Skip to main content

Location: Tanzania

Building networks and capacity

The active involvement of partners in the co-design of project and capacity building activities is key to the success of the Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods (AGG) project, led by the International Maize and Wheat Improvement Center (CIMMYT). To that end, the AGG Regional Collaborative Breeding and Testing Networks launched with virtual meetings on September 14 and 15 for southern African partners, and October 28 and November 2 for eastern African partners.

In addition, the AGG team collaborated with researchers from the Excellence in Breeding (EiB) Platform on a number of capacity development webinars in October and November, on topics including Continuous Improvement for breeding processes, programs and products,  enhancing and measuring genetic gain in crop breeding, and a three-webinar series on statistical analysis for plant breeders with CIMMYT’s Biometrics and Statistics Unit.

These training events and regional meetings provided opportunities for well over 100 breeders from CIMMYT, national agricultural research systems (NARS) and seed companies to refresh their capacities to improve genetic gains, and to collectively review and discuss upcoming project activities, current issues of interest, and broader project objectives within their current regional context.

Several themes of importance to partners emerged during the network virtual meetings, for attention in future AGG activities and capacity development work.

Gender inclusion and the impact of COVID-19

Ugandan partners, including Godfrey Asea, director of the National Crops Resources Research Institute at Uganda’s National Agricultural Research Organization, and Josephine Okot, founder and managing director of Victoria Seeds, applauded the project’s emphasis on inclusion of women’s knowledge and preferences in breeding programs.

“We notice that this time there is a lot of focus on gender-inclusiveness,” remarked Asea. “I can tell you there is need for enhanced capacity building for both the private sector and research in proper gender inclusion.”

They also noted the importance of building local capacity, not just for food security but also for other value chain items like raw materials. “COVID-19 has demonstrated to all policy-makers that we cannot depend on the global supply chains,” said Okot. “How can we leverage this project if, for instance, some private sector actors want to [know] the appropriate protein-content maize for, say, animal feed?”

Godfrey Asea (R) and Daniel Bomet (L) from Uganda’s National Agricultural Research Organization (NARO) admire maize cobs on a farm in Uganda. (Photo: Joshua Masinde/CIMMYT)
Godfrey Asea (R), director of the National Crops Resources Research Institute (NaCRRI) at Uganda’s National Agricultural Research Organization (NARO), and Daniel Bomet (L), a maize breeder at NARO, admire maize cobs on a farm in Uganda. (Photo: Joshua Masinde/CIMMYT)

Demand for knowledge

NARS members in Tanzania requested increased support on how to measure or assess genetic gains, especially at the national level, to allow them to establish a baseline upon which genetic gains would be pegged for the project lifecycle.

With statistics an essential element to plant breeding — from analyzing yield trials to ranking varieties — the webinar series in Statistical Analysis for Plant Breeders was a first step towards meeting these capacity development needs.

“The idea of this webinar series was to share insights on how we can improve the breeding plans using statistical methods in an effective way,” said Juan Burgueño, the head of CIMMYT’s Biometrics and Statistics Unit. “The training offered both theory and hands-on experience using open-access software.”

Reaching farmers

Looking beyond breeding, meeting participants also discussed how to improve access and adoption of improved varieties among farmers.

“For a large country such as Tanzania, it is at times very hard to reach the farmers,” said Zabron Mbwaga, managing director of the Tanzania-based Beula Seed Company and Consultancy Limited. “We may have a lot of seed in the store, but how to get the farmers to adopt the newer varieties is quite difficult. This is more so when farmers tend to stick to varieties which they know well and are always reluctant to adopt the new varieties,” he explained.

“We need to put in a lot of effort to set up demonstration farms and enhance other awareness-raising activities such as radio programs so that farmers can know about the new varieties.”

This interest in working with smallholder farmers along the entire value chain was echoed by partners in southern Africa.

“Through this project, we would like to explore ways of collaborating along the whole value chain — as the Agriculture Research Council, other partners and small to medium enterprises — to make it an effective chain,” said Kingstone Mashingaidze, senior research manager at the South Africa Agricultural Research Council. “By planning together, we can identify best-fits for all activities in the value chain and ultimately benefit the smallholder farmers.”

About the AGG Regional Collaborative Breeding and Testing Networks

The AGG Regional Collaborative Breeding and Testing Networks aim to improve breeding efficiencies among partners by enabling the use of modern tools and approaches and enriching the existing network of research organizations, public and private seed companies, farmers’ organizations, non-governmental organizations and community-based organizations. It is expected that these networks will lead to increased efficiency and communications across the partnership network and within countries, improved sharing of best practices and protocols, and increased collective ownership of products for accelerated variety development and turnover.

The virtual meetings for the Regional Collaborative Breeding and Testing Network for southern Africa convened participants from Malawi, Mozambique, South Africa, Zambia and Zimbabwe, while meetings for eastern Africa had participants from Ethiopia, Kenya, Tanzania and Uganda.

AGG communications staff Joshua Masinde and Shiela Chikulo contributed to this story.

Efforts in controlling maize disease boosting steady supply of certified seeds

Efforts towards managing the Maize Lethal Necrosis (MLN), a viral disease affecting maize, have contributed to reducing seed production losses from  33 per cent to 16 per cent in the last four years, bolstering  steady supply of maize seeds in the Eastern African region.

Read more here: https://www.kbc.co.ke/maize-disease-certified-seeds/

Collaborating to accelerate genetic gains in maize and wheat

Stakeholders in the Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods (AGG) project have pledged to strengthen efforts to deliver desirable stress tolerant, nutritious and high-yielding maize and wheat varieties to smallholder farmers in a much shorter time. The alliance, comprising funders, national agricultural research systems (NARS), private seed companies, non-governmental organizations, the International Maize and Wheat Improvement Center (CIMMYT) and, for the maize component the International Institute for Tropical Agriculture (IITA), made these assurances during virtual events held in July and August 2020, marking the inception of the 5-year AGG project.

The initiative seeks to fast-track the development of higher-yielding, climate resilient, demand-driven, gender-responsive and nutritious seed varieties for maize and wheat, two of the world’s most important staple crops. The project is funded by the Bill & Melinda Gates Foundation, the Foreign, Commonwealth & Development Office (FCDO), the U.S. Agency for International Development (USAID), and the Foundation for Food and Agriculture Research (FFAR).

Tackling current and emerging threats

Jeff Rosichan, scientific program director of the Foundation for Food and Agricultural Research (FFAR),  acknowledged the significant and ambitious aim of the project in tackling the challenges facing maize and wheat currently and in the future. “We are seeing the emergence of new pests and pathogens and viral diseases like never before. A lot of the work of this project is going to help us to tackle such challenges and to be better prepared to tackle emerging threats,” he said.

AGG builds on gains made in previous initiatives including Drought Tolerant Maize for Africa (DTMA), Improved Maize for African Soils (IMAS), Water Efficient Maize for Africa (WEMA), Stress Tolerant Maize for Africa (STMA) and Delivering Genetic Gain in Wheat (DGGW), with support from partners in 17 target countries in sub-Saharan Africa (SSA) and South Asia.

Hailu Wordofa, agricultural technology specialist at the USAID Bureau for Resilience and Food Security, underscored his expectation for CIMMYT’s global breeding program to use optimal breeding approaches and develop strong collaborative relationships with NARS partners, “from the development of product profiles to breeding, field trials and line advancement.”

Similarly, Gary Atlin, senior program officer at the Bill & Melinda Gates Foundation lauded the move toward stronger partnerships and greater emphasis on the CIMMYT and IITA breeding programs. “The technical capacity of partners has increased through the years. It is prudent to ensure that national partnerships continue. It is always a challenging environment, this time multiplied by the COVID-19 crisis, but through this collaboration, there is a greater scope to strengthen such partnerships even more,” he said.

Anne Wangui, Maize Seed Health Technician, demonstrates how to test maize plants for maize dwarf mosaic virus (MDMV). (Photo: Joshua
Anne Wangui, Maize Seed Health Technician, demonstrates how to test maize plants for maize dwarf mosaic virus (MDMV). (Photo: Joshua Masinde/CIMMYT)

Symbiotic partnerships with great impact

“From the NARS perspective, we are committed to doing our part as primary partners to deliver the right seed to the farmers,” said Godfrey Asea, director of the National Crops Resources Research Institute at the National Agriculture Research Organization (NARO), Uganda. “We see an opportunity to review and to use a lot of previous historical data, both in-country and regionally and to continue making improved decisions. We also reiterate our commitment and support to continuously make improvement plans in our breeding programs.”

Martin Kropff, director general of CIMMYT, recognized the tremendous impact arising from the longstanding cooperation between CIMMYT’s maize and wheat programs and national programs in countries where CIMMYT works. “A wheat study in Ethiopia showed that 90% of all the wheat grown in the country is CIMMYT-related, while an impact study for the maize program shows that 50% of the maize varieties in Africa are CIMMYT-derived. We are very proud of that – not for ourselves but for the people that we work for, the hundreds of millions of poor people and smallholder farmers who really rely on wheat and maize for their living and for their incomes,” he said.

Founder and Chief Executive Officer of East Africa-based Western Seed Company Saleem Esmail expressed optimism at the opportunities the project offers to improve livelihoods of beneficiaries. “I believe we can do this by sharing experiences and by leveraging on the impacts that this project is going to bring, from new technologies to new science approaches, particularly those that help save costs of seed production.”

He, however, observed that while the target of fast-tracking varietal turnover was great, it was a tough call, too, “because farmers are very risk averse and to change their habits requires a great deal of effort.”

On his part, director of Crop Research at the Oromia Agricultural Research Institute (OARI) in Ethiopia Tesfaye Letta revealed that from collaborative research work undertaken with CIMMYT, the institute has had access to better-quality varieties especially for wheat (bread and durum). These have helped millions of farmers to improve their productivity even as Ethiopia aims for wheat self-sufficiency by expanding wheat production under irrigation.

“We expect more support, from identifying wheat germplasm suitable for irrigation, developing disease resistant varieties and multiplying a sufficient quantity of early generation seed, to applying appropriate agronomic practices for yield improvement and organizing exposure field visits for farmers and experts,” he said.

Challenges and opportunities in a time of crisis

Alan Tollervey, head of agriculture research at Foreign, Commonwealth and Development Office (FCDO) and the UK representative to the CGIAR System Council, emphasized the need for continued investment in agricultural research to build a resilient food system that can cope with the demands and pressures of the coming decades. This way, organizations such as CIMMYT and its partners can adequately deliver products that are relevant not only to the immediate demands of poor farmers in developing countries – and the global demand for food generally – but also to address foreseen threats.

“We are at a time of intense pressure on budgets, and that is when projects are most successful, most relevant to the objectives of any organization, and most able to demonstrate a track record of delivery. CIMMYT has a long track history of being able to respond to rapidly emerging threats,” he said.

Felister Makini, the deputy director general for crops at the Kenya Agricultural Research Organization (KALRO) lauded the fact that AGG not only brings together maize and wheat breeding and optimization tools and technologies, but also considers gender and socioeconomic insights, “which will be crucial to our envisioned strategy to achieve socioeconomic change.”

Zambia Agriculture Research Organization (ZARI) maize breeder Mwansa Kabamba noted that the inclusion of extension workers will help to get buy-in from farmers especially as far as helping with adoption of the improved varieties is concerned.

In its lifecycle, the AGG project aims to reduce the breeding cycles for both maize and wheat from 5-7 years currently to 3-4 years. By 2024, at least 150,000 metric tons of certified maize seed is expected to be produced, adopted by 10 million households, planted on 6 million hectares and benefit 64 million people. It also seeks to serve over 30 million households engaged in wheat farming the target countries.

Cover photo: CIMMYT researcher Demewoz Negera at the Ambo Research Center in Ethiopia. (Photo: Peter Lowe/CIMMYT)

Reaching women with improved maize and wheat

By 2050, global demand for wheat is predicted to increase by 50 percent from today’s levels and demand for maize is expected to double. Meanwhile, these profoundly important and loved crops bear incredible risks from emerging pests and diseases, diminishing water resources, limited available land and unstable weather conditions – with climate change as a constant pressure exacerbating all these stresses.

Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods (AGG) is a new 5-year project led by the International Maize and Wheat Improvement Center (CIMMYT) that brings together partners in the global science community and in national agricultural research and extension systems to accelerate the development of higher-yielding varieties of maize and wheat.

Funded by the Bill & Melinda Gates Foundation, the UK Foreign, Commonwealth & Development Office, the U.S. Agency for International Development (USAID) and the Foundation for Food and Agriculture Research (FFAR), AGG fuses innovative methods to sustainably and inclusively improve breeding efficiency and precision to produce seed varieties that are climate-resilient, pest- and disease-resistant, highly nutritious, and targeted to farmers’ specific needs.

AGG seeks to respond to the intersection of the climate emergency and gender through gender-intentional product profiles for its improved seed varieties and gender-intentional seed delivery pathways.

AGG will take into account the needs and preferences of female farmers when developing the product profiles for improved varieties of wheat and maize. This will be informed by gender-disaggregated data collection on current varieties and preferred characteristics and traits, systematic on-farm testing in target regions, and training of scientists and technicians.

Farmer Agnes Sendeza harvests maize cobs in Malawi. (Photo: Peter Lowe/CIMMYT)
Farmer Agnes Sendeza harvests maize cobs in Malawi. (Photo: Peter Lowe/CIMMYT)

To encourage female farmers to take up climate-resilient improved seeds, AGG will seek to understand the pathways by which women receive information and improved seed and the external dynamics that affect this access and will use this information to create gender-intentional solutions for increasing varietal adoption and turnover.

“Until recently, investments in seed improvement work have not actively looked in this area,” said Olaf Erenstein, Director of CIMMYT’s Socioeconomics Program at a virtual inception meeting for the project in late August 2020. Now, “it has been built in as a primary objective of AGG to focus on [
] strengthening gender-intentional seed delivery systems so that we ensure a faster varietal turnover and higher adoption levels in the respective target areas.”

In the first year of the initiative, the researchers will take a deep dive into the national- and state-level frameworks and policies that might enable or influence the delivery of these new varieties to both female and male farmers. They will analyze this delivery system by mapping the seed delivery paths and studying the diverse factors that impact seed demand. By understanding their respective roles, practices, and of course, the strengths and weaknesses of the system, the researchers can diagnose issues in the delivery chain and respond accordingly.

Once this important scoping step is complete, the team will design a research plan for the following years to understand and influence the seed information networks and seed acquisition. It will be critical in this step to identify some of the challenges and opportunities on a broad scale, while also accounting for the related intra-household decision-making dynamics that could affect access to and uptake of these improved seed varieties.

“It is a primary objective of AGG to ensure gender intentionality,” said Kevin Pixley, Director of CIMMYT’s Genetic Resources Program and AGG project leader. “Often women do not have access to not only inputs but also information, and in the AGG project we are seeking to help close those gaps.”

Cover photo: Farmers evaluate traits of wheat varieties, Ethiopia. (Photo: Jeske van de Gevel/Bioversity International)

Work to develop high yielding Striga tolerant maize seed is bearing fruit

Striga, an invasive parasitic weed with purple-colored flowers, looks striking and harmless. But, beyond that mark of beauty, is a nutrient-sucking monster that stunts crops such as maize and sorghum, leaving affected farmers counting losses.

Witchweed thrives in poor soils with low rainfall conditions. It is prevalent in farming systems with poor crop management practices and in communities where farmers use minimal or no fertilizer. Once maize begins germinating in Striga-prevalent soil, it stimulates Striga seeds to germinate. Striga then attaches to the roots of the host plant, sapping nutrients from the plant, leading to stunting. The potential yield loss can reach up to 100%. Some farmers attempt to uproot it once they notice it germinating alongside their maize plantation, but this is often too late because damage is done as soon as the parasite attaches to the maize roots. When mature, the weed deposits tens of thousands of tiny seeds into the soil. This makes it very difficult for farmers to get rid of it.

To tackle this challenge, farmers need to apply inorganic fertilizer, which is not always affordable, or animal manure to enrich the soil before planting. They are also advised by researchers and extensionists to practice crop rotation or intercropping with legumes such as beans, soybean or groundnuts that restrict Striga’s germination.  In the Assessment of Management Options on Striga Infestation and Maize Grain Yield in Kenya, for example, researchers recommend that Striga control measures include a combination of herbicide-resistant or maize varieties with native genetic resistance intercropped with legumes.

Nevertheless, while a few control measures have been moderately successful, the problem still persists, especially in western Kenya, eastern Uganda and lake zone of Tanzania, where farmers have frequently voiced their frustrations at the ubiquity of this invasive weed.

“While crop rotation with crops such as soybean or beans may break the cycle of Striga, its seed can stay in the soil and remain viable for up to 10 years,” says Dan Makumbi, a maize breeder with the International Maize and Wheat Improvement Center (CIMMYT), who is leading research efforts against the witchweed.

A sorghum field infested with Striga in Siaya County. (Photo: Joshua Masinde/CIMMYT)
A sorghum field infested with Striga in Siaya County. (Photo: Joshua Masinde/CIMMYT)
Norah Kayugi on a Striga-infested farm in Siaya County. (Photo: Joshua Masinde/CIMMYT)
Norah Kayugi on a Striga-infested farm in Siaya County. (Photo: Joshua Masinde/CIMMYT)
Norah Kayugi holds a bunch of Striga weeds she has uprooted on a farm she works as a casual laborer in Siaya. (Photo: Joshua Masinde/CIMMYT)
Norah Kayugi holds a bunch of Striga weeds she has uprooted on a farm she works as a casual laborer in Siaya. (Photo: Joshua Masinde/CIMMYT)

A blow to optimal yield potential

Maize is a staple crop that is predominantly cultivated by smallholder farmers in western Kenya and the lake region. It is an important source of food security and livelihoods of millions of people in the region, but constraints such as Striga prevent farmers from obtaining the crop’s ideal potential.

“The yield loss would have been adequate to cover my family’s food requirements for a year,” Naliaka said. “From two farming seasons, I could harvest a sufficient quantity of maize and sell some surplus to pay my children’s school fees. With the Striga menace, all that is but a dream.”

Just like Naliaka, Norah Kayugi, a 40-year-old widowed mother of six children from Siaya County in Kenya, has seen her maize production fall to less than 8 bags of 90kgs per acre. In normal circumstances, they would obtain at least 16 bags of maize per acre. The significant yield loss sets back many affected households in a big way, as they experience food shortage only a few months after harvest. Some divert their reduced incomes for food purchases, possibly leaving other priorities such as health and education of their children unattended.

Kayugi, who has been a farmer since 1997, now takes on casual jobs to supplement her farming in order to support her family, being the sole breadwinner following her husband’s demise years ago. “I plant vegetables, beans and maize to sustain my family. My one-acre farm yields about 10 bags of 90ks each. But I know for sure that were it not for this weed, the yield potential could reach 30 bags of 90kgs each per acre.”

A young, yet-to-flower Striga weed at the CIMMYT-KALRO Kibos Research Station in Kisumu. (Photo: Joshua Masinde/CIMMYT)
A young, yet-to-flower Striga weed at the CIMMYT-KALRO Kibos Research Station in Kisumu. (Photo: Joshua Masinde/CIMMYT)

Standing up to multiple farming stresses

These smallholders, like their counterparts elsewhere in sub-Saharan Africa, already face other farming challenges, including climate change-induced droughts, pests such as the fall armyworm, diseases like maize lethal necrosis (MLN), and declining soil fertility, among others. While CIMMYT has registered breakthroughs in developing maize varieties that tolerate such stresses, on-going efforts against Striga are also taking shape, challenges notwithstanding.

The development and deployment of the imazapyr-resistant (IR) maize has been one such instance of effective Striga control. With this method, herbicide-resistant maize seeds are coated with herbicide.  The seed germinates and absorbs some of the herbicide used to coat it. The germinating maize stimulates Striga to germinate and as it attaches to the maize root, it is killed before it can cause any damage. Despite its effectiveness, sustaining this technology presented a major challenge to seed companies.

“It was costly for seed companies, as they needed to establish and sustain the operation of separate seed treatment units dedicated to production of the herbicide-coated maize seed. Once you establish a line to dress the seed with the chemical, you cannot use it to treat any other seeds as the chemical will destroy them,” said Makumbi.

Seed companies — like NASECO in Uganda, Kenya Seed Company in Kenya, Western Seed Company and FreshCo in Kenya, and Meru Agro in Tanzania — obtained financial and technical support from a partnership initiative coordinated by African Agricultural Technology Foundation (AATF) and backed by CIMMYT to scale commercialisation of StrigAwayTM maize in East Africa. The initiative was funded by USAID’s Feed the Future Partnering for Innovation program through Fintrac and it supported the seed companies to establish seed treatment facilities to handle herbicide resistant maize. This allowed each of the companies to have a fully dedicated facility for herbicide resistant maize seed processing. “Right now, herbicide resistant maize hybrid seed is available on the market in Kenya, Tanzania and Uganda,” Makumbi said.

CIMMYT field technician Carolyne Adhiambo at a maize field experiment showing promise of Striga tolerance or resistance the Kibos Research station in Kisumu. (Photo: Joshua Masinde/CIMMYT)

Native hope

In the past few years, Makumbi and his team, in collaboration with the International Institute for Tropical Agriculture (IITA) and the Kenya Agricultural and Livestock Research Organization (KALRO), have redirected their efforts towards breeding for native genetic resistance to Striga. This means developing seeds which are naturally resistant to Striga, reducing the need for herbicides. The early indication is that there are several parental lines showing potential to tolerate or resist Striga, and these are being used to develop hybrids. The hybrids, which offer multiple benefits for farmers, are under wide scale testing in Kenya.

“In our tests, we are not only looking at Striga resistance alone but also other important traits such as good yield under optimal conditions, drought stress and low soil fertility, resistance to major foliar diseases including gray leaf spot, Turcicum leaf blight, maize streak virus and ear rots,” Makumbi noted.

As these breeding efforts continue, there is light at the end of the tunnel. The hope of farmers taking back full control of their maize farms from Striga’s “bewitching ways” in the near future remains alive.

New project to ramp up genetic gains in maize for better livelihoods

Drought tolerant maize route out of poverty for community-based seed producer, Kenya. (Photo: Anne Wangalachi/CIMMYT)
Drought tolerant maize route out of poverty for community-based seed producer, Kenya. (Photo: Anne Wangalachi/CIMMYT)

As plant pests and diseases continue to evolve, with stresses like drought and heat intensifying, a major priority for breeders and partners is developing better stress tolerant and higher yielding varieties faster and more cost effectively.

A new project, Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods (AGG), seeks to achieve these results by speeding up genetic gains in maize and wheat breeding to deliver improved, stress resilient, nutritious seed to smallholders in 13 countries in sub-Saharan Africa (SSA) and four in South Asia. The 5-year AGG project is funded by the Bill & Melinda Gates Foundation, the UK Department for International Development (DFID), the U.S. Agency for International Development (USAID), and the Foundation for Food and Agriculture Research (FFAR).

The maize component of the project brings together diverse partners, including the International Maize and Wheat Improvement Center (CIMMYT) and the International Institute of Tropical Agriculture (IITA) as co-implementers; national agricultural research systems (NARS); and small and medium-sized (SME) seed companies.

Ambitious targets

At the inception meeting of the maize component of AGG on July 10, 2020, project leaders, partners and funders lauded the ambitious targets that aim to bolster the resilience and better the livelihoods, food and nutritional security of millions of smallholder farmers in SSA. At least 150,000 metric tons of certified seed is expected to be produced, adopted by 10 million households, planted on 6 million hectares by 2024 and benefiting 64 million people.

“We are developing climate resilient, nutritious, efficient, productive maize varieties for the farming community in sub-Saharan Africa. We will continue to work closely with our partners to develop product profiles, which are centered on the varieties that are really needed,” said CIMMYT Interim Deputy Director for Research Kevin Pixley.

AGG draws a solid foundation from previous projects such as Drought Tolerant Maize for Africa (DTMA), Improved Maize for Africa Soils (IMAS), Water Efficient Maize for Africa (WEMA) and Stress Tolerant Maize for Africa (STMA). Several high-yielding maize varieties that tolerate and/or resist diseases such as maize lethal necrosis (MLN), gray leaf spot (GLS), northern corn leaf blight, maize streak virus (MSV), turcicum leaf blight (TLB) and are drought-tolerant (DT), were developed and released to farmers across SSA. Varieties with nutritional traits such as nitrogen use efficiency (NUE) and quality protein maize (QPM) were also developed in the preceding initiatives.

Drought Tolerant Maize for Africa (DTMA) project monitoring and evaluation takes place in Tanzania. (Photo: Florence Sipalla/CIMMYT)
Drought Tolerant Maize for Africa (DTMA) project monitoring and evaluation takes place in Tanzania. (Photo: Florence Sipalla/CIMMYT)

A matter of “life or death”

“When farmers are confronted by aggressive farming challenges, they want products that address those challenges at the earliest opportunity. Waiting for years could mean the difference between life and death,” remarked David Chikoye, the director of Southern Africa Hub at IITA.

A key focus of AGG is to incorporate gender-intentionality – special attention to the needs of women farmers and consumers – from the traits bred into new varieties, through the communication and technology deployment strategies.

“AGG provides an excellent opportunity to reorient our maize breeding, seed scaling and delivery strategies for greater impact on the livelihoods of smallholder farmers, especially women and the disadvantaged communities that are not well reached so far,” said B.M. Prasanna, director of CIMMYT’s Global Maize Program and the CGIAR Research Program on Maize. “Our vision is to accelerate genetic gains to 1.5-2 percent annually across different breeding pipelines in the 13 participating countries in SSA and to reach over 10 million households with improved varieties.”

AGG will strengthen the capacity of partners to achieve and sustain accelerated variety replacement — or turnover — and increase genetic gains in farmers’ fields.

Old vs new

Many improved varieties have been released in the past decade. However, the turnover of old and obsolete varieties with new and improved ones is not happening as quickly as anticipated.

“We are producing good products and getting them out, but not at the speed that farmers need. How do we make it possible and profitable for seed companies to quickly introduce new hybrids?” posed Gary Atlin, program officer at the Bill & Melinda Gates Foundation. “We need to move towards a breeding and seed system where we know that we can develop a new product in 4 or 5 years and then get it to the farmers much more quickly. This is a complex problem.”

To enhance AGG’s ability to identify new products that perform well for farmers under their challenging circumstances, on-farm testing will be scaled up significantly.

Guest of honor, Ethiopia’s Minister of State for Agriculture Mandefro Nigussie, lauded CIMMYT’s support in improving the resilience and productivity of maize and wheat in the country. He observed that this has helped improve maize productivity in Ethiopia from around 2 tons/ha to about 4 tons/ha over the past two decades.

“We consider such a huge accomplishment as a combination of efforts in germplasm development and breeding efforts of CIMMYT and the Ethiopian national programs. That partnership will flourish further in this new project,” he said.

Accelerating Genetic Gains in Maize and Wheat (AGG)

Accelerating Genetic Gains in Maize and Wheat (AGG)

Accelerating Genetic Gains in Maize and Wheat (AGG), a project led by the International Maize and Wheat Improvement Center (CIMMYT), brings together partners in the global science community and in national agricultural research and extension systems to accelerate the development of higher-yielding varieties of maize and wheat — two of the world’s most important staple crops.

Specifically focusing on supporting smallholder farmers in low- and middle-income countries, the project uses innovative methods that improve breeding efficiency and precision to produce varieties that are climate-resilient, pest- and disease-resistant, and highly nutritious, targeted to farmers’ specific needs.

The maize component of the project serves 13 target countries: Ethiopia, Kenya, Malawi, Mozambique, South Africa, Tanzania, Uganda, Zambia and Zimbabwe in eastern and southern Africa; and Benin, Ghana, Mali, and Nigeria in West Africa. The wheat component of the project serves six countries: Bangladesh, India, Nepal, and Pakistan in South Asia; and Ethiopia and Kenya in sub-Saharan Africa.

This project builds on the impact of the Delivering Genetic Gain in Wheat (DGGW) and Stress Tolerant Maize for Africa (STMA) projects.

Objectives

The project aims to accelerate the development and delivery of more productive, climate-resilient, gender-responsive, market-demanded, and nutritious maize and wheat varieties in support of sustainable agricultural transformation in sub-Saharan Africa and South Asia.

To encourage adoption of new varieties, the project works to improve equitable access, especially by women, to seed and information, as well as capacity building in breeding, disease surveillance, and seed marketing.

Funders

Project funding is provided by the Bill & Melinda Gates Foundation, the UK Foreign, Commonwealth & Development Office, the United States Agency for International Development and the Foundation for Food and Agricultural Research (FFAR).

Key partners

The primary partners for this project are the national agricultural research systems in the project target countries and, for the maize component, the International Institute for Tropical Agriculture (IITA) and small and medium enterprise (SME) seed companies.

Scientific and technical steering committees

We are grateful to our excellent maize and wheat scientific and technical steering committees for their suggestions and thoughtful question on key issues for the success of AGG. Read about the recommendations from the maize steering committee here and the wheat steering committee here.

Year 1 Executive Summary

In its first year of operation, AGG has made great strides in collaboration with our national partners towards the project goals –despite the unprecedented challenges of working through a global pandemic. For specific milestones achieved, we invite you to review our AGG Year 1 Executive Summary and Impact Report (PDF).

Year 2 Executive Summary

AGG has made progress towards all outcomes. Our scientists are implementing substantial modifications to breeding targets and schemes. AGG is also in a continuous improvement process for the partnership modalities, pursuing co-ownership and co-implementation that builds the capacities of all involved. For specific milestones achieved, we invite you to review our AGG Year 2 Executive Summary and Impact Report (PDF).

CIMMYT’s adult plant resistance breeding strategy

Download a summary of CIMMYT’s breeding strategy for adult plant resistance (PDF).

Subscribe to the AGG newsletter

African small-scale mechanization project winds down after strong results

Smallholder farmers in Zimbabwe and Ethiopia have embraced small-scale mechanization thanks to an innovative CIMMYT-led project, which is now drawing to a close. Since 2013, the Farm Mechanization and Conservation Agriculture for Sustainable Intensification (FACASI) project has helped farmers access and use two-wheel tractors that significantly reduce the time and labor needed to grow, harvest and process their crops. To ensure long-term sustainability, the project and its partners helped support and develop local enterprises which could supply, service and operate the machines, and encouraged the development of supportive government policies. The project was funded by the Australian Centre for International Agricultural Research (ACIAR), as well as the CGIAR Research Programs on Maize and Wheat.

“Mechanization is a system not a technology”

From its inception, FACASI went beyond simply providing machinery to farmers, and instead envisioned mechanization as a way out of poverty. “Mechanization is a system, not only a technology,” said Bisrat Getnet, the project’s national coordinator in Ethiopia and director of the Agricultural Engineering Research Department at the Ethiopian Institute of Agricultural Research. “Mechanization needs infrastructure such as roads, fuel stations, spare part dealerships, maintenance centers, training centers and appropriate policies. This project assessed which measures are needed to sustain a new technology and addressed these with direct interventions,” he explained.

The FACASI project worked to introduce and develop new small-scale machines, including two-wheel tractors, small shellers and threshers, and small pumps, in African rural settings, collaborating with local engineers, farmers and manufacturers. This included adapting a range of attachments that could be used to mechanize on-farm tasks such as planting, harvesting, transporting and shelling. In parallel, the project developed local business opportunities around the supply, maintenance and use of the machines, to ensure that users could access affordable services and equipment in their communities.

The project initially worked in four countries: Ethiopia, Kenya, Tanzania and Zimbabwe. Researchers saw significant potential for mechanization to reduce the labor intensity associated with smallholder farming, while encouraging application of conservation agriculture techniques and developing rural service provision businesses. In its second phase, which began in 2017, the project focused on strengthening its efforts in Zimbabwe and Ethiopia.

“In my view the most innovative aspect enabling FACASI’s success was the concept of combining engineering and business modelling, with an understanding of the political, legislative and policy situations in the four countries,” said Professor John Blackwell, an Adjunct Professor at Charles Sturt University who reviewed FACASI and also invented and helped commercialize several successful machines in South Asia, including the famous Happy Seeder.

“FACASI has proven that small mechanization is viable in smallholder settings,” said CIMMYT scientist and project coordinator FrĂ©dĂ©ric Baudron. “It has shown smallholders that they don’t have to consolidate their farms to benefit from conventional machines, but that machines can instead be adapted to their farm conditions. This, to me, defines the concept of ‘appropriate mechanization’,” he said.

Conservation agriculture planter manufacturing in Arusha, Tanzania. (Photo: CIMMYT)

Benefits to local communities

During its course, the project improved the efficiency and productivity of smallholder farming, reducing labor requirements and creating new pathways for rural women and youth.

The reduction in the labor and drudgery of farming tasks has opened many doors. Farmers can save the costs of hiring additional labor and reinvest that money into their enterprises or households. With a small double-cob sheller producing one ton of kernels in an hour compared to up to 12 days by hand, women can do something else valuable with their time and energy. Entrepreneurs offering mechanization services — often young people who embrace new technologies — can earn a good income while boosting the productivity of local farms.

Mechanization has shown to sustainably improve yields. In Ethiopia, farmers using two-wheel tractors were able to reduce the time needed to establish a wheat crop from about 100 hours per hectare to fewer than 10 hours. In trials, maize and wheat respectively yielded 29% and 22% more on average, compared with using conventional crop establishment methods.

Local female artisan, Hawassa, Ethiopia. (Photo: CIMMYT)

Impacts now and into the future

According to its national partners, FACASI has laid the groundwork for cheap and practical two-wheel tractors to proliferate. In Ethiopia, there are currently 88 service providers whose skills has been directly developed through FACASI project interventions. “This has been a flagship project,” said Ethiopia national coordinator Bisrat Getnet. “It tested and validated the potential for small-scale mechanization and conservation agriculture, it proved that new business models could be profitable, and it opened new pathways for Ethiopian agriculture policy,” he said.

In Zimbabwe, the project has also set the wheels of change in motion. “FACASI demonstrated an opportunity for creating employment and business opportunities through small-scale mechanization,” said Tirivangani Koza, of Zimbabwe’s Ministry of Lands, Agriculture, Water and Rural Resettlement. “With the right funding and policies, there is a very wide and promising scope to scale-up this initiative,” he said.

Read more:
Explore the FACASI Hello Tractor knowledge platform to learn more about conservation agriculture and small-scale mechanization

Cover photo: Demonstration of a minitiller, Naivasha, Kenya. (Photo: CIMMYT)

 

TELA Maize Project

The name TELA is derived from the Latin word tutela, which means “protection.” The TELA Maize Project is a public-private partnership led by the African Agricultural Technology Foundation (AATF) working towards the commercialization of transgenic drought-tolerant and insect-protected (TELAÂź) maize varieties to enhance food security in sub-Saharan Africa. Launched in 2018, the TELA Maize Project builds on progress made from a decade of breeding work under the Water Efficient Maize for Africa (WEMA) Project.

Africa is a drought-prone continent, making farming risky for millions of smallholders who rely on rainfall to water their crops. Climate change will only worsen the problem. Identifying ways to mitigate drought risk, stabilize yields, and encourage small-scale farmers to adopt best management practices is fundamental to realizing food security and improved livelihoods for the continent. Drought is just one of the many challenges facing sub-Saharan African farmers. Insects pose additional challenges as farmers in the developing world have little or no resources to effectively manage them. Insect protection complements and protects yield made possible through research and development.

Through TELA, AATF and its partners are pursuing the regulatory approval and dissemination of new biotech/genetically-modified maize seeds containing either an insect-resistant trait or the stacked insect-resistant and drought-tolerant traits across seven target countries in Africa (Ethiopia, Kenya, Mozambique, Nigeria, South Africa, Tanzania and Uganda). The transgenic technology, including gene constructs, transformation and other recombinant DNA technologies, and other proprietary information and materials regarding the transgenes, owned by Bayer CropScience LP (formerly Monsanto Company), is licensed royalty-free to the partners for use in the project.

To the extent where their germplasm is transformed/incorporated into finished lines, Bayer and CIMMYT further grant AATF the license to commercially release the transgenic maize varieties within the partner countries, provided that no royalty fee shall be charged by AATF/its sublicensees, and subject to compliance with all regulatory, biosafety and stewardship requirements. CIMMYT’s non-transgenic parental lines which may be used for introgression in this project have been shared under the terms of the Standard Material Transfer Agreement (SMTA) of the Plant Treaty, and remain available to other third parties outside the project in the same way. The partner countries are in different stages of the approval process to test and commercialize TELA¼ hybrids, which will determine when farmers can access the improved TELA seeds.

Seed companies can receive license rights to produce and commercialize the new TELAÂź hybrids under their private brand from AATF in due course. Licensed seed companies will access the technology royalty-free for them to produce and sell the seeds to farmers at prevailing market prices. Better yield performance, combined with improved seed quality, will deliver more value to farmers and create more demand and potential for the seed brand.

Smallholder farmers benefit from TELA maize, as it provides better drought tolerance, protection against stem borers, and partial but significant protection against fall armyworm. As a result, smallholders will spend less money on insecticides and reduce their exposure to these chemicals, besides benefiting from improved yields and better grain quality.

Spraying locusts before they can fly key for effective control

The locust invasion is the biggest in Ethiopia and Somalia in 25 years, and the biggest in Kenya in 70 years, according to the FAO. Photo: Ben Curtis/AP

East African countries are battling the worst desert locust invasion in decades. The locusts are devouring crops and pasture leaving in their wake a region that is staring at a potential food crisis. The swarms have swept across Djibouti, Eritrea, Ethiopia, Kenya, South Sudan, Somalia, Sudan, Tanzania and Uganda, with some of these countries reporting the worst outbreak in 70 years.

Experts have warned of a second round of the flare-up, as the eggs laid along the locust path hatch. Both aerial and ground spraying with insecticides continue but such interventions have not yielded much success.

Stephen Njoka, Director of the Desert Locust Control Organization for Eastern Africa (DLCO-EA) and Hugo De Groote, Agricultural Economist at the International Maize and Wheat Improvement Center (CIMMYT) share some insights on the outbreak, effective control measures and what can be done to mitigate the damage currently and in potential future outbreaks.

Q: What is your opinion on the locust invasion across the eastern Africa region?

A: The current locust invasion in the eastern Africa region is one of the most serious occurrences in decades. For Ethiopia and Kenya, this is the worst outbreak in over 25 years and 70 years respectively. The locusts have caused significant damage in pastoral regions, where they have devoured pasture and tree leaves. They are now reaching some of the major maize growing areas where they are likely to cause a lot of damage to the crops.

Q: Why are they called desert locusts?

A: They breed in the wet desert sands. In west Africa for instance, they would breed in the border areas between the Sahel and the Sahara Desert. They go through six stages; five of which are the non-flying phases. Once they reach adult stage, they start flying, mating and laying eggs, and the cycle continues.

They are usually solitary in nature, but occasionally move into their gregarious state, in which they alter their behavior and physical appearance, form swarms and migrate over long distances following the winds. This is what differentiates locusts from grasshoppers. When they land at a particular location, they cause a lot of damage in that specific area. Apart from that local destruction, however, they may not cause much harm on a national scale.

Q: How serious of a problem is this invasion to the food security status of countries like South Sudan that are just recovering from decades of conflict and a recent drought?

A: The invasion could pose a serious food security challenge in some areas as these insects consume their own weight in a day (one insect weighs 2 grams and a swarm can contain over 50 million insects).

For countries like South Sudan and Somalia where conflicts can hamper locust control efforts, the food insecurity situation gets compounded. Pastures are the worst hit as locusts tend to prefer hotter climates where livestock keeping is the main source of livelihood.

Q: In your experience, what is the best way to deal with such an invasion? What are the most effective control measures?

A: The best way to deal with such an invasion is to conduct aerial spraying using Ultra Low Volume (ULV) chemical or biological pesticides at the early stages for effective control. It is important to identify the egg-laying sites early on so that the emerging hoppers are sprayed before they can fly.

Q: We understand that this is the worst invasion in Kenya in about 70 years and the worst in 25 years in some neighboring countries such as Ethiopia. Should we expect another infestation a few years from now?

A: It is unlikely that we can expect another invasion of this magnitude in the near future. The current invasion may have been driven by climatic changes in the breeding areas of the Red Sea coast, war-torn Yemen and Somalia.

Q: How can we be better prepared given that such invasions are cyclical in nature and may happen again after some years or decades?

A: Continued monitoring and forecasting of the locust population in the traditional breeding sites should be a priority. Countries in the invasion areas should establish Locust Control Units under the appropriate ministries. These units should frequently get updates from the FAO Desert Locust Information Service (DLIS) in Rome and take precautionary steps as advised.

As the eastern Africa region, member countries of DLCO-EA should step up their support for the organization by acquiring modern aircrafts, which can conduct aerial spraying more effectively and efficiently.

Q: What monitoring measures are in place for the surveillance and recommended remedial measures, especially in periods of low densities just before they become gregarious? Who does the monitoring and how frequently is the monitoring done?

A: Locust scouting teams in the breeding areas are charged with monitoring and surveillance of these pests. The exercise is continuous and largely supported by FAO DLIS using appropriate equipment like elOCUST 3, a data recording and transmission system for crop pest monitoring, currently used as a detection and early warning tool for desert locusts.

Q: Are mitigation measures such as compensation for affected farmers an option?

A: Where farmers are seriously hit, government, intergovernmental agencies or non-governmental organizations may consider easing the farmers’ losses by offering food and/or financial support.

Q: We have seen efforts such as aerial or ground spraying of the pests. How effective are these interventions? What implications does this control measure have on the environment and people’s health?

A: The safe use of pesticides remains the best choice for control of insects occurring in such big numbers. It is important to use environmentally safe products which cause minimum harm to non-targets. Spray teams should be well trained on how to handle the pesticides.

People living in the invaded areas should also be alerted on keeping themselves and their livestock safe by not getting into the sprayed areas as advised. One effective biological control is the use of the Metarhizium, which the International Institute of Tropical Agriculture (IITA) developed out of the locust skin fungus.

Nevertheless, some chemicals may cause more harm to the environment, especially when aerial spraying is applied on swarms in flight. The pesticides can contaminate the environment, water, crops and can cause skin rashes or respiratory, neurological or eye problems. They can also cause harm to animals and aquatic species.

In times of locust outbreaks, like now, there is a tendency to procure large quantities of pesticides. However, once the locusts are gone, stockpiles of the unused pesticides remain. This brings about a new challenge of destroying or safely disposing of the old or obsolete pesticide stock.

Q: Can the locusts be eaten? 

A: Many communities in the world eat locusts and other insects. It is, however, important to caution against eating sprayed locusts. Additionally, locust swarms can contain billions of locusts, so catching them for food may not have a significant effect in reducing their population.

Study calls for better understanding of fertilizer prices faced by African smallholder farmers

A farm worker applies fertilizer in a field of Staha maize for seed production at Suba Agro's Mbezi farm in Tanzania. (Photo: Peter Lowe/CIMMYT)
A farm worker applies fertilizer in a field of Staha maize for seed production at Suba Agro’s Mbezi farm in Tanzania. (Photo: Peter Lowe/CIMMYT)

Crop yields in sub-Saharan Africa are generally low. This is in large part because of low fertilizer use. A recent study of six countries in sub-Saharan Africa showed that just 35% of farmers applied fertilizer. Some possible reasons for this could be that farmers may be unaware of the efficacy of fertilizer use; or have degraded soils that do not respond to fertilizer; they may not have the cash to purchase it; or because unpredictable rainfall makes such investments risky. It may also be because local fertilizer prices make their use insufficiently profitable for many farmers.

To better understand the potential fertilizer demand in a particular location, it is important to know how crops respond to fertilizer under local conditions, but it is critical to understand crop responses in terms of economic returns. This requires information about local market prices of fertilizers and other inputs, as well as the prices that a farmer could receive from selling the crop.

While national-level fertilizer prices may be available, it is necessary to consider the extent to which prices vary within countries, reflecting transportation costs and other factors. In the absence of such data, analysis of household-level behaviors requires assumptions about the prices smallholder farmers face — assumptions which may not be valid. For example, evaluations of the returns to production technologies settings have often assumed spatially invariant input and output prices or, in other words, that all farmers in a country face the same set of prices. This is at odds with what we know about economic remoteness and the highly variable market access conditions under which African smallholders operate.

An obstacle to using empirical data on sub-national disparities in fertilizer prices is the scarcity of such data. A new study focused on the spatial discrepancies in fertilizer prices. The study compiled local market urea price in eighteen countries in sub-Saharan Africa for the period between 2010-2018 and used spatial interpolation models — using points with known values to approximate values at other unknown points — to predict local prices at locations for which no empirical data was available. It was conducted by scientists at University of California, Davis, the International Maize and Wheat Improvement Center (CIMMYT) and the International Food Policy Research Institute (IFPRI). The authors note that this is the first major attempt to systematically describe the spatial variability of fertilizer prices within the target countries and test the ability to estimate the price at unsampled locations.

Predicted relative urea price (local price divided by the observed median national price) for areas with crop land in eight East African countries.
Predicted relative urea price (local price divided by the observed median national price) for areas with crop land in eight East African countries.

“Our study uncovers considerable spatial variation in fertilizer prices within African countries and gives a much more accurate representation of the economic realities faced by African smallholders than the picture suggested by using national average prices,” said Camila Bonilla Cedrez, PhD Candidate at University of California, Davis. “We show that in many countries, this variation can be predicted for unsampled locations by fitting models of prices as a function of longitude, latitude, and additional predictor variables that capture aspects of market access, demand, and environmental conditions.”

Urea prices were generally found to be more expensive in remote areas or away from large urban centers, ports of entry or blending facilities. There were some exceptions, though. In Benin, Ghana and Nigeria, prices went down when moving away from the coast, with the possible explanation being market prices in areas with higher demand are lower. In other locations, imports of fertilizer from neighboring countries with lower prices may be affecting prices in another country or region, much like political influence. Politically, well-connected villages can receive more input subsidies compared to the less connected ones.

“The performance of our price estimation methods and the simplicity of our approach suggest that large scale price mapping for rural areas is a cost-effective way to provide more useful price information for guiding policy, targeting interventions, and for enabling more realistic applied microeconomic research. For example, local price estimates could be incorporated into household-survey-based analysis of fertilizer adoption,” explained Jordan Chamberlin, CIMMYT spatial economist. “In addition, such predictive ‘price maps’ can be incorporated into targeting and planning frameworks for agricultural investments. For example, to target technology promotion efforts to the areas where those technologies are most likely to be profitable.”

Predicted relative urea price (local price divided by the observed median national price) for areas with crop land in nine West African countries.
Predicted relative urea price (local price divided by the observed median national price) for areas with crop land in nine West African countries.

“The evidence we have compiled in this paper suggests that, while investments in more comprehensive and spatially representative price data collection would be very useful, we may utilize spatial price prediction models to extend the value of existing data to better reflect local price variation through interpolation,” explained Robert J. Hijmans, professor at University of California, Davis. “Even if imperfect, such estimates almost certainly better reflect farmers’ economic realities than assumptions of spatially constant prices within a given country. We propose that spatial price estimation methods such as the ones we employ here serve for better approximating heterogeneous economic market landscapes.”

This study has illustrated new ways for incorporating spatial variation in prices into efforts to understand the profitability of agricultural technologies across rural areas in sub-Saharan Africa.  The authors suggest that an important avenue for future empirical work would be to evaluate the extent to which the subnational price variation documented is a useful explanatory factor for observed variation in smallholder fertilizer use in sub-Saharan Africa, after controlling for local agronomic responses and output prices. One way to do that may be to integrate input and output price predictions into spatial crop models, and then evaluate the degree to which modeled fertilizer use profitability predicts observed fertilizer use rates across different locations.

Read the full study:
Spatial variation in fertilizer prices in Sub-Saharan Africa

Do smallholders get the right seed and inputs from their agrodealer?

Judith Thomson, agrodealer in Mbalizi, Mbeya district, Tanzania. (Photo: Owekisha Kwigizile)
Judith Thomson, agrodealer in Mbalizi, Mbeya district, Tanzania. (Photo: Owekisha Kwigizile)

Many Tanzanian smallholder farmers fail to produce even 1 ton of maize grain per hectare. To improve crop yields, a farmer needs the right seeds and complementary inputs, including inorganic fertilizer. The “right” inputs will depend upon what his or her geographical location and farming system are. How many farmers have access to such inputs and advice? What is the distribution of agrodealers in rural areas? What do they stock, and at what prices?

The International Maize and Wheat Improvement Center (CIMMYT) recently carried out a survey of agrodealers in Uganda and Tanzania to answer such questions related to the last-mile delivery of seeds and other agronomic inputs.

This is a joint initiative from two projects — Taking Maize Agronomy to Scale in Africa (TAMASA) and Strengthening product profile-based maize breeding and varietal turnover in Eastern and Southern Africa — funded by the Bill & Melinda Gates Foundation and USAID.

For the study, CIMMYT teams interviewed 233 agrodealers in Uganda and 299 agrodealers in Tanzania. The survey started in September 2019, just before the main maize planting season, and covered five districts in each country, in both easy-to-reach and remote areas.

The study focuses particularly on two types of agricultural inputs: maize seeds — similar to an earlier survey done this year in Kenya — and fertilizer.

Are agrodealers catalyzers of varietal turnover?

For maize seed, researchers looked at which varieties are available at the agrodealer and how do they decide on what to stock.

Agrodealers were also asked to report the key selling attribute of the different varieties they had in store whether it was yield, drought tolerance, maturity level or another marketing characteristic like pricing or packaging. Such information will give some better insights for CIMMYT’s maize breeding team about perceived differences along the seed value chain on key attributes and product profiles.

For example, a new variety in Uganda that was tolerant to maize lethal necrosis (MLN), was mainly promoted as a double cobber and not as MLN tolerant. And unlike in Uganda, there was no “cheap variety” option available in Tanzania, according to the agrodealers interviewed for the study, although high seed prices were often mentioned as the main barrier for seed purchases.

Better understanding how retailers select their varieties could help improve varietal turnover, a key indicator of how fast CIMMYT’s research reaches out farmers.

Besides their own role, it is also interesting to see how agrodealers perceive external challenges to influence farmer adoption of improved varieties. In Uganda, agrodealers saw counterfeit seed and government free seed distributions to farmers as the main challenges for their business, issues that were not frequently mentioned in Tanzania.

Understanding input market characteristics

Enumerator Mary Mdache (left) interviews Shangwe Stephano, staff of BAYDA agrovet shop in Haydom town, Mbulu district, Tanzania. (Photo: Furaha Joseph)
Enumerator Mary Mdache (left) interviews Shangwe Stephano, staff of BAYDA agrovet shop in Haydom town, Mbulu district, Tanzania. (Photo: Furaha Joseph)

The use of fertilizer is very low in sub-Saharan Africa, around 8-12 kg per hectare, twenty times less than Western standards. Fertilizer access and affordability have been cited as key factors in the low rates of uptake.

The study may shed some new light on this, as it looks at what types of fertilizer is available to farmers at agrodealer shops, and what drives sale and prices. Researchers will examine whether there is a competition effect and how transport costs or subsidies impede the growth of the fertilizer market.

Georeferencing of interviewed agrodealers and farmer population mapping will help reveal the degree to which agrodealers are concentrated in particular areas, leaving other areas with relatively little local access to inputs. Project researchers will investigate how marketing conditions vary across such situation, examining, for instance, how input pricing strategies, selection and quality varies spatially. The team will also use data collected on fertilizer prices to further refine regional fertilizer profitability maps.

Such mapping exercises could help improve the relevance of extension advice. As an example, to tackle acid soils or phosphorus deficiency, could farmers find the recommended input, lime or appropriate P fertilizer at the right time and right price, so that it is profitable for them?

The detailed results of the study are expected in early 2020 to guide agronomic investments and policies for more functional input markets that drive a much-needed sustainable intensification of African smallholder agriculture.

Are high land rental costs pricing African youth out of agriculture?

A farm worker carrying her baby on her back weeds maize in Tanzania. (Photo: Peter Lowe/CIMMYT)
A farm worker carrying her baby on her back weeds maize in Tanzania. (Photo: Peter Lowe/CIMMYT)

A new study shows that youth can face higher land rental prices than older farmers in Tanzania and other parts of sub-Saharan Africa.

“The rising importance of land rental markets reflects increasing rural population densities in many parts of the continent,” said Jordan Chamberlin, an agricultural economist with the International Maize and Wheat Improvement Center (CIMMYT) and study co-author.

“Evidence that the effective costs of rental market participation are relatively higher for younger farmers suggests that the markets are not yet mature,” Chamberlin explained. “This appears to stem partly from weak contract enforcement norms that make land rental arrangements more sensitive to trust and reputation. That puts younger farmers, who have not yet built up such social capital stocks, at a disadvantage.”

As many as three-quarters of Tanzanian youth are employed in agriculture, and with rural populations in Africa expected to rise over the next several decades, the region will experience an increasing scarcity of land relative to labor.

Young people today are already inheriting less land than previous generations and waiting longer to obtain the land they do inherit, according to the authors, who observe as one result a rising dependence on labor markets.

“Wage income’s importance will continue to rise in rural areas of sub-Saharan Africa, but policymakers should also foster equitable access to land for young agricultural entrepreneurs,” said Chamberlin.

The authors recommend measures such as tenant-landlord “matchmaking” programs, arrangements that encourage land sales by older farmers to younger farmers, and clarifying and simplifying regulations and procedures for title conversions and land purchases.

“Local governments may also share information about land rental rates for different areas, to provide a reference for rental negotiations,” added Chamberlain.

Read the study:
“Transaction Costs, Land Rental Markets, and Their Impact on Youth Access to Agriculture in Tanzania”

Seeds of progress

 

The maize seed sector in east and southern Africa is male-dominated. However, there are women working in this sector who are breaking social barriers and helping to improve household food security, nutrition and livelihoods by providing jobs and improved seed varieties to farmers.

Researchers from the International Maize and Wheat Improvement Center (CIMMYT) conducted interviews with women owners of seed companies in eastern and southern Africa. They shared information on their background, their motivation to start their businesses, what sets their companies apart from the competition, the innovative approaches they use to ensure smallholder farmers adopt improved seed varieties, the unique challenges they face as women in the seed sector and the potential for growth of their companies.

Millions at lower risk of vitamin A deficiency after six-year campaign to promote orange-fleshed sweet potato

A community health worker in Rwanda talks to people on hygiene and the importance of a balanced diet, as part of the SUSTAIN project. (Photo: CIP)
A community health worker in Rwanda talks to people on hygiene and the importance of a balanced diet, as part of the SUSTAIN project. (Photo: CIP)

STOCKHOLM, Sweden — Millions of families in Africa and South Asia have improved their diet with a special variety of sweet potato designed to tackle vitamin A deficiency, according to a report published today.

A six-year project, launched in 2013, used a double-edged approach of providing farming families with sweet potato cuttings as well as nutritional education on the benefits of orange-fleshed sweet potato.

The Scaling Up Sweetpotato through Agriculture and Nutrition (SUSTAIN) project, led by the International Potato Center (CIP) and more than 20 partners, reached more than 2.3 million households with children under five with planting material.

The project, which was rolled out in Kenya, Malawi, Mozambique and Rwanda as well as Bangladesh and Tanzania, resulted in 1.3 million women and children regularly eating orange-fleshed sweet potato when available.

“Vitamin A deficiency (VAD) is one of the most pernicious forms of undernourishment and can limit growth, weaken immunity, lead to blindness, and increase mortality in children,” said Barbara Wells, director general of CIP. “Globally, 165 million children under five suffer from VAD, mostly in Africa and Asia.”

“The results of the SUSTAIN project show that agriculture and nutrition interventions can reinforce each other to inspire behavior change towards healthier diets in smallholder households.”

Over the past decade, CIP and partners have developed dozens of biofortified varieties of orange-fleshed sweet potato in Africa and Asia. These varieties contain high levels of beta-carotene, which the body converts into vitamin A.

Just 125g of fresh orange-fleshed sweet potato provides the daily vitamin A needs of a pre-school child, as well as providing high levels of vitamins B6 and C, manganese and potassium.

Under the SUSTAIN project, families in target communities received nutritional education at rural health centers as well as cuttings that they could then plant and grow.

For every household directly reached with planting material, an additional 4.2 households were reached on average through farmer-to-farmer interactions or partner activities using technologies or materials developed by SUSTAIN.

The project also promoted commercial opportunities for smallholder farmers with annual sales of orange-fleshed sweet potato puree-based products estimated at more than $890,000 as a result of the project.

Two women sort orange-fleshed sweet potato in Faridpur district, Bangladesh. (Photo: Sara Quinn/CIP)
Two women sort orange-fleshed sweet potato in Faridpur district, Bangladesh. (Photo: Sara Quinn/CIP)

Perspectives from the Global South

The results of the initiative were published during the EAT Forum in Stockholm, where CGIAR scientists discussed the recommendations of the EAT-Lancet report from the perspective of developing countries.

“The SUSTAIN project showed the enormous potential for achieving both healthy and sustainable diets in developing countries using improved varieties of crops that are already widely grown,” said Simon Heck, program leader, CIP.

“Sweet potato should be included as the basis for a sustainable diet in many developing countries because it provides more calories per hectare and per growing month than all the major grain crops, while tackling a major nutrition-related health issue.”

At an EAT Forum side event, scientists highlighted that most food is grown by small-scale producers in low- and middle-income countries, where hunger and undernutrition are prevalent and where some of the largest opportunities exist for food system and dietary transformation.

“There are almost 500 million small farms that comprise close to half the world’s farmland and are home to many of the world’s most vulnerable populations,” said Martin Kropff, director general of the International Maize and Wheat Improvement Center (CIMMYT).

“Without access to appropriate technologies and support to sustainably intensify production, small farmers — the backbone of our global food system — will not be able to actively contribute a global food transformation.”

Matthew Morell, director general of the International Rice Research Institute (IRRI), added: “If the EAT-Lancet planetary health diet guidelines are to be truly global, they will need to be adapted to developing-world realities — such as addressing Vitamin A deficiency through bio-fortification of a range of staple crops.

“This creative approach is a strong example of how to address a devastating and persistent nutrition gap in South Asia and Africa.”


This story is part of our coverage of the EAT Stockholm Food Forum 2019.
See other stories and the details of the side event in which CIMMYT is participating.


For more information or interview requests, please contact:

Donna Bowater
Marchmont Communications
donna@marchmontcomms.com
+44 7929 212 434

The International Potato Center (CIP) was founded in 1971 as a research-for-development organization with a focus on potato, sweet potato and Andean roots and tubers. It delivers innovative science-based solutions to enhance access to affordable nutritious food, foster inclusive sustainable business and employment growth, and drive the climate resilience of root and tuber agri-food systems. Headquartered in Lima, Peru, CIP has a research presence in more than 20 countries in Africa, Asia and Latin America. CIP is a CGIAR research center. www.cipotato.org

CGIAR is a global research partnership for a food-secure future. CGIAR science is dedicated to reducing poverty, enhancing food and nutrition security, and improving natural resources and ecosystem services. Its research is carried out by 15 CGIAR centers in close collaboration with hundreds of partners, including national and regional research institutes, civil society organizations, academia, development organizations and the private sector. www.cgiar.org