Skip to main content

Location: Rwanda

Ten years later: CIMMYT facilities in East Africa continue to make a difference

CIMMYT and partners in Kenya recently marked the 10th anniversary of two major facilities that have been crucial for maize breeding in sub-Saharan Africa. The Maize Doubled-Haploid (DH) facility and the Maize Lethal Necrosis (MLN) screening facility at the Kenya Agriculture and Livestock Research Organization (KALRO) centers in Naivasha and Kiboko, respectively, have made immense contributions to the rapid development of higher-yielding, climate-resilient and disease-resistant maize varieties for smallholder farmers across the continent.

An aerial photo of the Naivasha Research Center. (Photo: CIMMYT)

“These two facilities have been instrumental in furthering KALRO’s mission to utilize technology in the service of Kenya’s smallholder farmers,” said KALRO Director General/CEO, Eliud Kireger. “They also exhibit the spirit of cooperation and collaboration that is necessary for us to meet all the challenges to our food systems.”

“Deploying a higher yielding maize variety may not be impactful in eastern Africa if that variety does not have resistance to a devastating disease like MLN,” said CIMMYT’s Director General Bram Govaerts. “These two facilities demonstrate the holistic methods which are key to working towards a more productive, inclusive and resilient agrifood system.”

Maize DH facility

Hybrid maize varieties have much higher yields than open-pollinated varieties and are key to unlocking the agricultural potential of maize producing countries. The doubled haploid process is an innovative technology producing within a year genetically true-to-type maize lines that serve as building blocks for improved maize hybrids.

Unlike conventional breeding, which takes at least 7 to 8 generations or crop seasons to develop parental lines, DH lines are generated within two seasons, saving significant time, labor and other resources. DH maize lines are highly uniform, genetically stable, and are more amenable to the application of modern molecular tools, making them perfect resources for breeding elite maize hybrids.

Workers in the Kiboko Double Haploid facility. (Photo: CIMMYT)

The aim of CIMMYT’s maize DH facility is to empower the breeding programs throughout the low-and middle-income countries in Africa by offering a competitive, accessible, not-for-profit DH production service that will accelerate their rate of genetic gain and fast-track development of improved maize varieties for farming communities.

Since 2017, the DH facility has delivered 280,000 DH lines from 1,840 populations of which 20% were delivered to public and private sector partners. CIMMYT maize breeding programs and partner organizations have embraced the use of DH technology, with many of the newest maize hybrids released in Africa being derived from DH lines. The facility has also served as a training ground so far for over 60 scientists and hundreds of undergraduate students in modern breeding technologies.

“Before 2013, DH technology was mainly employed by private, multinational corporations in North America, Europe, Asia and Latin America,” said CIMMYT’s DH Facility Manager, Vijay Chaikam. “But the DH facility operated by CIMMYT at the KALRO Kiboko research station is specifically targeted at strengthening the maize breeding programs by the public sector institutions as well as small-and medium-size enterprise seed companies in Africa.”

The maize DH facility at Kiboko, Kenya, was established with funding support from the Bill & Melinda Gates Foundation and inaugurated in September 2013. The facility includes an administrative building, seed quality laboratory, training resources, artificial seed dyer, a cold-storage seed room, a chromosome doubling laboratory, greenhouse and a state-of-the-art irrigation system to support year-round DH production in the 17-hectare nursery.

MLN screening facility

MLN is a devastating viral disease that can decimate farmers’ fields, causing premature plant death and unfilled, poorly formed maize ears, and can lead to up to 100 percent yield loss in farmers’ fields. Though known in other parts of the world for decades, the disease was first identified in eastern Africa in 2011. By 2015, MLN had rapidly spread across eastern Africa, including Kenya, Uganda, Tanzania, South Sudan, Rwanda, Democratic Republic of Congo and Ethiopia. CIMMYT scientists quickly discovered that almost all the commercial maize cultivars in eastern Africa were highly susceptible to the disease.

Against this backdrop, CIMMYT and KALRO recognized the urgent need for establishing a screening facility to provide MLN phenotyping service and effectively manage the risk of MLN on maize production through screening of germplasm and identifying MLN-resistant sources. The facility was built with funding support from the Bill & Melinda Gates Foundation and the Syngenta Foundation for Sustainable Agriculture, and inaugurated in September 2013.

Resistant and susceptible line at the Maize Lethal Necrosis facility. (Photo: CIMMYT)

“The MLN screening facility is a key regional resource in breeding for resistance to a devastating viral disease. The facility is indeed one of the key factors behind successful management of MLN and helping stem the tide of losses in eastern Africa,” said Director of the Global Maize Program at CIMMYT and One CGIAR Plant Health Initiative, B.M. Prasanna. “Fighting diseases like MLN, which do not respect political boundaries, requires strong regional and local collaboration. The successes achieved through the MLN Screening facility in the past 10 years embody that spirit of collaboration.” Indeed, farmers in the region now have access to over twenty genetically diverse, MLN-tolerant/resistant maize hybrids released in eastern and southern Africa.

The facility is the largest dedicated MLN screening facility in Africa and has evaluated over 230,000 accessions (over 330,000 rows of maize) from CIMMYT and partners, including over 15 national research programs, national and multinational seed companies. The facility covers 20 hectares, of which 17 hectares are used for field screening of germplasm. Dedicated laboratories and screen houses cover the remaining 3 hectares.

“MLN phenotyping service is conducted under stringent quarantine standards and the high-quality data is shared with all the CGIAR and public and private partners. The MLN screening service has helped breeding programs across the continent, aided in undertaking epidemiological research activities, and supported capacity building of students from diverse institutions, and regional stakeholders regarding MLN diagnosis and best management practices,” said CIMMYT’s Maize Pathologist in Africa, L.M. Suresh.

“The output of MLN resistant lines and hybrids has been remarkable,” said Director of Phytosanitary and Biosecurity at the Kenya Plant Health Inspectorate Service (KEPHIS), Isaac Macharia. “And the facility has strictly adhered to quarantine regulations.”

In Uganda, the MLN facility was crucial in the “release of the first-generation MLN tolerant hybrids and dissemination of MLN knowledge products that minimized the economic impact of MLN,” said the Director of Research of the National Crops Resources Research Institute, Godfrey Asea.

Peter Mbogo, maize breeder with Seed Co Group, said, “This is the only quarantine facility in the world where you can screen against MLN under artificial inoculation. It has been an excellent return on investment.”

CGIAR Initiative on Diversification in East and Southern Africa

East and Southern Africa is a climate hotspot, with more than US$45 billion in agricultural production at risk from higher temperatures, shorter growing seasons and more extreme droughts and floods. Maize, a staple crop covering up to 75% of cropland in parts of the region, is particularly vulnerable and is projected to face yield declines of 15%, among other climate impacts if no adaptation measures are taken. Many of the affected areas already have serious levels of hunger and malnutrition, with the highest burden experienced by women and youth from marginalized and vulnerable communities. If these systems are sustainably diversified, they can contribute to stabilizing regional and global agrifood systems.

The next decade will be critical for strengthening food, land and water systems in East and Southern Africa. The agribusiness ecosystem for both regions has been identified as a critical engine for agricultural and economic development, climate change adaptation and gender and youth empowerment. Investment in innovation, capabilities and supportive environments will be essential for driving sustainable growth.

Objective

This Initiative aims to support climate-resilient agriculture and livelihoods in 12 countries in East and Southern Africa by helping millions of smallholders intensify, diversify and reduce the risks in maize-based farming through improved extension services, small and medium enterprise development, supporting governance frameworks and increased investment with a gender and social inclusion lens.

Activities

This objective will be achieved through:

  • Diversifying and sustainably intensifying production by assessing needs and options for the introduction of crops, livestock, mechanization and irrigation, applying innovations in value chains and building capacity while scaling to larger farming communities.
  • Reducing risk and digitalizing value chains by co-designing and delivering “Innovation Package” bundles of digital agro-advisory systems and research management products — including mobile apps, TV programs and social media — to build resilience and improve productivity.
  • Supporting and accelerating value chain business enablers in maize mixed systems by using CGIAR’s expertise and partner network to unlock access to funding, investment and tailored technical assistance.
  • Promoting the governing and enabling of multifunctional landscapes for sustainable diversification and intensification with a focus on strengthening the evidence base for decision-makers.
  • Empowering and engaging women and youth in agribusiness ecosystems by mapping challenges and opportunities to address gender and social inequality and applying inclusive and coordinated interventions for transformative change.
  • Scaling innovations and coordinating CGIAR and partner activities in the region through a scaling hub that uses the “scaling readiness” approach to inform, activate and bring to scale innovations that respond to regional or country demand.

Steering towards success

The inaugural Rwanda National Seed Congress, which took place in Kigali on July 31 and August 1, 2023, marked a significant milestone for the country’s seed industry. Themed “Private Sector Strategic Roadmap for the Seed Industry 2030”, the event brought together key stakeholders from the government, public, and private sectors to address challenges and opportunities in the national seed value chain.

Discussions centered around pertinent issues concerning the seed sector in general, with a particular focus on the Rwandan National Seed Strategic Roadmap. This document, which was developed through consultations with various stakeholders, provides a comprehensive plan to steer the industry towards success and sustainable growth.

“Enhancing and managing the seed system is a complex endeavor that requires the collaboration of various stakeholders,” said Chris Ojiewo, CGIAR Seed Equal Initiative lead. “This is where public-private partnerships come in as a valuable tool for nurturing the growth and expansion of the seed industry.”

Chris Ojiewo, CGIAR Seed Equal Initiative lead, presented at the inaugural National Seed Congress in Rwanda. (Photo: NSAR Congress)

During a presentation entitled Public-private Partnership: A Tool for Development and Strengthening of the Seed Sector, Ojiewo highlighted the growing importance of collaboration and partnerships in the current seed system. He emphasized that the processes and elements that shape the seed sector are complex and extensive, making it too much for any one organization—whether public or private—to handle alone.

The way forward

During the congress, several key recommendations were proposed  to increase the potential of the seed industry. The government was encouraged to seek accreditation with major seed industry quality organizations, such as the International Seed Testing Association (ISTA) and Organization for Economic Co-operation and Development (OECD) certification schemes, while adopting International Union for the Protection of New Varieties of Plants (UPOV) to establish an improved regulatory environment conducive to industry growth.

The empowerment of the National Seed Association of Rwanda (NSAR) as an advocate and facilitator for the seed industry was also highlighted as an essential measure. The government’s support in enabling the seed association to become increasingly self-regulatory is seen as crucial to the industry’s growth over the next seven years, with private seed industry players developing internal systems to ensure compliance with rules and regulations.

Another key recommendation for increasing sustainable improved seed use in Rwanda was the use of Public-Private Partnerships (PPPs), which will play a critical role in promoting the country as a seed production and trade investment destination.

Ojiewo emphasized the importance of such partnerships, noting that “PPPs have the potential to transform the seed industry by leveraging the strengths of different organizations.” He further highlighted that in addressing the challenges of global food security and sustainable development, the way forward becomes clear through collaboration, innovation, and a shared commitment to advancing agricultural progress through collaborative efforts.

The congress also focused on attracting affordable financing to scale up investments throughout the seed value chain. It was considered essential to involve industry financial players in the development of optimal financing structures to support the expansion of the industry.

As a result of the successful event, plans have already been made for the second National Seed Congress in 2024. Scheduled to take place in Kigali on July 29 and 30, 2024, the next event aims to build on the achievements of the first congress and further drive the growth of Rwanda’s seed industry.

CGIAR’s Seed Equal Initiative helps farmers by providing them with better seeds that are nutritious, preferred in the market, and that can withstand climate change. These varieties have been carefully developed to exhibit significant genetic advancements, ultimately benefiting farmers. It also makes sure that women and other marginalized groups have fair access to these seeds.

CGIAR Initiative: Seed Equal

Inadequate seed supply and delivery systems, sometimes also misaligned with user and market demand, mean that smallholders often recycle seed or use older varieties, leaving them more vulnerable to pests and diseases.  Small-scale farmers, especially women and other disadvantaged groups, are particularly vulnerable to climate-related challenges, such as more frequent and severe droughts and erratic rainfall. Additionally, farmers may not be well informed about varietal options available to them or may be reluctant to experiment with new varieties. These challenges threaten agricultural production and can compromise their ability to meet their own food, nutrition and income needs.  

Improved varieties, innovations and approaches developed and promoted by CGIAR and partners could transform agrifood systems and reduce yield gaps, “hunger months” and other disparities. However, limited access to and use of affordable, quality seed of well-adapted varieties with desired traits, means these bottlenecks remain. 

This Initiative aims to support the delivery of seed of improved, climate-resilient, market-preferred and nutritious varieties of priority crops, embodying a high rate of genetic gain to farmers, ensuring equitable access for women and other disadvantaged groups.

This objective will be achieved through:

  • Supporting demand-driven cereal seed systems for more effective delivery of genetic gains from One CGIAR cereal breeding, as well as improving government, private sector and farmer-based capacity to deliver productive, resilient and preferred varieties to smallholders. 
  • Boosting legume seed through a demand-led approach that builds on growing demand for grain legumes. This multistakeholder approach will strengthen partnerships to provide efficient, more predictable and demand-led access to quality seed of new varieties. 
  • Scaling and delivering vegetatively propagated crop seed through sustainable enhanced delivery pathways that efficiently target different market segments and farmer preferences. 
  • Supporting partnerships (including with smallholders), capacity building and coordination to ensure uptake of public-bred varieties and other innovations by providing technical assistance for national agricultural research and extension systems (NARES) and foundation seed organizations in early-generation seed production and on-farm demonstrations. 
  • Developing and implementing policies for varietal turnover, seed quality assurance and trade in seeds by leveraging global expertise and experience to generate both the evidence and engagement necessary to advance efficient, sustainable, and inclusive seed markets that promote varietal turnover and wider adoption. 
  • Scaling equitable access to quality seed and traits in order to reach the unreached and provide inclusive access while addressing gender and social constraints and the digital divide. 

Engagement

This Initiative will work in Bangladesh, Ethiopia, India, Kenya, Mozambique, Nepal, Nigeria, Rwanda, Uganda and Tanzania as a priority, followed by other countries in Latin America, South and Southeast Asia and Sub-Saharan Africa. 

Outcomes

Proposed 3-year outcomes include:

  1. Robust tools developed and used by funders, developers, researchers and extension staff to sustainably measure and monitor key seed system metrics. 
  2. Increase of 10% in the quantity of quality seed of improved “best-fit” and farmer-preferred varieties available to farmers in representative crops and geographies due to increased capacity of seed companies and other seed multipliers (including farm-based seed actors).  
  3. Public and private seed enterprises adopting innovative and transformative models for accessing, disseminating and multiplying quality early-generation seed, reducing cost and increasing output. 
  4. Reduction of 5% in weighted average varietal age for priority crops in selected countries.     
  5. Government partners in policy design and implementation actively promote policy solutions to accelerate varietal turnover, adoption and quality seed use. 

CGIAR Initiative: Excellence in Agronomy

Smallholdings represent over 80% of the world’s farms, mostly located in the Global South, and supply 50% of global food. Enhanced agronomy management has a great potential to increase productivity, sustainability, efficiency and competitiveness of these smallholdings, which is characterized by low and variable yields and profitability, smallholder farming challenges include water scarcity, climate change, low resource use efficiencies and declining soil health. These result in negative impacts on food and nutrition security, equitable livelihoods and ecosystem health.  

Smallholder farmers seasonally make critical agronomic decisions regarding crop choice, planting dates and pest, disease, weed, soil fertility and water management, often based on suboptimal practices and information. Traditional agronomic research enhances our understanding of basic processes, but with limited connection to stakeholder demand and often based on outdated approaches. The development, deployment and uptake of interventions is hampered by social, economic and institutional constraints, further confounded by adherence to conventional supply-driven innovation strategies.

Objective

This Initiative aims to deliver an increase in productivity and quality per unit of input (agronomic gainfor millions of smallholder farming households in prioritized farming systems by 2030, with an emphasis on women and young farmers, showing a measurable impact on food and nutrition security, income, resource use, soil health, climate resilience and climate change mitigation.  

Activities

This objective will be achieved through:

  • Facilitating the delivery of agronomy-at-scale solutions, including development and technical/user-experience validation and the co-creation and deployment of gender- and youth-responsive solutions to smallholder farmers via scaling partners. 
  • Enabling the creation of value from big data and advanced analytics through the assembly and governance of data and tools; application of existing analytics and solutions for specific use cases; supply of information on climate impacts, inclusivity and sustainability of agronomic solutions; and national agricultural research system capacity strengthening. 
  • Driving the next generation of agronomy-at-scale innovations by addressing key knowledge gaps and facilitating innovation in agronomy research through engagement with partners. 
  • Nurturing internal efficiencies for an agile and demand-driven agronomy research and development community through internal organization and external partnerships for prioritization, demand mapping and foresight. 

CGIAR Initiative: Digital Innovation

Digital innovations can enable an unprecedented transformation of food, land and water systems for greater climate resilience and sustainability. To realize this potential, multidisciplinary expertise across the CGIAR must find solutions to three challenges affecting the Global South: 

  1. The digital divide: digital technologies and infrastructure do not meet people’s needs, especially women and rural populations. More than 600 million people live outside the reach of mobile networks, two-thirds of them in sub-Saharan Africa. 
  2. Weak information systems: available information is inadequate or does not reach those who need it most. More than 300 million small-scale producers lack access to digital climate services. Weak information systems prevent evidence-based policy responses and lead to missed opportunities to reduce poverty and increase economic growth. 
  3. Limited digital capabilities: digital literacy and skill levels across the Global South remain low, particularly for marginalized and food-insecure individuals and groups such as women.

Objective

The Digital Innovation Initiative aims to develop and support digital innovations to stimulate the inclusive, sustainable transformation of food, land and water systems in the areas of investments that policymakers could make to close the digital divide, information delivery systems that allow more people to take action against predicted risks, and ways for partner organizations and marginalized communities to enhance digital capabilities, access resources and opportunities. 

This objective will be achieved through:

  • Generating evidence on impacts of digital innovations and collaborative partnerships to create an enabling environment for digital ecosystems, unlocking local innovators’ access to investments and advanced technologies. 
  • Developing a suite of tools and guidelines to bridge the digital divide, ensuring that gender equality and social inclusion underly the development of digital innovations, research programs and their implementation. 
  • System dynamics modeling to understand complex dynamics in agrifood systems and support natural resource management authorities in equitably allocating water and land resources and managing risks. 
  • Real-time food system monitoring to provide timely and reliable information to stakeholders by applying AI-driven analytics of satellite remote sensing, internet-connected sensors, and other ground-truthed data from multidisciplinary sources. 
  • Strengthening partners’ capacity to collect real-time data, conduct data analytics and make data-driven decisions to enable equitable digital platforms and services.

Soil scientists and stakeholders reflect on progress and impacts of CIMMYT-Rwanda partnership for soil health

Participants at the mid-term review and planning meeting on the Guiding Acid Soil Management Investments in Africa (GAIA) project. Photo CIMMYT

The International Maize and Wheat Improvement Center (CIMMYT) and the Rwanda Agriculture and Animal Resources Development Board (RAB) recently held a mid-term review and planning meeting on the Guiding Acid Soil Management Investments in Africa (GAIA) project.

The meeting aimed to track the progress made in the first year of the project’s implementation, identify challenges, document lessons learned, and develop an action plan for the following year, based on identified gaps and priorities.

In his welcoming remarks, RAB Director General Patrick Karangwa highlighted the close partnership between the two institutions.

“The workshop is not only about reviewing the progress but also about creating a strong partnership and interaction with each other to form a lasting togetherness that can later be useful for supporting each other in running the program’s activities of GAIA in the region,” he said.

Karangwa also noted the dynamism and enthusiasm of the GAIA team and partners, who made “remarkable successes” during a challenging period due to the COVID-19 pandemic.

Along with plant nutrition and improved land management, healthier soils contribute to more productive and profitable smallholder enterprises. The GAIA project uses scalable innovations to provide reliable, timely and actionable data and insights on soil health and crop performance, at farm and regional levels.

The workshop brought together about 49 participant including regional program implementing partners, key stakeholders, and scientists from Ethiopia, Kenya, Rwanda, Tanzania, and Zimbabwe to  participate in more than 20 face-to-face and virtual presentations,  breakout sessions, and team-building exercises.

“The key to project success is a strong partnership and collaboration with national and regional partners, particularly with private and public sectors ‘’ said  Sieglinde Snapp, the director of the Sustainable Agrifood Systems (SAS) program at CIMMYT.

The participants addressed the work undertaken around eight work packages: spatial ex-ante analysis, adoption research on lime value chains, agronomy research for lime recommendations, support to the lime sector, policy support, coordination and advocacy, data use and management, and communication.

“We are encouraged by the progress made so far and expect to have a measurable impact in the next years. Let us feel comfortable to identify new area of research, based on the work conducted so far and national priorities” said Frédéric Baudron, GAIA project lead at CIMMYT.

GAIA is funded by the Bill and Melinda Gates Foundation and implemented by CIMMYT in partnership with the Centre for Agriculture and Bioscience International; Dalberg; national agricultural research systems in Ethiopia, Kenya, Rwanda, and Tanzania; the Southern Agricultural Growth Corridor of Tanzania; Wageningen University; and the University of California – Davis. The project aims to provide data-driven and spatially explicit recommendations to increase returns on investment for farmers, the private sector, and governments in Africa.

Guiding Acid Soil Management Investments in Africa (GAIA)

Healthier soils, plant nutrition and improved land management contribute to more productive and profitable smallholder enterprises. The Guiding Acid Soil Management Investments in Africa (GAIA) project will address key knowledge gaps related to soil health and improved agronomy. It will use scalable innovations to provide reliable, timely and actionable data and insights on soil health and crop performance, at farm and regional levels.

Novel diagnostic approaches, data assets, decision aids and better farm management practices are increasingly being scaled and integrated with other data, products and services. These services can be integrated with solution-focused, bundled services that support farmers in their timely management and operational decisions. They can also be integrated with input delivery systems, including digitally enabled agricultural advisory systems.

Key expected results in the next five years include:

  • National soil information services fully integrated with functioning agronomy research pipelines within key international and national research organizations of at least seven focus countries in sub-Saharan Africa and SA.
  • Soil information services solutions are integrated with agricultural advisory services into overall decision agriculture platforms at the national level.
  • Innovative diagnostic tools and decision aids are increasingly used at farm and regional level.
  • All investments routinely apply FAIR (findable, accessible, interoperable, reusable) data principles and practices.

The vision of success of this project is the rehabilitation of acid soils at scale in East Africa — thanks to data-driven and spatially-explicit recommendations — leading to maximized (and inclusive) returns on investment for farmers, private companies and governments. While the analysis and outputs will be targeted to the specific needs of partner counties (Ethiopia, Kenya, Rwanda and Tanzania), the methodology, workflows and much of the analysis will be of relevance for other countries in the region. While the specific focus of the project is on acid soils, the frameworks will be adaptable and applicable to other soil health and geospatial agronomic challenges. The ultimate goal is sustainable intensification of African smallholder farming systems.

In line with its vision and goal, GAIA will deliver three primary outcomes:

  • Increase depth and utility of data and evidence related to acid soil management in the region.
  • Provide support to governments and the private sector to stimulate investment in acid soil management in the region.
  • Improve access and use of data related to acid soil management in the region.

New CGIAR Initiative to catalyze resilient agrifood systems in eastern and southern Africa

Participants of the kick-off meeting for the Ukama Ustawi Initiative stand for a group photo in Nairobi, Kenya. (Photo: Mwihaki Mundia/ILRI)
Participants of the kick-off meeting for the Ukama Ustawi Initiative stand for a group photo in Nairobi, Kenya. (Photo: Mwihaki Mundia/ILRI)

Partners of CGIAR’s new regional integrated Initiative in eastern and southern Africa held a kick-off meeting in Nairobi on March 2–3, 2022. Eighty-five people participated, including national agricultural research extension programs, government representatives, private sector actors, funders and national and regional agricultural research and development organizations.

Entitled Ukama Ustawi, the Initiative aims to support climate-smart agriculture and livelihoods in 12 countries in eastern and southern Africa: Kenya, Zambia, Ethiopia and Zimbabwe (in Phase 1); Malawi, Rwanda, Tanzania and Uganda (in Phase 2); and Eswatini, Madagascar, Mozambique and South Africa (in Phase 3).

The Initiative aims to help millions of smallholders intensify, diversify and de-risk maize-mixed farming through improved extension services, institutional capacity strengthening, targeted farm management bundles, policy support, enterprise development and private investment.

Ukama Ustawi is a bilingual word derived from the Shona and Swahili languages. In Shona, Ukama refers to partnerships, and in Swahili, Ustawi means well-being and development. Together, they resemble the vision for the Initiative to achieve system-level development through innovative partnerships.

The meeting brought together partners to get to know each other, understand roles and responsibilities, identify priorities for 2022, and review the cross-cutting programmatic underpinnings of Ukama Ustawi — including gender and social inclusion, capacity strengthening and learning.

Baitsi Podisi, representing the Centre for Coordination of Agricultural Research and Development for Southern Africa (CCARDESA), said he is excited to be part of the Initiative: “CCARDESA, in its cooperation and coordination mandate, can learn a lot from CGIAR in restructuring to respond to the changing times.” Podisi supported the partnership with CGIAR in the Initiative’s embedded approach to policy dialogue, working with partners such as CCARDESA, the Association for Strengthening Agricultural Research in Eastern and Central Africa (ASARECA) and the Food, Agriculture and Natural Resources Policy Analysis Network (FANRPAN).

Similarly, FANRPAN’s Francis Hale emphasized the need not to re-invent the wheel but to work with partners who already have a convening power, to advance the policy agenda for diversification and sustainable intensification.

What were key issues discussed?

One of the features of Ukama Ustawi is the use of four interconnected platforms: a scaling hub, a policy hub, an accelerator program and a learning platform. These will provide spaces for exchange and learning with partners across all CGIAR Initiatives in the region. Partners conducted a series of ‘fishbowl’ interactions across work packages to review the planned activities and provide a clearer understanding of deliverables, identify synergies, potential overlaps, common partners and countries, and set timelines.

The Initiative will work with innovative multimedia platforms to change knowledge, attitudes and practices of millions of farmers in eastern and southern Africa. One key partner in this area is the Shamba Shape Up TV show and the iShamba digital platform. Sophie Rottman, Producer of Shamba Shape Up, said she is looking forward to the work with Initiative partners, that will help expand the show to Uganda and Zambia.

Jean Claude Rubyogo, representing the Pan-Africa Bean Research Alliance (PABRA) said: “It is time we move away from CGIAR-initiated to country-initiated development activities. This is what Ukama Ustawi is all about”.

Martin Kropff, Global Director of Resilient Agrifood Systems at CGIAR, explained CGIAR’s regional integrated initiatives are designed to respond to national/regional demands. “The initiatives will start by working with partners to assess the food and nutritional challenges in the region, and tackle them by bringing in innovative solutions.”

The event was concluded by agreeing on the implementation of the inception phase of the Ukama Ustawi Initiative, and follow-on discussions to finalize key activities in 2022.

Learn more about the Ukama Ustawi Initiative.

Materials from the meeting are available online:

This article was originally published on CGIAR.org.

Fighting the stress

East African Seed Company has a rich history of nearly 50 years, serving farmers with improved climate-resilient seed varieties. Established in 1972, the company produces and sells improved seed, through a wide distribution network in at least 15 countries in sub-Saharan Africa. It also markets agrochemicals and other farm inputs, and has ambitions of expanding to the rest of Africa, trading as Agriscope Africa Limited.

Smallholder farmers in sub-Saharan Africa continue to face multiple biotic and abiotic stresses as they try to improve their farms’ productivity and their livelihoods. Maize seed that guarantees high yield is a key trait, coupled with other key attributes such as drought tolerance, disease and pest resistance, early seedling vigor as well as suitability for food and animal feed.

With the varieties serving both small- and large-scale commercial farmers, challenges such as the fall armyworm, diminishing soil fertility and erratic rains have persisted in recent years and remain as key farming obstacles. “Such challenges diminish crop production and the grain quality thereby, lessening farmers’ profitability,” says Rogers Mugambi, Chief Operating Officer of East African Seed Company.

Scientists at the International Maize and Wheat Improvement Center (CIMMYT), in collaboration with partners in the national agriculture research systems and the commercial seed sector, continue to develop seed varieties that can guarantee decent yield even in times of climatic, disease and pest stress.

General view of the East African Seed warehouse. (Photo: Jerome Bossuet/CIMMYT)
General view of the East African Seed warehouse. (Photo: Jerome Bossuet/CIMMYT)

Top-notch research trickles down to farmers

Over the years, East African Seed has inked partnerships with CIMMYT, national research institutes and other agencies in the countries where it operates. Such partnerships have been the driving force to its success and the impacts within the farming communities in sub-Saharan Africa.

“Our collaboration with CIMMYT began in 2008 with germplasm acquisition. The cooperation has expanded to include testing networks for new hybrids, early-generation seed production and marketing. The overall beneficiary is the smallholder farmer who can access quality seeds and produce more with climate-smart products,” Mugambi says.

Apart from the multi-stress-tolerant varieties developed and released over time by the national agricultural research programs, CIMMYT recently announced a breakthrough: fall armyworm-tolerant elite maize hybrids for eastern and southern Africa. This success followed three years of rigorous research and experiments conducted in Kenya and signified a key milestone in the fight against fall armyworm.

As part of the partnership in the Drought Tolerant Maize for Africa (DTMA) and Stress Tolerant Maize for Africa (STMA) projects, East African Seed Company (Agriscope Africa Limited) established demonstration farms and conducted field days in Kenya, reaching thousands of farmers as a result. It was also able to produce early generation seed, which supported production of 2,000 metric tons of certified seed. This partnership now continues in the Accelerating Genetic Gains in Maize and Wheat (AGG) project.

The company has contracted large- and small-scale growers across the country to meet its seed production targets.

“Most of our small-scale growers are clustered in groups of up to 30 farmers with less than five acres of farmland. The large growers have advanced irrigation facilities such as the pivot system and seed processing plants. The seed from the fields is pre-cleaned and dried in the out-grower facilities before delivery to our factory for further cleaning and processing,” Mugambi explains.

A handful of improved maize seed from the drought-tolerant variety TAN 250, developed and registered for sale in Tanzania through CIMMYT's Drought Tolerant Maize for Africa (DTMA) project. (Photo: Anne Wangalachi/CIMMYT)
A handful of improved maize seed from the drought-tolerant variety TAN 250, developed and registered for sale in Tanzania through CIMMYT’s Drought Tolerant Maize for Africa (DTMA) project. (Photo: Anne Wangalachi/CIMMYT)

Out with the drought

Currently, of the 1,300 metric tons of drought-tolerant hybrid seeds it produces yearly, 500 metric tons constitute those derived from the partnership in the STMA project. Two notable hybrids,  HODARI (MH501) and TOSHEKA (MH401), were derived during the DTMA and STMA projects. Released in 2014 and accepted for regional certification through the Common Market for Eastern and Southern Africa (COMESA)’s regional catalogue, the MH501 is a mid-altitude adapted and medium maturing three-way cross hybrid. The yield advantage of 15% over the local commercial checks triggered widespread adoption by the farmers, according to Mugambi. In Kenya, it was used as a commercial check during national performance trials, from 2017 to 2019.

The MH401, an early maturing hybrid with moderate drought tolerance, has been adopted in lowland and mid-altitude dry ecologies of Kenya and Tanzania. It has a 20% yield advantage over the local commercial checks.

As part of its varietal replacement, East African Seed Company looks to steadily retire older varieties such as KH600-15A and WE1101 and promote new ones including TAJIRI (EASH1220), TAJI (MH502) and FARAJA (MH503).

To promote new varieties and successfully reach smallholders, the company conducts field days, farm-level varietal demonstrations, road shows and radio programs. It also disseminates information on the benefits of new varieties while also dispensing promotional materials such as branded t-shirts and caps.

“Additionally, we organize annual field days at our research farm in Thika, where key and influential farmers and other stakeholders are invited from across Kenya and neighboring countries to learn about our new agricultural technologies,” Mugambi says.

Fast-tracked adoption of second-generation resistant maize varieties key to managing maize lethal necrosis in Africa

Scientists are calling for accelerated adoption of new hybrid maize varieties with resistance to maize lethal necrosis (MLN) disease in sub-Saharan Africa. In combination with recommended integrated pest management practices, adopting these new varieties is an important step towards safeguarding smallholder farmers against this devastating viral disease.

A new publication in Virus Research shows that these second-generation MLN-resistant hybrids developed by the International Maize and Wheat Improvement Center (CIMMYT) offer better yields and increased resilience against MLN and other stresses. The report warns that the disease remains a key threat to food security in eastern Africa and that, should containment efforts slacken, it could yet spread to new regions in sub-Saharan Africa.

The publication was co-authored by researchers at the International Maize and Wheat Improvement Center (CIMMYT), Kenya Agricultural and Livestock Research Organization (KALRO), the Alliance for a Green Revolution in Africa (AGRA), the African Agricultural Technology Foundation (AATF) and Aarhus University in Denmark.

CIMMYT technician Janet Kimunye (right) shows visitors a plant with MLN symptoms at the MLN screening facility in Naivasha, Kenya. (Photo: CIMMYT)
CIMMYT technician Janet Kimunye (right) shows visitors a plant with MLN symptoms at the MLN screening facility in Naivasha, Kenya. (Photo: CIMMYT)

Stemming the panic

The first reported outbreak of MLN in Bomet County, Kenya in 2011 threw the maize sector into a panic. The disease caused up to 100% yield loss. Nearly all elite commercial maize varieties on the market at the time were susceptible, whether under natural of artificial conditions. Since 2012, CIMMYT, in partnership with KALRO, national plant protection organizations and commercial seed companies, has led multi-stakeholder, multi-disciplinary efforts to curb MLN’s spread across sub-Saharan Africa. Other partners in this endeavor include the International Institute of Tropical Agriculture (IITA), non-government organizations such as AGRA and AATF, and advanced research institutions in the United States and Europe.

In 2013 CIMMYT established an MLN screening facility in Naivasha. Researchers developed an MLN-severity scale, ranging from 1 to 9, to compare varieties’ resistance or susceptibility to the disease. A score of 1 represents a highly resistant variety with no visible symptoms of the disease, while a score of 9 signifies extreme susceptibility. Trials at this facility demonstrated that some of CIMMYT’s pre-commercial hybrids exhibited moderate MLN-tolerance, with a score of 5 on the MLN-severity scale. CIMMYT then provided seed and detailed information to partners for evaluation under accelerated National Performance Trials (NPTs) for varietal release and commercialization in Kenya, Tanzania and Uganda.

Between 2013 and 2014, four CIMMYT-derived MLN-tolerant hybrid varieties were released by public and private sector partners in East Africa. With an average MLN severity score of 5-6, these varieties outperformed commercial MLN-sensitive hybrids, which averaged MLN severity scores above 7. Later, CIMMYT breeders developed second-generation MLN-resistant hybrids with MLN severity scores of 3–4. These second-generation hybrids were evaluated under national performance trials. This led to the release of several hybrids, especially in Kenya, over the course of a five-year period starting in 2013. They were earmarked for commercialization in East Africa beginning in 2020.

Maize Lethal Necrosis (MLN) sensitive and resistant hybrid demo plots in Naivasha’s quarantine & screening facility (Photo: KIPENZ/CIMMYT)
Maize Lethal Necrosis (MLN) sensitive and resistant hybrid demo plots in Naivasha’s quarantine & screening facility (Photo: KIPENZ/CIMMYT)

Widespread adoption critical

The last known outbreak of MLN was reported in 2014 in Ethiopia, marking an important break in the virus’s spread across the continent. Up to that point, the virus had affected the Democratic Republic of the Congo, Kenya, Rwanda, Tanzania and Uganda. However, much remains to be done to minimize the possibility of future outbreaks.

“Due to its complex and multi-faceted nature, effectively combating the incidence, spread and adverse effects of MLN in Africa requires vigorous and well-coordinated efforts by multiple institutions,” said B.M. Prasanna, primary author of the report and director of the Global Maize Program at CIMMYT and of the CGIAR Research Program on Maize (MAIZE). Prasanna also warns that most commercial maize varieties being cultivated in eastern Africa are still MLN-susceptible. They also serve as “reservoirs” for MLN-causing viruses, especially the maize chlorotic mottle virus (MCMV), which combines with other viruses from the Potyviridae family to cause MLN.

“This is why it is very important to adopt an integrated disease management approach, which encompasses extensive adoption of improved MLN-resistant maize varieties, especially second-generation, not just in MLN-prevalent countries but also in the non-endemic ones in sub-Saharan Africa,” Prasanna noted.

The report outlines other important prevention and control measures including: the production and exchange of “clean” commercial maize seed with no contamination by MLN-causing viruses; avoiding maize monocultures and continuous maize cropping; practicing maize crop rotation with compatible crops, especially legumes, which do not serve as hosts for MCMV; and continued MLN disease monitoring and surveillance.

L.M. Suresh (center-right), Maize Pathologist at CIMMYT and Head of the MLN Screening Facility, facilitates a training on MLN with national partners. (Photo: CIMMYT)
L.M. Suresh (center-right), Maize Pathologist at CIMMYT and Head of the MLN Screening Facility, facilitates a training on MLN with national partners. (Photo: CIMMYT)

Noteworthy wins

In addition to the development of MLN-resistant varieties, the fight against MLN has delivered important wins for both farmers and their families and for seed companies. In the early years of the outbreak, most local and regional seed companies did not understand the disease well enough to produce MLN-pathogen free seed. Since then, CIMMYT and its partners developed standard operating procedures and checklists for MLN pathogen-free seed production along the seed value chain. Today over 30 seed companies in Ethiopia, Kenya, Uganda, Rwanda and Tanzania are implementing these protocols on a voluntary basis.

“MLN represents a good example where a successful, large-scale surveillance system for an emerging transboundary disease has been developed as part of a rapid response mechanism led by a CGIAR center,” Prasanna said.

Yet, he noted, significant effort and resources are still required to keep the maize fields of endemic countries free of MLN-causing viruses. Sustaining these efforts is critical to the “food security, income and livelihoods of resource-poor smallholder farmers.

To keep up with the disease’s changing dynamics, CIMMYT and its partners are moving ahead with novel techniques to achieve MLN resistance more quickly and cheaply. Some of these innovative techniques include genomic selection, molecular markers, marker-assisted backcrossing, and gene editing. These techniques will be instrumental in developing elite hybrids equipped not only to resist MLN but also to tolerate rapidly changing climatic conditions.

Read the full report on Virus Research:
Maize lethal necrosis (MLN): Efforts toward containing the spread and impact of a devastating transboundary disease in sub-Saharan Africa

Cover photo: Researchers and visitors listen to explanations during a tour of infected maize fields at the MLN screening facility in Naivasha, Kenya. (Photo: CIMMYT)

Matching nutrients to agroforestry systems for greater maize and wheat yields

Globally, the COVID-19 pandemic and associated lockdowns have created bottlenecks across the agricultural value chain, including disrupting the supply of fertilizer. This could negatively impact the already low yields in smallholders’ fields in the Global South. Livelihoods of these resource-poor farmers and food security of those they feed call for innovations or smarter application of existing knowledge to avoid increasing food insecurity.

In a recent study, a team of scientists from the International Maize and Wheat Improvement Center (CIMMYT) and Plant Production Systems, Wageningen University, found that there are clever ways to mix and match maize and wheat varieties with mineral fertilizers in tree-crop systems for greater nutrient use efficiency. The study explored the impact of different combinations of nitrogen (N) and phosphorus (P) fertilizers on crop yield in tree crop systems. It also identified mineral fertilizer-tree combinations that maximize agronomic nutrient use efficiencies under different contexts.

Tree-crop-fertilizer interactions for wheat growing under Faidherbia albida and maize growing under Acacia tortilis and Grevillea robusta through omission trials of N and P were explored in open fields and fields under tree canopy, using a split plot design. The experiments were conducted under different agroecologies in Ethiopia (Meki and Mojo) and Rwanda, where retaining scattered trees in fields has been practiced for centuries. The trials were replicated four times and over two seasons. Trees with approximately similar ages, crown structures and pruning history were used for a researcher-led and farmer-managed on-farm experiment.

The results demonstrated that different on-farm tree species interact uniquely with crops, resulting in different responses to N and P fertilization. Except for F. albida, perhaps the most ‘ideal’ agroforestry species, the other two tree species under the current study raised the question of tree-crop compatibility for optimum productivity. F. albida significantly improved N and P use efficiencies, leading to significantly higher grain yields in wheat. The P use efficiency of wheat under F.albida was double that of wheat grown in an open field. By contrast, G. robusta and A. tortilis trees lowered nutrient use efficiencies in maize, leading to significantly less maize grain yields compared with open fields receiving the same fertilization. The case study also identified probabilities of critically low crop yields and crop failure to be significantly greater for maize growing under the canopy of these species.

A tree-crop system in Ethiopia. (Photo: Tesfaye Shiferaw /CIMMYT)
A tree-crop system in Ethiopia. (Photo: Tesfaye Shiferaw /CIMMYT)

In conclusion, the study demonstrated that tree-crop interactions are mediated by the application of N and P fertilizers in tree-crop systems. In F. albida-wheat agroforestry systems, N fertilizers could be saved, with localized application of P fertilizers close to tree crowns. Such adaptable application may help smallholder farmers cope with COVID-19-imposed fertilizer limitations. In G.robusta-maize and A.tortilis-maize agroforestry systems, maize did not respond to N and P fertilizers applied at recommended rates, although the application of these nutrients compensated for competition. This implies mineral fertilizers can offset the effect of competition, while they fail to provide the yield advantages like mono-cropping situations.

The researchers underlined the fact that fertilizer recommendations need to be adapted to agroforestry systems. However, in order to quantify the exact magnitude and nature of fertilizer-tree interaction in agroforestry systems accurately, factorial application of higher and lower rates of mineral fertilizer is needed. They also called for further research to identify fertilization rates that minimize tree-crop competition for G. robusta-maize and A. tortilis-maize systems, while additional studies are needed to identify the rates and timing of application that optimize F. albida-wheat facilitation.

This work was carried out by the International Maize and Wheat Improvement Center (CIMMYT) and Plant Production Systems, Wageningen University

Download your copy of the publication: Should fertilizer recommendations be adapted to parkland agroforestry systems? Case studies from Ethiopia and Rwanda

Study calls for better understanding of fertilizer prices faced by African smallholder farmers

A farm worker applies fertilizer in a field of Staha maize for seed production at Suba Agro's Mbezi farm in Tanzania. (Photo: Peter Lowe/CIMMYT)
A farm worker applies fertilizer in a field of Staha maize for seed production at Suba Agro’s Mbezi farm in Tanzania. (Photo: Peter Lowe/CIMMYT)

Crop yields in sub-Saharan Africa are generally low. This is in large part because of low fertilizer use. A recent study of six countries in sub-Saharan Africa showed that just 35% of farmers applied fertilizer. Some possible reasons for this could be that farmers may be unaware of the efficacy of fertilizer use; or have degraded soils that do not respond to fertilizer; they may not have the cash to purchase it; or because unpredictable rainfall makes such investments risky. It may also be because local fertilizer prices make their use insufficiently profitable for many farmers.

To better understand the potential fertilizer demand in a particular location, it is important to know how crops respond to fertilizer under local conditions, but it is critical to understand crop responses in terms of economic returns. This requires information about local market prices of fertilizers and other inputs, as well as the prices that a farmer could receive from selling the crop.

While national-level fertilizer prices may be available, it is necessary to consider the extent to which prices vary within countries, reflecting transportation costs and other factors. In the absence of such data, analysis of household-level behaviors requires assumptions about the prices smallholder farmers face — assumptions which may not be valid. For example, evaluations of the returns to production technologies settings have often assumed spatially invariant input and output prices or, in other words, that all farmers in a country face the same set of prices. This is at odds with what we know about economic remoteness and the highly variable market access conditions under which African smallholders operate.

An obstacle to using empirical data on sub-national disparities in fertilizer prices is the scarcity of such data. A new study focused on the spatial discrepancies in fertilizer prices. The study compiled local market urea price in eighteen countries in sub-Saharan Africa for the period between 2010-2018 and used spatial interpolation models — using points with known values to approximate values at other unknown points — to predict local prices at locations for which no empirical data was available. It was conducted by scientists at University of California, Davis, the International Maize and Wheat Improvement Center (CIMMYT) and the International Food Policy Research Institute (IFPRI). The authors note that this is the first major attempt to systematically describe the spatial variability of fertilizer prices within the target countries and test the ability to estimate the price at unsampled locations.

Predicted relative urea price (local price divided by the observed median national price) for areas with crop land in eight East African countries.
Predicted relative urea price (local price divided by the observed median national price) for areas with crop land in eight East African countries.

“Our study uncovers considerable spatial variation in fertilizer prices within African countries and gives a much more accurate representation of the economic realities faced by African smallholders than the picture suggested by using national average prices,” said Camila Bonilla Cedrez, PhD Candidate at University of California, Davis. “We show that in many countries, this variation can be predicted for unsampled locations by fitting models of prices as a function of longitude, latitude, and additional predictor variables that capture aspects of market access, demand, and environmental conditions.”

Urea prices were generally found to be more expensive in remote areas or away from large urban centers, ports of entry or blending facilities. There were some exceptions, though. In Benin, Ghana and Nigeria, prices went down when moving away from the coast, with the possible explanation being market prices in areas with higher demand are lower. In other locations, imports of fertilizer from neighboring countries with lower prices may be affecting prices in another country or region, much like political influence. Politically, well-connected villages can receive more input subsidies compared to the less connected ones.

“The performance of our price estimation methods and the simplicity of our approach suggest that large scale price mapping for rural areas is a cost-effective way to provide more useful price information for guiding policy, targeting interventions, and for enabling more realistic applied microeconomic research. For example, local price estimates could be incorporated into household-survey-based analysis of fertilizer adoption,” explained Jordan Chamberlin, CIMMYT spatial economist. “In addition, such predictive ‘price maps’ can be incorporated into targeting and planning frameworks for agricultural investments. For example, to target technology promotion efforts to the areas where those technologies are most likely to be profitable.”

Predicted relative urea price (local price divided by the observed median national price) for areas with crop land in nine West African countries.
Predicted relative urea price (local price divided by the observed median national price) for areas with crop land in nine West African countries.

“The evidence we have compiled in this paper suggests that, while investments in more comprehensive and spatially representative price data collection would be very useful, we may utilize spatial price prediction models to extend the value of existing data to better reflect local price variation through interpolation,” explained Robert J. Hijmans, professor at University of California, Davis. “Even if imperfect, such estimates almost certainly better reflect farmers’ economic realities than assumptions of spatially constant prices within a given country. We propose that spatial price estimation methods such as the ones we employ here serve for better approximating heterogeneous economic market landscapes.”

This study has illustrated new ways for incorporating spatial variation in prices into efforts to understand the profitability of agricultural technologies across rural areas in sub-Saharan Africa.  The authors suggest that an important avenue for future empirical work would be to evaluate the extent to which the subnational price variation documented is a useful explanatory factor for observed variation in smallholder fertilizer use in sub-Saharan Africa, after controlling for local agronomic responses and output prices. One way to do that may be to integrate input and output price predictions into spatial crop models, and then evaluate the degree to which modeled fertilizer use profitability predicts observed fertilizer use rates across different locations.

Read the full study:
Spatial variation in fertilizer prices in Sub-Saharan Africa

African leaders rely on science and technology to improve food security

Rural areas in Africa are facing unprecedented challenges. From high levels of rural-urban migration to the need to maintain crop production and food security under the added stress of climate change, rural areas need investment and support. The recent Africa Food Security Leadership Dialogue brought together key regional actors to discuss the current situation as well as ways to catalyze actions and financing to help address Africa’s worsening food security crisis under climate change.

Heads of state, ministers of agriculture and finance, heads of international institutions and regional economic commissions, Nobel laureates, and eminent scientists took part in the dialogue in Kigali, Rwanda, on August 5 and 6, 2019.

This high-level meeting was convened by core partners including the African Union Commission (AUC), the African Development Bank (AfDB), the Food and Agriculture Organization of the United Nations (FAO), the International Fund for Agricultural Development (IFAD), and the World Bank.

The Director General of the International Maize and Wheat Improvement Center (CIMMYT), Martin Kropff, participated in a session entitled “Leveraging science to end hunger by 2025”, where he discussed the challenges to adapt Africa’s wheat sector to climate change, and what CIMMYT is doing to help. Demand for wheat is growing faster than any other commodity, and sub-Saharan Africa has tremendous potential to increase wheat production. People in Africa consume nearly 47 million tons of wheat a year. However, more than 80% of that — 39 million tons— is imported and used for human consumption, costing the countries billions of dollars. Kropff discussed the great strides CIMMYT has made in supporting wheat production on the continent despite biological challenges such as Ug99, a dangerous strain of wheat rust native to east Africa.

“The potential for wheat production in Africa is tremendous; existing varieties already realize very high yields but poor agronomic practices often result in low yields,” Kropff said. “The challenges we have to tackle together are as much in reshaping policies in favor of wheat and develop the wheat market and surrounding infrastructure. Africa’s environment is friendly for wheat production, but it needs the right supporting policies to develop a sustainable wheat market.”

Kropff highlighted Ethiopia’s case. “Ethiopia has decided to become self-sufficient in wheat by 2025. CIMMYT is already talking to the government and working with the national system to assure the best varieties and technologies will be used. We are ready to do this with every single African nation that is interested in producing quality wheat.”

Farmer Galana Mulatu harvests a wheat research plot in Ethiopia. (Photo: P.Lowe/CIMMYT)
Farmer Galana Mulatu harvests a wheat research plot in Ethiopia. (Photo: P.Lowe/CIMMYT)

Climate change is also posing dire threats to maize, a key staple crop in sub-Saharan Africa.

We talked to Cosmos Magorokosho, CIMMYT researcher and project leader of the Stress Tolerant Maize for Africa (STMA) project, who attended the dialogue, on what CIMMYT can do to better support farmers in Africa’s rural communities.

How can projects such as Stress Tolerant Maize for Africa contribute to protecting food security in Africa in the face of climate change?

Stress-tolerant maize varieties can contribute by cushioning farmers against total crop failures in case of drought and heat stress, among other stresses during the growing season. In addition, stress-tolerant varieties can also yield well under good growing conditions, therefore benefiting farmers both during difficult growing seasons as well as those seasons when conditions are favorable for maize growth.

What can be done to support rural areas and smallholder farmers in Africa to improve food security?

Rural areas and smallholder farmers need support with climate resilient crop varieties, supporting agronomic practices, environment conserving farming practices, labor and drudgery- reducing farm operations, access to affordable finance, and rewarding markets for their produce.

What role can international research organizations such as CIMMYT play in this?

International agricultural research can unlock the potential of small holder farmers through the generation of new appropriate technologies, testing and helping farmers adopt those technologies, refining and fine tuning of new technologies, as well as scaling up and out of farmer-demanded technologies. International agriculture research can influence policy across and within borders, political divide, religion, ecologies, and diversity of farmers.

What would it take for CIMMYT to effectively move science from the lab and package it into solutions that can be disseminated and adopted by majority of small family farms in Africa?

CIMMYT should keep and broaden its engagement with farmers, policy makers, and continue with capacity enhancement of partners to reach scale and bring new cutting-edge smallholder-farmer appropriate technologies to farmers’ fields in the shortest possible timeframe.