Skip to main content

Location: Africa

CIMMYT’s work in Africa helps farmers access new maize and wheat systems-based technologies, information and markets, raising incomes and enhancing crop resilience to drought and climate change. CIMMYT sets priorities in consultation with ministries of agriculture, seed companies, farming communities and other stakeholders in the maize and wheat value chains. Our activities in Africa are wide ranging and include: breeding maize for drought tolerance and low-fertility soils, and for resistance to insect pests, foliar diseases and parasitic weeds; sustainably intensifying production in maize- and wheat-based systems; and investigating opportunities to reduce micronutrient and protein malnutrition among women and young children.

Collaboration across the seed system value chain

Collaboration among diverse seed value chain actors is essential to improving seed systems for dryland crops in Kenya and contributing to food security in an era marked by climate change. This holistic approach is essential at a time when sustainable agricultural practices are increasingly becoming pertinent in semi-arid and high-potential areas, as emphasized by participants attending a multi-stakeholder seed systems meeting in Nairobi.

The Kenya Drylands Crop Seed Systems Workshop in February 2024 brought together various stakeholders from the agricultural sector, including farmers, policymakers, researchers, and the private sector. The main aim of this meeting was to identify practical ways to address critical challenges in the seed system for key dryland crops—pigeon pea, chickpea, groundnut, millets, and sorghum—essential to the livelihoods of millions in Kenya. Organized by CIMMYT and the Kenya Agricultural and Livestock Research Organization (KALRO), this collaborative effort aimed to gather insights and jointly develop a seed systems strategy to strengthen a seed supply system that matches grain demand for these essential grains.

A group photo of the participants in the Kenya Drylands Crop Seed Systems Workshop. (Photo: Maria Monayo/CIMMYT)

While moderating the discussion, Patrick Ketiem, director of agricultural mechanization research at KALRO, highlighted the importance of the situation. “The demand for drought-tolerant dryland crops and varieties is a clarion call for breeders to innovate further,” he explained. This reflects a broader trend across the country, where even high-potential areas are shifting to dryland crops in response to unpredictable weather patterns.

Addressing farmer needs

The workshop allowed participants to delve into the intricacies of seed systems, from varietal preferences to market readiness, highlighting the importance of collaboration among breeders, distributors, and farmers. Moses Siambi, CIMMYT’s regional director for Africa, emphasized the importance of integrating passion with science to make a tangible difference in the lives of farmers. “Our work is not just about developing varieties,” Siambi remarked. “It’s about improving livelihoods and ensuring that the benefits of our research reach the smallholder farmer,” he explained, emphasizing the broader impact of CIMMYT’s efforts to boost agricultural productivity, food security, and livelihoods in the face of climate change.

Moses Siambi, CIMMYT’s regional director for Africa, engages in a conversation with a participant. (Photo: Maria Monayo/CIMMYT)

Chris Ojiewo, partnerships and seed systems lead at CIMMYT, explained the vision for the Dryland Crops program, referencing the journey of the Accelerated Varietal Improvement and Seed Delivery of Legumes and Cereals in Africa (AVISA) project, which was a culmination of a decade of research aimed at introducing new, diverse, and farmer-preferred crop varieties to farming communities through a variety of seed delivery models.

“The essence of our endeavor is to ensure that the genetic gains from our breeding efforts result in real benefits for the farmers,” he said. “Developing seed varieties with the end-user in mind is crucial to ensure that crops not only reach the farmers but also meet their specific needs effectively.”

Chris Ojiewo, partnerships and seed systems lead at CIMMYT, provides insights on the future of the Dryland Crops program, leveraging ten years of research from AVISA. (Photo: Maria Monayo/CIMMYT)

Improving seed systems

The workshop discussions also highlighted the importance of innovation in seed delivery models and the need for increased investment in the dryland crops sector as essential strategies for addressing current challenges and capitalizing on new opportunities. Investment decisions will be guided by granular data on local grain demand, enhancing seed production planning. Additionally, insights from institutions such as the Agriculture and Food Authority (AFA) and the State Department of Agriculture, consolidating per capita consumption data, will aid in determining the requisite seed supply per capita. Moreover, there is need for a mechanism for facilitating knowledge through consolidating data from existing projects that tackle comparable challenges related to food security and seed accessibility.

Lusike Wasilwa, crops systems director at KALRO, who represented the organization’s director general at the event, stressed the importance of seeds in agriculture. “From genes to gains, our focus is on developing climate-smart, nutritious crops that not only enhance soil health but also ensure food security in Kenya,” Wasilwa said. She further highlighted the importance of soil health and market development in achieving sustainable food production in arid and semi-arid lands, promoting biodiversity, and sustainable land management practices.

Lusike Wasilwa, the crops systems director at KALRO, who represents the organization’s director general at the event, emphasizes the importance of seeds in agriculture. (Photo: Maria Monayo/CIMMYT)

Cross-cutting issues

The workshop also addressed regulatory and control measures in seed production with Stellamaris Mulika, principal seed inspector from the Kenya Plant Health Inspectorate Service (KEPHIS), highlighting the importance of stringent quality control measures to ensure the dissemination of quality seed of superior crop varieties.

The importance of gender inclusivity and youth engagement in agriculture was also acknowledged, reflecting women and youth’s critical role in legume and cereal variety selection, diversifying seed sources, and meaningfully contributing to the seed value chain. Veneza Kendi, a student at Jomo Kenyatta University of Agriculture and Technology (JKUAT), proposed several interventions to increase investment capacity for farmers and aggregators, mainly from the assurance of high yields from certified seeds to farmers, serving as a motivation.

Gloria Mutheu, a seed merchant at Dryland Seed Company, highlighted the need for government support in investing in the grain sector, citing the school feeding program as an initiative to pull seed demand. Mutheu urged the government to expand the crop types in legumes and cereals, such as chickpeas, included in these school feeding programs to increase demand. This, she argued, would gradually establish an inclusive seed system for increasing uptake of these underutilized but opportunity nutrient-dense crops.

Gloria Mutheu, a seed merchant at Dryland Seed Company, and Veneza Kendi, a student at Jomo Kenyatta University of Agriculture and Technology (JKUAT), discuss the vital role of youth in the seed systems value chain. (Photo: Maria Monayo/CIMMYT)

The consensus was clear: to enhance the seed systems for dryland crops, there must be collaboration across the entire value chain—from breeders to farmers, from policymakers to the private sector. This integrated approach is critical for Kenya’s climate change adaptation, food security, and promotion of sustainable agricultural practices.

Spearheaded by CIMMYT with financial support from the Bill and Melinda Gates Foundation and the United States Agency for International Development (USAID), the AVISA project seeks to improve breeding and seed systems of dryland crops, as well as the livelihoods of small-scale producers and consumers in sub-Saharan Africa. CIMMYT is leveraging this opportunity to advance research and expand its influence through its 2030 strategy that shapes the future of agriculture as a driver of food and nutrition security, and climate resilient, sustainable, and inclusive agricultural development.

Nevada Researcher Aims to Improve Sorghum Hybrids for Dairy Cattle Feed

Melinda Yerka, a researcher from the University of Nevada, Reno, is collaborating with CIMMYT, focusing on enhancing sorghum hybrids for better dairy feed, utilizing her breakthroughs in sorghum breeding alongside CIMMYT’s agricultural expertise. Their joint efforts aim to develop sorghum varieties with higher protein and starch content, suitable for diverse climates, particularly in Africa. This partnership underscores a strategic approach to global food security, leveraging sorghum’s adaptability to support sustainable agriculture and climate resilience.

Read the full story.

Sow, grow, and thrive: a pathway to improve cassava farming in Zambia

For decades, women farmers like Maureen Bwalya from the Musa camp in Kasama district of northern Zambia, have upheld the tradition of cultivating cassava on ridges. These small piles of soil created by hand hoes, 30-50 cm tall and 50 cm wide are intended to reduce water logging and facilitate cassava growth. But forming row after row takes a significant amount of physical labor. Establishing ridges follows a traditional practice known as chitemene, a Bemba word which means “place where branches have been cut for a garden.”

Chitemene, a slash and burn technique once common in Zambia, involves cutting down standing trees in the Miombo woodlands, stacking the logs, and then burning them to create a thick layer of ash believed to enhance soil fertility. The ashen fields are initially cultivated with pearl millet and followed by crops like cassava. As years progressed, this method has been associated with adverse environmental impacts disrupting the ecosystem balance due to increasingly shortened fallow and recovery periods. However, with the ever-changing climate, Bwalya and other farmers recognize the need for sustainable practices that require less labor.

Alternatives to the traditional methods

Since childhood, Maureen Bwalya, a mother of seven from Musa Camp in the Kasama District of northern Zambia, has dedicated her life to cassava farming. Thriving under very low fertility and acidic soils, cassava has offered a lifeline amid the challenges of rural agriculture. When the Sustainable Intensification of Smallholder Farming Systems in Zambia (SIFAZ) project was introduced in the northern province, where cassava is a strategic crop, Bwalya saw a valuable opportunity for change to cultivate better practices that not only improve cassava yields but also replenish soil fertility in her fields.

“When I started these trials, it was a tough transition,” said Bwalya, reflecting on her journey. “Shifting from ridge planting to flat land cultivation posed its challenges as this practice was new to me. But with time, I have learned the advantages of intercropping: increased yields, less labor, and enhanced productivity, all of which enrich my farming practices.”

Maureen Bwalya gazes through her plot. (Photo: CIMMYT)

Implemented over the last five years by CIMMYT, in collaboration with FAO and the Ministry of Agriculture, SIFAZ aims to advance the intensification of farming practices and catalyze widespread adoption among farmers in Zambia. In the Musa camp, key partners took on the challenge of advancing better farming techniques with cassava. Their collective objective was clear: to identify methods that minimized labor intensity while maximizing yields. Through rigorous trials, including comparing flat land planting against traditional ridge systems and experimenting with intercropping cassava with common beans and groundnuts, promising results have been seen.

The outcomes yielded thus far have been nothing short of inspiring across farmers. It has become clear to farmers and researchers that cassava planted on flat land, particularly within a Conservation Agriculture (CA) framework, was not only feasible in high rainfall areas but also yielded significantly higher returns. Despite observing fewer root structures, the roots themselves proved to be robust and weighty, ultimately translating to increased productivity for smallholder farmers. Furthermore, farmers have confirmed that cassava from the CA plots tastes better than the one from the ridged portions.

“As a cassava trial implementer,” Bwalya said, “I undertook various trials exploring intercropping cassava with beans and groundnuts, across both flat and ridge systems.”

Thriving and innovating

Her six-hectare plot has become a hub of experimentation, with 0.3 hectares dedicated to the ongoing trials. Encouraged by the successes and promising yields witnessed on flat land, Maureen extended these sustainable practices to the remaining expanse, intercropping maize with cassava. Her results have been noticed, drawing the interest of over fifty neighboring farmers, inspired by her flourishing plot.

As the harvesting season approaches, Bwalya faces no shortage of opportunities to market her produce. From cassava cuttings to nutrient-rich leaves and tubers, she never runs short of eager buyers in local markets, ensuring a steady income for her family.

Navigating through the different trials across the Kasama district, pockets of adoption in some farmers’ fields are noticeable. Through collaborative partnerships and community engagement, SIFAZ strives to empower farmers with the knowledge and tools stemming from the trials to become more food secure in the face of evolving climatic challenges.

New technologies to mitigate impact of drought

CIMMYT is combating the effects of El Niño and climate change by fostering climate-smart agriculture, including drought-tolerant crops and conservation practices, to bolster smallholder farmer resilience and productivity. Through partnerships and sustainable farming innovations, CIMMYT aims to improve food security and adapt to environmental challenges, ensuring that advanced technologies benefit those most in need.

Read the full story.

Revolutionizing food security: Africa’s millet renaissance

In a landmark initiative to bolster sustainable agriculture and food security, the consultative workshop ‘Bottlenecks to Expansion of Pearl and Finger Millets in Africa’ marked a pivotal step towards revitalizing millet cultivation across the continent. Spearheaded by the Bill & Melinda Gates Foundation, in collaboration with CIMMYT and the Senegalese Institute of Agricultural Research (ISRA), a meeting held in Senegal united global experts to unlock the untapped potential of millets as a cornerstone of sustainable agriculture and food security in Africa.

The discussions included identifying the symptoms of the problem, underlying issues causing these symptoms, and the interventions needed to be implemented to address these issues. This collaborative efforts among national and international organizations including government bodies, research institutes, and NGOs, demonstrated the goal of revitalizing millet cultivation through partnerships.

A group photo of the participants in the ‘Bottlenecks to Expansion of Pearl and Finger Millets in Africa’ workshop in Senegal. (Photo: Marion Aluoch/CIMMYT)

The United Nations General Assembly declared 2023 the International Year of Millets to raise awareness of and direct policy attention to millets’ nutritional and health benefits and their suitability for cultivation under adverse and changing climatic conditions.

Long overlooked but brimming with potential, millets offer a sustainable solution for both farmers and consumers in terms of profitability, adaptability, and sustainability in farming, as well as healthier dietary options for consumers.

Lessons learned from India

India, a key player in millet production, provided valuable insights into millet cultivation and consumption, providing a potential model for Africa to emulate in its millet-related strategies.

To understand the growth of millets in India, the Indian Ambassador to Senegal, Naba Kumar Pal, highlighted the strategies used by the Indian government to raise awareness about millets as a nutritious cereal that contributes to food security and provides a nutritious dietary option aimed at eliminating hunger and improving nutrition in his opening remarks.

“The first step the government did was to rebrand millets from ‘coarse grains’ to ‘nutri-cereals’, a move that has significantly increased domestic consumption and market interest of millets in India,” said the ambassador.

Indian Ambassador to Senegal, Naba Kumar Pal, highlights the Indian government’s efforts to promote millets as a nutritional powerhouse. (Photo: Marion Aluoch/CIMMYT)

In Africa, millets are under appreciated and not utilized as crops. They are often labeled as a ‘poor man’s crop,’ ‘neglected crop,’ or ‘orphan crop’.  The negative connotations have, among other areas, influenced consumers’ perceptions. By changing the vocabulary from demeaning to empowering, millets’ image can be transformed from an overlooked option to a crop of choice in Africa.

The workshop also delved into policy advocacy and commercialization efforts in India, and how these strategies could be replicated in African contexts. Tara Satyavati and Dayakar Rao, representing Indian institutions, shared insights on millet production, nutritional evaluation, and the development of value-added products. The importance of policy intervention, such as increasing the Minimum Support Price (MSP) for millets and including them in public meal programs in India, was discussed. These measures not only provided financial incentives to farmers but also increased accessibility and consumption among the general population.

The two asserted that “millets offer a sustainable solution for both farmers and consumers in terms of profitability, adaptability, and sustainability in farming, as well as healthier dietary options for consumers.”

Millets are adaptable to diverse climates, have low water requirements, and provide nutritional benefits. African countries, which face similar issues in terms of climate change and food security, can use millets as a crop to promote environmental sustainability and economic viability.

National and international collaborations

A panel discussion shed light on national and international initiatives that highlighted collaborative efforts in crop improvement and millet innovations. On the national level, Hamidou Diallo from the Ministry of Agriculture, Rural Equipment, and Food Sovereignty of Senegal (MAERSA) outlined a multi-pronged approach for Senegal. These approaches included increasing millet production, providing high-quality seeds, equipping local producers with essential tools and equipment, providing fertilizers to farmers, and expanding the overall cultivated areas of millet. These efforts represent a focused approach to leveraging agricultural innovation in millets to improve livelihoods and income for small-scale farmers.

“Aligning with the needs of the local community ensures the initiatives are impactful and resonate with the agricultural landscape and community needs,” he emphasized.

Insights into the international initiatives included discussions on innovative initiatives in the Dryland Crop Program (DCP), presented by Dryland Crops Program Director and Wheat Program Director Kevin Pixley, included the establishment of the African Dryland Crops Improvement Network, gene editing, a legumes mining project and the Vision for Adapted Crops and Soils (VACS) project, that will include millets as a prioritized crop.

“We need to find innovative ways to reach more farmers with options to improve their livelihood and popularize millets across different market segments,” said Pixley.

From left to right: Damaris Odeny (ICRISAT India), Geoff Morris (Colorado State University), Douglas Gayeton (co-founder of The Lexicon), Hamidou Diallo (MAERSA, Senegal), Kevin Pixley (director of the Dryland Crops Program), and Makiko Taguchi (FAO), engage in a panel discussion on the importance of national and international initiatives in promoting crop improvement and millet innovations, highlighting the collaborative spirit driving agricultural progress.

Other topics covered included insights from the United States Agency for International Development (USAID) innovation lab on sorghum and millets, emphasizing the importance of African-led projects and addressing the knowledge gap between African and U.S. researchers.

The pioneering role of the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), particularly in agri-business incubation, was noted, along with the Feed the Future Innovation Lab for Crop Improvement, managed by USAID and Cornell University efforts in fostering regional collaborations.

Makiko Taguchi of the Food and Agriculture Organization of the United Nations (FAO) emphasized the importance of global engagement in promoting millets as a sustainable and nutritious food source for global food security and agricultural development and highlighted the various initiatives and projects born of the International Year of Millets. Douglas Gayeton, co-founder of The Lexicon emphasized the role of effective messaging in changing people’s perceptions of millets. He underscored the importance of shifting away from terms like ‘neglected’ and ‘orphaned’ crops to more positive empowering language that resonates with consumers and policy makers.

CIMMYT’s role in dryland crop innovation

Recognizing the ever-evolving needs of society at large, CIMMYT began an initiative to advance research and broaden its impact by implementing the Dryland Crops Program. This approach is based on CIMMYT’s 2030 strategy, which will shape agriculture’s future as a driver of climate resilience, sustainable, and inclusive agricultural development, and food and nutrition security, all while meeting the United Nations Sustainable Development Goals and Africa 2063 by promoting food security, improving nutrition, and mitigating the effects of climate change.

The meeting underscored the immense potential of millets in Africa to contribute to a resilient and nutritious future, reinforcing the need for continued collaboration, innovation, and investment in this vital crop. With the right mix of policy support, technological innovation and market development, millets could be the key to Africa’s resilient and sustainable agricultural future. The workshop concluded with a call to action for stakeholders to collaborate and implement innovative practices to enhance the growth of the millet sector in Africa.

How maize seed companies use market intelligence

In a pioneering effort led by CIMMYT, the “Hybrid Maize Seed Marketing in Kenya” workshop has become a catalyst for innovation within Kenya’s maize seed industry. This landmark event brought together representatives from seed companies, agro-dealers, and other key stakeholders, fostering collaborations that have since ignited transformative changes. From revitalizing marketing strategies to introducing early maturity maize varieties, the workshop’s outcomes are shaping a more responsive and sustainable seed market. CIMMYT’s role in facilitating these industry advancements underscores its commitment to agricultural development and farmer support, setting the stage for continued progress in Kenya’s maize sector.

Read the full story.

A tale of two worlds: contrasting realities in southern and northern Zambia during El Niño

From the densely lush landscape of Zambia’s northern province to the arid terrain of the south, a stark reality unfolds, intensified by El Niño. Zambia’s agriculture faces contrasting realities yet potential lies in adaptive strategies, a diversified crop basket, and collaborative initiatives which prioritize farmers. Despite persistent challenges with climate variability and uneven resource distribution, the country navigates unpredictable weather patterns, emphasizing the intricate interplay between environmental factors and adaptation strategies.

A healthy maize and groundnut stand in the northern Province (left) and a wilting maize crop in the southern Province (right). These photos were taken two days apart. (Photo: Blessing Mhlanga/CIMMYT)

Unpacking El Niño’s impact in Zambia

El Niño presents a common challenge to both southern and northern Zambia, albeit with varying degrees of intensity and duration. The 2022/2023 season had above normal rainfall amounts, with extreme weather events, from episodes of flash floods and flooding to prolonged dry spells, especially over areas in the south. In the 2023/2024 season, the southern region has already experienced irregular weather patterns, including prolonged droughts and extreme temperatures, leading to water scarcity, crop failures, and significant agricultural losses. Although the growing season is nearing its end, the region has only received less than one-third of the annual average rainfall (just about 250 mm). Dry spells of more than 30 days have been experienced and, in most cases, coincide with the critical growth stages of flowering and grain-filling. A glance at farmers’ fields paints a gloomy picture of the anticipated yield, but all hope is not lost.

In contrast, the northern province stands out receiving above-average rainfalls beyond 2,000 mm, providing a different set of challenges for crop production. In this region, incidences of waterlogging are prominent although the effects are not as detrimental as the drought in the southern province. In general, crops in the northern province promise a considerable harvest as compared to the ones in the southern province.

Maize stover and its competing use

The scarcity of resources in southern Zambia extends beyond water availability, with the competition for maize stover, a valuable byproduct used for animal feed which can also be retained on the soil surface for fertility improvement and soil moisture conservation. With limited access to alternative fodder sources, farmers face challenges in meeting the nutritional needs of their livestock while maintaining soil fertility and conserving moisture. The struggle to balance the competing demands for maize stover underscores the complex dynamics of resource management in the region. This is further worsened by the low maize stover yield expected due to the dry conditions.

Implementing fodder trials, which include cultivating fodder crops like mucuna and lablab, intercropped or rotated with maize, offers a lifeline to farmers. While maize crops may wilt under the stress of El Niño-induced droughts, leguminous crops such as mucuna, lablab, cowpea, and groundnuts exhibit resilience, thriving in adverse conditions and providing a crucial source of food, feed, soil cover, and income for farmers. The ability of legumes to withstand environmental stressors highlights the importance of crop diversification in building resilience to climate change and ensuring food security in vulnerable regions.

Conversely, in northern Zambia, the abundance of agricultural resources allows for a more sustainable utilization of maize stover. Farmers have greater access to fodder alternatives and can implement integrated farming practices to optimize the use of crop residues. This enables them to mitigate the adverse effects of soil degradation and enhance livestock productivity, contributing to the resilience of their agricultural systems.

Use of more climate-smart crops

Drought-tolerant cassava grown in the northern province. (Photo: CIMMYT)

In southern Zambia, maize stands as the main crop, often supplemented with the integration of some leguminous crops integrated to some extent, to diversify the agricultural landscape. However, the relentless and longevity grip of El Niño has taken a negative toll on maize production, despite efforts to cultivate drought-tolerant varieties. As the dry spell persists, maize plants at the critical tasseling and silking stage face an uphill battle, as the dry and hot air has adversely impacted pollen and silk development.

The dissimilarity with the northern province, where cassava thrives from abundant water, is striking. This resilient crop, known for its drought tolerance, presents a promising alternative for farmers in the southern province grappling with erratic rainfall patterns. As climate change continues to challenge traditional agricultural practices, exploring resilient crops like cassava may offer a lifeline for communities striving to adapt and thrive amidst adversity.

In response to these radically different realities, the Sustainable Intensification of Farming Systems (SIFAZ) project, a collaborative effort of CIMMYT with FAO, the Ministry of Agriculture in Zambia, and the CGIAR Initiative on Diversification in East and Southern Africa, also known as Ukama Ustawi, have jointly promoted sustainable intensification practices to enhance the resilience of smallholder farmers.

The SIFAZ project is designed around the idea that strip crops and intercrops can add nutritional and economic value to Conservation Agriculture (CA) systems for smallholder farmers in Zambia. While traditional yield metrics provide some insight across the several intercropping treatments being tested on-farm, the true benefits of these cropping systems extend beyond mere output. SIFAZ recognizes the diversification synergy, emphasizing that “two crops are better than one.”

However, the outcomes of the SIFAZ project and the CGIAR Initiative on Diversification in East and Southern Africa have varied over the years between the two regions, reflecting the discrepancy in their agricultural landscapes.

Notably, regional differences in the adoption and success of these cropping systems have become apparent. In the northern province, crop-centric approaches prevail, leading to a higher concentration of successful crop farmers. Meanwhile, in the southern province, mixed systems that incorporate mixed crop-livestock systems achieve desirable effects. These findings highlight the importance of tailoring agricultural interventions to suit the specific needs and conditions of diverse farming communities.

Navigating the complex challenges of climate change requires a multifaceted approach that acknowledges the unique realities of different regions. By embracing adaptive strategies, harnessing indigenous knowledge, and fostering collaborative partnerships, Zambia can forge a path towards a more resilient and sustainable agricultural future, where farmers thrive despite the uncertainties of a changing climate.

Bargaining for Better: How gender roles in household decision-making can impact crop disease resilience

‘A better understanding of the links between gender roles in household decision-making and the adoption of technologies can enhance the uptake of innovations in smallholder farming systems,’ concludes a recently published paper by CIMMYT. The paper connects women’s bargaining power in households with the adoption of rust resistant wheat varieties, based on the work of Accelerating Genetic Gains in Maize and Wheat (AGG) in Ethiopia.

“While an emerging body of literature finds positive correlations between women’s influence in household decision-making and socioeconomic, health, and nutritional outcomes, few studies have analyzed the links between intra-household decision-making and the adoption of agricultural technologies,” said Michael Euler, agriculture research economist at CIMMYT.

A case study in Ethiopia

For this study, researchers used a dataset from Ethiopian wheat-producing households.

Ethiopia is the second-largest wheat producer in Africa, with an aggregate grain production of 5.5 million metric tons and 4-5 million farmers engaged in cultivation. The Ethiopian Highlands are a hot spot for wheat rust. With recurrent epidemics in the last decade, the emergence of new strains of wheat rust increased production risks. On the positive side, farmers seem to be responsive to the management of rust diseases. Rust-resistant bread wheat varieties, released since 2010, have been widely adopted by smallholder farmers across Ethiopia.

The CIMMYT study surveyed 1,088 wheat-producing households in Ethiopia to analyze the links between women’s role in household decision-making concerning crop production and the adoption and turnover rates of rust-resistant wheat varieties. Female and male members from the same households responded separately, which facilitated capturing individual perceptions and the intra-household dynamics in decision-making.

Farmer Shumuna Bedeso weeds her wheat field. (Photo: Peter Lowe/CIMMYT)

Intra-household decision-making arrangements and wheat varietal choice

Overall, the study reveals a positive association between women’s role in decision-making regarding the selection of wheat seed and the adoption of rust-resistant wheat varieties and wheat varietal turnover. Findings may be related to differences in risk aversion between women and men farmers. While women farmers may tend to advocate for the adoption of rust resistant varieties to avoid potential financial difficulties that arise from purchase of fungicide in the growing season, men farmers may be more inclined to adopt high yielding varieties and use fungicides to combat rust within the season.

Spouses may agree or have different opinions regarding their decision-making roles. Spousal agreement on the woman having a role in making crop variety decisions is associated with higher adoption rates compared to spousal agreement that the woman has no role. Joint decision-making with mutually uncontested spousal roles may yield better outcomes due to larger combined exposure to information, as well as spousal discussion and reflection on potential implications of the varietal choice decision.

Conclusion: It is about negotiation, contestation and consensus

Household decisions, including the decision to adopt agricultural technologies often result from negotiation, contestation, and consensus between wife and husband. This process is shaped by diverging interests, motivations and objectives, while its results are determined by different levels of individual bargaining power. “Our findings indicate that women’s ownership of agricultural land and household assets is strongly associated with their active role in household decisions on wheat varietal choice, and with spousal agreement,” said Moti Jaleta, senior agricultural economist at CIMMYT. The dynamics in intra-household decision-making are likely to influence households’ adoption of agricultural technologies.

Disregarding the dynamics in decision-making implies that households are unilateral decision-makers, a scenario which probably does not hold true considering the level of spousal disagreement regarding their roles and influence in choosing crop varieties. A deeper understanding of the connections between gender dynamics in household decision-making and adoption choices can enhance the efficiency of public extension systems, increase the adoption rates of modern innovations, improve agricultural productivity, and enhance livelihoods in smallholder agriculture.

Read the complete paper here.

Bridging gender gaps by nurturing women scientists

Lourine Bii, 33, is a pioneer as the first female technician at the Kiboko Plant Breeding Station. Moving from KALRO to CIMMYT, she is independently managing trials and breaking gender barriers in agricultural research. Her journey illustrates the importance of inclusivity and empowerment in shaping the future of agriculture.

Read the full story.

How Kenya’s plant breeding stations are investing in women in science

CIMMYT, in collaboration with CGIAR, is leading the charge in Kenya to close the gender gap in agricultural research, particularly in plant breeding stations. Through initiatives like targeted training programs and infrastructure improvements, they’re empowering women to take on roles traditionally dominated by men. This includes offering tractor driving courses and adapting facilities to meet women’s needs. Lourine Bii’s success story, rising to oversee plant breeding trials, exemplifies how investing in women not only furthers gender equality but also enhances research quality and relevance by incorporating diverse perspectives into agricultural innovations.

Read the full story.

Network develops optimized breeding pipelines for accelerated genetic gains in dryland crops

Participants from the breeding pipelines optimization meeting at the Safari Park Hotel, Nairobi, Kenya. (Photo: CIMMYT)

Partners from the Africa Dryland Crop Improvement Network (ADCIN) from 16 institutes in Africa came together for a four-day workshop in Nairobi, Kenya, during 19-22 September 2023, to critically review and optimize breeding pipelines for newly formed breeding programs. The meeting provided an opportunity for multidisciplinary scientists to better understand each other’s significant roles and contributions in achieving optimized breeding pipelines.

Nine female and 28 male scientists working across 14 countries made up the group of experts at the workshop, which included crop breeders, quantitative geneticists, crop protection scientists, genomics experts, and data analysts. Together, they collaboratively developed, assessed, and refined the various stages and processes of breeding pipelines. Most participants were crop breeding leads from the national agricultural research and extension systems (NARES) and CGIAR Research Centers, as well as members of the Breeding Informatics Working Group A, the first of its kind as a strategic leadership group of crop breeding experts.

The workshop sponsored by CIMMYT focused on improving genetic gains across six crops: chickpea, pigeon pea, finger millet, pearl millet, groundnut, and sorghum. The workshop was organized by CIMMYT experts, Abhishek Rathore, breeding data and informatics expert, Keith Gardner, quantitative geneticist, and Roma Rani Das, biometrician, and quantitative geneticist experts from the CGIAR Accelerated Breeding Initiative, Dorcus Gemenet and Christian Werner.

Multidisciplinary expertise in action

Under the guidance of the Associate Program Director and the Breeding Lead for Dryland Crops, Harish Gandhi, participants engaged in an array of advanced genetic approaches, statistical techniques, and quantitative concepts presented by the participating experts from CIMMYT and CGIAR Accelerated Breeding.

Each breeding program schema was reviewed from detailed quantitative genetic aspects and agreed project criteria, including choosing parents, the optimum number of parents, crossing designs, the number of generations, methodologies, testing strategies, and analytical frameworks. The group deliberated on the breeding strategies tailored for respective market segments and target product profiles to further improvise and optimize breeding pipelines to enhance the programs’ efficiency.

Agreements were reached on the number of founder parents, the number of crosses and progenies in various generations, line development method, evaluation and testing strategy, time until parental selection (cycle time), marker assisted selection (MAS), genomic selection (GS) strategy, making routine use of molecular markers for QA/QC. The team also finalized the breeding strategies tailored for respective market segments and target product profiles to further improvise and optimize breeding pipelines aimed at higher genetic gains.

In coordination with crop breeders from CIMMYT, the NARES dryland crop breeding leads presented the current schematics of breeding pipelines for both line and hybrid breeding, highlighting the market segment, Target Product Profile (TPP) and Target Product Environment (TPE).

The breeding informatics team also showcased the upcoming Dryland Crops Trial Information System dashboard, a one stop shops to capture, host, and provide information on the trials organized by the network’s NARES breeders across Africa.

Collaboration for genetic gains

Crop breeding experts discuss strategies for breeding pipeline optimization. (Photo: CIMMYT)

The value of partnership working was frequently highlighted by the speakers. Michael Quinn, lead of the CGIAR Accelerated Breeding Initiative, gave an overview of the initiative’s objectives and high-level goals in 2023, emphasizing the need to foster dialogue and alignment across breeding teams. He also underlined the importance of such hand-in-hand meetings for fostering cross-regional and cross-institute learning.

“Plant breeding has always been at the center stage of crop improvement, but it has become more and more important lately, and there is a need to bring more collaborative efforts across disciplines to realize higher genetic gains in our breeding programs,” said Kevin Pixley, Dryland Crops program director and Wheat program director during his virtual presentation.

“Interaction with the breeding leads from CIMMYT and the NARES in East and Southern Africa (ESA) and West and Central Africa (WCA) and other experts helped in cross learning from the advanced breeding programs,” said Maryam Dawud, plant breeder at the Lake Chad Research Institute in Nigeria. Such workshops are needed for developing optimized breeding pipelines, and we will need more such in-person workshops on advanced data analysis.”

Next steps for dryland crops

During the workshop, network partners came up with an optimized breeding pipeline incorporating advanced quantitative genetic and statistical principles aligned with the latest scientific advancements and market demands. The group further developed a six-month actionable plan split by region to address common bottlenecks across the crops, such as capacity building in data analysis, modernizing digital infrastructure, training and enhancing human capacity in the use of equipment, and managing staff turnover.

All these deliberations provided the network partners with better insights and hands-on-experience to design their breeding pipeline, outlining specific steps, responsibilities, and timelines for implementing the identified optimizations. This preparatory work will ensure there is a targeted and coordinated effort toward pipeline enhancement and accelerated genetic gain for dryland crops in the region.

Happy Daudi, head, Groundnut Research Program at Tanzania Agricultural Research Institute (TARI), who participated in the workshop, stated, “Bringing in multidisciplinary experts provided a great opportunity to integrate various concepts of population improvement, product development, and deploying advanced statistical approaches for optimizing our breeding pipeline for achieving higher genetic gains, and accelerated variety turn over.”

Thank you to the Bill and Melinda Gates Foundation, the United States Agency for International Development (USAID), and CGIAR, for their generous funding which made this workshop possible.

No Stones, No Grit! A game-changing technology to process small grain introduced in Zimbabwe

Farmers thresh wheat at an irrigation scheme. (Photo: CIMMYT)

In Zimbabwe, the traditional, laborious, and time-consuming small grain processing may soon belong to the past, thanks to a game-changing technology: a multi-crop thresher. This scale-appropriate machine offers a smarter and less strenuous way to produce high-quality small-grain meals, including in drought-prone regions, without being contaminated with sand or stone particles.

“One of the main impediments to large-scale adoption of sorghum and millet in drought-prone areas is the laborious task of threshing. This has been solved by introducing multi-crop threshers, which form a central part in the business of mechanization service providers in rural Zimbabwe”, says Christian Thierfelder, principal scientist and project lead for the Mechanization and Extension Activity.

The introduction of the multi-crop thresher not only alleviates the physical strain of manual threshing but also enhances the overall quality of small-grain products. This innovation is a crucial step forward in promoting the production and consumption of small grains in Zimbabwe, contributing to food security and improved livelihoods for farmers.

This innovation was introduced by the Feed the Future Mechanization and Extension Activity, implemented by CIMMYT and funded by the United States Agency for International Development (USAID), to address the challenges of traditional small grain processing and offer new market opportunities to farmers.

Multi-crop thresher. (Photo: CIMMYT)

Small grain production and consumption has traditionally been a household favorite in Zimbabwe due to its rich nutritional content. However, the sand content and gritty texture, often associated with sorghum or millet meals, have led to a decline in consumers’ interest in it. The main culprit? The traditional method of manual threshing on the soil, a strenuous and time-consuming process that incorporates sand and gravel particles into the threshed grains (and then into flours), resulting in an unpleasant eating experience.

In Zimbabwe and across the region, small grain processing has been characterized by the arduous task of manual threshing using sticks. Women, often at the forefront of this task, repeatedly beat the heads of small grains on hard surfaces, such as granite or hard clay, to separate the grains. Despite efforts to minimize contamination by threshing them into sacks or on plastic sheets, the gritty taste persists. The subsequent winnowing, roasting, and milling do little to eliminate tiny soil and stone particles from the final product (flour) as physical separation is technically challenging.

The multi-crop thresher for smooth results

“Powered by an 8 HP diesel engine, the multi-crop thresher is a perfect machine to process sorghum, millets, maize (husked or un-husked), wheat, cowpea, sugar beans, and soybean,” says Abdul Matin, mechanization specialist and technical lead of the Mechanization and Extension Activity. “It is locally made in Zimbabwe and designed to promote mechanization as a business as it can easily be transported. It has high threshing efficiency, is fuel-efficient, easy to operate, and women friendly.”

The operator simply feeds the crop into the inlet hopper, and as it passes through the threshing drum, the machine efficiently separates the grain from the chaff, releasing clean grain through the outlet chute. “The thresher will help reduce decline of small grain production in the country and complement government efforts to expand its cultivation in Natural Regions IV and V in Zimbabwe,” Matin added. When operating the machine efficiently, one can thresh up to 0.5 tons per hour for small grains.

The multi-crop thresher, a vital component of climate-resilient agriculture

The multi-crop thresher is an efficient post-harvest machine that can process various grains. (Photo: CIMMYT)

CIMMYT organized awareness meetings, including the 2023 Seed and Mechanization Fairs, for farmers to witness the speed and quality performance of the multi-crop thresher. They could also assess the quality of pearl millet processed using the thresher and others threshing wheat in an irrigation scheme showcasing the efficiency of the process and improved grain quality.

“In our region, harvesting small grains was always laborious,” explains Paidamoyo Kaseke from Ward 4 in Chimanimani district, Manicaland province. “But thanks to the multi-crop thresher, it’s now much easier. It operates quickly and efficiently, delivering clean grains that we can promptly take to the mill. This technology has revolutionized our harvesting process, significantly reducing the time and effort required.”

“Not only do we promote new and effective technologies such as the multi-crop thresher in the project, but we also seek solutions for farmers without high incomes to be able to afford the thresher. That is why we are partnering with two Zimbabwean banks to make small-scale loans accessible to farmers at affordable rates and tenure times. This way, we can effectively scale the access to scale-appropriate mechanization solutions.” says Leon Jamann, chief of party for the Mechanization and Extension Activity.

As the 2023-2024 farming season has been dry with erratic rainfall, rainfed dependent farmers already face drought in large areas of Zimbabwe. However, the promotion of more climate-resilient small grains in 2023—declared by the United Nations the International Year of Millets—emphasizes their adaptability to climate change and their high nutritional value. The multi-crop thresher, a vital component of this initiative, ensures that farmers can efficiently process small grains despite the challenging climate conditions.

Seeds of change: one woman’s mission to transform her community

In the heart of Itumbula village in the Songwe district of Tanzania lives Venansia Swale, a farmer, mother, and community champion, who is turning the tide against food insecurity through the power of quality seeds. Swale has taken on the role of promoting improved seed in her community after experiencing firsthand the benefits of growing sorghum on her own farm with different seed.

“As a mother of five children, my biggest challenge is food shortage, and sorghum is our staple food,” said Swale. “Normally, I would harvest 450 kg from my three-acre farm, which isn’t enough for my family’s needs and leaves little surplus for selling. However, using quality seed this season, I harvested 990 kg. I’ve seen the benefits–not only can I feed my children for a year, but I can also earn income from the surplus.”

Swale positively impacts her village’s crop yields by championing delivery of quality seed. (Photo: CIMMYT)

Swale’s efforts began to extend beyond her own farm as she championed demand creation and consolidation in her village of Itumbula. She successfully created a demand of 574 kg, becoming her community’s sole distributor of quality sorghum seed. In the 2022-2023 season, she facilitated the supply of 134 kg of quality sorghum seed and 50 kg of quality maize seed.

So far, she has reached 300 farmers in partnership with CIMMYT and the Tanzania Agricultural Research Institute (TARI), sparking a transformative movement. One local farmer said, “As a community, we have come together to embrace quality seed, and Venansia has been at the forefront of this movement. Her dedication has significantly impacted food security.”

Despite being pregnant during the 2022 “Kizazi cha Mabadiliko” (the generation that will bring change) campaign, Swale remained unwavering in her determination and passion. She exemplifies the success of the Social and Behaviour Change interventions implemented by the Centre for Behaviour Change and Communication (CBCC).

The “Kizazi Cha Mabadiliko” campaign was developed and launched by CBCC in the Mbozi and Momba districts of Tanzania, aiming to increase awareness of the benefits of improved seeds. It was also designed to challenge negative perceptions and enhance motivation for participating in agricultural activities. The campaign underscores the importance of using improved seeds as a foundational element for a prosperous future in agriculture. The strategic design of the campaign ensures the efficient distribution of behavior change tools and materials, further demonstrating its impact through Swale’s inspiring example.

Sprouting new opportunities

Swale stands with some of her fellow choir members during the establishment of a demo plot at Itumbula. (Photo: CIMMYT)

Despite her impressive achievements, Swale remains forward-thinking. The village extension officer notes that while farmers have adopted improved seeds, poor farming practices persist, impacting yields. Inspired and invigorated, Swale plans to revolutionize her farming practices in the upcoming season, aiming for an even more significant impact.

Besides her role as a community champion, Swale is a member of the Sifa choir in her church. Leveraging her influence, she convinced nine fellow choir members to join the intervention, where they established and managed sorghum demonstration plots in their locality. The performance of quality seed inspired the choir to enlist as seed producers, and they secured two acres of land for seed production in the 2023- 2024 season.

Venansia’s vision goes beyond her own farm; she plans to produce seeds as part of the choir group and individually, allocating an acre for seed production and two acres for grain production. Hers is a story of personal triumph, showing the impact one person can have on an entire village, and a testament to the transformative power of community-led initiatives.

“The seeds we plant today will grow into a better tomorrow for all of us,” asserts Swale.

Enhancing food security and income for smallholder farmers in Angola

The Angola Smallholder Agriculture Development and Commercialization Project (SADCP or MOSAP2), with crucial input from CIMMYT, markedly improved food security and income for 179,000 smallholder farmers in Angola from 2016 to 2022. By introducing 4,000 Farmer Field Schools and innovative agricultural practices, including CIMMYT’s improved seeds, the project boosted crop yields by up to 196% and increased the sale of produce significantly, showcasing the transformative impact of integrating scientific research with farmer education in post-conflict agricultural recovery.

Read the full story.

Women farmers turn the tide on soybean production

Juliana Moises tends her soybean plot. (Photo: CIMMYT)

From the rich plateau landscapes of Angonia district in the Tete province of Mozambique emerges a tale of determination and hard work. Juliana Nicolau Moises, a mother of four, has been a devoted soybean farmer for more than a decade, tending to a crop whose pods carry the potential for value-added products, including milk and porridge for her children. But one wonders, what motivates smallholder farmers like Juliana to invest their efforts in soybean production.

“I have never looked back on producing soybeans,” reflects Moises. “This legume crop has allowed me to feed my family and meet my household needs, let alone the cash income from sales of the surplus crop. It has taken a lot of hard work and resilience to navigate through the complexities of soybean production.”

Entering her second season of implementing the Chinyanja Soy Use Case trials with CGIAR’s Initiative on Excellence in Agronomy, delivered in partnership with CIMMYT and the International Institute of Tropical Agriculture (IITA), Moises eagerly anticipates a bumper harvest in the early planted fields. She has been avidly implementing trials on planting dates to establish the implications of early, mid, and late planting on soybean yield. Let alone the required attention to detail, she exudes a deep understanding of the significance of the trials by carrying out key agronomic practices to ensure a good harvest. This will not only nourish the health and wellbeing of her family but also symbolizes the fruits of her dedication.

Moises’s commitment extends beyond the trial she hosts as she implements her learning from the project to other fields, using innovative approaches like the double-row planting method. In soybean farming, this involves planting two rows of seeds on a wider ridge established on the traditional spacing that farmers use on maize. Traditionally, farmers in Angonia have been planting single rows of soybean on ridges spaced at 90 cm used for maize, thereby resulting in low soy plant populations and ultimately low yields. This different technique optimizes the plant population and land use efficiency, improving yields, and facilitating easier weeding.

Moises’s soybean plot in Angonia, Mozambique. (Photo: CIMMYT)

Despite the promise of enhanced production, challenges persist. Southern Africa continues to face a growing demand for soybeans, with annual productivity of 861,000 metric tons (mT) falling short of the 2-million-ton demand. In Mozambique, vibrant soybean farms blanket the landscape, yet smallholder farmers like Moises grapple with underdeveloped markets and climate-related adversities, such as droughts and floods currently worsened by the El Niño phenomenon.

“As a devoted soybean farmer, I have met my own fair share of challenges. One of our biggest challenges is the labor requirement across the production season,” shared Moises as she navigates through her fields. “We need machinery for planting, weeding, and harvesting in order to reduce the labor and drudgery associated with soybean production. In addition, markets remain a challenge.” Her unwavering commitment inspires neighboring farmers, creating a ripple effect of hope and determination in the community.

Sharing the same sentiments is Veronica Ernesto Gama, who teams up with her husband every year to tend to her soybean field. Having started in 2007, their yields have sustained the food basket of her family while meeting nutritional needs. “In the past, I used to just scatter around soybean seeds in one place, but after these trials, I have learned the significance of applying the agronomically recommended spacing and the need for quality improved seeds to ensure a bumper harvest,” said Gama.

The power of collaboration

Addressing these challenges head-on is CGIAR’s Excellence in Agronomy Chinyanja Triangle Soy Use Case, a collaborative effort aimed at strengthening the soybean industry primarily by empowering farmers with improved agronomic practices and decision support. Solidaridad, an international non-government organization (NGO) pursuing digital platforms for scaling agronomy, serves as the demand partner of the Excellence in Agronomy Chinyanja Triangle Soy Use Case, while CGIAR provides technical support. Solidaridad’s role is vital in catalyzing demand for the product or service in question. Research outputs drawn from the trials will be used to develop a mobile phone application on the Kvuno, a social enterprise borne out of Solidaridad. The platform will support farmers with onsite advisories on planting dates, site-specific fertilizer recommendations, variety selection, and crop configurations.

To date, the initiative has drawn the willingness of 70 farmers in the Angonia district of Tete province, who are implementing different suites of trials, including nutrient omission, planting date, plant configuration, and fertilizer usage. Excellence in Agronomy has come at an opportune time for smallholders’ journeys in soybean production, emphasizing the importance of optimized spacing and improved agronomic practices.

As the story unfolds in Mozambique, women like Moises and Gama are the unsung heroes driving soybean production. Their dedication, coupled with initiatives like Excellence in Agronomy, paint a picture of progress and potential. Their commitment inspires many surrounding farmers who draw inspiration on the trials in their fields. As the sun continues to rise over the dusty soils of Angonia, it showcases not just Moises’s fields, but the bright future of soybean production in the hands of resilient women farmers.