Sorghum field in Kiboko, Kenya. (Photo: E Manyasa/ICRISAT)
As part of the One CGIAR reform, the Global Science Group on Genetic Innovation will implement a crop breeding and seed systems project for key crops including groundnut, sorghum and millet, across western and eastern African countries.
The International Maize and Wheat Improvement Center (CIMMYT), a leader in innovative partnerships, breeding and agronomic science for sustainable agri-food systems, will lead the project.
The Accelerated Varietal Improvement and Seed Delivery of Legumes and Cereals in Africa (AVISA) project aims to improve the health and livelihoods of millions by increasing the productivity, profitability, resilience and marketability of nutritious grain, legumes and cereal crops. The project focuses on strengthening networks to modernize crop breeding by CGIAR and national program partners, and public-private partnerships to strengthen seed systems. The project currently works in Burkina Faso, Ethiopia, Ghana, Mali, Nigeria, Uganda and Tanzania.
“Sorghum, groundnut and millets are essential staples of nutritious diets for millions of farmers and consumers and are crucial for climate-change-resilient farming systems,” explained CIMMYT Deputy Director General and Head of Genetic Resources, Kevin Pixley. “The oversight of this project by CGIAR’s Genetic Innovation Science Group will ensure continued support for the improvement of these crops in partnership with the national agricultural research and extension systems (NARES) that work with and for farmers,” he said.
“CIMMYT is delighted to lead this project on behalf of the Genetic Innovations Science Group and CGIAR,” confirms CIMMYT Director General, Bram Govaerts.
“We look forward to contributing to co-design and co-implement with partners and stakeholders the next generation of programs that leverage and build the strengths of NARES, CGIAR and others along with the research to farmers and consumers continuum to improve nutrition, livelihoods, and resilience to climate change through these crops and their cropping systems.”
Dryland Crops, formerly known as the Accelerated Varietal Improvement and Seed Systems in Africa (AVISA) project, aims to improve the livelihoods of small-scale producers and consumers of sorghum, millet, groundnut, cowpea and bean. Project partners focus on improving the breeding and seed systems of these crops in their key geographies in Burkina Faso, Ethiopia, Ghana, Mali, Nigeria, Tanzania and Uganda. Other crops receiving growing attention in the project include finger millet, pigeon pea and chickpea.
Although significant adoption of improved seed of dryland cereals and legume crops in Africa has been reported, its overall use remains low. There is a growing interest in these crops, particularly because of their resilience to climate-change; however, the seed sector is constrained by lack of product information, dearth of knowledge of the size and scale of the business opportunity, and inadequate access to early generation seed.
Dryland Crops will address these constraints by contributing to the establishment of robust systems that:
Enable networks to work synergistically across countries with common challenges and opportunities.
Support national agricultural research systems to access research, professional development and infrastructure-building opportunities.
Increase the quantity and quality of data substantiating varietal superiority and the demand for seed and grain of improved varieties.
Boost the availability of early generation seed and strengthen links between the research system and private- and public-sector actors.
The aspiration is to codevelop, validate by co-implementation, and continuously improve with partners research-to-farm-to-consumer models that achieve positive impacts on farmers’ livelihoods and consumers’ wellbeing.
The Alliance of Bioversity and CIAT and IITA will lead initiatives for common bean and cowpea, respectively. For sorghum, pearl millet and groundnut breeding, CIMMYT will design programs that support crop improvement networks, including CGIAR and national agricultural research systems, and incorporate best approaches, principles, and tools, particularly those availed through the Excellence in Breeding (EiB) platform.
The project is committed to gender equity as a guiding principle, considering the critical role women play in choosing legume and cereal varieties and seed sources. Women seed entrepreneurs and women-led seed companies will garner special attention for capacity development. Partnerships with actors through the value chain, platforms and demonstrations will ensure women have equal access to improved technologies.
The previous phase of the AVISA project was led by the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT).
Uganda is one of the fastest economically growing nations in sub-Saharan Africa and is in the midst of socio-economic transition. Over the past two decades the country’s GDP has expanded, on average, by more than 6% each year, with per capita GDP reaching $710 in 2019. Researchers project that this will continue to rise at a rate of 5.6% each year for the next decade, reaching approximately $984 by the year 2031.
This growth is mirrored by a rising population and rapid urbanization within the country. In 2019, 24.4% of the Uganda’s 44.3 million citizens were living in urban areas. By 2030, population is projected to rise to 58-61 million, 31% of whom are expected to live in towns and cities.
“Changes in population, urbanization and GDP growth rate all affect the dietary intake pattern of a country,” says Khondoker Mottaleb, an economist at the International Maize and Wheat Improvement Center (CIMMYT). “Economic and demographic changes will have significant impacts on the agricultural sector, which will be challenged to produce and supply more and better food at affordable prices.”
This could leave Uganda in a precarious position.
In a new study, Mottaleb and a team of collaborators project Uganda’s future food demand, and the potential implications for achieving the United Nations Sustainable Development Goal of zero hunger by 2030.
The authors assess the future demand for major food items, using information from 8,424 households collected through three rounds of Uganda’s Living Standards Measurement Study — Integrated Surveys on Agriculture (LSMS-ISA). They focus on nationwide demand for traditional foods like matooke (cooking banana), cassava and sweet potato, as well as cereals like maize, wheat and rice — consumption of which has been rising alongside incomes and urbanization.
A conceptual framework of changing food demand in the Global South. (Graphic: CIMMYT)
The study findings confirm that with increases in income and demographic changes, the demand for these food items will increase drastically. In 2018, aggregate consumption was 3.3 million metric tons (MMT) of matooke, 4.7 MMT of cassava and sweet potato, 1.97 MMT of maize and coarse grains, and 0.94 MMT of wheat and rice. Using the Quadratic Almost Ideal Demand System (QUAIDS) estimation approach, the authors show that in 2030 demand could be as high as 8.1 MMT for matooke, 10.5 MMT for cassava and sweet potato, 9.5 MT for maize and coarse grains, and 4 MMT for wheat and rice.
Worryingly, Mottaleb and his team explain that while demand for all the items examined in the study increases, the overall yield growth rate for major crops is stagnating as a result of land degradation, climate extremes and rural out-migration. For example, the yield growth rate for matooke has reduced from +0.21% per year from 1962-1989 to -0.90% from 1990-2019.
As such, the authors call for increased investment in Uganda’s agricultural sector to enhance domestic production capacity, meet the growing demand for food outlined in the study, improve the livelihoods of resource-poor farmers, and eliminate hunger.
East African Seed Company has a rich history of nearly 50 years, serving farmers with improved climate-resilient seed varieties. Established in 1972, the company produces and sells improved seed, through a wide distribution network in at least 15 countries in sub-Saharan Africa. It also markets agrochemicals and other farm inputs, and has ambitions of expanding to the rest of Africa, trading as Agriscope Africa Limited.
Smallholder farmers in sub-Saharan Africa continue to face multiple biotic and abiotic stresses as they try to improve their farms’ productivity and their livelihoods. Maize seed that guarantees high yield is a key trait, coupled with other key attributes such as drought tolerance, disease and pest resistance, early seedling vigor as well as suitability for food and animal feed.
With the varieties serving both small- and large-scale commercial farmers, challenges such as the fall armyworm, diminishing soil fertility and erratic rains have persisted in recent years and remain as key farming obstacles. “Such challenges diminish crop production and the grain quality thereby, lessening farmers’ profitability,” says Rogers Mugambi, Chief Operating Officer of East African Seed Company.
Scientists at the International Maize and Wheat Improvement Center (CIMMYT), in collaboration with partners in the national agriculture research systems and the commercial seed sector, continue to develop seed varieties that can guarantee decent yield even in times of climatic, disease and pest stress.
General view of the East African Seed warehouse. (Photo: Jerome Bossuet/CIMMYT)
Top-notch research trickles down to farmers
Over the years, East African Seed has inked partnerships with CIMMYT, national research institutes and other agencies in the countries where it operates. Such partnerships have been the driving force to its success and the impacts within the farming communities in sub-Saharan Africa.
“Our collaboration with CIMMYT began in 2008 with germplasm acquisition. The cooperation has expanded to include testing networks for new hybrids, early-generation seed production and marketing. The overall beneficiary is the smallholder farmer who can access quality seeds and produce more with climate-smart products,” Mugambi says.
Apart from the multi-stress-tolerant varieties developed and released over time by the national agricultural research programs, CIMMYT recently announced a breakthrough: fall armyworm-tolerant elite maize hybrids for eastern and southern Africa. This success followed three years of rigorous research and experiments conducted in Kenya and signified a key milestone in the fight against fall armyworm.
As part of the partnership in the Drought Tolerant Maize for Africa (DTMA) and Stress Tolerant Maize for Africa (STMA) projects, East African Seed Company (Agriscope Africa Limited) established demonstration farms and conducted field days in Kenya, reaching thousands of farmers as a result. It was also able to produce early generation seed, which supported production of 2,000 metric tons of certified seed. This partnership now continues in the Accelerating Genetic Gains in Maize and Wheat (AGG) project.
The company has contracted large- and small-scale growers across the country to meet its seed production targets.
“Most of our small-scale growers are clustered in groups of up to 30 farmers with less than five acres of farmland. The large growers have advanced irrigation facilities such as the pivot system and seed processing plants. The seed from the fields is pre-cleaned and dried in the out-grower facilities before delivery to our factory for further cleaning and processing,” Mugambi explains.
A handful of improved maize seed from the drought-tolerant variety TAN 250, developed and registered for sale in Tanzania through CIMMYT’s Drought Tolerant Maize for Africa (DTMA) project. (Photo: Anne Wangalachi/CIMMYT)
Out with the drought
Currently, of the 1,300 metric tons of drought-tolerant hybrid seeds it produces yearly, 500 metric tons constitute those derived from the partnership in the STMA project. Two notable hybrids, HODARI (MH501) and TOSHEKA (MH401), were derived during the DTMA and STMA projects. Released in 2014 and accepted for regional certification through the Common Market for Eastern and Southern Africa (COMESA)’s regional catalogue, the MH501 is a mid-altitude adapted and medium maturing three-way cross hybrid. The yield advantage of 15% over the local commercial checks triggered widespread adoption by the farmers, according to Mugambi. In Kenya, it was used as a commercial check during national performance trials, from 2017 to 2019.
The MH401, an early maturing hybrid with moderate drought tolerance, has been adopted in lowland and mid-altitude dry ecologies of Kenya and Tanzania. It has a 20% yield advantage over the local commercial checks.
As part of its varietal replacement, East African Seed Company looks to steadily retire older varieties such as KH600-15A and WE1101 and promote new ones including TAJIRI (EASH1220), TAJI (MH502) and FARAJA (MH503).
To promote new varieties and successfully reach smallholders, the company conducts field days, farm-level varietal demonstrations, road shows and radio programs. It also disseminates information on the benefits of new varieties while also dispensing promotional materials such as branded t-shirts and caps.
“Additionally, we organize annual field days at our research farm in Thika, where key and influential farmers and other stakeholders are invited from across Kenya and neighboring countries to learn about our new agricultural technologies,” Mugambi says.
Scientists are calling for accelerated adoption of new hybrid maize varieties with resistance to maize lethal necrosis (MLN) disease in sub-Saharan Africa. In combination with recommended integrated pest management practices, adopting these new varieties is an important step towards safeguarding smallholder farmers against this devastating viral disease.
A new publication in Virus Research shows that these second-generation MLN-resistant hybrids developed by the International Maize and Wheat Improvement Center (CIMMYT) offer better yields and increased resilience against MLN and other stresses. The report warns that the disease remains a key threat to food security in eastern Africa and that, should containment efforts slacken, it could yet spread to new regions in sub-Saharan Africa.
The publication was co-authored by researchers at the International Maize and Wheat Improvement Center (CIMMYT), Kenya Agricultural and Livestock Research Organization (KALRO), the Alliance for a Green Revolution in Africa (AGRA), the African Agricultural Technology Foundation (AATF) and Aarhus University in Denmark.
CIMMYT technician Janet Kimunye (right) shows visitors a plant with MLN symptoms at the MLN screening facility in Naivasha, Kenya. (Photo: CIMMYT)
Stemming the panic
The first reported outbreak of MLN in Bomet County, Kenya in 2011 threw the maize sector into a panic. The disease caused up to 100% yield loss. Nearly all elite commercial maize varieties on the market at the time were susceptible, whether under natural of artificial conditions. Since 2012, CIMMYT, in partnership with KALRO, national plant protection organizations and commercial seed companies, has led multi-stakeholder, multi-disciplinary efforts to curb MLN’s spread across sub-Saharan Africa. Other partners in this endeavor include the International Institute of Tropical Agriculture (IITA), non-government organizations such as AGRA and AATF, and advanced research institutions in the United States and Europe.
In 2013 CIMMYT established an MLN screening facility in Naivasha. Researchers developed an MLN-severity scale, ranging from 1 to 9, to compare varieties’ resistance or susceptibility to the disease. A score of 1 represents a highly resistant variety with no visible symptoms of the disease, while a score of 9 signifies extreme susceptibility. Trials at this facility demonstrated that some of CIMMYT’s pre-commercial hybrids exhibited moderate MLN-tolerance, with a score of 5 on the MLN-severity scale. CIMMYT then provided seed and detailed information to partners for evaluation under accelerated National Performance Trials (NPTs) for varietal release and commercialization in Kenya, Tanzania and Uganda.
Between 2013 and 2014, four CIMMYT-derived MLN-tolerant hybrid varieties were released by public and private sector partners in East Africa. With an average MLN severity score of 5-6, these varieties outperformed commercial MLN-sensitive hybrids, which averaged MLN severity scores above 7. Later, CIMMYT breeders developed second-generation MLN-resistant hybrids with MLN severity scores of 3–4. These second-generation hybrids were evaluated under national performance trials. This led to the release of several hybrids, especially in Kenya, over the course of a five-year period starting in 2013. They were earmarked for commercialization in East Africa beginning in 2020.
Maize Lethal Necrosis (MLN) sensitive and resistant hybrid demo plots in Naivasha’s quarantine & screening facility (Photo: KIPENZ/CIMMYT)
Widespread adoption critical
The last known outbreak of MLN was reported in 2014 in Ethiopia, marking an important break in the virus’s spread across the continent. Up to that point, the virus had affected the Democratic Republic of the Congo, Kenya, Rwanda, Tanzania and Uganda. However, much remains to be done to minimize the possibility of future outbreaks.
“Due to its complex and multi-faceted nature, effectively combating the incidence, spread and adverse effects of MLN in Africa requires vigorous and well-coordinated efforts by multiple institutions,” said B.M. Prasanna, primary author of the report and director of the Global Maize Program at CIMMYT and of the CGIAR Research Program on Maize (MAIZE). Prasanna also warns that most commercial maize varieties being cultivated in eastern Africa are still MLN-susceptible. They also serve as “reservoirs” for MLN-causing viruses, especially the maize chlorotic mottle virus (MCMV), which combines with other viruses from the Potyviridae family to cause MLN.
“This is why it is very important to adopt an integrated disease management approach, which encompasses extensive adoption of improved MLN-resistant maize varieties, especially second-generation, not just in MLN-prevalent countries but also in the non-endemic ones in sub-Saharan Africa,” Prasanna noted.
The report outlines other important prevention and control measures including: the production and exchange of “clean” commercial maize seed with no contamination by MLN-causing viruses; avoiding maize monocultures and continuous maize cropping; practicing maize crop rotation with compatible crops, especially legumes, which do not serve as hosts for MCMV; and continued MLN disease monitoring and surveillance.
L.M. Suresh (center-right), Maize Pathologist at CIMMYT and Head of the MLN Screening Facility, facilitates a training on MLN with national partners. (Photo: CIMMYT)
Noteworthy wins
In addition to the development of MLN-resistant varieties, the fight against MLN has delivered important wins for both farmers and their families and for seed companies. In the early years of the outbreak, most local and regional seed companies did not understand the disease well enough to produce MLN-pathogen free seed. Since then, CIMMYT and its partners developed standard operating procedures and checklists for MLN pathogen-free seed production along the seed value chain. Today over 30 seed companies in Ethiopia, Kenya, Uganda, Rwanda and Tanzania are implementing these protocols on a voluntary basis.
“MLN represents a good example where a successful, large-scale surveillance system for an emerging transboundary disease has been developed as part of a rapid response mechanism led by a CGIAR center,” Prasanna said.
Yet, he noted, significant effort and resources are still required to keep the maize fields of endemic countries free of MLN-causing viruses. Sustaining these efforts is critical to the “food security, income and livelihoods of resource-poor smallholder farmers.
To keep up with the disease’s changing dynamics, CIMMYT and its partners are moving ahead with novel techniques to achieve MLN resistance more quickly and cheaply. Some of these innovative techniques include genomic selection, molecular markers, marker-assisted backcrossing, and gene editing. These techniques will be instrumental in developing elite hybrids equipped not only to resist MLN but also to tolerate rapidly changing climatic conditions.
Cover photo: Researchers and visitors listen to explanations during a tour of infected maize fields at the MLN screening facility in Naivasha, Kenya. (Photo: CIMMYT)
As one of the pioneer homegrown seed companies in Uganda, Farm Inputs Care Centre (FICA) has become one of the leading players in the seed sector value chain. Since its inception in 1999, it has played a significant role in variety development and maintenance, seed production, and processing, packaging and marketing.
The close linkages it has maintained with partners such as National Agriculture Research Organization (NARO)’s National Crops Resources Research Institute (NaCCRI) and the International Maize and Wheat Improvement Center (CIMMYT) have seen it acquire new hybrids for commercialization and production of early generation seed.
A FICA representative stands in front of a demonstration plot for one of the organization’s stress-tolerant maize varieties in Uganda. (Photo: Mosisa Worku/CIMMYT)
A unique opportunity for collaboration
Recurrent plant threats such as drought, pests and diseases — alongside the perpetual need to develop and foster better performing varieties in changing climatic conditions — has required partners to intensify efforts to tackle these challenges to bolster smallholders’ resilience. The Drought Tolerant Maize for Africa (DTMA) project, for instance, ushered in the partnership between CIMMYT, FICA, national agriculture research systems, and other partners to develop and scale up well-adapted, drought-tolerant maize varieties among farmers in Uganda and elsewhere in sub-Saharan Africa.
“One of the unique features of the collaboration is that besides CIMMYT, there was a multi-stakeholder platform that would convene key seed sector players to discuss issues affecting the industry. Ultimately, this benefitted the farmers,” says FICA’s Chief Executive Officer Narcis Tumushabe.
This partnership continued during the Stress Tolerant Maize for Africa (STMA) initiative — which ran from 2016 to2020 — and now, in the Accelerating Genetic Gains in Maize and Wheat (AGG) project, which launched in July 2020 with the ambition of fast-tracking the development of climate-resilient, higher-yielding, demand-driven, gender-responsive and nutritious maize and wheat varieties.
Tumushabe is happy that the hybrids delivered in the DTMA and STMA projects proved worthwhile against multiple stresses in farmers’ fields, offering reliable yields even in challenging conditions like drought or other stresses. Because of the diverse ecological zones in Uganda, it was essential to test the hybrids FICA accessed through the CIMMYT-NARO partnership across different ecological zones, ahead of commercialization. This has given farmers opportunities to choose the varieties that are suitable in their environment. The five varieties FICA chose to promote include Longe 9H — which produces about 700 metric tons annually — and WE 2114, WE 2115, WE 3106 and UH 5355, which cumulatively produce about 1,300 tons annually.
The WE 3106 variety has a strong stem and produces big cobs and Tumushabe notes that some livestock farmers prefer this variety as a good forage source for their livestock. Large-scale commercial farmers prefer WE 2114 due to the positioning of the ears at a uniform height, which makes it easy for harvesting using combine harvesters.
Additionally, FICA breeders have also developed impactful combination hybrids using CIMMYT and FICA lines and the company looks to double its annual production of certified stress-tolerant maize seed to 4,000 metric tons in the next five years. Currently, it enlists about 800 contract seed growers to support its seed multiplication efforts.
A FICA employee walks through a seed production field growing hybrid maize variety WE2114 in Masindi, Uganda. (Photo: Mosisa Worku/CIMMYT)
Surmounting monumental challenges for varietal turnover
Promoting new seed varieties, especially in a highly competitive market, is no mean task. With the seed delivery systems in sub-Saharan Africa mainly driven by the supply side, seed companies end up multiplying only the popular varieties that are already in high demand, explains Mosisa Worku Regasa, a seed systems specialist at CIMMYT.
“Consequently, these companies become reluctant to multiply new seed varieties due to deficient demand, thereby slowing down the rate of varietal turnover,” says Mosisa. “There is, however, a growing push for a demand-driven system.”
“Some avenues for cultivating a demand-led environment include investing a great deal of resources to better understand farmers’ preferences or product profiles, setting up numerous demonstration plots for newer, better-performing varieties closer to the farmers locations in addition to investing in other marketing and promotional activities.”
Still, the seed sector must confront other dynamics such as farmers that are captive of old albeit popular varieties.
“There are cases where, depending on the stage of a seed company’s development, the number of products that one can deliver in the right quality and appropriate maintenance level has to be limited or realistically managed,” Tumushabe explains.
“The seed company also ought to be sure that the new variety will be superior to existing varieties under farmers’ conditions. That is why one may find little excitement if the genetic gain of a new crop variety is not significantly high compared to the already known and available crop variety. This may make one wonder why an old variety continues to persist in the market.”
To create awareness and sustain the demand for its seed, FICA has established demonstration farms to showcase the performance of its stress-resilient maize varieties among farmers and engaged agro-dealers as last mile seed merchants. It is also during field days held at demonstration farms where the company obtains feedback on how to improve its breeding program, particularly from women smallholder farmers. Such efforts have helped raise the company’s share of stress-tolerant maize seed production to 70% of the total maize seed it produces, which indicates good progress in variety replacement.
Efforts towards managing the Maize Lethal Necrosis (MLN), a viral disease affecting maize, have contributed to reducing seed production losses from 33 per cent to 16 per cent in the last four years, bolstering steady supply of maize seeds in the Eastern African region.
Stakeholders in the Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods (AGG) project have pledged to strengthen efforts to deliver desirable stress tolerant, nutritious and high-yielding maize and wheat varieties to smallholder farmers in a much shorter time. The alliance, comprising funders, national agricultural research systems (NARS), private seed companies, non-governmental organizations, the International Maize and Wheat Improvement Center (CIMMYT) and, for the maize component the International Institute for Tropical Agriculture (IITA), made these assurances during virtual events held in July and August 2020, marking the inception of the 5-year AGG project.
The initiative seeks to fast-track the development of higher-yielding, climate resilient, demand-driven, gender-responsive and nutritious seed varieties for maize and wheat, two of the world’s most important staple crops. The project is funded by the Bill & Melinda Gates Foundation, the Foreign, Commonwealth & Development Office (FCDO), the U.S. Agency for International Development (USAID), and the Foundation for Food and Agriculture Research (FFAR).
Tackling current and emerging threats
Jeff Rosichan, scientific program director of the Foundation for Food and Agricultural Research (FFAR), acknowledged the significant and ambitious aim of the project in tackling the challenges facing maize and wheat currently and in the future. “We are seeing the emergence of new pests and pathogens and viral diseases like never before. A lot of the work of this project is going to help us to tackle such challenges and to be better prepared to tackle emerging threats,” he said.
AGG builds on gains made in previous initiatives including Drought Tolerant Maize for Africa (DTMA), Improved Maize for African Soils (IMAS), Water Efficient Maize for Africa (WEMA), Stress Tolerant Maize for Africa (STMA) and Delivering Genetic Gain in Wheat (DGGW), with support from partners in 17 target countries in sub-Saharan Africa (SSA) and South Asia.
Hailu Wordofa, agricultural technology specialist at the USAID Bureau for Resilience and Food Security, underscored his expectation for CIMMYT’s global breeding program to use optimal breeding approaches and develop strong collaborative relationships with NARS partners, “from the development of product profiles to breeding, field trials and line advancement.”
Similarly, Gary Atlin, senior program officer at the Bill & Melinda Gates Foundation lauded the move toward stronger partnerships and greater emphasis on the CIMMYT and IITA breeding programs. “The technical capacity of partners has increased through the years. It is prudent to ensure that national partnerships continue. It is always a challenging environment, this time multiplied by the COVID-19 crisis, but through this collaboration, there is a greater scope to strengthen such partnerships even more,” he said.
Anne Wangui, Maize Seed Health Technician, demonstrates how to test maize plants for maize dwarf mosaic virus (MDMV). (Photo: Joshua Masinde/CIMMYT)
Symbiotic partnerships with great impact
“From the NARS perspective, we are committed to doing our part as primary partners to deliver the right seed to the farmers,” said Godfrey Asea, director of the National Crops Resources Research Institute at the National Agriculture Research Organization (NARO), Uganda. “We see an opportunity to review and to use a lot of previous historical data, both in-country and regionally and to continue making improved decisions. We also reiterate our commitment and support to continuously make improvement plans in our breeding programs.”
Martin Kropff, director general of CIMMYT, recognized the tremendous impact arising from the longstanding cooperation between CIMMYT’s maize and wheat programs and national programs in countries where CIMMYT works. “A wheat study in Ethiopia showed that 90% of all the wheat grown in the country is CIMMYT-related, while an impact study for the maize program shows that 50% of the maize varieties in Africa are CIMMYT-derived. We are very proud of that – not for ourselves but for the people that we work for, the hundreds of millions of poor people and smallholder farmers who really rely on wheat and maize for their living and for their incomes,” he said.
Founder and Chief Executive Officer of East Africa-based Western Seed Company Saleem Esmail expressed optimism at the opportunities the project offers to improve livelihoods of beneficiaries. “I believe we can do this by sharing experiences and by leveraging on the impacts that this project is going to bring, from new technologies to new science approaches, particularly those that help save costs of seed production.”
He, however, observed that while the target of fast-tracking varietal turnover was great, it was a tough call, too, “because farmers are very risk averse and to change their habits requires a great deal of effort.”
On his part, director of Crop Research at the Oromia Agricultural Research Institute (OARI) in Ethiopia Tesfaye Letta revealed that from collaborative research work undertaken with CIMMYT, the institute has had access to better-quality varieties especially for wheat (bread and durum). These have helped millions of farmers to improve their productivity even as Ethiopia aims for wheat self-sufficiency by expanding wheat production under irrigation.
“We expect more support, from identifying wheat germplasm suitable for irrigation, developing disease resistant varieties and multiplying a sufficient quantity of early generation seed, to applying appropriate agronomic practices for yield improvement and organizing exposure field visits for farmers and experts,” he said.
Challenges and opportunities in a time of crisis
Alan Tollervey, head of agriculture research at Foreign, Commonwealth and Development Office (FCDO) and the UK representative to the CGIAR System Council, emphasized the need for continued investment in agricultural research to build a resilient food system that can cope with the demands and pressures of the coming decades. This way, organizations such as CIMMYT and its partners can adequately deliver products that are relevant not only to the immediate demands of poor farmers in developing countries – and the global demand for food generally – but also to address foreseen threats.
“We are at a time of intense pressure on budgets, and that is when projects are most successful, most relevant to the objectives of any organization, and most able to demonstrate a track record of delivery. CIMMYT has a long track history of being able to respond to rapidly emerging threats,” he said.
Felister Makini, the deputy director general for crops at the Kenya Agricultural Research Organization (KALRO) lauded the fact that AGG not only brings together maize and wheat breeding and optimization tools and technologies, but also considers gender and socioeconomic insights, “which will be crucial to our envisioned strategy to achieve socioeconomic change.”
Zambia Agriculture Research Organization (ZARI) maize breeder Mwansa Kabamba noted that the inclusion of extension workers will help to get buy-in from farmers especially as far as helping with adoption of the improved varieties is concerned.
In its lifecycle, the AGG project aims to reduce the breeding cycles for both maize and wheat from 5-7 years currently to 3-4 years. By 2024, at least 150,000 metric tons of certified maize seed is expected to be produced, adopted by 10 million households, planted on 6 million hectares and benefit 64 million people. It also seeks to serve over 30 million households engaged in wheat farming the target countries.
Cover photo: CIMMYT researcher Demewoz Negera at the Ambo Research Center in Ethiopia. (Photo: Peter Lowe/CIMMYT)
By 2050, global demand for wheat is predicted to increase by 50 percent from today’s levels and demand for maize is expected to double. Meanwhile, these profoundly important and loved crops bear incredible risks from emerging pests and diseases, diminishing water resources, limited available land and unstable weather conditions – with climate change as a constant pressure exacerbating all these stresses.
Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods (AGG) is a new 5-year project led by the International Maize and Wheat Improvement Center (CIMMYT) that brings together partners in the global science community and in national agricultural research and extension systems to accelerate the development of higher-yielding varieties of maize and wheat.
Funded by the Bill & Melinda Gates Foundation, the UK Foreign, Commonwealth & Development Office, the U.S. Agency for International Development (USAID) and the Foundation for Food and Agriculture Research (FFAR), AGG fuses innovative methods to sustainably and inclusively improve breeding efficiency and precision to produce seed varieties that are climate-resilient, pest- and disease-resistant, highly nutritious, and targeted to farmers’ specific needs.
AGG seeks to respond to the intersection of the climate emergency and gender through gender-intentional product profiles for its improved seed varieties and gender-intentional seed delivery pathways.
AGG will take into account the needs and preferences of female farmers when developing the product profiles for improved varieties of wheat and maize. This will be informed by gender-disaggregated data collection on current varieties and preferred characteristics and traits, systematic on-farm testing in target regions, and training of scientists and technicians.
Farmer Agnes Sendeza harvests maize cobs in Malawi. (Photo: Peter Lowe/CIMMYT)
To encourage female farmers to take up climate-resilient improved seeds, AGG will seek to understand the pathways by which women receive information and improved seed and the external dynamics that affect this access and will use this information to create gender-intentional solutions for increasing varietal adoption and turnover.
“Until recently, investments in seed improvement work have not actively looked in this area,” said Olaf Erenstein, Director of CIMMYT’s Socioeconomics Program at a virtual inception meeting for the project in late August 2020. Now, “it has been built in as a primary objective of AGG to focus on […] strengthening gender-intentional seed delivery systems so that we ensure a faster varietal turnover and higher adoption levels in the respective target areas.”
In the first year of the initiative, the researchers will take a deep dive into the national- and state-level frameworks and policies that might enable or influence the delivery of these new varieties to both female and male farmers. They will analyze this delivery system by mapping the seed delivery paths and studying the diverse factors that impact seed demand. By understanding their respective roles, practices, and of course, the strengths and weaknesses of the system, the researchers can diagnose issues in the delivery chain and respond accordingly.
Once this important scoping step is complete, the team will design a research plan for the following years to understand and influence the seed information networks and seed acquisition. It will be critical in this step to identify some of the challenges and opportunities on a broad scale, while also accounting for the related intra-household decision-making dynamics that could affect access to and uptake of these improved seed varieties.
“It is a primary objective of AGG to ensure gender intentionality,” said Kevin Pixley, Director of CIMMYT’s Genetic Resources Program and AGG project leader. “Often women do not have access to not only inputs but also information, and in the AGG project we are seeking to help close those gaps.”
Cover photo: Farmers evaluate traits of wheat varieties, Ethiopia. (Photo: Jeske van de Gevel/Bioversity International)
Striga, an invasive parasitic weed with purple-colored flowers, looks striking and harmless. But, beyond that mark of beauty, is a nutrient-sucking monster that stunts crops such as maize and sorghum, leaving affected farmers counting losses.
Witchweed thrives in poor soils with low rainfall conditions. It is prevalent in farming systems with poor crop management practices and in communities where farmers use minimal or no fertilizer. Once maize begins germinating in Striga-prevalent soil, it stimulates Striga seeds to germinate. Striga then attaches to the roots of the host plant, sapping nutrients from the plant, leading to stunting. The potential yield loss can reach up to 100%. Some farmers attempt to uproot it once they notice it germinating alongside their maize plantation, but this is often too late because damage is done as soon as the parasite attaches to the maize roots. When mature, the weed deposits tens of thousands of tiny seeds into the soil. This makes it very difficult for farmers to get rid of it.
To tackle this challenge, farmers need to apply inorganic fertilizer, which is not always affordable, or animal manure to enrich the soil before planting. They are also advised by researchers and extensionists to practice crop rotation or intercropping with legumes such as beans, soybean or groundnuts that restrict Striga’s germination. In the Assessment of Management Options on Striga Infestation and Maize Grain Yield in Kenya, for example, researchers recommend that Striga control measures include a combination of herbicide-resistant or maize varieties with native genetic resistance intercropped with legumes.
Nevertheless, while a few control measures have been moderately successful, the problem still persists, especially in western Kenya, eastern Uganda and lake zone of Tanzania, where farmers have frequently voiced their frustrations at the ubiquity of this invasive weed.
“While crop rotation with crops such as soybean or beans may break the cycle of Striga, its seed can stay in the soil and remain viable for up to 10 years,” says Dan Makumbi, a maize breeder with the International Maize and Wheat Improvement Center (CIMMYT), who is leading research efforts against the witchweed.
A sorghum field infested with Striga in Siaya County. (Photo: Joshua Masinde/CIMMYT)
Norah Kayugi on a Striga-infested farm in Siaya County. (Photo: Joshua Masinde/CIMMYT)
Norah Kayugi holds a bunch of Striga weeds she has uprooted on a farm she works as a casual laborer in Siaya. (Photo: Joshua Masinde/CIMMYT)
A blow to optimal yield potential
Maize is a staple crop that is predominantly cultivated by smallholder farmers in western Kenya and the lake region. It is an important source of food security and livelihoods of millions of people in the region, but constraints such as Striga prevent farmers from obtaining the crop’s ideal potential.
“The yield loss would have been adequate to cover my family’s food requirements for a year,” Naliaka said. “From two farming seasons, I could harvest a sufficient quantity of maize and sell some surplus to pay my children’s school fees. With the Striga menace, all that is but a dream.”
Just like Naliaka, Norah Kayugi, a 40-year-old widowed mother of six children from Siaya County in Kenya, has seen her maize production fall to less than 8 bags of 90kgs per acre. In normal circumstances, they would obtain at least 16 bags of maize per acre. The significant yield loss sets back many affected households in a big way, as they experience food shortage only a few months after harvest. Some divert their reduced incomes for food purchases, possibly leaving other priorities such as health and education of their children unattended.
Kayugi, who has been a farmer since 1997, now takes on casual jobs to supplement her farming in order to support her family, being the sole breadwinner following her husband’s demise years ago. “I plant vegetables, beans and maize to sustain my family. My one-acre farm yields about 10 bags of 90ks each. But I know for sure that were it not for this weed, the yield potential could reach 30 bags of 90kgs each per acre.”
A young, yet-to-flower Striga weed at the CIMMYT-KALRO Kibos Research Station in Kisumu. (Photo: Joshua Masinde/CIMMYT)
Standing up to multiple farming stresses
These smallholders, like their counterparts elsewhere in sub-Saharan Africa, already face other farming challenges, including climate change-induced droughts, pests such as the fall armyworm, diseases like maize lethal necrosis (MLN), and declining soil fertility, among others. While CIMMYT has registered breakthroughs in developing maize varieties that tolerate such stresses, on-going efforts against Striga are also taking shape, challenges notwithstanding.
The development and deployment of the imazapyr-resistant (IR) maize has been one such instance of effective Striga control. With this method, herbicide-resistant maize seeds are coated with herbicide. The seed germinates and absorbs some of the herbicide used to coat it. The germinating maize stimulates Striga to germinate and as it attaches to the maize root, it is killed before it can cause any damage. Despite its effectiveness, sustaining this technology presented a major challenge to seed companies.
“It was costly for seed companies, as they needed to establish and sustain the operation of separate seed treatment units dedicated to production of the herbicide-coated maize seed. Once you establish a line to dress the seed with the chemical, you cannot use it to treat any other seeds as the chemical will destroy them,” said Makumbi.
Seed companies — like NASECO in Uganda, Kenya Seed Company in Kenya, Western Seed Company and FreshCo in Kenya, and Meru Agro in Tanzania — obtained financial and technical support from a partnership initiative coordinated by African Agricultural Technology Foundation (AATF) and backed by CIMMYT to scale commercialisation of StrigAwayTM maize in East Africa. The initiative was funded by USAID’s Feed the Future Partnering for Innovation program through Fintrac and it supported the seed companies to establish seed treatment facilities to handle herbicide resistant maize. This allowed each of the companies to have a fully dedicated facility for herbicide resistant maize seed processing. “Right now, herbicide resistant maize hybrid seed is available on the market in Kenya, Tanzania and Uganda,” Makumbi said.
CIMMYT field technician Carolyne Adhiambo at a maize field experiment showing promise of Striga tolerance or resistance the Kibos Research station in Kisumu. (Photo: Joshua Masinde/CIMMYT)
Native hope
In the past few years, Makumbi and his team, in collaboration with the International Institute for Tropical Agriculture (IITA) and the Kenya Agricultural and Livestock Research Organization (KALRO), have redirected their efforts towards breeding for native genetic resistance to Striga. This means developing seeds which are naturally resistant to Striga, reducing the need for herbicides. The early indication is that there are several parental lines showing potential to tolerate or resist Striga, and these are being used to develop hybrids. The hybrids, which offer multiple benefits for farmers, are under wide scale testing in Kenya.
“In our tests, we are not only looking at Striga resistance alone but also other important traits such as good yield under optimal conditions, drought stress and low soil fertility, resistance to major foliar diseases including gray leaf spot, Turcicum leaf blight, maize streak virus and ear rots,” Makumbi noted.
As these breeding efforts continue, there is light at the end of the tunnel. The hope of farmers taking back full control of their maize farms from Striga’s “bewitching ways” in the near future remains alive.
Drought tolerant maize route out of poverty for community-based seed producer, Kenya. (Photo: Anne Wangalachi/CIMMYT)
As plant pests and diseases continue to evolve, with stresses like drought and heat intensifying, a major priority for breeders and partners is developing better stress tolerant and higher yielding varieties faster and more cost effectively.
A new project, Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods (AGG), seeks to achieve these results by speeding up genetic gains in maize and wheat breeding to deliver improved, stress resilient, nutritious seed to smallholders in 13 countries in sub-Saharan Africa (SSA) and four in South Asia. The 5-year AGG project is funded by the Bill & Melinda Gates Foundation, the UK Department for International Development (DFID), the U.S. Agency for International Development (USAID), and the Foundation for Food and Agriculture Research (FFAR).
The maize component of the project brings together diverse partners, including the International Maize and Wheat Improvement Center (CIMMYT) and the International Institute of Tropical Agriculture (IITA) as co-implementers; national agricultural research systems (NARS); and small and medium-sized (SME) seed companies.
Ambitious targets
At the inception meeting of the maize component of AGG on July 10, 2020, project leaders, partners and funders lauded the ambitious targets that aim to bolster the resilience and better the livelihoods, food and nutritional security of millions of smallholder farmers in SSA. At least 150,000 metric tons of certified seed is expected to be produced, adopted by 10 million households, planted on 6 million hectares by 2024 and benefiting 64 million people.
“We are developing climate resilient, nutritious, efficient, productive maize varieties for the farming community in sub-Saharan Africa. We will continue to work closely with our partners to develop product profiles, which are centered on the varieties that are really needed,” said CIMMYT Interim Deputy Director for Research Kevin Pixley.
AGG draws a solid foundation from previous projects such as Drought Tolerant Maize for Africa (DTMA), Improved Maize for Africa Soils (IMAS), Water Efficient Maize for Africa (WEMA) and Stress Tolerant Maize for Africa (STMA). Several high-yielding maize varieties that tolerate and/or resist diseases such as maize lethal necrosis (MLN), gray leaf spot (GLS), northern corn leaf blight, maize streak virus (MSV), turcicum leaf blight (TLB) and are drought-tolerant (DT), were developed and released to farmers across SSA. Varieties with nutritional traits such as nitrogen use efficiency (NUE) and quality protein maize (QPM) were also developed in the preceding initiatives.
Drought Tolerant Maize for Africa (DTMA) project monitoring and evaluation takes place in Tanzania. (Photo: Florence Sipalla/CIMMYT)
A matter of “life or death”
“When farmers are confronted by aggressive farming challenges, they want products that address those challenges at the earliest opportunity. Waiting for years could mean the difference between life and death,” remarked David Chikoye, the director of Southern Africa Hub at IITA.
A key focus of AGG is to incorporate gender-intentionality – special attention to the needs of women farmers and consumers – from the traits bred into new varieties, through the communication and technology deployment strategies.
“AGG provides an excellent opportunity to reorient our maize breeding, seed scaling and delivery strategies for greater impact on the livelihoods of smallholder farmers, especially women and the disadvantaged communities that are not well reached so far,” said B.M. Prasanna, director of CIMMYT’s Global Maize Program and the CGIAR Research Program on Maize. “Our vision is to accelerate genetic gains to 1.5-2 percent annually across different breeding pipelines in the 13 participating countries in SSA and to reach over 10 million households with improved varieties.”
AGG will strengthen the capacity of partners to achieve and sustain accelerated variety replacement — or turnover — and increase genetic gains in farmers’ fields.
Old vs new
Many improved varieties have been released in the past decade. However, the turnover of old and obsolete varieties with new and improved ones is not happening as quickly as anticipated.
“We are producing good products and getting them out, but not at the speed that farmers need. How do we make it possible and profitable for seed companies to quickly introduce new hybrids?” posed Gary Atlin, program officer at the Bill & Melinda Gates Foundation. “We need to move towards a breeding and seed system where we know that we can develop a new product in 4 or 5 years and then get it to the farmers much more quickly. This is a complex problem.”
To enhance AGG’s ability to identify new products that perform well for farmers under their challenging circumstances, on-farm testing will be scaled up significantly.
Guest of honor, Ethiopia’s Minister of State for Agriculture Mandefro Nigussie, lauded CIMMYT’s support in improving the resilience and productivity of maize and wheat in the country. He observed that this has helped improve maize productivity in Ethiopia from around 2 tons/ha to about 4 tons/ha over the past two decades.
“We consider such a huge accomplishment as a combination of efforts in germplasm development and breeding efforts of CIMMYT and the Ethiopian national programs. That partnership will flourish further in this new project,” he said.
Accelerating Genetic Gains in Maize and Wheat (AGG), a project led by the International Maize and Wheat Improvement Center (CIMMYT), brings together partners in the global science community and in national agricultural research and extension systems to accelerate the development of higher-yielding varieties of maize and wheat — two of the world’s most important staple crops.
Specifically focusing on supporting smallholder farmers in low- and middle-income countries, the project uses innovative methods that improve breeding efficiency and precision to produce varieties that are climate-resilient, pest- and disease-resistant, and highly nutritious, targeted to farmers’ specific needs.
The maize component of the project serves 13 target countries: Ethiopia, Kenya, Malawi, Mozambique, South Africa, Tanzania, Uganda, Zambia and Zimbabwe in eastern and southern Africa; and Benin, Ghana, Mali, and Nigeria in West Africa. The wheat component of the project serves six countries: Bangladesh, India, Nepal, and Pakistan in South Asia; and Ethiopia and Kenya in sub-Saharan Africa.
This project builds on the impact of the Delivering Genetic Gain in Wheat (DGGW) and Stress Tolerant Maize for Africa (STMA) projects.
Objectives
The project aims to accelerate the development and delivery of more productive, climate-resilient, gender-responsive, market-demanded, and nutritious maize and wheat varieties in support of sustainable agricultural transformation in sub-Saharan Africa and South Asia.
To encourage adoption of new varieties, the project works to improve equitable access, especially by women, to seed and information, as well as capacity building in breeding, disease surveillance, and seed marketing.
Funders
Project funding is provided by the Bill & Melinda Gates Foundation, the UK Foreign, Commonwealth & Development Office, the United States Agency for International Development and the Foundation for Food and Agricultural Research (FFAR).
Key partners
The primary partners for this project are the national agricultural research systems in the project target countries and, for the maize component, the International Institute for Tropical Agriculture (IITA) and small and medium enterprise (SME) seed companies.
Scientific and technical steering committees
We are grateful to our excellent maize and wheat scientific and technical steering committees for their suggestions and thoughtful question on key issues for the success of AGG. Read about the recommendations from the maize steering committee here and the wheat steering committee here.
Year 1 Executive Summary
In its first year of operation, AGG has made great strides in collaboration with our national partners towards the project goals –despite the unprecedented challenges of working through a global pandemic. For specific milestones achieved, we invite you to review our AGG Year 1 Executive Summary and Impact Report (PDF).
Year 2 Executive Summary
AGG has made progress towards all outcomes. Our scientists are implementing substantial modifications to breeding targets and schemes. AGG is also in a continuous improvement process for the partnership modalities, pursuing co-ownership and co-implementation that builds the capacities of all involved. For specific milestones achieved, we invite you to review our AGG Year 2 Executive Summary and Impact Report (PDF).
Seed companies play a crucial role in delivering improved seed varieties to smallholder farmers. Masindi Seed Company Limited, located in Uganda’s mid-western region, is one such enterprise.
It traces its beginnings back to the Masindi District Farmers Association (MADFA) more than a decade ago. At the time, the association, which was comprised of about 9,000 farmers, was organized into a seed out-grower scheme of the then government-led Uganda Seed Project.
While its members were well trained, operated professionally and did their out-grower work diligently, the association faced one major challenge that almost broke it up: the ‘certified’ seed they bought from some seed firms could not germinate.
“At the time that we were operating solely as a farmers’ association, we did our best to grow maize seed for various seed companies who would then go on to produce and supply certified seed,” said Eugene Lusige, Masindi Seed general manager. “But we soon realized that a lot of the certified seed that we bought was of very poor quality due to their inability to germinate or because of low germination rates. This caused our farmers huge losses. We instead took this situation as a blessing in disguise, venturing into the certified seed production business based on our experience.”
Such turn of events meant the association had to not only produce the right seed, at the right price, at the right time and with the attributes their farmers desired, but also had to provide an opportunity to generate income for its members. By establishing Masindi Seed Company in 2009, the association members fulfilled their dream and ended up killing several birds with one stone by addressing multiple seed production challenges.
Over the past few decades, the liberalization of the Ugandan seed industry has seen it morph from government control, largely with the support of public sector research institutions, to increased private sector participation. This saw a resurgence in local and foreign-based seed firms involved in seed production, processing and marketing, which significantly contributed to increased delivery of certified seed to farming communities.
A sign leading to the Masindi District Farmers Association (MADFA) offices in Masindi town. (Photo: Joshua Masinde/CIMMYT)
Reliable and beneficial partnerships
As one of the enterprises operating in the formal seed market, Masindi Seed has grown from strength to strength over the years, working closely with the National Crops Resources Research Institute (NaCRRI) of the National Agricultural Research Organization (NARO) in Uganda. The Longe 5D, an open pollinated variety (OPV) — an improved version of the Longe 5 — was the first certified seed that ushered them into the seed production and marketing landscape in 2009. The company accessed hybrids and parental materials from NARO, which works very closely with the International Maize and Wheat Improvement Center (CIMMYT) to obtain improved stress tolerant maize.
“Besides the parental materials we receive from CIMMYT through NARO, we are trained on best practices in quality seed production, and receive materials and financial support for some of our operations,” Lusige said.
In the first year, the company produced about 120-150 tons of the Longe 5D variety, which has remained their flagship product over the past decade. Currently, the variety has up to 65 % share of the company’s annual seed production capacity, which stands at about 1,200 tons. The annual capacity is poised to reach 2,400 by 2025 due to growing demand from farmers. The first stress tolerant hybrid, UH5053, was introduced in 2013 and two more hybrids have since gone into commercial production.
“The hybrids have much higher yield than the OPVs and other varieties in the market in this region. They are stress tolerant and some are early maturing,” Lusige said “But, the advantage with the Longe 5D is that it is much cheaper, with a seed packet going for less than its hybrid equivalent. So, it is best suited for the resource-constrained farmers who may not have the funds to buy artificial fertilizer. However, under normal farmer conditions, it yields between 1.5-1.8 tons per acre compared to a hybrid that can produce about 3 tons or more.”
The Longe 5D is also a quality protein maize (QPM) variety, which combats hidden hunger by providing essential amino acids that children and lactating mothers need, according to Godfrey Asea, director of the National Crops Resources Research Institute at NARO.
“One of the initiatives we have been working on is nutritious maize, with some of the OPVs that we have released in the past being QPM varieties,” Asea said. “We are thinking of integrating more nutrient qualities such as vitamin ‘A’ in new varieties, some of which are in the release pipeline. We have also acquired genetic resources that are rich in zinc. QPM varieties, as well as varieties that are biofortified with vitamin A and zinc are very important in improving household nutrition in the future for resource-constrained maize-dependent communities.”
To make farmers aware of available seed and important attributes, marketing and promotional activities through radio, flyers, banners, field days and on-farm demonstrations come in handy. For some newer varieties, the company goes as far as issuing small seed packs to farmers so they can see for themselves how the variety performs.
Masindi Seed Company offices in Masindi town. (Photo: Joshua Masinde/CIMMYT)
From a regional outfit to the national stage
In the beginning, growth was slow for Masindi Seed due to capacity and financial constraints to sustain promotional activities. Around 2013 and 2015, the company received support from the Alliance for a Green Revolution in Africa (AGRA) to scale-up its marketing and promotional efforts, which greatly enhanced Masindi Seed’s capacity and visibility. From then on, Masindi Seed went from being just a small regional-focused outfit to a nation-wide seed firm, marketing seed as far as northern and eastern Uganda.
By working closely with farmers, Masindi Seed Company puts itself at a strategic position to understand farmers’ preferred traits better. They have found that farmers prefer traits that allow them to earn more, such as higher yield, which allows them to harvest much more maize and sell the surplus for much-needed income.
A double cobber maize crop on Alinda Sarah’s farm in Masindi, western Uganda. (Photo: Joshua Masinde/CIMMYT)
Seed that farmers can trust
Alinda Sarah, who doubles up as both a contract farmer for Masindi Seed and a large-scale grower for maize grain, agrees that obtaining the right seed that is guaranteed to germinate and offers a higher yield is a major boost to her trade.
“All I require is seed that I trust to have the attributes I want. What works for me is the seed that offers a higher yield, and can tolerate common stresses including drought, diseases and pests. This way, I can sustain my farming business,” she says.
The second attribute the farmers keep mentioning to Masindi agricultural extensionists is the maturity period, with farmers inclined to prefer faster maturing varieties, such as varieties that mature in 90 days. Ultimately, beyond some of these desirable and beneficial traits, the farmer is, before anything else, interested in the germinability of the seed they buy.
“By confirming the attributes that we tell them regarding our varieties with what they see at demo farms, the farmers trust us more,” Lusige said. “Trust is good for a business like ours and we try our best to preserve it. In the past, we have seen how some companies who lost the trust of their customers quickly went out of business.”
“Besides offering improved seed to farmers, we encourage our partner seed companies to support and teach the farmers good agronomic practices such as proper fertilizer requirements and application rates, early planting, appropriate spacing, weed control, integrated pest management and intercropping with legumes,” said Daniel Bomet, maize breeder at NARO.
Cover photo: Alinda Sarah demostrates how happy she is with the maize cob due for harvest on the farm she owns with her husband in Masindi, mid-western Uganda. (Photo: Joshua Masinde/CIMMYT)
The pursuit for higher and more stable yields, alongside better stress tolerance, has dominated maize breeding in Africa for a long time. Such attributes have been, and still are, essential in safeguarding the food security and livelihoods of smallholder farmers. However, other essential traits have not been the main priority of breeding strategies: how a variety tastes when cooked, its smell, its texture or its appearance.
They are now gradually coming into the mainstream of maize breeding. Researchers are exploring the sensory characteristics consumers prefer and identifying the varieties under development which have the desired qualities. Breeders may then choose to incorporate specific traits that farmers or consumers value in future breeding work. This research is also helping to accelerate varietal turnover in the last mile, as farmers have additional reasons to adopt newer varieties.
In the last five years, the International Maize and Wheat Improvement Center (CIMMYT) has been conducting participatory variety evaluations across East Africa. First, researchers invited farmers and purchasers of improved seed in specific agro-ecologies to visit demonstration plots and share their preferences for plant traits they would like to grow in their own farms.
In 2019 and 2020, researchers also started to facilitate evaluations of the sensory aspects of varieties.
Fresh samples of green maize, from early- to late-maturing maize varieties, were boiled and roasted. Then, people assessed their taste and other qualities. The first evaluations of this kind were conducted in Kenya and Uganda in August and September 2019, and another exercise in Kenya’s Machakos County took place in January 2020.
Similar evaluations have looked at the sensory qualities of maize flour. In March 2020, up to 300 farmers in Kenya’s Kakamega County participated in an evaluation of ugali, or maize flour porridge. Participants assessed a wider range of factors, including the aroma, appearance, taste, texture on the hand, texture in the mouth and overall impression. After tasting each variety, they indicated how likely they would be to buy it.
Participants were asked to rate the texture of different maize varieties, cooked as ugali, at a sensory evaluation in Kakamega County, Kenya. (Photo: Joshua Masinde/CIMMYT)
Participants were asked to rate the smell of different maize varieties, cooked as ugali, at a sensory evaluation in Kakamega County, Kenya. (Photo: Joshua Masinde/CIMMYT)
Participants taste ugali at a sensory evaluation in Kakamega County, Kenya. (Photo: Joshua Masinde/CIMMYT)
Cooks prepare ugali, or maize flour porridge, with different maize varieties at a sensory evaluation in Kakamega County, Kenya. (Photo: Joshua Masinde/CIMMYT)
At a sensory evaluation in Kakamega County, Kenya, different types of ugali were cooked using maize flour from several varieties. (Photo: Joshua Masinde/CIMMYT)
Ugali made with different maize varieties is served to participants of a sensory evaluation in Kakamega County, Kenya. (Photo: Joshua Masinde/CIMMYT)
Tastes differ
“Farmers not only consume maize in various forms but also sell the maize either at green or dry grain markets. What we initially found is green maize consumers prefer varieties that are sweet when roasted. We also noted that seed companies were including the sensory characteristics in the maize varieties’ product profiles,” explained Bernard Munyua, Research Associate with the Socioeconomics program at CIMMYT. “As breeders and socioeconomists engage more and more with farmers, consumers or end-users, it is apparent that varietal profiles for both plant and sensory aspects have become more significant than ever before, and have a role to play in the successful turnover of new varieties.”
For researchers, this is very useful information, to help determine if it is viable to bring a certain variety to market. The varieties shared in these evaluations include those that have passed through CIMMYT’s breeding pipeline and are allocated to partners for potential release after national performance trials, as well as CIMMYT varieties marketed by various seed companies. Popular commercial varieties regions were also included in the evaluations, for comparison.
A total of 819 people participated in the evaluation exercises in Kenya and Uganda, 54% of them female.
“Currently, there is increasing demand by breeders, donors, and other agricultural scientists to understand the modalities of trait preferences of crops by women and men farmers,” said Rahma Adam, Gender and Development Specialist at CIMMYT.
Bags of seeds with a diversity of maize varieties are displayed before being cooked at a sensory sensory evaluation in Kakamega County, Kenya. (Photo: Bernard Munyua/CIMMYT)
That’s the way I like it
For Gentrix Ligare, from Kakamega County, maize has always been a staple food in her family. They eat ugali almost daily. The one-acre farm that she and her husband own was one of the sites used to plant the varieties ahead of the evaluation exercise. Just like her husband, Fred Ligare, she prefers ugali that is soft but absorbs more water during preparation. “I also prefer ugali that is neither very sticky nor very sweet. Such ugali would be appropriate to eat with any type of vegetable or sauce,” she said.
Fernandes Ambani prefers ugali that emits a distinct aroma while being cooked and should neither be very sweet nor plain tasting. For him, ugali should not be too soft or too hard. While it should not be very sticky, it should also not have dark spots in it. “When I like the taste, smell, texture and appearance of a particular variety when cooked, I would definitely purchase it if I found it on the market,” he said.
While the task of incorporating all the desired or multiple traits in the breeding pipeline could prove complex and costly, giving consumers what they like is one of the essential steps in enhancing a variety’s commercial success in the market, argues Ludovicus Okitoi, Director of Kenya Agricultural and Livestock Organization’s (KALRO) Kakamega Center.
“Despite continuously breeding and releasing varieties every year, some farmers still buy some older varieties, possibly because they have a preference for a particular taste in some of the varieties they keep buying,” Okitoi said. “It is a good thing that socioeconomists and breeders are talking more and more with the farmers.”
Advancements in breeding techniques may help accelerate the integration of multiple traits, which could eventually contribute to quicker varietal turnover.
“Previously, we did not conduct this type of varietal evaluations at the consumer level. A breeder would, for instance, just breed on-station and conduct national performance trials at specific sites. The relevant authorities would then grant their approval and a variety would be released. Things are different now, as you have to go back to the farmer as an essential part of incorporating end-user feedback in a variety’s breeding process,” explained Hugo de Groote, Agricultural Economist at CIMMYT.
The name TELA is derived from the Latin word tutela, which means “protection.” The TELA Maize Project is a public-private partnership led by the African Agricultural Technology Foundation (AATF) working towards the commercialization of transgenic drought-tolerant and insect-protected (TELA®) maize varieties to enhance food security in sub-Saharan Africa. Launched in 2018, the TELA Maize Project builds on progress made from a decade of breeding work under the Water Efficient Maize for Africa (WEMA) Project.
Africa is a drought-prone continent, making farming risky for millions of smallholders who rely on rainfall to water their crops. Climate change will only worsen the problem. Identifying ways to mitigate drought risk, stabilize yields, and encourage small-scale farmers to adopt best management practices is fundamental to realizing food security and improved livelihoods for the continent. Drought is just one of the many challenges facing sub-Saharan African farmers. Insects pose additional challenges as farmers in the developing world have little or no resources to effectively manage them. Insect protection complements and protects yield made possible through research and development.
Through TELA, AATF and its partners are pursuing the regulatory approval and dissemination of new biotech/genetically-modified maize seeds containing either an insect-resistant trait or the stacked insect-resistant and drought-tolerant traits across seven target countries in Africa (Ethiopia, Kenya, Mozambique, Nigeria, South Africa, Tanzania and Uganda). The transgenic technology, including gene constructs, transformation and other recombinant DNA technologies, and other proprietary information and materials regarding the transgenes, owned by Bayer CropScience LP (formerly Monsanto Company), is licensed royalty-free to the partners for use in the project.
To the extent where their germplasm is transformed/incorporated into finished lines, Bayer and CIMMYT further grant AATF the license to commercially release the transgenic maize varieties within the partner countries, provided that no royalty fee shall be charged by AATF/its sublicensees, and subject to compliance with all regulatory, biosafety and stewardship requirements. CIMMYT’s non-transgenic parental lines which may be used for introgression in this project have been shared under the terms of the Standard Material Transfer Agreement (SMTA) of the Plant Treaty, and remain available to other third parties outside the project in the same way. The partner countries are in different stages of the approval process to test and commercialize TELA® hybrids, which will determine when farmers can access the improved TELA seeds.
Seed companies can receive license rights to produce and commercialize the new TELA® hybrids under their private brand from AATF in due course. Licensed seed companies will access the technology royalty-free for them to produce and sell the seeds to farmers at prevailing market prices. Better yield performance, combined with improved seed quality, will deliver more value to farmers and create more demand and potential for the seed brand.
Smallholder farmers benefit from TELA maize, as it provides better drought tolerance, protection against stem borers, and partial but significant protection against fall armyworm. As a result, smallholders will spend less money on insecticides and reduce their exposure to these chemicals, besides benefiting from improved yields and better grain quality.