasion in the eastern Africa region is one of the most serious occurrences in decades. For Ethiopia and Kenya, this is the worst outbreak in over 25 years and 70 years respectively. The locusts have caused significant damage in pastoral regions, where they have devoured pasture and tree leaves. They are now reaching some of the major maize growing areas where they are likely to cause a lot of damage to the crops.

Q: Why are they called desert locusts?

A: They breed in the wet desert sands. In west Africa for instance, they would breed in the border areas between the Sahel and the Sahara Desert. They go through six stages; five of which are the non-flying phases. Once they reach adult stage, they start flying, mating and laying eggs, and the cycle continues.

They are usually solitary in nature, but occasionally move into their gregarious state, in which they alter their behavior and physical appearance, form swarms and migrate over long distances following the winds. This is what differentiates locusts from grasshoppers. When they land at a particular location, they cause a lot of damage in that specific area. Apart from that local destruction, however, they may not cause much harm on a national scale.

Q: How serious of a problem is this invasion to the food security status of countries like South Sudan that are just recovering from decades of conflict and a recent drought?

A: The invasion could pose a serious food security challenge in some areas as these insects consume their own weight in a day (one insect weighs 2 grams and a swarm can contain over 50 million insects).

For countries like South Sudan and Somalia where conflicts can hamper locust control efforts, the food insecurity situation gets compounded. Pastures are the worst hit as locusts tend to prefer hotter climates where livestock keeping is the main source of livelihood.

Q: In your experience, what is the best way to deal with such an invasion? What are the most effective control measures?

A: The best way to deal with such an invasion is to conduct aerial spraying using Ultra Low Volume (ULV) chemical or biological pesticides at the early stages for effective control. It is important to identify the egg-laying sites early on so that the emerging hoppers are sprayed before they can fly.

Q: We understand that this is the worst invasion in Kenya in about 70 years and the worst in 25 years in some neighboring countries such as Ethiopia. Should we expect another infestation a few years from now?

A: It is unlikely that we can expect another invasion of this magnitude in the near future. The current invasion may have been driven by climatic changes in the breeding areas of the Red Sea coast, war-torn Yemen and Somalia.

Q: How can we be better prepared given that such invasions are cyclical in nature and may happen again after some years or decades?

A: Continued monitoring and forecasting of the locust population in the traditional breeding sites should be a priority. Countries in the invasion areas should establish Locust Control Units under the appropriate ministries. These units should frequently get updates from the FAO Desert Locust Information Service (DLIS) in Rome and take precautionary steps as advised.

As the eastern Africa region, member countries of DLCO-EA should step up their support for the organization by acquiring modern aircrafts, which can conduct aerial spraying more effectively and efficiently.

Q: What monitoring measures are in place for the surveillance and recommended remedial measures, especially in periods of low densities just before they become gregarious? Who does the monitoring and how frequently is the monitoring done?

A: Locust scouting teams in the breeding areas are charged with monitoring and surveillance of these pests. The exercise is continuous and largely supported by FAO DLIS using appropriate equipment like elOCUST 3, a data recording and transmission system for crop pest monitoring, currently used as a detection and early warning tool for desert locusts.

Q: Are mitigation measures such as compensation for affected farmers an option?

A: Where farmers are seriously hit, government, intergovernmental agencies or non-governmental organizations may consider easing the farmers’ losses by offering food and/or financial support.

Q: We have seen efforts such as aerial or ground spraying of the pests. How effective are these interventions? What implications does this control measure have on the environment and people’s health?

A: The safe use of pesticides remains the best choice for control of insects occurring in such big numbers. It is important to use environmentally safe products which cause minimum harm to non-targets. Spray teams should be well trained on how to handle the pesticides.

People living in the invaded areas should also be alerted on keeping themselves and their livestock safe by not getting into the sprayed areas as advised. One effective biological control is the use of the Metarhizium, which the International Institute of Tropical Agriculture (IITA) developed out of the locust skin fungus.

Nevertheless, some chemicals may cause more harm to the environment, especially when aerial spraying is applied on swarms in flight. The pesticides can contaminate the environment, water, crops and can cause skin rashes or respiratory, neurological or eye problems. They can also cause harm to animals and aquatic species.

In times of locust outbreaks, like now, there is a tendency to procure large quantities of pesticides. However, once the locusts are gone, stockpiles of the unused pesticides remain. This brings about a new challenge of destroying or safely disposing of the old or obsolete pesticide stock.

Q: Can the locusts be eaten? 

A: Many communities in the world eat locusts and other insects. It is, however, important to caution against eating sprayed locusts. Additionally, locust swarms can contain billions of locusts, so catching them for food may not have a significant effect in reducing their population.

Study calls for better understanding of fertilizer prices faced by African smallholder farmers

A farm worker applies fertilizer in a field of Staha maize for seed production at Suba Agro's Mbezi farm in Tanzania. (Photo: Peter Lowe/CIMMYT)
A farm worker applies fertilizer in a field of Staha maize for seed production at Suba Agro’s Mbezi farm in Tanzania. (Photo: Peter Lowe/CIMMYT)

Crop yields in sub-Saharan Africa are generally low. This is in large part because of low fertilizer use. A recent study of six countries in sub-Saharan Africa showed that just 35% of farmers applied fertilizer. Some possible reasons for this could be that farmers may be unaware of the efficacy of fertilizer use; or have degraded soils that do not respond to fertilizer; they may not have the cash to purchase it; or because unpredictable rainfall makes such investments risky. It may also be because local fertilizer prices make their use insufficiently profitable for many farmers.

To better understand the potential fertilizer demand in a particular location, it is important to know how crops respond to fertilizer under local conditions, but it is critical to understand crop responses in terms of economic returns. This requires information about local market prices of fertilizers and other inputs, as well as the prices that a farmer could receive from selling the crop.

While national-level fertilizer prices may be available, it is necessary to consider the extent to which prices vary within countries, reflecting transportation costs and other factors. In the absence of such data, analysis of household-level behaviors requires assumptions about the prices smallholder farmers face — assumptions which may not be valid. For example, evaluations of the returns to production technologies settings have often assumed spatially invariant input and output prices or, in other words, that all farmers in a country face the same set of prices. This is at odds with what we know about economic remoteness and the highly variable market access conditions under which African smallholders operate.

An obstacle to using empirical data on sub-national disparities in fertilizer prices is the scarcity of such data. A new study focused on the spatial discrepancies in fertilizer prices. The study compiled local market urea price in eighteen countries in sub-Saharan Africa for the period between 2010-2018 and used spatial interpolation models — using points with known values to approximate values at other unknown points — to predict local prices at locations for which no empirical data was available. It was conducted by scientists at University of California, Davis, the International Maize and Wheat Improvement Center (CIMMYT) and the International Food Policy Research Institute (IFPRI). The authors note that this is the first major attempt to systematically describe the spatial variability of fertilizer prices within the target countries and test the ability to estimate the price at unsampled locations.

Predicted relative urea price (local price divided by the observed median national price) for areas with crop land in eight East African countries.
Predicted relative urea price (local price divided by the observed median national price) for areas with crop land in eight East African countries.

“Our study uncovers considerable spatial variation in fertilizer prices within African countries and gives a much more accurate representation of the economic realities faced by African smallholders than the picture suggested by using national average prices,” said Camila Bonilla Cedrez, PhD Candidate at University of California, Davis. “We show that in many countries, this variation can be predicted for unsampled locations by fitting models of prices as a function of longitude, latitude, and additional predictor variables that capture aspects of market access, demand, and environmental conditions.”

Urea prices were generally found to be more expensive in remote areas or away from large urban centers, ports of entry or blending facilities. There were some exceptions, though. In Benin, Ghana and Nigeria, prices went down when moving away from the coast, with the possible explanation being market prices in areas with higher demand are lower. In other locations, imports of fertilizer from neighboring countries with lower prices may be affecting prices in another country or region, much like political influence. Politically, well-connected villages can receive more input subsidies compared to the less connected ones.

“The performance of our price estimation methods and the simplicity of our approach suggest that large scale price mapping for rural areas is a cost-effective way to provide more useful price information for guiding policy, targeting interventions, and for enabling more realistic applied microeconomic research. For example, local price estimates could be incorporated into household-survey-based analysis of fertilizer adoption,” explained Jordan Chamberlin, CIMMYT spatial economist. “In addition, such predictive ‘price maps’ can be incorporated into targeting and planning frameworks for agricultural investments. For example, to target technology promotion efforts to the areas where those technologies are most likely to be profitable.”

Predicted relative urea price (local price divided by the observed median national price) for areas with crop land in nine West African countries.
Predicted relative urea price (local price divided by the observed median national price) for areas with crop land in nine West African countries.

“The evidence we have compiled in this paper suggests that, while investments in more comprehensive and spatially representative price data collection would be very useful, we may utilize spatial price prediction models to extend the value of existing data to better reflect local price variation through interpolation,” explained Robert J. Hijmans, professor at University of California, Davis. “Even if imperfect, such estimates almost certainly better reflect farmers’ economic realities than assumptions of spatially constant prices within a given country. We propose that spatial price estimation methods such as the ones we employ here serve for better approximating heterogeneous economic market landscapes.”

This study has illustrated new ways for incorporating spatial variation in prices into efforts to understand the profitability of agricultural technologies across rural areas in sub-Saharan Africa.  The authors suggest that an important avenue for future empirical work would be to evaluate the extent to which the subnational price variation documented is a useful explanatory factor for observed variation in smallholder fertilizer use in sub-Saharan Africa, after controlling for local agronomic responses and output prices. One way to do that may be to integrate input and output price predictions into spatial crop models, and then evaluate the degree to which modeled fertilizer use profitability predicts observed fertilizer use rates across different locations.

Read the full study:
Spatial variation in fertilizer prices in Sub-Saharan Africa

Do smallholders get the right seed and inputs from their agrodealer?

Judith Thomson, agrodealer in Mbalizi, Mbeya district, Tanzania. (Photo: Owekisha Kwigizile)
Judith Thomson, agrodealer in Mbalizi, Mbeya district, Tanzania. (Photo: Owekisha Kwigizile)

Many Tanzanian smallholder farmers fail to produce even 1 ton of maize grain per hectare. To improve crop yields, a farmer needs the right seeds and complementary inputs, including inorganic fertilizer. The “right” inputs will depend upon what his or her geographical location and farming system are. How many farmers have access to such inputs and advice? What is the distribution of agrodealers in rural areas? What do they stock, and at what prices?

The International Maize and Wheat Improvement Center (CIMMYT) recently carried out a survey of agrodealers in Uganda and Tanzania to answer such questions related to the last-mile delivery of seeds and other agronomic inputs.

This is a joint initiative from two projects — Taking Maize Agronomy to Scale in Africa (TAMASA) and Strengthening product profile-based maize breeding and varietal turnover in Eastern and Southern Africa — funded by the Bill & Melinda Gates Foundation and USAID.

For the study, CIMMYT teams interviewed 233 agrodealers in Uganda and 299 agrodealers in Tanzania. The survey started in September 2019, just before the main maize planting season, and covered five districts in each country, in both easy-to-reach and remote areas.

The study focuses particularly on two types of agricultural inputs: maize seeds — similar to an earlier survey done this year in Kenya — and fertilizer.

Are agrodealers catalyzers of varietal turnover?

For maize seed, researchers looked at which varieties are available at the agrodealer and how do they decide on what to stock.

Agrodealers were also asked to report the key selling attribute of the different varieties they had in store whether it was yield, drought tolerance, maturity level or another marketing characteristic like pricing or packaging. Such information will give some better insights for CIMMYT’s maize breeding team about perceived differences along the seed value chain on key attributes and product profiles.

For example, a new variety in Uganda that was tolerant to maize lethal necrosis (MLN), was mainly promoted as a double cobber and not as MLN tolerant. And unlike in Uganda, there was no “cheap variety” option available in Tanzania, according to the agrodealers interviewed for the study, although high seed prices were often mentioned as the main barrier for seed purchases.

Better understanding how retailers select their varieties could help improve varietal turnover, a key indicator of how fast CIMMYT’s research reaches out farmers.

Besides their own role, it is also interesting to see how agrodealers perceive external challenges to influence farmer adoption of improved varieties. In Uganda, agrodealers saw counterfeit seed and government free seed distributions to farmers as the main challenges for their business, issues that were not frequently mentioned in Tanzania.

Understanding input market characteristics

Enumerator Mary Mdache (left) interviews Shangwe Stephano, staff of BAYDA agrovet shop in Haydom town, Mbulu district, Tanzania. (Photo: Furaha Joseph)
Enumerator Mary Mdache (left) interviews Shangwe Stephano, staff of BAYDA agrovet shop in Haydom town, Mbulu district, Tanzania. (Photo: Furaha Joseph)

The use of fertilizer is very low in sub-Saharan Africa, around 8-12 kg per hectare, twenty times less than Western standards. Fertilizer access and affordability have been cited as key factors in the low rates of uptake.

The study may shed some new light on this, as it looks at what types of fertilizer is available to farmers at agrodealer shops, and what drives sale and prices. Researchers will examine whether there is a competition effect and how transport costs or subsidies impede the growth of the fertilizer market.

Georeferencing of interviewed agrodealers and farmer population mapping will help reveal the degree to which agrodealers are concentrated in particular areas, leaving other areas with relatively little local access to inputs. Project researchers will investigate how marketing conditions vary across such situation, examining, for instance, how input pricing strategies, selection and quality varies spatially. The team will also use data collected on fertilizer prices to further refine regional fertilizer profitability maps.

Such mapping exercises could help improve the relevance of extension advice. As an example, to tackle acid soils or phosphorus deficiency, could farmers find the recommended input, lime or appropriate P fertilizer at the right time and right price, so that it is profitable for them?

The detailed results of the study are expected in early 2020 to guide agronomic investments and policies for more functional input markets that drive a much-needed sustainable intensification of African smallholder agriculture.

Investing in drought-tolerant maize is good for Africa

Geoffrey Ochieng’, a smallholder farmer from northern Uganda. He plants the UH5051 variety on his land. (Photo: Joshua Masinde/CIMMYT)
Geoffrey Ochieng’, a smallholder farmer from northern Uganda. He plants the UH5051 variety on his land. (Photo: Joshua Masinde/CIMMYT)

Zambia’s vice-president has recently called to reduce maize dominance and increase crop and diet diversification in his country. The reality is that maize is and will remain a very important food crop for many eastern and southern African countries. Diet preferences and population growth mean that it is imperative to find solutions to increase maize production in these countries, but experts forecast 10 to 30% reduction in maize yields by 2030 in a business-as-usual scenario, with projected temperature increases of up to 2.7 degrees by 2050 and important drought risks.

Knowing the importance of maize for the food security of countries like Zambia, it is crucial to help maize farmers get better and more stable yields under erratic and challenging climate conditions.

To address this, the International Maize and Wheat Improvement Center (CIMMYT) and its partners have been developing hundreds of new maize varieties with good drought tolerance across sub-Saharan Africa. Stakeholders in the public research and African seed sectors have collaborated through the Drought Tolerant Maize for Africa (DTMA) project and the Stress Tolerant Maize for Africa (STMA) initiative to develop drought-tolerant seed that also incorporates other qualities, such as nutritional value and disease resistance.

A groundbreaking impact study six years ago demonstrated that drought-tolerant maize significantly reduced poverty and food insecurity, particularly in drought years.

A new study from CIMMYT and the Center for Development Research (ZEF) in the main maize growing areas of Zambia confirms that adopting drought-tolerant maize can increase yields by 38% and reduce the risks of crop failure by 36%.

Over three quarters of the rainfed farmers in the study experienced drought during the survey. These farming families of 6 or 7 people were cultivating 4 hectares of farmland on average, half planted with maize.

Another study on drought-tolerant maize adoption in Uganda estimated also good yield increases and lower crop failure risks by 26 to 35%.

A balancing act between potential gains and climate risks

Drought-tolerant maize has a transformational effect. With maize farming becoming less risky, farmers are willing to invest more in fertilizer and other inputs and plant more maize.

However, taking the decision of adopting new farm technologies in a climate risky environment could be a daunting task. Farmers may potentially gain a lot but, at the same time, they must consider downside risks.

As Gertrude Banda, a lead farmer in eastern Zambia, put it, hybrid seeds have a cost and when you do not know whether rains will be enough “this is a gamble.” In addition to climate uncertainty, farmers worry about many other woes, like putting money aside for urgent healthcare, school fees, or cooking nutritious meals for the family.

Information is power

An additional hurdle to adoption is that farmers may not know all the options available to cope with climate risks. While 77% of Zambia households interviewed said they experienced drought in 2015, only 44% knew about drought-tolerant maize.

This inequal access to knowledge and better seeds, observed also in Uganda, slows adoption of drought-tolerant maize. There, 14% of farmers have adopted drought-tolerant maize varieties. If all farmers were aware of this technology, 8% more farmers would have adopted it.

Because farmers are used to paying for cheap open-pollinated varieties, they are only willing to pay half of the hybrid market price, even though new hybrids are performing very well. Awareness campaigns on the benefits of drought-tolerant maize could boost adoption among farmers.

According to the same study, the potential for scaling drought-tolerant maize could raise up to 47% if drought-tolerant varieties were made available at affordable prices at all agrodealers. Several approaches could be tested to increase access, such as input credit or subsidy schemes.

Read the full articles:
Impacts of drought-tolerant maize varieties on productivity, risk, and resource use: Evidence from Uganda

Productivity and production risk effects of adopting drought-tolerant maize varieties in Zambia

Heterogeneous seed access and information exposure: implications for the adoption of drought-tolerant maize varieties in Uganda

These impact studies were made possible through the support provided by the Bill & Melinda Gates Foundation and the US Agency for International Development (USAID), funders of the Stress Tolerant Maize for Africa (STMA) initiative.

Seeds of hope

Seed of drought-tolerant maize developed through long-running global and local partnerships in Africa is improving nutrition and food security in northern Uganda, a region beset by conflicts and unpredictable rainfall.

The International Maize and Wheat Improvement Center (CIMMYT) has been working with Uganda’s National Agricultural Research Organization (NARO) and local seed companies to develop and disseminate maize seed of improved stress-tolerant varieties. Under the Drought Tolerant Maize for Africa (DTMA) and the Stress Tolerant Maize for Africa (STMA) projects, farmers are now using varieties such as the UH5051 hybrid, known locally as Gagawala, meaning “get rich.”

For two decades, most of the population in northern Uganda has lived in internally displaced people’s camps and depended on food aid and other relief emergencies for their livelihoods due to the insurgency by the Lord’s Resistance Army (LRA).

Gulu, one of the affected districts, has been on a path to recovery for the past few years. With the prevailing peace, Geoffrey Ochieng’ and his wife can now safely till their 4.5 acres of land to grow maize and other staples. They are able to feed their family and sell produce to meet other household needs.

However, farmers in this region, bordering South Sudan, are facing more erratic rains and the uncertain onset of rainfall. Thanks to new drought-tolerant and disease-resistant maize varieties, the Ochieng’ family can adapt to this variable climate and secure a good maize harvest even in unreliable seasons.

Geoffrey Ochieng’, a smallholder farmer from northern Uganda. He plants the UH5051 variety on his land. (Photo: Joshua Masinde/CIMMYT)
Geoffrey Ochieng’, a smallholder farmer from northern Uganda. He plants the UH5051 variety on his land. (Photo: Joshua Masinde/CIMMYT)

Tolerance is key

“The popularity of this drought-tolerant variety among the farmers has been growing thanks to its good yield and reliability even with poor rains and its resistance to common foliar diseases like northern corn leaf blight and gray leaf spot, plus good resistance to the maize streak virus,” explained Daniel Bomet, a NARO maize breeder. “Maturing in slightly over four months, Gagawala can produce two to three maize cobs, which appeals to farmers.”

Ochieng’ has been planting UH5051 maize since 2015. Before adopting the new hybrid, Ochieng’ was growing Longe 5, a popular open-pollinated variety that is less productive and not very disease-resistant.

“What I like about UH5051 is that even with low moisture stress, it will grow and I will harvest something,” Ochieng’ said. Under optimal conditions, he harvests about 1.2 metric tons of maize grain on one acre of UH5051 hybrid.

With the old Longe 5 variety, he would only harvest 700 kg. “If the rains were delayed or it didn’t rain a lot, I would be lucky to get 400 kg per acre with the Longe 5, while I get twice as much with the hybrid,” Ochieng’ explained.

Thanks to this tolerant maize variety, he can pay his children’s school fees and provide some surplus grain to his relatives.

A worker at the Equator Seeds production plant in Gulu displays packs of UH5051 maize seed. (Photo: Joshua Masinde/CIMMYT)
A worker at the Equator Seeds production plant in Gulu displays packs of UH5051 maize seed. (Photo: Joshua Masinde/CIMMYT)

Out with the old, in with the new

“One key strategy to improve our farmers’ livelihoods in northern Uganda is to gradually replace old varieties with new varieties that can better cope with the changing climate and problematic pests and diseases,” said Godfrey Asea, the director of the National Crops Resources Research Institute (NaCRRI) at NARO. “Longe 5 for instance, has been marketed for over 14 years. It has done its part and it needs to give way to new improved varieties like UH5051.”

The Gulu-based company Equator Seeds has been at the core of the agricultural transformation in northern Uganda. From 70 metrics tons of seed produced when it started operations in 2012, the company reached an annual capacity of about 7,000 to 10,000 metric tons of certified seed of different crops in 2018. Working with dedicated out-growers such as Anthony Okello, who has a 40-acre piece of land, and 51 farmer cooperatives comprising smallholder farmers, Equator Seeds produces seed of open-pollinated hybrid maize and other crops, which reaches farmers through a network of 380 agro-dealers.

 

“80% of farmers in northern Uganda still use farm-saved or recycled seed, which we consider to be our biggest competitor,” Tonny Okello, CEO of Equator Seeds remarked. “Currently, about 60% of our sales are in maize seed. This share should increase to 70% by 2021. We plan to recruit more agro-dealers, establish more demonstration farms, mostly for the hybrids, to encourage more farmers to adopt our high yielding resilient varieties.”

The two-decade unrest discouraged seed companies from venturing into northern Uganda but now they see its huge potential. “We have received tremendous support from the government, non-governmental organizations, UN and humanitarian agencies for buying seed from us and distributing it to farmers in northern Uganda and South Sudan, to aid their recovery,” Okello said.

Godfrey Asea (right), director of the National Crops Resources Research Institute (NaCRRI), and Uganda’s National Agricultural Research Organization (NARO) maize breeder, Daniel Bomet, visit an improved maize plot at NARO’s Kigumba Station, in central Uganda. (Photo: Joshua Masinde/CIMMYT)
Godfrey Asea (right), director of the National Crops Resources Research Institute (NaCRRI), and Uganda’s National Agricultural Research Organization (NARO) maize breeder, Daniel Bomet, visit an improved maize plot at NARO’s Kigumba Station, in central Uganda. (Photo: Joshua Masinde/CIMMYT)

Social impact

The Ugandan seed sector is dynamic thanks to efficient public-private partnerships. While NARO develops and tests new parental lines and hybrids in their research facilities, they have now ventured into seed production and processing at their 2,000-acre Kigumba Farm in western Uganda through NARO Holdings, their commercial arm.

“Because the demand for improved seed is not always met, NARO Holdings started producing certified seed, but the major focus is on production of early generation seed, which is often a bottleneck for the seed sector,” Asea said.

Aniku Bernard, Farm Manager, examines a maize cob at the foundation seed farm located inside the Lugore Prison premises. (Photo: Joshua Masinde/CIMMYT)
Aniku Bernard, Farm Manager, examines a maize cob at the foundation seed farm located inside the Lugore Prison premises. (Photo: Joshua Masinde/CIMMYT)

Another innovative collaboration has been to work with the Uganda Prisons Service (UPS) establishments to produce maize seed. “When we started this collaboration with UPS, we knew they had some comparative advantages such as vast farmland, ready labor, mechanization equipment and good isolation, which are important for high-quality hybrid maize seed production,” Asea explained. The UPS facility in Lugore, Gulu, which has 978 hectares of land, produces foundation seed of UH5051.

“Prisons offer a big potential to support the growing seed industry,” he said. “Together with CIMMYT, we should build further the capacity of UPS to produce foundation and certified seeds. It provides much-needed income for the institutions. The inmates, in addition to being remunerated for farm labor, are engaged in positive outdoor impactful activities. This skill is helpful for their future reintegration in the society.”

From left to right: Winnie Nanteza, National Crops Resources Research Institute (NaCCRI) communications officer; Daniel Bomet, NARO maize breeder; Byakatonda Tanazio, Assistant Superintendent of Prisons, Lugore Prison, Gulu; Aniku Bernard, Farm Manager at Lugore Prison; and Godfrey Asea, director of NaCRRI, stand for a group photo at the foundation seed production farm inside Lugore Prison. (Photo: Joshua Masinde/CIMMYT)
From left to right: Winnie Nanteza, National Crops Resources Research Institute (NaCCRI) communications officer; Daniel Bomet, NARO maize breeder; Byakatonda Tanazio, Assistant Superintendent of Prisons, Lugore Prison, Gulu; Aniku Bernard, Farm Manager at Lugore Prison; and Godfrey Asea, director of NaCRRI, stand for a group photo at the foundation seed production farm inside Lugore Prison. (Photo: Joshua Masinde/CIMMYT)

Conservation agriculture works for farmers and for sustainable intensification

The International Maize and Wheat Improvement Centre (CIMMYT) and the Association for Strengthening Agricultural Research in Eastern and Southern Africa (ASARECA) gathered agriculture leaders, experts,  ministers and permanent secretaries from 14 countries in the region May 2-4, 2019 in Kampala, Uganda. These experts reflected on the lessons learned from the eight year-long Sustainable Intensification of Maize and Legumes farming systems in Eastern and Southern Africa (SIMLESA) project, funded by the Australian Centre for International Agricultural Research (ACIAR).

During this regional SIMLESA policy forum, ministers of agriculture signed a joint communiqué calling for mainstreaming conservation agriculture practices and enabling sustainable intensification of African agriculture, in response to the ongoing agroecological crisis and fast-growing population.

The minister of agriculture, animal industry and fisheries of Uganda, Vincent Ssempijja, reminded that “Africa is paying a high price from widespread land degradation, and climate change is worsening the challenges smallholder farmers are facing.” Staple crop yields are lagging despite a wealth of climate-smart technologies like drought-tolerant maize varieties or conservation agriculture.

“It is time for business unusual,” urged guest speaker Kirunda Kivejinja, Uganda’s Second Deputy Prime Minister and Minister of East African Affairs.

Research conducted by CIMMYT and national partners in Ethiopia, Kenya, Malawi, Mozambique, Rwanda, Tanzania and Uganda under the SIMLESA project provided good evidence that sustainable intensification based on conservation agriculture works — it significantly increased food crop yields, up to 38%, as well as incomes, while sustainably preserving soil health.

In Malawi, where conservation agriculture adoption rose from 2% in 2011 to 35% in the 2017/18 season, research showed increases in water infiltration compared to the conventional ridge-and-furrow system of up to 90%, while soil organic carbon content increased by 30%. This means that soil moisture is better retained after rainfall, soil is more fertile, and plants grow well and cope much better during dry spells.

The SIMLESA project revealed that many farmers involved in CIMMYT research work, like Joseph Ntirivamunda in Rwanda, were interested in shifting towards more sustainable intensification practices. However, large-scale adoption still faces many hurdles.

“You cannot eat potential,” pointed out CIMMYT scientists and SIMLESA project leader Paswel Marenya. “The promise of conservation agriculture for sustainable intensification needs to be translated into more food and incomes, for farmers to adopt it widely.”

CIMMYT's director general Martin Kropff (left) greets Uganda's second deputy prime minister, Kirunda Kivejninja. (Photo: Jerome Bossuet)
CIMMYT’s director general Martin Kropff (left) greets Uganda’s second deputy prime minister, Kirunda Kivejninja. (Photo: Jerome Bossuet)

The scale conundrum

Farmers’ linkages to markets and services are often weak, and a cautious analysis of trade-offs is necessary. For instance, more research is needed about the competing uses of crop residues for animal feed or soil cover.

Peter Horne, General Manager for ACIAR’s global country programs, explained that science has an important role in informing policy to drive this sustainable transformation. There are still important knowledge gaps to better understand what drives key sustainable farming practices. Horne advised to be more innovative than the traditional research-for-development and extension approaches, involving for instance the private sector.

Planting using a hoe requires 160 hours of labor per hectare. A two-wheel tractor equipped with a planter will do the same work in only 3 hours.

One driver of change that was stressed during the Kampala forum was the access to appropriate machinery, like the two-wheel tractor equipped with a direct planter. While hoe planting requires 160 hours of labor per hectare, the planter needs only 3 hours per hectare, enabling timely planting, a crucial factor to respond effectively to the increased vagaries of the weather and produce successful harvests. While some appropriate mechanization options are available at the pilot stage in several African countries like Ethiopia or Zimbabwe, finding the right business models for service provision for each country is key to improve access to appropriate tools and technologies for smallholder farmers. CIMMYT and ACIAR seek to provide some answers through the complementary investments in the Farm Mechanization and Conservation Agriculture for Sustainable Intensification (FACASI) project.

CASI can be scaled but requires tailoring sustainable intensification agronomic advices adapted to local environment and farming systems. Agricultural innovation platforms like the Mwanga mechanization youth group in Zimbabwe are one way to co-create solutions and opportunities between specific value chain actors, addressing some of the constraints farmers may face while implementing conservation agriculture practices.

Providing market incentives for farmers has been one challenging aspect, which may be overcome through public-private partnerships. Kilimo Trust presented a new consortium model to drive sustainable intensification through a market pull, linking smallholder farmers with food processors or aggregators.

“SIMLESA, as a long-term ambitious research program, has delivered remarkable results in diverse farming contexts, and conservation agriculture for sustainable intensification now has a more compelling case,” said Eric Huttner, ACIAR research program manager. “We should not ignore the complexity of conservation agriculture adoption, as shifting to new farming practices brings practical changes and potential risks for farmers, alongside benefits,” he added. As an immediate step, Huttner suggested research to define who in the public and private sectors is investing and for what purpose — for example, access to seed or machinery. Governments will also need further technical support to determine exactly how to mainstream conservation agriculture in  future agricultural policy conversations, plans and budgets.

“Looking at SIMLESA’s evidence, we can say that conservation agriculture works for our farmers,” concluded Josefa Leonel Correia Sacko, Commissioner for Rural Economy and Agriculture of the African Union. During the next African Union Specialized Technical Committee in October 2019, she will propose a new initiative, scaling conservation agriculture for sustainable intensification across Africa “to protect our soils and feed our people sustainably.”

Josefa Leonel Correia Sacko, Commissioner for Rural Economy and Agriculture of the African Union, speaks at the SIMLESA regional forum. (Photo: Jerome Bossuet)
Josefa Leonel Correia Sacko, Commissioner for Rural Economy and Agriculture of the African Union, speaks at the SIMLESA regional forum. (Photo: Jerome Bossuet)

Winners of 2019 MAIZE Youth Innovators Awards – Africa announced

Winners of the 2019 MAIZE Youth Innovators Awards – Africa receive their awards at the STMA meeting in Lusaka, Zambia. From left to right: Admire Shayanowako, Blessings Likagwa, Ismael Mayanja and Hildegarde Dukunde. Fifth awardee Mila Lokwa Giresse not pictured. (Photo: J.Bossuet/CIMMYT)
Winners of the 2019 MAIZE Youth Innovators Awards – Africa receive their awards at the STMA meeting in Lusaka, Zambia. From left to right: Admire Shayanowako, Blessings Likagwa, Ismael Mayanja and Hildegarde Dukunde. Fifth awardee Mila Lokwa Giresse not pictured. (Photo: J.Bossuet/CIMMYT)

LUSAKA, Zambia (CIMMYT) – The CGIAR Research Program on Maize (MAIZE) officially announced the winners of the 2019 MAIZE Youth Innovators Awards – Africa at an awards ceremony held on May 9, 2019, in Lusaka, Zambia. These awards recognize the contributions of young women and men under 35 to innovation in African maize-based agri-food systems, including research for development, seed systems, agribusiness, and sustainable intensification. The awards, an initiative of MAIZE in collaboration with Young Professionals for Agricultural Research and Development (YPARD), were offered in three categories: farmer, change agent, and researcher.

The MAIZE Youth Innovators Awards aim to identify young innovators who can serve to inspire other young people to get involved in maize-based agri-food systems. This is the second year of the award, which was launched in 2018 with a first cohort of winners from Asia. Part of the vision is to create a global network of young innovators in maize based systems from around the world.

2019 award recipients were invited to attend the Stress Tolerant Maize for Africa (STMA) project meeting in Lusaka, May 7-9, where they had the opportunity to present their work. The project meeting and award ceremony also allowed these young innovators to network and exchange experiences with MAIZE researchers and partners. Looking forward, award recipients may also get the opportunity to collaborate with MAIZE and its partner scientists in Africa on implementing or furthering their innovations.

This year’s five awardees are:

Hildegarde Dukunde (Rwanda) – Category: Change Agent

Dukunde is a graduate in Human Nutrition and serves as a Sales Associate for Agrifood Business Consulting Ltd. She has been at the forefront of preventing aflatoxin contamination in Rwanda by helping smallholder farmers to access low-cost post-harvest equipment, namely DryCardℱ and Purdue Improved Crop Storage (PICS) bags. The DryCardℱ is an inexpensive device developed by University of California Davis researchers for determining if dried food is dry enough to prevent mold growth and aflatoxin contamination during storage and reducing post-harvest losses.

Mila Lokwa Giresse (Democratic Republic of the Congo) – Category: Change Agent

Giresse is the CEO of Mobile Agribiz. This company develops the Mobile Agribiz App, an innovative tool to enhance the pest and disease diagnostics of fall armyworm in maize. It uses artificial intelligence and machine learning to easily detect the pest across maize crops at any stage of the production cycle. The app aims to assist farmers, extension workers, and agribusinesses in democratic republic of Congo with early detection and accurate diagnosis. Through SMS and smart alert notifications, the Mobile Agribiz App provides farmers with constant reminders and real-time information on how to detect, manage, and address fall armyworm on maize.

Blessings Likagwa (Malawi) – Category: Farmer

Likagwa lives in Mtunthama, Malawi, where he works on his family’s farm. From a young age he has had an interest in farming and for the past eight years he has been involved in growing a variety of crops, especially maize and cassava. In the future he hopes to use his bachelor’s degree in Community Development and his interest in technology to help smallholder farmers in Malawi and Eastern Africa adapt to the challenges of climate change and rapid population growth. Since 2018, in collaboration with UNICEF and Kyoto University, he has investigated how drone technology can improve agricultural performance and benefit Malawi’s smallholders.

Ismael Mayanja (Uganda) – Category: Researcher

Mayanja is a 2019 graduate of Makerere University with a Bachelor of Science degree in Agricultural Engineering. He is currently assisting research at Makerere University to ascertain and quantify post-harvest losses associated with transportation of agricultural produce in the markets of Kampala district, Uganda. His primary research interest lies in post-harvest handling and technology, motivated by the reported 40% post-harvest loss of agricultural produce by farmers in sub-Saharan Africa. He developed a bicycle-powered maize cleaning machine to increase efficiency and reduce time dedicated to cleaning maize at several primary schools in Uganda.

Admire Shayanowako (Republic of South Africa) – Category: Researcher

Shayanowako is a researcher at the African Centre for Crop Improvement (ACCI) – University KwaZulu-Natal. His research focuses on the parasitic weed Striga, also known as witch weed, which causes severe crop losses to millions of small-scale African maize farmers. The goal of the project is to combine breeding for Striga resistance in maize with a soil fungus, Fusarium oxysporum f.sp. strigae (FOS) that is highly specific in its pathogenicity to Striga and acts as a biological control agent. The breeding approach aims to develop at least partial host resistance in open pollinated maize germplasms that are adapted to the semi-arid regions. When partial host resistance is augmented with biological control agent FOS, parasitic effects of Striga decline overwhelmingly. Currently, the breeding component of the research has embarked on identification of quantitative trait locus (QTL) controlling Striga resistance in maize through genomic based approaches.


For further information, contact:

Jennifer Johnson
Communications Officer, CGIAR Research Program on Maize (MAIZE)
Telephone: +52 (55) 5804 2004 ext. 1036
Email: j.a.johnson@cgiar.org

Book launch: Lead farmers in eastern and southern Africa

Tackling the challenges of climate change and increasing scarcity of resources like arable land and water requires that farming and food systems around the world undergo fundamental shifts in thinking and practices. A new book draws on experiences of men and women farmers across eastern and southern Africa who have been associated with the Sustainable Intensification of Maize-Legume Systems for Food Security in Eastern and Southern Africa (SIMLESA) project. The inspiring and moving accounts tell the story of how these farmers have bravely embraced change to improve their farming methods and consequently the lives and livelihoods of their families.

The maize-growing regions of southern and eastern Africa face many challenges, including lower than average yields, crop susceptibility to pests and diseases, and abiotic stresses such as droughts that can be frequent and severe. There is also widespread lack of access to high-yielding stress resilient improved seed and other farming innovations, presenting a need for scalable technologies, adapted to farmers’ growing conditions.

Maize is the most important staple crop in the region, feeding more than 200-300 million people across Africa and providing food and income security to millions of smallholder farmers. Prioritization of cost reducing, yield enhancing and resource conserving farming methods is vital to catalyze a shift towards sustainable and resilient maize agri-food systems. Conservation agriculture (CA) is one promising approach.

Launched in 2010, SIMLESA is led by the International Maize and Wheat Improvement Center (CIMMYT) and funded by the Australian Center for International Agricultural Research (ACIAR). The project supports farmers and partner organizations to achieve increased food production while minimizing pressure on the environment by using smallholder farmers’ resources more efficiently through CA approaches. SIMLESA is implemented by national agricultural research systems, agribusinesses and farmers in partner countries including, Ethiopia, Kenya, Malawi, Mozambique, Rwanda, Tanzania and Uganda.

The farmers’ words in this book drive home the core philosophy of SIMLESA: that critical paradigm shifts in smallholder farming are possible and can lead to positive and potentially lasting impacts.

The candid accounts of the benefits yielded from adopting new practices like CA are a testimony to this idea:  “Now we have seen with our own eyes these new methods are beneficial, and we want to continue what we are doing
.my field is a school where others can learn,” said Maria Gorete, a farmer in Mozambique.

Policy makers and scientists from eastern and southern Africa met in Uganda at a regional forum convened by the Association for Strengthening Agricultural Research in Eastern and Central Africa (ASARECA), on 3-4 May 2019. The forum discussed ways to scale up the learnings of SIMLESA and a joint communique recommending policy actions was signed by the Ministers of Agriculture of the Republic of Burundi, the Republic of the Congo, the Democratic Republic of Congo, the State of Eritrea, the Federal Democratic Republic of Ethiopia, the Republic of Kenya, the Republic of Madagascar,  the Republic of Rwanda, the Republic of South Sudan, the Republic of the Sudan, the United Republic of Tanzania, the Republic of Uganda, the Republic of Malawi and the Republic of Mozambique of the high level Ministerial Panel on Sustainable Intensification of Maize-Legume Cropping Systems for Food Security in Eastern and Southern Africa (SIMLESA).

Improved Maize for African Soils (IMAS)

African maize farmers must deal with drought, weeds, and pests, but their problems start with degraded, nutrient-starved soils and their inability to purchase enough nitrogen fertilizer. Maize yields of smallholder farmers in sub-Saharan Africa are a fraction of those in the developed world, due mainly to the region’s poor soils and farmers’ limited access to fertilizer or improved maize seed. On average, such farmers apply only 9 kilograms of fertilizer per hectare of cropland. Of that small amount, often less than half is captured by the crop; the rest is leached deep into the soil where plants cannot recover it or otherwise lost.

The Improved Maize for African Soils Project (IMAS) develops maize varieties that are better at capturing the small amount of fertilizer that African farmers can afford, and that use the nitrogen they take up more efficiently to produce grain. Project participants will use cutting-edge biotechnology tools such as molecular markers—DNA “signposts” for traits of interest—and transgenic approaches to develop varieties that ultimately yield 30 to 50 percent more than currently available varieties, with the same amount of nitrogen fertilizer applied or when grown on poorer soils.

The varieties developed will be made available royalty-free to seed companies that sell to the region’s smallholder farmers, meaning that the seed will become available to farmers at the same cost as other types of improved maize seed.

In four years or less, African farmers should have access to IMAS varieties developed using conventional breeding that offer a 20 percent yield advantage over current varieties. Improved varieties developed using DNA marker techniques are expected to be introduced within seven to nine years, and those containing transgenic traits are expected to be available in approximately 10 years, pending product performance and regulatory approvals by national regulatory and scientific authorities, according to the established laws and regulatory procedures in each country.

IMAS is being led by CIMMYT and funded with $19.5 million in grants from the Bill & Melinda Gates Foundation and the U.S. Agency for International Development. The project’s other partners — DuPont-Pioneer, Kenya Agricultural Livestock and Research Organization and the Agricultural Research Council of South Africa — are also providing significant in-kind contributions including staff, infrastructure, seed, traits, technology, training, and know-how.

The second phase of IMAS continues to be implemented through the Seed Production Technology for Africa (SPTA) project.

OBJECTIVES

  • Conventional and marker assisted breeding to develop hybrids and OPVs with improved nitrogen use efficiency (NUE) adapted to southern and eastern Africa
  • Identification and deployment of native trait alleles to enhance yield under low nitrogen conditions through association mapping and Quantitative Trait Loci mapping
  • Development of transgenic maize varieties adapted to southern and eastern Africa with increased yield under severe nitrogen limitation
  • Managing NUE varieties for sustainability in African maize cropping systems
  • Project stewardship, public awareness and capacity building
  • NUE variety registration, release and dissemination in southern and eastern Africa

Water Efficient Maize for Africa (WEMA)

The Water Efficient Maize for Africa partnership was launched in March 2008 to help farmers manage the risk of drought by developing and deploying maize varieties that yield 24 to 35 percent more grain under moderate drought conditions than currently available varieties. The higher and more reliable harvests will help farmers to feed their families and increase their incomes.

The varieties are being developed using conventional breeding, marker-assisted breeding, and biotechnology, and will be marketed royalty-free to smallholder farmers in Sub-Saharan Africa through African seed companies. The current, second phase of the project (2013–2017) includes breeding for resistance to stem borers—insect pests that seriously damage maize crops in the field—as well as product and production management, promotion with seed companies and farmers, and product stewardship activities.

The project focuses on Kenya, Mozambique, South Africa, Tanzania, Uganda, Zambia and Zimbabwe. The second phase of the project began on February 1, 2013.

OBJECTIVES

  • Product development. Develop and test drought tolerant and and insect-pest resistant maize varieties through conventional, molecular, and genetic engineering breeding approaches.
  • Regulatory affairs and compliance. Support multi-location testing and commercial release of drought tolerant and insect-pest resistant maize hybrids in the Water Efficient Maize for Africa partner countries.
  • Product deployment: Product and production management. Facilitate the marketing and stewardship of drought tolerant and insect-pest resistant hybrid maize seeds, and stimulate private sector investments for sustainable seed production, distribution and us
  • Communications and outreach. Support testing, dissemination, commercialization, adoption, and stewardship of conventional and transgenic drought tolerant and insect-pest resistant hybrids in the five target countries.
  • Legal and licensing support. Develop and implement appropriate licensing and intellectual property protection mechanisms for Water Efficient Maize for Africa products.

FUNDING INSTITUTIONS

  • Bill & Melinda Gates Foundation
  • Howard G. Buffett Foundation
  • U.S. Agency for International Development

PRINCIPAL COORDINATOR

Stephen Mugo

Breaking Ground: Tawanda Mashonganyika unites crop breeders and market experts for more impactful varieties

Tawanda Mashonganyika

The low rate at which farmers adopt improved varieties is one of the biggest obstacles to overcoming food insecurity. The average maize variety grown by farmers in sub-Saharan Africa is 15 years old, even though maize breeders have been releasing more than 50 new varieties every year.

When it comes to climate change, for example, thanks to a plentiful arsenal of genetic diversity crop breeders are developing varieties adapted to increased heat and drought, but farmers continue to grow crops developed for the climate of yesterday.

One part of the answer is that it is not enough merely to create a variety resistant to heat, drought or flooding; complex dynamics are at play in crop markets and in farmers’ fields that must be reflected in the design of new varieties.

This where product manager Tawanda Mashonganyika comes in, working for the CGIAR Excellence in Breeding Platform (EiB) out of CIMMYT-Kenya, and one of the first to occupy such a role in the CGIAR system.

“This position is supposed to bring in a business kind of thinking in the way products and varieties are developed,” said Mashonganyika, who studied agricultural economics, agribusiness and value chains at the universities of Reading, U.K. and Queensland, Australia, and has professional experience with crops grown in Africa.

“You need to know who you are developing varieties for, who are your customers and clients, and you also need to design products so that they can have success on the market.”

Mashonganyika’s role is to support CGIAR and national agricultural research system (NARS) breeders to design new varieties focused on replacing older products in a specific market, as opposed to only breeding for an agro-ecological zone. Key to this approach is the involvement of experts from other disciplines such as gender, socioeconomics and nutrition, as well as people involved in the value chain itself, such as food processors, seed producers and farmers.

The outcome of this collaboration is a product profile: a written description of a new product with all the traits needed to replace the variety that currently dominates the target market. The profile serves as a common goal for CGIAR and NARS collaboration, and as a tool to communicate with donors. With the breeding program accountable for delivering a pipeline of new products designed for impact, they can ensure that these varieties also deliver traits such as biofortification to farmer’s fields.

Instead of breeding for all the traits that may be desirable in a new variety, what sets the product profile approach apart is that breeding programs can then focus resources on the traits that will have the greatest impact in the market, and therefore the field. This market-focused approach also enables better collaboration between breeders and experts from other disciplines:

“When you bring a cross-functional team together, you really need to give them an understanding of the desired goal of what we want to design and eventually put onto the market,” said Mashonganyika. “We put an emphasis on data-driven decisions, so it is not just a meeting of experts with different opinions; we always try to create a platform to say ‘we need to follow what the market is saying.’”

“[Non-breeding experts] are usually very excited to talk about the data that they have about markets, and the knowledge that they have about how gender or nutrition affects products on the market,” said Mashonganyika. “There are so many women farmers, especially in Africa, so when you begin to incorporate gender, we are increasing the scope of impact.”

Although actors such as seed producers or food processors may have no breeding expertise, Mashonganyika views their input as essential: “They are the ones that are at the mouthpiece of the market, they eventually take up the varieties and they multiply the seed, so they have very good information.”

One example is a collaboration with the National Agricultural Research Organization (NARO), Uganda, where representatives from private sector seed companies are being included to help breeders better understand their customers. “They give information about seed multiplication processes, and what makes a variety be considered for multiplication in seed systems.”

EiB has created a standardized tool to create product profiles, and 200 were submitted to the growing database in the first three months of the pilot period alone, including profiles submitted by 10 national agricultural research programs in Africa and Asia.

In addition to promoting the use of product profiles, a product manager is also involved ensuring communication and accountability throughout the development of new products.

“With product profiles we say a breeder should be accountable for delivering each product in a certain timeframe,” said Tawanda. “We always emphasize that a breeding program should have an annual product review process, because markets are dynamic, they are bound to change. This is a good habit to ensure that your products remain relevant and designed for impact.”

Although Mashonganyika is one of the first CGIAR product managers, a desire to see greater impact in the field is turning others in the same direction.

“I hope that in the near future we will see other CGIAR centers developing similar positions,” said Mashonganyika.

Maize Lethal Necrosis Diagnostics and Prevention of Seed Transmission

This four-year Maize Lethal Necrosis Diagnostics and Prevention of Seed Transmission project will coordinate regional efforts to strengthen response to the rapid emergence and spread of Maize Lethal Necrosis (MLN).

Coordinated by CIMMYT, it will establish a community of practice among national plant protection organizations in eastern Africa for implementing harmonized MLN diagnostic protocols for detecting MLN-causing viruses and enable commercial seed companies to implement necessary standard operational procedures to produce MLN-free clean seed at various points along the maize seed value chain. It will also step-up MLN surveillance and monitoring in Malawi, Zambia and Zimbabwe, three of the major commercial maize seed exporting countries in sub-Saharan Africa.

The MLN project will be implemented in close partnership with the Alliance for a Green Revolution in Africa, the African Agricultural Technology Foundation, national plant protection organizations and commercial seed companies in eastern Africa. It will also pool expertise from relevant public- and private-sector partners, regional organizations, and seed trade organizations operating in the region.

Partners:  The Alliance for a Green Revolution in Africa, the African Agricultural Technology Foundation, national plant protection organizations and commercial seed companies in eastern Africa

Sustainable Intensification of Maize-Legume Systems for Food Security in Eastern and Southern Africa (SIMLESA)

The Sustainable Intensification of Maize-Legume Systems for Food Security in Eastern and Southern Africa (SIMLESA) program aims to improve maize and legume productivity by 30 percent and to reduce the expected downside yield risk by 30 percent on approximately on approximately 650,000 farm households by 2023. Launched in 2010, the focal countries of program research are Australia, Botswana, Burundi, Ethiopia, Kenya, Malawi, Mozambique, Tanzania, South Sudan, Uganda, Rwanda, Zambia and Zimbabwe.

The main thrust of the SIMLESA program is increasing farm-level food security, productivity and incomes through promotion of maize-legume intercropping systems in the context of reduced climate risk and change.

The program has also laid the foundation for developing conservation agriculture based sustainable intensification options, including integration of improved maize and legume varieties identified for their compatibility with CA-based practices; promoting technology adoption by both female and male farmers; capacity building for national agricultural research systems of partner countries; creating enhanced partnerships and collaboration with established innovation platforms for coordinated scaling-out of SIMLESA-generated options and practices.

Funding Institutions: Australian Centre for International Agricultural Research (ACIAR)

Partners: National agricultural systems of Ethiopia, Kenya, Malawi, Mozambique and Tanzania, as well as international and local research centers, extension agencies, non-governmental organizations, universities and agribusinesses along the value chain.

Read the final report of the SIMLESA project

Drought Tolerant Maize for Africa Seed Scaling (DTMASS)

The Drought Tolerant Maize for Africa Seed Scaling (DTMASS) project was officially launched in 2014 with the aim to meet demand and improve access to good-quality maize through production and deployment of affordable and improved drought-tolerant, stress-resilient and high-yielding maize varieties for smallholder farmers.

Led by CIMMYT and implemented through in-country public and private partnerships, DTMASS emphasizes scaling up and scaling out of drought tolerant maize seed, and uptake of the same among smallholder farmers. Over its lifespan, the project aims to produce close to 12,000 metric tons of certified seed for use by approximately 400,000 households, or 2.5 million people, in six countries in eastern and southern Africa.

DTMASS target countries (Ethiopia, Kenya, Mozambique, Tanzania, Uganda and Zambia) account for 25 percent, or 252 million, of the people in sub-Saharan Africa, and 41 percent of the maize production areas. DTMASS builds on the progress made by Drought Tolerant Maize for Africa and other complementary CIMMYT maize projects in Africa, including Improved Maize for African Soils and Water Efficient Maize for Africa.

Stress Tolerant Maize for Africa (STMA)

The Stress Tolerant Maize for Africa (STMA) project aims to diminish devastating constraints in maize production across sub-Saharan Africa. The project develops improved maize varieties with resistance and tolerance to drought, low soil fertility, heat, diseases such as Maize Lethal Necrosis and pests affecting maize production areas in the region.

STMA operates in eastern (Ethiopia, Kenya, Tanzania, Uganda), southern (Malawi, South Africa, Zambia, Zimbabwe) and West Africa (Benin, Ghana, Mali, Nigeria). These countries account for nearly 72 percent of all maize area in sub-Saharan Africa and include more than 176 million people who depend on maize-based agriculture for their food security and economic well-being. Climate change effects like drought, a lack of access to resources like fertilizer and other stresses increase the risk of crop failure that negatively affects income, food security and nutrition of millions of smallholder farmers and their families.

The project will develop 70 new stress-tolerant varieties using innovative modern breeding technologies, and promote improved stress-tolerant varieties expected to increase maize productivity up to 50 percent. The project aims to produce estimated 54,000 tons of certified seed to put into the hands of more than 5.4 million smallholder farmer households by the end of 2019.

Objectives

  • Use innovative breeding tools and techniques applied for increasing the rate of genetic gain in the maize breeding pipeline.
  • Increase commercialization of improved multiple-stress-tolerant maize varieties with gender-preferred traits by the sub-Saharan African seed sector.
  • Increase seed availability and farmer uptake of stress-tolerant maize varieties in target countries.
  • Optimize investment impact through effective project oversight, monitoring, evaluation and communication.