Skip to main content

Location: Tanzania

Drought Tolerant Maize for Africa (DTMA)

The Drought Tolerant Maize for Africa project aims to mitigate drought and other constraints to maize production in sub-Saharan Africa, increasing maize yields by at least one ton per hectare under moderate drought and with a 20 to 30 percent increase over farmers’ current yields, benefiting up to 40 million people in 13 African countries. The project brings together farmers, research institutions, extension specialists, seed producers, farmer community organizations and non-governmental organizations. It is jointly implemented by CIMMYT and the International Institute for Tropical Agriculture, in close collaboration with national agricultural research systems in participating nations. Millions of farmers in the region are already benefiting from the outputs of this partnership, which includes support and training for African seed producers and promoting vibrant, competitive seed markets.

Achievements:

  • Between 2007 and 12, participants marketed or otherwise made available 60 drought tolerant hybrids and 57 open-pollinated varieties to smallholder farmers
  • In addition to drought tolerance, the new varieties and hybrids also possess such desirable traits as resistance to major diseases
  • Engage government officials in policy dialogue to help fast-track varietal releases and fosters competitive seed markets and more
    widespread access to quality seed at affordable prices
  • Help ensure farmers’ access to the best possible products and services, coordinate various capacity-building events and
    activities for maize breeders, technicians, seed producers, extension workers, non-government organizations and farmer groups
  • Provide technical and advisory support to 50 African undergraduate and 28 African graduate students
  • Expand smallholder farmers’ use of drought and other stress tolerant maize seed to benefit 30 to 40 million people and provide added grain worth $160-200 million each year in drought-affected areas of sub-Saharan Africa

Principal coordinator

Tsedeke Abate

How gender equity and social inclusion are improving the lives of rural families in Africa

Women have the potential to be drivers of agricultural transformation in Africa, holding the key to improving their families’ livelihoods and food security. However, constraints such as lack of access to initial capital, machinery, reliable markets, and knowledge and training are difficult to overcome, leading to restricted participation by women and young people in agricultural systems in Africa.

A new video from the Sustainable Intensification of Maize-Legume Systems for Food Security in Eastern and Southern Africa (SIMLESA) project highlights the importance of gender equity and social inclusion to achieving project impacts and outcomes, helping to drive transformative change towards securing a food-secure future for Africa. Case studies and interviews with women and men farmers — including young people — detail how SIMLESA’s approach has re-shaped their maize-based farming lives.

The video is aligned with the theme for International Women’s Day 2019, “Think Equal, Build Smart, Innovate for Change,” which places the spotlight on innovative ways in which we can advance gender equality and the empowerment of women.

“This video is intended to educate the agricultural community and wider public on the importance of applying sustainable intensification agricultural practices and technologies in order to bridge the gender gap in agricultural productivity and achieve agricultural transformation for smallholder farmers in Africa,” said Rahma Adam, Gender and Development Specialist with CIMMYT in Kenya. “We hope stakeholders will be able to see the benefits of these practices and technologies, and work towards finding ways to implement them into their agricultural practices or programs.”

Launched in 2010, SIMLESA is led by the International Maize and Wheat Improvement Center (CIMMYT) and funded by the Australian Center for International Agricultural Research (ACIAR). It is implemented by national agricultural research systems, agribusinesses and farmers in partner countries including Ethiopia, Kenya, Malawi, Mozambique, Rwanda, Tanzania and Uganda.

SIMLESA lead farmer Agnes Sendeza harvests maize cobs from a stook on her farm in Tembwe, Salima district, Malawi. (Photo: Peter Lowe/CIMMYT)
SIMLESA lead farmer Agnes Sendeza harvests maize cobs from a stook on her farm in Tembwe, Salima district, Malawi. (Photo: Peter Lowe/CIMMYT)

Putting equal opportunities at the center

Following a participatory research for development approach, the SIMLESA team works alongside farmers and partner organizations to achieve increased food production while minimizing pressure on the environment by using smallholder farmers’ resources more efficiently and empowering women, men and young people to make decisions.

The SIMLESA project achieves impact by integrating gender sensitivity into all project activities and developing a deep understanding of social contexts and factors that constrain access to, and adoption of, improved technologies. Initiatives are able to reach all individuals in the project’s target communities, leaving no one out.

“The benefits of fostering equal opportunities for women, men and young people through SIMLESA’s work are enormous,” said Adam. Equal opportunities mean better access to information, markets, and improved varieties of seeds; participation in field trials, demonstrations and training; and the provision of leadership opportunities in local innovation platforms.

Central to the success of the SIMLESA project is the concept of Agricultural Innovation Platforms. “Being members of these platforms, farmers can access credits, which they can use to purchase farm inputs,” explained Adam. “They are able to take part in collective marketing and get a better price for their crops. The Agricultural Innovation Platforms also facilitate training on better agribusiness management practices and the sharing of ideas about other productive investment opportunities to better farmers’ lives. All these benefits were hard to come by when the women and youth farmers were farming on their own without being associated to the SIMLESA project or part of the platforms.”

The words of Rukaya Hasani Mtambo, a farmer from Tanzania, are a testimony to the power of this idea. “As a woman, I am leader of our group and head of my household. I always encourage my fellow women, convincing them we are capable. We should not underestimate what we can do.”

To watch the full video, click here.

To watch other videos about the SIMLESA project, click here.

International Women’s Day 2019: Women in seed systems in Africa

The maize seed sector in eastern and southern Africa is male-dominated. Most seed companies operating in the region are owned and run by men. Access to land and financial capital can often be a constraint for women who are keen on investing in agriculture and agribusiness. However, there are women working in this sector, breaking social barriers, making a contribution to improving household nutrition and livelihoods by providing jobs and improved seed varieties.

The Gender team within the International Maize and Wheat Improvement Center’s (CIMMYT) Socioeconomics Program conducted interviews with women owners of seed companies in eastern and southern Africa. They shared information on their background, their motivation to start their businesses, what sets their companies apart from the competition, the innovative approaches they use to ensure smallholder farmers adopt improved seed varieties, the unique challenges they face as women in the seed sector and the potential for growth of their companies. The resulting stories will be published as a report in May 2019.

These women in leading roles serve as mentors and examples to both male and female employees. In honor of International Women’s Day, held March 8, 2019, CIMMYT would like to share some of their stories to recognize these women — and many others like them — and the important work they do in seed systems in Africa.

Sylvia Horemans

Sylvia Horemans (right) and a warehouse supervisor (left) inspect seeds at Kamano Seeds. (Photo: Lucy Maina/CIMMYT)
Sylvia Horemans (right) and a warehouse supervisor (left) inspect seeds at Kamano Seeds. (Photo: Lucy Maina/CIMMYT)

Sylvia Horemans started Kamano Seeds in April 2004 together with her late husband Desire Horemans. The company derives its name from a stream that runs through their farm in Mwinilinga, Zambia. Kamano means a stream that never dries, aptly describing the growth the company has enjoyed over the years, enabling it to capture 15 percent of the country’s seed market share.  Sylvia became the company’s Chief Executive Officer in 2016.

“The initial business was only to sell commercial products but we realized there was a high demand for seed so we decided to start our own seed business,” says Sylvia. “We work with cooperatives which identify ideal farmers to participate in seed production.”

The company takes pride in the growth they have witnessed in their contract workers. “Most farmers we started with [now] have 20 to 40 hectares. Some are businessmen and have opened agrodealer shops where they sell agricultural inputs,” Sylvia announced.

Kamano prides itself in improving the lives of women smallholders and involving women in decision-making structures. “We empower a lot of women in agriculture through our out-grower scheme,” says Sylvia. She makes a deliberate effort to recruit women farmers, ensuring they receive payment for their seeds. “We pay the women who did the work and not their husbands.”

To read the full story, please click here.

Zubeda Mduruma

Zubeda Mduruma (right) and her colleague check maize seeds at Aminata Quality Seeds. (Photo: Lucy Maina/CIMMYT)
Zubeda Mduruma (right) and her colleague check maize seeds at Aminata Quality Seeds. (Photo: Lucy Maina/CIMMYT)

Zubeda Mduruma, 65, is a plant breeder. She took to agriculture from a young age, as she enjoyed helping her parents in the family farm. After high school, Zubeda obtained a bachelor’s degree in Agriculture. Then she joined Tanzania’s national agriculture research system, working at the Ilonga Agricultural Research Institute (ARI-Ilonga) station. She then pursued her master’s in Plant Breeding and Biometry from Cornell University in the United Stations and obtained a doctorate in Plant Breeding at Sokoine University of Agriculture in Tanzania, while working and raising her family. “I wanted to be in research, so I could breed materials which would be superior than what farmers were using, because they were getting very low yields,” says Zubeda. In the 22 years she was at Ilonga, Zubeda was able to release 15 varieties.

Aminata Quality Seeds is a family business that was registered in 2008, owned by Zubeda, her husband and their four daughters. Aminata entered the seed market as an out-grower, producing seed for local companies for two years. The company started its own seed production in 2010, and the following year it was marketing improved varieties. “I decided to start a company along the Coast and impart my knowledge on improved technologies, so farmers can get quality crops for increased incomes,” says Zubeda.

Zubeda encourages more women to venture into the seed business. “To do any business, you have to have guts. It is not the money; it is the interest. When you have the interest, you will always look for ways on how to start your seed business.”

To read the full story, please click here.

Grace Malindi

Grace Malindi (second from right) at her office in Lilongwe, Malawi. (Photo: Lucy Maina/CIMMYT)
Grace Malindi (second from right) at her office in Lilongwe, Malawi. (Photo: Lucy Maina/CIMMYT)

Grace Malindi, 67, started Mgom’mera in Malawi in 2014 with her sister Florence Kahumbe, who had experience in running agrodealer shops. Florence was key in setting up the business, particularly through engagement with agro-dealers, while Grace’s background in extension was valuable in understanding their market. Grace has a doctoral degree in Human and Community Development with a double minor in Gender and International Development and Agriculture Extension and Advisory from the University of Illinois Urbana-Champaign in the United States. Mgom’mera is a family-owned enterprise. Grace’s three children are involved in the business, serving as directors.

Mgom’mera distinguishes itself from other seed companies because of its focus on maize varieties that have additional nutritive value. The company uses the tagline “Creating seed demand from the table to the soil.” It educates farmers not only on how to plant the seed they sell, but also on how to prepare nutritious dishes with their harvest. The company stocks ZM623, a drought-tolerant open-pollinated variety, and Chitedze 2, a quality protein maize. In the 2019 maize season it will also sell MH39, a pro-vitamin A variety. In addition, they are looking forward to beginning quality protein maize hybrid production in the near future, having started the process of acquiring materials from CIMMYT.

Grace observes that women entrepreneurs are late entrants in seed business. “You need agility, flexibility and experience to run a seed business and with time you will improve,” says Grace, advising women who may be interested in venturing into this male-dominated business.

To read the full story, please click here.

Reducing high yield gaps with decision-support apps

Farmer Gudeye Leta harvests his local variety maize in Dalecho village, Gudeya Bila district, Ethiopia. (Photo: Peter Lowe/CIMMYT)
Farmer Gudeye Leta harvests his local variety maize in Dalecho village, Gudeya Bila district, Ethiopia. (Photo: Peter Lowe/CIMMYT)

Ethiopia is Africa’s third largest producer of maize, after Nigeria and South Africa. Although the country produces around 6.5 million tons annually, the national average maize yield is relatively low at 3.5 tons compared to the attainable yield of 8.5 tons. This high yield gap — the difference between attainable and actual yields — can be attributed to a number of factors, including crop varieties used, farm management practices, and plant density.

The Taking Maize Agronomy to Scale (TAMASA) project aims to narrow maize yield gaps in Ethiopia, Nigeria and Tanzania through the development and scaling out of decision-support tools, which provide site-specific recommendations based on information held in crop and soil databases collected from each country. These help farmers to make decisions based on more accurate variety and fertilizer recommendations, and can contribute to improving maize production and productivity.

One such tool is Nutrient Expert, a free, interactive computer-based application. It can rapidly provide nutrient recommendations for individual farmers’ fields in the absence of soil-testing data. The tool was developed by the International Plant Nutrition Institute in collaboration with the International Maize and Wheat Improvement Center (CIMMYT), the International Institute of Tropical Agriculture (IITA), and research and extension service providers.

Nutrient Expert user interface.
Nutrient Expert user interface.

In Ethiopia, regional fertilizer recommendations are widely used, but soil fertility management practices can vary greatly from village to village and even between individual farmers. This can make it difficult for farmers or extension agents to receive accurate information tailored specifically to their needs. Nutrient Expert fills this gap by incorporating information on available fertilizer blends and giving customized recommendations for individual fields or larger areas, using information on current farmer practices, field history and local conditions. It can also provide advice on improved crop management practices such as planting density and weeding, thereby helping farmers to maximize net returns on their investment in fertilizer.

Data calibration was based on the results of 700 multi-location nutrient omission trials conducted in major maize production areas in Ethiopia, Nigeria and Tanzania. These trials were designed as a diagnostic tool to establish which macro-nutrients are limiting maize growth and yield, and determine other possible constraints.

In Ethiopia, CIMMYT scientists working for the TAMASA project conducted nutrient omission trials on 88 farmer fields in Jimma, Bako and the Central Rift Valley in 2015 to produce a version of Nutrient Expert suitable for the country. Researchers trialed the app on six maize-belt districts in Oromia the following year, in which Nutrient Expert recommendations were compared with soil-test based and regional ones.

Researchers found that though the app recommended lower amounts of phosphorus and potassium fertilizer, overall maize yields were comparable to those in other test sites. In Ethiopia, this reduction in the use of NPK fertilizer resulted in an investment saving of roughly 80 dollars per hectare.

Results from Nutrient Expert trials in Ethiopia, Nigeria and Tanzania showed improved yields, fertilizer-use efficiency and increased profits, and the app has since been successfully adapted for use in developing fertilizer recommendations that address a wide variety of soil and climatic conditions in each of the target countries.

The World Bank’s 2016 Digital Dividends report states that we are currently “in the midst of the greatest information and communications revolution in human history.” This shifting digital landscape has significant implications for the ways in which stakeholders in the agricultural sector generate, access and use data. Amidst Africa’s burgeoning technology scene, CIMMYT’s TAMASA project demonstrates the transformative power of harnessing ICTs for agricultural development.

Learn more about different versions of Nutrient Expert and download the free software here.

TAMASA is a five-year project (2014-2019) funded by the Bill & Melinda Gates Foundation, seeking to improve productivity and profitability for small-scale maize farmers in Ethiopia, Nigeria and Tanzania. Read more about the project here.

Q&A: Expanding CIMMYT’s research agenda on markets and business

TEXCOCO, Mexico (CIMMYT) — Food security is heavily dependent on seed security. Sustainable seed systems ensure that a variety of quality seeds are available to farming communities at affordable prices. In many developing countries, however, farmers still lack access to the right seeds at the right time.

In the past, governments played a major role in getting improved seed to poor farmers. These days, however, the private sector plays a leading role, often with strong support from governments and NGOs.

“Interventions in formal seed systems in maize have tended to focus on improving the capacity of seed producing companies, which are often locally owned small-scale operations, to produce and distribute quality germplasm,” says Jason Donovan, Senior Economist at International Maize and Wheat Improvement Center (CIMMYT). “These local seed companies are expected to maintain, reproduce and sell seed to underserved farmers. That’s a pretty tall order, especially because private seed businesses themselves are a fairly new thing in many countries.”

Prior to the early 2000s, Donovan explains, many seed businesses were partially or wholly state-owned. In Mexico, for example, the Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP) produced seed and supplied it to a market-oriented entity which was responsible for distribution. “What we’re seeing now is locally owned private seed businesses carving out their space in the maize seed market, sometimes in direct competition with multinational seed companies,” he says. In Mexico, around 80 locally owned maize seed producing businesses currently exist, most of which have been involved in CIMMYT’s MasAgro Maize project. These are mostly small businesses selling between 150,000 and 500,000 kg of hybrid maize per year.

In the following Q&A, Donovan discusses new directions in research on value chains, the challenges facing private seed companies, and how new studies could help understand their capacities and needs.

Seed storage warehouse at seed company Bidasem in Celaya, Guanajato state, México. (Photo: X. Fonseca/CIMMYT)
Seed storage warehouse at seed company Bidasem in Celaya, Guanajato state, México. (Photo: X. Fonseca/CIMMYT)

How does research on markets and value chains contribute to CIMMYT’s mission?

We’re interested in the people, businesses and organizations that influence improved maize and wheat seed adoption, production, and the availability and quality of maize and wheat-based foods. This focus perfectly complements the efforts of those in CIMMYT and elsewhere working to improve seed quality and increase maize and wheat productivity in the developing world.

We are also interested in the nutrition and diets of urban and rural consumers. Much of the work around improved diets has centered on understanding fruit and vegetable consumption and options to stimulate greater consumption of these foods. While there are good reasons to include those food groups, the reality is that those aren’t the segments of the food market that are immediately available to or able to feed the masses. Processed maize and wheat, however, are rapidly growing in popularity in both rural and urban areas because that’s what people want and need to eat first. So the question becomes, how can governments, NGOs and others promote the consumption of healthier processed wheat and maize products in places where incomes are growing and tastes are changing?

This year, CIMMYT started a new area of research in collaboration with A4NH, looking at the availability of processed maize and wheat products in Mexico City — one of the world’s largest cities. We’re working in collaboration with researchers form the National Institute of Public Health to find out what types of wheat- and maize-based products the food industry is selling, to whom, and at what cost. At the end of the day, we want to better understand the variation in access to healthier wheat- and maize-based foods across differences in purchasing power. Part of that involves looking at what processed products are available in different neighborhoods and thinking about the dietary implications of that.

Your team has also recently started looking at formal seed systems in various locations. What direction is the research taking so far?

Our team’s current priority is to advance learning around the private sector’s role in scaling improved maize varieties. We are engaged with three large projects: MasAgro Maize in Mexico, Stress Tolerant Maize for Africa (STMA) and the Nepal Seed and Fertilizer Project (NSFP). We are looking to shed light on the productive and marketing capacities of the privately owned seed producing businesses and their ability to get more seed to more farmers at a lower cost. This implies a better understanding of options to better link seed demand and supply, and the business models that link seed companies with agro-dealers, seed producing farmers, and seed consumers.

We are also looking at the role of agro-dealers — shops that sell agricultural inputs and services (including seed) to farmers — in scaling improved maize seed.

At the end of the day, we want to provide evidence-based recommendations for future interventions in seed sectors that achieve even more impact with fewer resources.

Farmers purchase seed from an agro-dealer in Machakos, Kenya. (Photo: Market Matters Inc.)
Farmers purchase seed from an agro-dealer in Machakos, Kenya. (Photo: Market Matters Inc.)

This research is still in its initial stages, but do you already have an idea of what some of the key limiting factors are?

I think one of the main challenges facing small-scale seed producing businesses is the considerable expense entailed in simultaneously building their productive capacities and their market share. Many businesses simply don’t have a lot of capital. There’s also a lack of access to specialized business support.

In Mexico, for example, a lot of people in the industry are actually ex-breeders from government agencies, so they’re very familiar with the seed production process, but less so with options for building viable businesses and growing markets for new varieties of seed.

This is a critical issue if we expect locally owned seed businesses to be the primary vehicle by which improved seeds are delivered to farmers at scale. We’re currently in the assessment phase, examining what the challenges and capacities are, and hopefully this information will feed into new approaches to designing our interventions.

Is the study being replicated in other regions as well?

Yes, in East Africa, under the Stress Tolerant Maize for Africa (STMA) project. We’re working with seed producing businesses and agro-dealers in Ethiopia, Kenya, Tanzania, and Uganda to understand their strategies, capacities, and needs in terms of providing improved seed to more farmers. We’re using the same basic research design in Mexico, and there is also ongoing work in the Nepal Seed and Fertilizer Project. Given that we are a fairly small team within CIMMYT, comparable cross-regional research is one way to punch above our weight.

Why is this research timely or important?

The research is critical as CIMMYT’s impact relies, in part, on partnerships. In the case of improved maize seed, that revolves around viable seed businesses.

Although critical, no one else is actually engaged in this type of seed sector research. There have been a number of studies on seed production, seed systems and the adoption of improved seed by poor farmers. A few have focused on the emergence of the private sector in formal seed systems and the implications for seed systems development, but most have been pretty broad, examining the overall business environment in which these companies operate but not much beyond that. We’re trying to deepen the discussion. While we don’t expect to have all the answers at the end of this study, we hope we can shift the conversation about options for better support to seed companies and agro-dealers.

Jason Donovan joined CIMMYT in 2017 and leads CIMMYT’s research team on markets and value chains, based in Mexico. He has some 15 years of experience working and living in Latin America. Prior to joining CIMMYT he worked at the Peru office of the World Agroforestry Center (ICRAF), where his research focused on business development, rural livelihoods, gender equity and certification. He has a PhD in development economics from the University of London’s School of Oriental and African Studies (SOAS).

Webinar: Do medium and large-scale farms generate income spillovers for rural households?

Land acquisitions by foreign and local investor farmers has generated much speculation about the impacts on smallholder households and rural communities.

Jordan Chamberlin, a Spatial Economist at the International Maize and Wheat Improvement Center (CIMMYT), and Thomas Jayne of Michigan State University conducted a study in Tanzania to assess whether medium and large-scale farms generate income spillovers for rural households.

They presented their work in a webinar hosted by the CGIAR Research Program on Policies, Institutions, and Markets.

The study looks at inter-district variation in farmland distribution patterns in Tanzania to determine the impact of localized farm structure on rural household incomes. It uses using three rounds of panel data from the Tanzanian National Panel Survey (2009, 2011 and 2013). Because farm structure is a multifaceted concept, five alternative indicators of farm structure are used in the analysis: the Gini coefficient, skewness, coefficient of variation, share of controlled farmland under medium-scale farms, and share of controlled farmland under large farms.

The study highlights four main findings. First, most indicators of farmland concentration are positively associated with rural household incomes, after controlling for other factors. Second, household incomes from farm, agricultural wage and non-farm sources are positively and significantly associated with the share of land in the district controlled by 5-10-hectare farms. Third, these positive spillover benefits are smaller and less statistically significant in districts with a relatively high share of farmland controlled by farms over 10 hectares in size. Fourth, poor rural households are least able to capture the positive spillovers generated by medium-scale farms and by concentrated farmland patterns.

Full study:

Does Farm Structure Matter? The Effects of Farmland Distribution Patterns on Rural Household Incomes in Tanzania. 2018. Chamberlin, J., Jayne, T.S. In: Feed the Future Innovation Lab for Food Security Policy Research Paper 77. East Lansing: Michigan State University.

Farmers and scientists celebrate SIMLESA achievements

Maize is currently grown on 35 million hectares of land in Africa and is easily the most important staple food crop in the continent, feeding more than 200-300 million people and providing income security to millions of smallholder farmers. Nonetheless, African maize growers face many challenges, including lower than average yields, crop susceptibility to pests and diseases, and abiotic stresses such as droughts. They generally lack access to high yielding improved seed and other farming innovations that could help them overcome those challenges.

The Sustainable Intensification of Maize-Legume Systems for Food Security in Eastern and Southern Africa (SIMLESA) project, launched in 2010, supports farmers and partner organizations to achieve increased food production while minimizing pressure on the environment by using smallholder farmers’ resources more efficiently.

SIMLESA is led by the International Maize and Wheat Improvement Center (CIMMYT) and funded by the Australian Center for International Agricultural Research (ACIAR). It is implemented by national agricultural research systems, agribusinesses and farmers in partner countries: Ethiopia, Kenya, Malawi, Mozambique, Rwanda, Tanzania and Uganda.

A new video highlights the outcomes and achievements of the SIMLESA project and it features interviews with farmers and scientists.

Among the outstanding achievements of the SIMLESA project are the release of 40 new maize varieties, the selection of more than 50 legume varieties for official release in partner countries, yield increases of 10 to 30 percent and enhanced adoption of innovative technologies that will aid sustainable intensification of agriculture in sub-Saharan Africa. Over 230,000 farmers have adopted sustainable intensification technologies and the project has helped nurture future scientists by supporting more than 40 students pursuing MSc degrees and more than 20 PhD students.

“The SIMLESA project has successfully adapted and disseminated many scalable technologies to smallholder farmers that will help them achieve higher yields with reduced resource use,” said CIMMYT scientist Paswel Marenya, the coordinator of the project. “We have also sought to understand and improve the entire farming system so that farmers are supported through enabling policies, markets and institutional frameworks.”

The SIMLESA project will be coming to an end in 2019. “The lessons learned from SIMLESA can be used by national and international decision makers to help guide their policy, programming and investment priorities in support of achieving sustainable and resilient agricultural systems in Africa,” Marenya said.

To watch a playlist of SIMLESA videos, click here.

New publications: Does farm structure matter?

Farmland distributions are rapidly evolving in many parts of sub-Saharan Africa, as data from the World Bank’s Tanzanian Living Standards Measurement Study-Integrated Surveys in Agriculture (LSMS-ISA) shows. Between 2009 and 2013, farms under 5 hectares have increased in absolute numbers – from 5.4 to 6.1 million –  as smallholdings became increasingly fragmented due to demographic and land inheritance patterns. But farms greater than 5 hectares also grew in number, and their share in the rural landscape, in terms of land area, grew quickly. The share of total farmland held by “small” farms of less than 5 hectares declined from 62% to 56% over the period while the share of farmland under farms of 10 or more hectares grew by 6%. So, what are the implications of such rapid changes in farm structure and concentration of land under larger farms?

CIMMYT spatial economist Jordan Chamberlin is using household survey data in innovative ways to reveal how changing patterns of land access and farm size distributions are influencing farmers’ livelihoods. He is investigating whether medium- and large-scale farms generate benefits for nearby smallholder farmers. In a case study in Tanzania, Chamberlin and his colleague, T.S. Jayne, estimated how rural incomes are affected by land concentration measures, such as the Gini coefficient, after controlling for other household and geographical factors, including market access, population density, and rainfall.

Lushoto, Tanzania. Photo: Rod Waddington
Lushoto, Tanzania. (Photo: Rod Waddington)

Another important finding was the lack of evidence for positive impacts of farmland concentration when such concentration was measured as the share of land in farms of 10 or more hectares. The intuitive explanation of this result is that the larger the farm, the less likely it is to generate benefits for surrounding smallholders. This may be because medium-scale farms, relative to larger commercial farming enterprises, are more likely to employ labor from surrounding households, and may also provide services such as mechanized traction.

More research is needed to identify these spillover mechanisms, and to understand the conditions under which larger farms generate positive impacts for smaller neighbors. As the farmland landscape is evolving quickly in sub-Saharan Africa, understanding these mechanisms could be instrumental to drive more inclusive rural development. Such research could help to add nuance to the current debate in agricultural and land policy circles about whether the de facto expansion of medium-scale and larger farms are a boon or a threat to the smallholder majority within the region’s agrifood systems.

Jordan Chamberlin presented results from this study in a webinar on 6 November 2018 hosted by CGIAR’s Policies, Institutions, Markets Research Program.

Read more:
Does Farm Structure Matter? The Effects of Farmland Distribution Patterns on Rural Households Incomes in Tanzania in Food Policy.

This research was carried out in collaboration with T.S. Jayne, Michigan State University, with support from USAID’s Feed the Future Innovation Lab on Food Security Policy, the BMGF-funded Guiding Investments in Sustainable Agricultural Intensification in Africa (GISAIAA) initiative, the CGIAR Research Program on Policies, Institutions, and Markets (PIM).

Check out other recent publications by CIMMYT researchers below:

  1. BGGE: a new package for genomic-enabled prediction incorporating genotype × environment interaction models. 2018. Granato, I., Cuevas, J., Luna-Vazquez, F.J., Crossa, J., Montesinos-Lopez, O.A., Burgueño, J., Fritsche-Neto, R. In: G3: Genes, Genomes, Genetics v. 8, no. 9, p. 3039-3047.
  2. Carotenoid and tocochromanol profiles during kernel tevelopment make consumption of biofortified “fresh” maize an option to improve micronutrient nutrition. 2018. Cabrera-Soto, L., Pixley, K.V., Rosales-Nolasco, A., Galicia-Flores, L.A., Palacios-Rojas, N. In: Journal of Agricultural and Food Chemistry v. 66, no. 36, p. 9391–9398.
  3. Correction to: mapping adult plant stem rust resistance in barley accessions Hietpas-5 and GAW-79. 2018. Case, A.J., Bhavani, S., Macharia, G., Pretorius, Z.A., Coetzee, V., Kloppers, F.J., Tyagi, P., Brown-Guedira, G., Steffenson, B.J. In: Theoretical and Applied Genetics v.131, no. 10, p. 2267–2267.
  4. Registration of spring wheat germplasm ND 735 combining tan spot, Leaf, and stem rusts. 2018. Mergoum, M., Frohberg, R.C., Ali, S., Singh, P.K., Rasmussen, J.B., Miller, J.D. In: Crop Science v. 46, no. 2, p. 1003-1004.

Are advisory apps a solution for collecting Big Data?

Big Data is transforming the way scientists conduct agricultural research and helping smallholder farmers receive useful information in real time. Experts and partners of the CGIAR Platform for Big Data in Agriculture are meeting on October 3-5, 2018, in Nairobi, Kenya, to share their views on how to harness this data revolution for greater food and nutrition security.

Jordan Chamberlin, Spatial Economist at CIMMYT, will give his insights on best practices on electronic data capture on October 4, 2018.

NAIROBI (Kenya) — Agronomic researchers face several challenges and limitations related to data. To provide accurate predictions and useful advice to smallholder farmers, scientists need to collect many types of on-farm data; for example, field size, area devoted to each crop, inputs used, agronomic practices followed, incidence of pests and diseases, and yield.

These pieces of data are expensive to obtain by traditional survey methods, such as sending out enumerators to ask farmers a long list of questions. Available data is often restricted to a particular geographical area and may not capture key factors of production variability, like local soil characteristics, fertilizer timing or crop rotations.

As a result, such datasets cannot deliver yield predictions at scale, one of the main expectations of Big Data. Digital advisory apps may be part of the solution, as they use crowdsourcing to routinize data collection on key agronomic variables.

The Taking Maize Agronomy to Scale in Africa (TAMASA) project has been researching the use of mobile apps to provide site-specific agronomic advice to farmers through agro-dealers, extension workers and other service providers.

At CIMMYT, one of the research questions we were interested in was “Why are plant population densities in farmers fields usually well below recommended rates?” From surveys and yield estimates based on crop-cut samples at harvest in Ethiopia, Nigeria and Tanzania, we observed that yields were correlated with plant density.

What was making some farmers not use enough seeds for their fields? One possible reason could be that farmers may not know the size of their maize field. In other cases, farmers and agro-dealers may not know how many seeds are in one packet, as companies rarely indicate it and the weight of each seed variety is different. Or perhaps farmers may not know what plant population density is best to use. Seed packets sometimes suggest a sowing rate but this advice is rather generic and assumes that farmers apply recommended fertilizer rates. However, farmers’ field conditions differ, as does their capacity to invest in expensive fertilizers.

To help farmers overcome these challenges, we developed a simple app, Maize-Seed-Area. It enables farmers, agro-dealers and extension workers to measure the size of a maize field and to identify its key characteristics. Then, using that data, the app can generate advice on plant spacing and density, calculate how much seed to buy, and provide information on seed varieties available at markets nearby.

View of the interface of the Maize-Seed-Area app on mobile phones and tablets. (Photo: CIMMYT)
View of the interface of the Maize-Seed-Area app on mobile phones and tablets. (Photo: CIMMYT)

Maize-Seed-Area is developed using the Open Data Kit (ODK) format, which allows to collect data offline and to submit it when internet connection becomes available. In this case, the app is also used to deliver information to the end users.

Advisory apps usually require some input data from farmers, so advice can be tailored to their particular circumstances. For example, they might need to provide data on the slope of their field, previous crops or fertilizer use. Some additional information may be collected through the app, such as previous seed variety use. All this data entered by the user, which should be kept to a minimum, is routinely captured by the app and retrieved later.

Hello, Big Data!

As the app user community grows, datasets on farmer practices and outcomes grow as well. In this case, we can observe trends in real time, for instance on the popularity of different maize varieties.

In a pilot in western Kenya, in collaboration with Precision Agriculture for Development (PAD), some 100 agro-dealers and extension workers used the app to give advice to about 2,900 farmers. Most of the advice was on the amount of seed to buy for a given area and on the characteristics of different varieties.

Data showed that the previous year farmers grew a wide range of varieties, but that three of them were dominant: DK8031, Duma43 and WH505.

Preferred variety of maize for sample farmers in western Kenya (Bungoma, Busia, Kakamega and Siaya counties), February-March 2018.
Preferred variety of maize for sample farmers in western Kenya (Bungoma, Busia, Kakamega and Siaya counties), February-March 2018.

A phone survey among some 300 of the farmers who received advice found that most of them anticipated to do things differently in the future, ranging from asking for advice again (37 percent), growing a different maize variety (31 percent), buying a different quantity of seed (19 percent), using different plant spacing (18 percent) or using more fertilizer (16 percent).

Most of the agro-dealers and extension workers have kept the app for future use.

The dataset was collected in a short period of time, just two months, and was available as soon as app users got online.

The Maize-Seed-Area pilot shows that advisory apps, when used widely, are a major source of new Big Data on agronomic practices and farmer preferences. They also help to make data collection easier and cheaper.

TAMASA is supported by the Bill and Melinda Gates Foundation and is implemented by the International Maize and Wheat Improvement Center (CIMMYT), the International Institute of Tropical Agriculture (IITA), the International Plant Nutrition Institute (IPNI) and Africa Soil Information Service (AfSIS).

Science can reverse “new normal” of climate change-related disasters

Naivasha, Kenya 2017. Photo: CIMMYT/ P.Lowe
Naivasha, Kenya 2017. Photo: CIMMYT/ P.Lowe

In the last decade, the climate of Africa has been changing in dramatic ways. Many regions face unpredictable levels of rainfall, which can lead both droughts and severe flooding. Sub-Saharan Africa is the only region in the world with over 30 percent of children under five facing stunting – severe malnutrition, and is the only region where the rate of undernourished people has consistently increased.

The Sustainable IntensiïŹcation of Maize-Legume Cropping Systems for Food Security in Eastern and Southern Africa (SIMLESA) program, launched in 2010, works to improve maize and legume productivity and reduce yield risk for over 650,000 farm households in sub-Saharan Africa.

Maize is a vital staple cash and sustenance crop in most of Africa, and legumes provide nutrition, income and improve soil fertility. However, farmers’ yields are suffering due to declining soil fertility, drought and poor access to improved technologies.

Over the last eight years, SIMLESA has developed productive, resilient and sustainable smallholder maize-legume cropping systems. SIMLESA focuses on improving maize-legume cropping systems by encouraging the adoption of sustainable agriculture systems through conservation agriculture practices such as crop residue retention, crop rotation and intercropping practices to simultaneously maintain and boost yields, increase proïŹts and protect the environment.

Recently, Elliud Kireger, director general of the Kenya Agricultural and Livestock Research Organization (KALRO), Mulugetta Mekuria Asfaw, SIMLESA project leader and Daniel Rodriguez, associate professor, Queensland Alliance for Agriculture and Food Innovation (QAAFI) The University of Queensland, wrote a joint opinion piece “Africa: Science Can Reverse ‘New Normal’ of Hunger and Climate Disaster” in All Africa on the impacts of SIMLESA, read it here.

The Sustainable IntensiïŹcation of Maize-Legume Cropping Systems for Food Security in Eastern and Southern Africa (SIMLESA) program is funded by the Australian Centre for International Agricultural Research (ACIAR).

CIMMYTNEWSlayer1

Project helps African farmers identify regional best practices

MEXICO CITY (CIMMYT) – Traditional farming systems in Africa must be updated for today’s climate and market challenges, according to a new report by the University of Queensland.  

Hoeing the field. Photo: CIMMYT.
Hoeing the field. Photo: CIMMYT.

The Sustainable Intensification of Maize-Legume Systems for Food Security in Eastern and Southern Africa (SIMLESA) is an international research-for-development project working directly with farmers to solve some of the challenges they face.

For example, the project has greatly improved food production in Mozambique since 2010. It is also promoting rotational cropping systems with legumes in Tanzania to improve soil fertility as well as dietary diversity, and in Malawi, rainfall erosion has been reduced by 80 percent as farmers leave plant residues on fields to improve stability.

“The exact details of best practice change everywhere you go in Africa,” said Caspar Roxburgh, a research officer at the University of Queensland who works with SIMLESA. “A lot of this research just hasn’t been done yet in Africa.”

SIMLESA seeks to have an open dialogue between farmers and scientists to identify what works best in individual areas and define best practices for the region.

“We find out who’s doing the best, learn from them, and then we do the science to back it all up,” explained Roxburgh.

Over the past seven years, SIMLESA has helped more than 200,000 farmers adopt sustainable technologies and practices, improving yields and income.

SIMLESA is funded by the Australian Centre for International Agricultural Research (ACIAR) and implemented by the International Maize and Wheat Improvement Center (CIMMYT), the University of Queensland along with the governments of Ethiopia, Kenya, Tanzania, Malawi and Mozambique.

Read more about how SIMLESA is changing how food is grown in Africa here.

receive newsletter

New online portal offers information to curb maize lethal necrosis in Africa

Artificial inoculation of maize germplasm at the Naivasha MLN screening site, Kenya. (Photo: B.Wawa/CIMMYT)
Artificial inoculation of maize germplasm at the Naivasha MLN screening site, Kenya. (Photo: B.Wawa/CIMMYT)

The new maize lethal necrosis (MLN) online portal provides up-to-date information and surveillance tools to help researchers control and stop the spread of the deadly disease.

MLN was first reported in Kenya in 2011 and has since then been reported in several countries in eastern Africa, especially the Democratic Republic of the Congo, Ethiopia, Kenya, Rwanda, Tanzania and Uganda. The disease kills plants before they can grow, and the pathogens are transmitted by insects or contaminated seed. Serious damage to the region’s maize production from MLN has impacted household food security.

The online portal, found at mln.cimmyt.org, details the spread of MLN, where the disease has been managed and controlled, and how to identify it in the field. It also provides key MLN publications, surveillance software, MLN incidence maps, information on the MLN Screening Facility, and MLN-tolerant hybrids that are either released or in pipeline.

One tool on the portal is the MLN surveillance and monitoring system that provides real-time data to identify the presence and spread of the disease across five endemic countries in eastern Africa, and three selected non-endemic countries in southern Africa. The system was developed by scientists collaborating with the International Maize and Wheat Improvement Center (CIMMYT), with support from the United States Agency for International Development (USAID).

In 2016, MLN surveillance was successfully conducted in Malawi, Zambia and Zimbabwe – three major seed producing countries in Africa – and the data is presented in the portal, detailing MLN’s status across 652 surveyed maize fields. Future data gathered in other affected countries will also be uploaded to the portal as surveillance teams conduct fieldwork using Global Positioning System online survey tools, to assess the spread and severity of the disease in these countries. Ongoing surveillance in endemic countries allows stakeholders to see real-time updates on the spread of MLN.

MLN susceptible hybrids compared to a CIMMYT-derived MLN-tolerant hybrid. Photo: CIMMYT
MLN susceptible hybrids compared to a CIMMYT-derived MLN-tolerant hybrid. Photo: CIMMYT

Since the disease was first reported, collaborative efforts have resulted in the establishment of a MLN Screening Facility at the Kenya Agricultural & Livestock Research Organization (KALRO) center at Naivasha in 2013. The facility, managed by CIMMYT, has so far screened nearly 100,000 maize germplasm entries — 56 percent from CIMMYT — against MLN under artificial inoculation over the last four years.

Nine CIMMYT-derived MLN-tolerant hybrids have been already released in three countries – seven in Kenya, one in Uganda and one in Tanzania. Eleven second generation hybrids are currently in national performance trials in these countries. Intensive efforts are currently being made by seed companies in Kenya, Tanzania and Uganda to expand the delivery of MLN-tolerant maize seed to the smallholders.

The MLN portal enables researchers to comprehensively assess the situation with regard to MLN, helps strengthen the national disease monitoring and diagnostic systems by providing faster and accurate data, and offers access to CIMMYT-offered MLN phenotyping services.

New Provitamin A maize platform fights hidden hunger in Tanzania

Joyce Maru is a capacity development & communications specialist at the International Potato Center

A farmer prepares maize porridge using Provitamin A maize. Photo: R.Lunduka/CIMMYT
A farmer prepares maize porridge using Provitamin A maize. Photo: R.Lunduka/CIMMYT

Vitamin A deficiency is considered a major public health problem in Tanzania affecting over 30 percent of the population, mostly children in preschool and women of reproductive age.  It can result in morbidity, loss of vision or blindness and even death.

Provitamin A maize (PVA) is a special type of biofortified maize that contains high levels of beta-carotene. Beta-Carotene is an organic, red-orange pigment abundant in plants and fruits and gives PVA maize an orange color. It is converted to vitamin A in the body after consumption to provide additional nutritional benefits.

Biofortification enhances the nutritional value of staple food crops by increasing the density of vitamins and minerals in a crop through either conventional plant breeding, agronomic practices or biotechnology. This can significantly reduce the prevalence of “hidden hunger” due to micronutrient deficiency.

Maize – a staple food in Tanzania – can serve as a cheap and sustainable source of vitamin A, especially for vulnerable populations.  Stores of vitamin A in 5 to 7 year old children improved when they ate PVA maize, according to HarvestPlus research.

PVA maize was recently introduced in Tanzania through the Building Nutritious Food Baskets Project (BNFB), a joint effort by the Government of Tanzania, Tanzania Official Seed Certification Institute, the International Maize and Wheat Improvement Center and national seed companies. Two Provitamin A maize varieties – Meru VAH517 and Meru VAH519 – were released for commercial production by Meru Agro Tours and Consultants in September 2016.

To catalyze efforts to increase planting and consumption of PVA maize, different actors along the maize value chain launched a PVA maize platform for Tanzania.  The platform will serve as an information and knowledge center on PVA maize in the country by linking different stakeholders to relevant authorities on matters relating to PVA maize, as well as provide capacity development opportunities for members on critical gaps relating to PVA maize knowledge and biofortification in general.

Membership of the platform is expected to become multi-sectoral and multi-disciplinary and include actors such as the ministry of health, school feeding programs and academic institutions. The platform will be led by national partners.

The International Potato Center is collaborating with a consortium of CGIAR research centers, the governments of Nigeria and Tanzania and national partners on BNFB, which is addressing hidden hunger by catalyzing sustainable investments for the production and utilization of biofortified crops. The project mainly targets rural populations, especially young children under the age of five and women of reproductive age, in Nigeria and Tanzania.

Learn more about the Building Nutritious Food Baskets Project and read the full version of this story here.  

Seed certification critical to quality seed production

A new variety in the market must have significant value to the farmer, such as higher tolerance to stresses, or added nutritional value. Photo: K. Kaimenyi/CIMMYT
A new variety in the market must have significant value to the farmer, such as higher tolerance to stresses, or added nutritional value. Photo: K. Kaimenyi/CIMMYT

NAIROBI, Kenya (CIMMYT) – For over 50 years, CIMMYT has led the research and development of quality, improved seed, designed to help farmers mitigate the effects of climate change while improving livelihoods.

Every new variety released is driven by farmer needs and preferences, with desirable traits such as pest and disease resistance, drought and heat tolerance as well as water and nutrient use efficiency. With improved maize seed, farmers not only benefit from increased stress tolerance, they also enjoy higher yields, increased nutritional value and improved income from grain sales.

To ensure that quality seed standards are maintained, CIMMYT supports partners such as national agricultural research institutions and seed producers in acquisition and production of pure early generation seed, which is then tested by national quality assurance and certification agencies before certification and release.

Seed certification process

Seed certification is a rigorous process of testing new maize varieties before they are made available to farmers and follows an often lengthy three-step process.

The first step – value for cultivation and use, or national performance trials in some countries, – compares traits of the new variety to others already in the market to determine its value. For a new variety to enter the market it must have significant value to the farmer, such as higher tolerance to stress, or added nutritional value. It is at the end of this valuation process that a variety is registered, which takes about 2-3 years.

Next, a distinctiveness, uniformity and stability test (DUS) is performed on the seed sample provided to ensure that it is unique, uniform and will not deteriorate over time after its release. The DUS also helps to determine if an identical variety already exists and is registered, in order to avoid conflict among companies that are responsible for variety commercialization. The characteristics used to compare these materials are developed by breeders, and help distinguish different varieties. The length of time for DUS test varies by country, but on average the minimum is two planting seasons, about two years in most countries, or one year in others.

Finally, the government approves the variety for release and commercialization. In some countries, such as Tanzania, there is an extra classification of seed know as quality declared seed which is certified seed that has been through fewer steps of certification. It is perceived to be of a lower quality than regular certified seeds, and is therefore cheaper. Seed certification protects farmers from unscrupulous traders who would otherwise sell poor quality seed or grain packaged as seed.

Seed certification and commercialization can take 6-11 years, depending on how efficient a country’s system is. This lengthy and costly process can sometimes create backlogs, slowing release and commercialization of new varieties. This can discourage some seed companies from producing improved varieties, thus sticking to tried, tested and profitable varieties no matter how old they are. Commercializing a new variety is a huge investment in terms of cost, expertise, promotion and labor, so the longer certification process draws out, the more costs a company incurs. Farmers in turn continue to purchase the varieties that are always available, keeping them in demand.

Expecting seed companies to replace an old variety for an improved one is somewhat complicated, since this is a purely business decision where profits are priority. In some cases, dropping a popular variety to promote a new one could jeopardize a company’s market share, brand recognition and potentially put them out of business. This is why old varieties like Matuba in Mozambique, SC513 in Zimbabwe and H614 D in Kenya remain popular, despite being decades old.

Older seed dominating the market causes both farmers and seed companies to miss out on potential benefits and profits higher-performing seed can bring. Several strategies to retire old maize varieties and build demand for improved ones can be used, including demonstrating old and new varieties side by side in areas where target markets exist. This way, farmers themselves drive the process and start the switch to new varieties. Seed producers can emphasize a specific characteristic in the variety that will benefit the farmer. For instance, farmers in an area prone to maize lethal necrosis (MLN) are more likely to adopt a resistant variety, and eventually make a permanent switch once this characteristic is proven to be true.

Government policies can also encourage the retirement of old varieties, for instance through subsidies on seed production with requirements to only include new materials. CIMMYT, through its various projects, gives competitive financial grants only to companies that produce improved maize seed. An extreme and potentially detrimental option would be to cut off funding and other support to seed companies that refuse to phase out old varieties.

The Drought Tolerant Maize for Africa Seed Scaling (DTMASS) project works in six countries in eastern and southern Africa to produce and deploy affordable drought tolerant, stress resilient, and high-yielding maize varieties for smallholder farmers. DTMASS employs innovative and impactful strategies to promote uptake and adoption of these improved seed varieties, as well as sharing agronomy and other agricultural information directly with farmers to improve crop management.

Led by CIMMYT and funded by the United States Agency for International Development, DTMASS is implemented through strategic partnerships with national agricultural research systems, as well as public and private seed producers.

Fall armyworm devastates crops in sub-Saharan Africa: A quick and coordinated regional response is required

The recent appearance of the fall armyworm, an insect-pest that causes damage to more than 80 crop species in 14 countries in sub-Saharan Africa, poses a serious challenge and significant risk to the region’s food security.

In a recent interview, B.M. Prasanna, director of the Global Maize Program at International Maize and Wheat Improvement Center (CIMMYT) and the CGIAR Research Program on MAIZE, who is working at the forefront of CGIAR’s response, highlights the potential impact of the pest and how CGIAR researchers are contributing to a quick and coordinated response across the region.

Q: What is the fall armyworm and why is it so destructive?  

The fall armyworm (Spodoptera frugiperda) is an insect-pest which causes major damage to more than 80 crop species, including economically important crops, such as maize, rice, sorghum, wheat, sugarcane, several other vegetable crops and cotton.

It was first officially reported in Nigeria in early 2016 and has been officially confirmed in 11 and suspected in at least 14 other African countries, as of April 2017.

Q: What are the potential impacts of the pest in sub-Saharan Africa?

The fall armyworm poses a serious challenge and a significant, ongoing risk to Africa’s food security.

The pest’s ability to feed on a range of crop species means that smallholder farming systems in Africa, which are based on intercropping, are particularly vulnerable. Also, the rapid damage and migratory capacity of the pest, combined with its capacity to reproduce quickly in the right environmental conditions and its ability to rapidly evolve resistance to synthetic pesticides increase the region’s vulnerability.

In sub-Saharan Africa, where fall armyworm is currently devastating maize crops, estimates indicate 13.5 million tons of maize valued at $3 billion are at risk in 2017-2018, which is equivalent to over 20 percent of total production for the region (based on data from CABI, April 2017).

Q: What are the key challenges that countries in sub-Saharan Africa will face?

There is no doubt that smallholder farmers, particularly maize farmers, in sub-Saharan Africa will face a significant and ongoing risk from the fall armyworm. In particular, resource-poor smallholders will be severely affected due to their inability to control the pest using synthetic pesticides, currently the only way to effectively respond, which are very costly.

Q: What are three ways that countries in sub-Saharan African can strengthen resilience of food and agricultural systems to the potential effects of Fall Armyworm?

  1. Working groups need to be established quickly to develop and implement strategies to respond to the issue.  In particular, we need to develop a comprehensive, regional response centered on: Monitoring and early warning; Social and economic assessments of impacts, and forecasting; Integrated Pest Management (IPM); Development and dissemination of low-cost, effective and sustainable solutions and development of appropriate regulatory tools and policies to support the response.
  2. As this process unfolds, gaps, challenges and successes will need to be documented to inform capacity-building needs with a focus on understanding the capacity of individual countries to respond. While fall armyworm outbreaks across Africa is an emergency situation, it should also be an opportunity to review and understand regional food production and food security issues and as an opportunity to improve on systematic approaches to build capacity to prevent and respond to future threats of transboundary pests and pathogens in Africa.
  3. Strong coordination across different levels of government is required: “political coordination” (among the local governments, NPPOs, and sub-regional organizations), and “technical coordination” (fast-tracked testing and deployment of relevant technologies).

Q: What role do CIMMYT and CGIAR have in building capacity in the region’s ability to respond to Fall Armyworm?

CGIAR institutions, including CIMMYT and the International Institute of Tropical Agriculture (IITA), have significant strengths in building the region’s ability to respond to trans-boundary pathogens (e.g., previous examples include Maize Lethal Necrosis, wheat rust and insect-pests, such as fall armyworm.

Specific examples of CGIAR/CIMMYT expertise that will be important in the fall armyworm response include:

  1. Development and dissemination of crowd-source based tools and digital surveillance systems and analysis of the data collected across countries for a strong monitoring and early warning system.
  2. Systematic and large-scale assessment of the present and potential socio-economic impact of fall armyworm in Africa, and the development of forecasting tools to understand potential losses
  3. Review of the efficacy of different fall armyworm management options (learning from experiences of the United States, Brazil and Mexico), and adapting this information to the African context
  4. Determining the efficacy of cultural control options against fall armyworm, including early versus late planting of crops like maize, handpicking, soil and habitat management, crop hygiene, etc.
  5. Evaluating the impacts on-going integrated pest management (IPM) initiatives and the impacts of the fall armyworm invasion on the effectiveness of these interventions
  6. Developing and implementing appropriate insect resistance monitoring and management strategy in fall armyworm affected countries
  7. Analysis of the effects of conservation agriculture on fall armyworm management and the influence of fall armyworm incidence on diverse cropping systems
  8. Testing and introgression of conventionally-derived resistance (from identified CIMMYT and U.S. Department of Agriculture-Agricultural Research Service [USDA-ARS] germplasm sources) into Africa-adapted maize germplasm, followed by fast-tracked varietal release, seed scale-up and delivery of improved maize hybrids/varieties through public-private partnerships (e.g., MLN is a great example of this).
  9. Developing a “Fall Armyworm Information Portal”, similar to the MLN Information Portal and Wheat Rust Tracker (led by CIMMYT), as a one-stop portal for relevant information.

Q: CIMMYT recently co-hosted an emergency meeting on the strategy for effective management of fall armyworm in Africa. What were the key outcomes and next steps for the response to this issue?

The emergency meeting was an opportunity to assess the present and potential damage due to fall armyworm and to devise a holistic control strategy.

CIMMYT, Alliance for a Green Revolution in Africa (AGRA) and the U.N. Food and Agriculture Organization (FAO) jointly hosted a Stakeholders Consultation Meeting in Nairobi, Kenya (April 27-28, 2017). About 150 experts and stakeholders from 24 countries in Africa, and five outside Africa (Italy, Spain, Switzerland, Britain and the United States) participated, with participants from government, national plant protection agency, national agricultural research systems in Africa, as well as scientists from international agricultural research organizations, and representatives of service providers, non-governmental organizations, development partners, donor agencies and the media.

Discussions covered the present status of the pest in Africa as well as contingency plans to manage the pest, assessment of current control options being used. Experts from the U.S. and U.K. provided expertise and insight on the response to fall armyworm in the U.S. and Brazil.

Action points and recommendations on four key areas were developed to ensure an effective, coordinated response:

  • Contingency planning and awareness generation;
  • Fall armyworm monitoring and early warning;
  • Socio-economic impact assessments and modeling of potential losses;
  • Development and Dissemination of fall armyworm management options;
  • Coordination of Institutional Interventions for fall armyworm management in Africa.

FAO is expected to convene a regional workshop in early June to engage and coordinate with relevant regional organizations who will be involved in the response.

CIMMYT and CGIAR have responded and will continue to address the issue over the following months. For more information see these recent publications: Multi pronged approach key for effectively defeating fall army worm in Africa; Scientists tackle deadly fall armyworm infestation devastating maize in Southern Africa and Global experts and stakeholders meet to develop fall armyworm emergency strategy for Africa.

Similarly, international coverage of the fall armyworm crisis has been extensive and includes the following:

This article was originally posted by CGIAR.

 

As climate change threatens to increase the incidence of plant pests and diseases, action must be taken to protect smallholder farmers and global food security.

At this year’s UN Climate Talks, CIMMYT is highlighting innovations in wheat and maize that can help farmers overcome climate change. Follow @CIMMYT on Twitter and Facebook for the latest updates.