Skip to main content

Location: Africa

CIMMYT’s work in Africa helps farmers access new maize and wheat systems-based technologies, information and markets, raising incomes and enhancing crop resilience to drought and climate change. CIMMYT sets priorities in consultation with ministries of agriculture, seed companies, farming communities and other stakeholders in the maize and wheat value chains. Our activities in Africa are wide ranging and include: breeding maize for drought tolerance and low-fertility soils, and for resistance to insect pests, foliar diseases and parasitic weeds; sustainably intensifying production in maize- and wheat-based systems; and investigating opportunities to reduce micronutrient and protein malnutrition among women and young children.

DTMA building capacity for maize research in the Kingdom of Swaziland

DTMA19 During 25 – 30 June 2012, CRP MAIZE and FAO-Swaziland supported the participation of 32 maize researchers and technicians in a maize training course in Mbabane, Swaziland. The course attracted agricultural researchers and extension staff from the Department of Agricultural Research and Special Services (DARSS), NGOs, and seed companies. MAIZE supported participants from Botswana and Lesotho. Course objectives included a refresher for researchers and technical staff on implementing field trials, seed production, and use of Fieldbook software. The training combined theory and field practicals on experimental design, data analysis, and identification of maize pests and diseases. The training was officially opened by the FAO representative in Swaziland, Michael Connelly, who emphasized the importance of trial management and variety testing in Swaziland.

The course gave researchers and technicians insights into variety testing. This was particularly relevant for Botswana, Lesotho, and Swaziland, as they don’t have breeding programs and depend on CIMMYT’s regional trials to identify maize germplasm adapted to their countries. The participants were very eager to learn how to design, implement, and analyze mother-baby trials, which evaluate new maize varieties with farming communities. The mother trial is grown in the center of the community and contains 12-20 new and old varieties, and farmers grow subsets of four varieties each in baby trials in their own fields, using their own management practices. At harvest, they provide feedback about the new varieties, referring to traits that are important to them such as yield, taste, or storage pest resistance.

“I wish to thank CIMMYT for conducting the course,” said Similo Mavimbela, a senior research officer from the DARSS. “It is my feeling that the participants benefited from the expertise of CIMMYT and gained better understanding of the experimental designs. We are now going to employ the most relevant design for different experiments and save time and space. We also have better understanding of the MBTs approach to implement on-farm trials. With support from FAO, we will be implementing the on-farm trial this season so skills obtained from this course will be put to good use.” Mavimbela added that they had also learnt how to use Fieldbook software to prepare seed, produce seed labels, design trials, and analyze data.

CIMMYT thanks the course organizers and resource persons Cinisani Tfwala, Abraham Cutter Dlamini, Hanson Hlophe, Thembinkosi Gumedze, and Similo Mavimbela from the DARSS, Michael Connelly of FAO-Swaziland, and CIMMYT’s Peter Setimela, Cosmos Magorokosho, Jill Cairns, Sebastian Mawere, and Simba Chisoro.
DTMA21

Angola to strengthen DTMA collaboration

During the week of 18-22 June 2012, the Drought Tolerant Maize for Africa (DTMA) project leader Tsedeke Abate, accompanied by CIMMYT maize breeder Cosmos Magorokosho and socioeconomist Girma Tesfahun visited Angola, where they received a warm welcome from the government. Dibanzilua Nginamau, from DTMA in Angola, accompanied them on their visit. The trip provided the DTMA team an opportunity to dialogue with government officials and seed company representatives.

The DTMA team met with the permanent secretary for the Ministry of Agriculture and Fisheries (MOARDF), José Rodrígues Prata Junior, on 19 June 2012. Prata Junior expressed his enthusiasm about working with CIMMYT and said that he is keenly following DTMA work with the Instituto de Investigaçao Agronómica (IIA). Maize is crucial to the Angolan economy; last year, the country imported 700,000 metric tons of maize grain. In 2011, DTMA facilitated the purchase of 14 tons of basic seed of the drought tolerant open pollinated variety ZM 523 (a CIMMYT-derived variety) from Agri Seed, a Zimbabwean company.

The team also attended the Angola National Coordinating Unit meeting at IIA-Huambo, opened by the institute’s director general Mpanzo Domingos and which brought together DTMA national partners. The team met with Antonio Faceira, the proprietor of Mundo Verde, a private company that works with DTMA in Angola.

Last year, Faceira supplied 600 tons of ZM 523 to the government at no cost for distribution to smallholder farmers. Next year, he hopes to expand this to 2,000 tons. The DTMA team visited the Mundo Verde farm which has an average yield for maize of 8 t/ha (the current national yield is about 0.7 t/ha).

IMG_016ANGOLAThe CIMMYT team, accompanied by Nginamau and Faceira, had a second meeting with Prata Junior on 22 June 2012. Thanking him for the warm welcome and willingness to support DTMA work in Angola, Abate pointed out the need for favorable policies on variety release and the involvement of the private sector in developing a sustainable seed production and delivery system. Discussions during the meeting also emphasized the need for the agriculture ministry to set targets for increasing the maize yield within the next five years. Abate reiterated CIMMYT’s willingness to offer technical support towards achieving the government’s goal of accelerated maize production. Prata Junior welcomed the suggestions and asked for immediate support in capacity building. He also emphasized the need for the capacity to produce basic seed within Angola and pointed out that the country is importing an additional 20,000 tons seed for the coming season. Prata Junior said the introduction of early-maturing hybrids would be highly appreciated in light of recurrent droughts in the country. He also pledged to follow up with the MOARDF for the large-scale dissemination of DTMA varieties.

DTMA takes a closer look at gender issues

Last week, the Drought Tolerant Maize in Africa (DTMA) Project hosted gender consultant Diana Pritchard in Ethiopia and Kenya. In Ethiopia, Diana met with CIMMYT project staff. In Kenya, she attended a field day hosted by One Acre Farm in Kendu Bay in Nyanza Province. She also visited the Kenya Agricultural Research Institute (KARI) Katumani Station, Dryland Seeds Limited, and four farmer groups in Machakos and Makueni Districts in Kenya’s Eastern Province. Diana has been contracted to give recommendations on what DTMA can do to mainstream a focus on gender through the project activities carried out by CIMMYT and its partners. In making the project gender friendly, she will advise the project on how to ensure its activities and those of partners enhance women’s livelihoods and, in turn, contribute to their empowerment without impacting negatively on them.

Diana+Tsedeke-examining-a-maize-fieldWhile highlighting that the work she was doing was still ongoing, Diana pointed out key strengths of the DTMA project from her assessment. “DTMA and all project personnel recognize the need to do this because it is generally acknowledged that approximately 70 percent of agricultural labor in sub-Saharan countries is provided by women,” says Diana. “Since women also play a central role in the welfare of household members and the community, understanding how drought tolerant technologies affect them is crucial to defining the impact of DTMA on poor farmers. Amongst many of the research counterparts, both public and private, there is recognition of the significance of women in agricultural systems,” she observes.

Diana indicates that there is a qualitative difference between ‘sex differentiated’ data and gender aggregated data. Whereas the former establishes the existence of differences, for example, in variety preference of men and women or different adoption rates, it is important to go beyond this differentiation and to establish why this may be the case. This involves examining the underlying issues of different access that men and women have to resources (cash and assets).

So what exactly is gender analysis? “In carrying out gender analysis, one looks at power relationships within households with regards to men, women, children and the elderly in a bid to identify and explain the reasons why there are different responses to technological adoption and how different technologies may impact on different groups.” In turn, this requires adopting methods which enable researchers to effectively identify the specific challenges and constraints that bar women from greater access to assets and resources and that inhibit them from generating income through farming. Various methods, including focus groups, participatory and action research may all have a role to ensure that research findings accurately reflect women’s realities, their perspectives and interests. In this way, such qualitative methods can complement quantitative data and provide meaningful interpretations of the data which reflect the realities of poor women. This is crucial if DTMA technologies are to effectively reach women and to shape more effective project interventions.

The gender consultant identified different obstacles at different levels. “Women face many obstacles such as cultural constraints which influence their access to resources,” says Diana. “These cultural norms inhibit their more active participation or ability to demand for greater control in decision making and resources,” she elaborates further. Cultural norms may also become institutionalized and can result in women having limited access to financial resources, credit and important inputs which impact on their potential to produce good yields and secure food for rural households.

In her interactions with the various farmer groups which consisted mainly of women farmers, Diana learned about what they gained from organizing themselves in order to overcome the challenges they all face. They said that working as a group provided them an opportunity to gain more agricultural knowledge from their peers and extension workers. It also allowed them to pool together their limited labor resources to till the land, plant, weed, harvest and build terraces. “Women are organizing across the continent to try and overcome their limitations,” says Diana. She also noted that CIMMYT, through the DTMA project and its partners, both in public institutions and private enterprises are engaging this segment of the farming population in different ways.

Two decades since her last visit to Kenya, Diana was struck at the modified landscape of the country, reflecting the increase in the country’s booming population and the intensification of agriculture and particularly the widespread use of terracing: agricultural practices adopted to retain soil and conserve moisture.

Once the assignment is complete, Diana will share a complete report with the DTMA project staff.

SIMLESA spills over into South Sudan

DSC04503South Sudan, Africa’s newest country, is set to benefit from the project “Sustainable Intensification of Maize-Legume Cropping Systems in Eastern and Southern Africa” (SIMLESA), following fruitful discussions between project representatives and South Sudan’s Ministry of Agriculture and Forestry (MoAF). Project coordinator Mulugetta Mekuria and agronomist Fred Kanampiu met with George Leju, Director General of Research, Training, and Extension Services, Cirino Oketayot, Executive Director of Research, and Luka Atwok, maize breeder, in Juba on 6 June 2012. Mekuria gave an overview of the project’s vision, focus, and accomplishments to date and explained how SIMLESA’s experiences can reach and benefit South Sudan. The opportunity for collaboration was first discussed in Rwanda in October 2011 and since then Atwok has attended a series of SIMLESA-organized trainings and workshops.

Leju welcomed the proposal and thanked CIMMYT and the Australian Center for International Agricultural Research (ACIAR, which funds the project) for considering South Sudan as a beneficiary of the work. “SIMLESA resonates well with the MoAF strategic plan as it addresses the core challenges of the country, which has emerged from war,” said Leju. Oketayot highlighted South Sudan’s research structure, current priorities, challenges, and areas that need support, including an urgent need for capacity building. He also emphasized the importance of maize and legumes in the country’s farming systems and the potential impact of SIMLESA on these systems.

DSC04499“ACIAR has availed initial funding for spillover activities,” said Mekuria. “The idea is to ensure that SIMLESA research results are quickly scaled out to countries like South Sudan and improve food security there.”

South Sudan scientists will join SIMLESA capacity building activities, attending core country and regional training events. “The project will also facilitate their travel to target country sites for activities like field days, so they get first-hand experience,” said Kanampiu. The first such capacity building initiative is planned for August this year, when CIMMYT will hold a workshop on basic agricultural research design and implementation. In addition to a very productive meeting, Leju and Oketayot were also delighted to receive an information pack full of background on SIMLESA, as well as shirts and baseball caps.

Tsedeke Abate joins CIMMYT as DTMA Project Leader

Dr-Tsedeke-Abates-PhotoA citizen of Ethiopia, Tsedeke Abate joined CIMMYT Global Maize Program on 08 May 2012, and has taken over responsibilities from Wilfred Mwangi as the project leader of the Drought Tolerant Maize for Africa (DTMA) project. Abate will be based in Nairobi, Kenya. He obtained his BS and MS degrees in agriculture from the University of Florida, USA, and his PhD in biological sciences from Simon Fraser University, Vancouver, Canada.

Abate has a wide range of productive and successful experience in leadership and management of agricultural research and development. As project coordinator, during 2008-12 he led the Tropical Legumes II project jointly implemented by ICRISAT, CIAT and IITA in Africa and South Asia. Prior to this Abate was the director general of the Ethiopian Institute of Agricultural Research (EIAR). He is also well known for his passion for putting agricultural knowledge into practical use—scaling-up and scaling-out improved technologies to impact the lives and livelihoods of smallholder farmers.

DTMA partners in West Africa gather for annual regional planning meeting

DTMA-W.-Africa-meetingThe Regional Planning Meeting for phase III of the Drought Tolerant Maize for Africa (DTMA) project was held in Kumasi, Ghana, during the week of 16-19 April 2012. The objectives of this meeting were to (i) review and document progress on DTMA project activities conducted in West Africa in 2011, (ii) present, critically review, and approve project proposals submitted for funding by partner countries Benin Republic, Ghana, Mali, and Nigeria under phase III, and develop work plans for the 2012 cropping season. The regional meetings have proved instrumental in planning and monitoring of DTMA project activities and building the requisite partnerships for successful implementation of the project.

The meeting was attended by 26 participants, representing research institutions, national agricultural research system (NARS) partners, NGOs, and seed companies. NARS scientists from the partner countries presented 20 progress reports and received feedback. All the presenters highlighted the importance of engaging partners from diverse disciplines in successfully implementing project activities in their respective countries. Discussion sessions were devoted to peer-review of the four partner countries’ 2012 work plans on complementary breeding, seed production, regional trials, national performance, and on-farm trials, demonstrations and promotional activities.

After this, national group meetings were held to revise the work plans taking into consideration the input provided, and these were then presented during plenary sessions. During the meeting, it was reported that a total of 38 new drought tolerant maize varieties have so far been released, including seven hybrids, with a total of 1,057 metric tons of seed produced. The DTMA project, which is jointly led by CIMMYT and the International Institute of Tropical Agriculture (IITA), makes annual awards to the best teams in each region to motivate scientists and foster healthy competition among partner countries. An award committee consisting of a representative from each of the participating countries and two independent members convened during the planning meeting, and assessed achievements and progress made in 2011. Ghana received the award for the best technology promotion team award in West Africa, while Nigeria received the best breeding team award. The runners-up were the Malian team for technology promotion and Benin Republic for breeding. Hans Adu-Dapaah, director of the Ghanaian Council for Scientific and Industrial Research’s Crops Research Institute (CSIR-CRI), presented the awards to the winning teams during the closing ceremony. IITA also presented CIMMYT’s Wilfred Mwangi with a plaque as a token of appreciation for his good leadership of the DTMA project in phases I and II.

Africa recruits research partners to secure its food

africa-story-pic1ACIAR’s Dr. John Dixon and Dr. Daniel Rodriguez of the Queensland Alliance for Agriculture and Food Innovation, with farmers from Melkassa, Ethiopia africastory-pic2A maize – legume farm in Tanzania africastory-pic3Government extension officer Frank Swai, Tanzania africastory-pic4Farmer and single mother of four Felista Mateo, Tanzania africastory-pic5CIMMYT’s Dr. Fred Kanampiu, Tanzania

By Judie-Lynn Rabar and
Dr. Gio Braidotti

East African farmers are spearheading a research drive to intensify crop production of their most important staple foods. The farmers’ experiments with conservation agriculture and variety selection are part of a broader, 5-country push to stave off a looming food and soil-health crisis.

Kilima Tembo is a secondary school in the Karatu district in Tanzania’s rural highlands. Here, near the Ngorongoro Crater and Tarangira National Park, agriculture is king and food security rests squarely on grains grown in the region’s maize–legume intercropping system.

So important is farming to the community that the school has an agriculture teacher and the school head, Ms Odilia Basso, has allowed the Selian Agricultural Research Institute (SARI) to use school grounds to run field trials as part of a 5-country initiative to overhaul the maize and legumes supply chain—from farm to market.

That means breaking with a long-standing cycle of lifting production simply by bringing more land under the plough. The ecological consequences of that approach are catching up with farmers and their environment, but agricultural science is providing more sustainable alternatives to improve food security.

The research-based strategy is called SIMLESA—sustainable intensification of maize–legume cropping systems for food security in eastern and southern Africa. Launched in March 2010, the project is supported by the Australian Government through ACIAR.

Ambitious aims

A major objective is to introduce conservation agriculture techniques and more resilient varieties to increase the productivity and resilience of this vital cropping system. SIMLESA is aiming not only to increase yields by 30% from the 2009 average but also to reduce, by the same factor, risk from yield variability between seasons.

The Kilima Tembo Secondary School will help achieve these goals. The school is hosting the so-called ‘Mother Trial’—a long-term SARI field trial of conservation agriculture. This farming practice involves conserving ground cover between harvests to preserve soil moisture and, over a number of years, radically improve soil health and fertility.

Unlike 11 other farmer-led field sites established by SARI (the so-called ‘Baby Trials’), the Mother Trial is managed directly by the institute’s scientists, landing the school’s students with front-row seats on research and development activities designed to sustain a farming revolution.

Mr. Bashir Makoko, an agronomist working on the SIMLESA project, says students have the opportunity to learn about the project and its significance to the community at an open day with scientists and extension workers from SARI.

The socioeconomist running the trial, Mr. Frank Mbando, is encouraging student participation. He has arranged for data to be collected in ways that allow students to interact with technical staff. “Direct involvement in the project will equip the students with the information they need as potential farmers,” he says.

Household and regional impacts

Supporting these activities are partnerships that link farmers with a suite of national resources—extension officers, research centres and agricultural ministries—and international research centres.

Coordinating these linkages is Dr. Mulugetta Mekuria, from the South African regional office of the International Maize and Wheat Improvement Center (CIMMYT). Also involved is the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT).

Dr. Mekuria says SIMLESA was designed to have impacts at both the household and regional level.

“The aim is to ensure food security through agricultural research, stronger economic institutions, partnerships, and capacity building,” he says. “We want to increase food security and incomes while driving economic development through improved productivity from more resilient and sustainable maize-based farming systems.”

To implement the program, Dr. Mekuria is using the ‘3-I Approach’, a research for development (R4D) strategy designed to enhance smallholder prosperity based on the principles of integration, innovation, and impact. “SIMLESA activities will focus on integrated cropping systems, the use of innovation platforms to test and promote promising practices, and ensuring positive and measurable impacts on food security, sustainability and farm household incomes.”

ACIAR is funding SIMLESA with $20 million in financial support. The centre has enlisted Australian expertise through Dr. Daniel Rodriguez, of the Queensland Alliance for Agriculture and Food Innovation, and Professor John Howieson from the Institute for Crop and Plant Sciences at Murdoch University in Perth.

Positive experience

Ms. Felista Mateo, a 37-year-old farmer from Kilima Tembo village is already benefitting from participating in SIMLESA.

A single mother of four, Ms. Mateo supports her family with produce from her land, mainly maize and pigeon pea. Any surpluses, though small, are stored in granaries and either used domestically or sold to middlemen.

Following advice from government extension officer Mr. Frank Swai, she achieved yield gains that her neighbours are now attempting to duplicate. As her harvest increases, she plans to build a larger granary to store her surplus and sell more grain as a cash crop.

Traditionally, farmers have had no way of tracking the market and the middlemen who buy their produce have exercised control over prices. However, Ms. Mateo owns a mobile phone and since the inception of SIMLESA and its support network, she can now call an extension officer and check market prices. The result is greater bargaining power for the villagers when the middlemen come calling.

Averting food insecurity

More than 200 million people living in extreme poverty in the partner countries stand to benefit from SIMLESA.

Currently, the region is barely self-sufficient in grain, importing 10% of its needs—one quarter in the form of emergency food aid.
Maize is the main staple and legumes —primarily groundnut, pigeon pea and chickpea— are an important source of protein. Instead of a more prosperous future, however, the region is facing growth in demand for maize and legumes in the next 10 years. It is that trend towards food insecurity that SIMLESA is attempting to avert.

But it is not just on-farm practices that are targeted for innovation. Urban grain prices have remained stubbornly high following the global food crisis of 2007–08. But higher prices for consumers have not translated into higher prices for farmers. This has weakened incentives for farmers to increase food crop production, a state of affairs that SIMLESA is attempting to change.

CIMMYT’s Dr. Fred Kanampiu says that the SIMLESA project is aiming to achieve a ‘whole-chain’ impact. “Despite the multiple efforts underway with the researchers, the final focus should not be lost,” he says. “It is the farmer who is to be the end beneficiary of the research. The farmers’ lives should be improved, their pockets well-lined and their families well catered for.”

Of all the crops produced by farmers such as Ms. Mateo, it is pigeon pea that has an important role to play as a cash crop. Farmers are fond of this legume because it yields two harvests a year and there is a good export market to India. Pigeon pea retails up to TZS150,000 (about US$100) per 100 kilogram bag. On average, one acre (0.405 hectares) of land yields 300–400 kg of pigeon pea. Typically, 95% of the crop is sold.

In Karatu district some 15% of farmers live on less than a dollar a day. Mr. Makoko says the major obstacles to lifting their profitability are high inputs costs, low produce prices, lack of markets, and prolonged drought. By introducing pigeon pea or similar crops, and integrating the ‘whole-chain’ approach, these obstacles can be reduced or overcome.

socioeconomist frank mbando tanzania
Socioeconomist Frank Mbando, Tanzania.
tuaeli mmbaga tanzania
Senior agronomist Tuaeli Mmbaga, Tanzania.

The way forward will include training farmers to provide them with further education on how to manage their land.”

–Tuaeli Mmbaga

Better varieties

While the main research thrust is on conservation agriculture, CIMMY T and ICRISAT are participating in accelerated breeding and performance trials that aim to introduce farmers to maize and legume varieties that yield well in good years and are resilient enough in the bad seasons to help reduce farmers’ risks.

Mr. Mbando is tracking impacts associated with the new varieties and says the farmers’ response to the studies has been positive.

“They suggested that breeders take into account farmers’ criteria when making selections, so a participatory approach will be used to evaluate varieties,” he says. “So far, farmers have indicated early maturity, pest and disease tolerance, high yields and marketability as the preferred traits. Variety registration and production will then also be stepped up to make the seed available in sufficient quantities.”

Partnership approach

Mbulu district, located about 50 kilometres from Karatu, is the next community targeted for SIMLESA activities in Tanzania, to start after the current crop has been harvested. At the SIMLESA inception meeting, farmers agreed to leave post-harvest residue on the ground in preparation for the trials. Field activities in the Eastern Zone districts of Gairo and Mvomero are expected to begin in the next growing season.

Ms. Tuaeli Mmbaga, the senior agronomist on this project, says that with support from extension officers, farmers will assess the technology both pre-harvest and post-harvest.

“The way forward will include training farmers to provide them with further education on how to manage their land,” she says. “This will include an Innovation Learning Platform in partnership with farm produce stockists, community leaders, and other stakeholders to ensure that more people become involved with the project.”

Crop modeling scientist Dr. Daniel Rodriguez, who leads the Queensland component of ACIAR’s SIMLESA program, is convinced that research to reduce food shortages in eastern and southern Africa could have many benefits for farmers, including in his native Queensland.

“Our scientists will be working to improve the resilience and profitability of African farms, providing access to better seeds and fertilisers to raise the productivity of local maize–legume farming systems,” Dr. Rodriguez says. “Together we may be able to help solve one of the greatest challenges for the developed world—eliminating hunger and poverty in Africa—while at the same time boosting legume production here in Australia.”

Building agricultural research capacity

ACIAR’s Dr. John Dixon says the emphasis of Australia’s direct involvement is on building capacity within the African agricultural research system.

“Conservation agriculture amounts to a substantial shift in farming practices for the region,” Dr. Dixon says. “But it stands to provide so many advantages—not just greater water-use efficiency and soil health but also opportunities to break disease cycles and improve livestock nutrition.”

These are long-term efforts that need to be adapted to many agro-climatically diverse locations, Dr. Dixon says. “So it is vital that the African agricultural research system is built up so that it can take lead responsibility for implementing innovation into the future.”


 

Maize farmers and seed businesses changing with the times in Malawi

In Malawi, farmers who have in the past few years witnessed crop failure due to poor rains are switching to two new drought tolerant maize varieties, and seed companies are changing their business models to keep up.

jun01“The climate is changing, rainfall is decreasing and the weather is now dictating which varieties farmers grow and in turn which varieties seed companies produce,” says Dellings Phiri, general manager of Seed Co. Malawi, a leading southern African seed company.

He refers to two new drought tolerant maize varieties–ZM 309 and ZM 523–developed specifically for Malawi’s drought-prone areas with infertile soils by CIMMYT, Malawi’s Ministry of Agriculture and Food Security, and the Chitedze Research Station, through the Drought Tolerant maize for Africa (DTMA) project. The research was supported by the Bill & Melinda Gates Foundation, and the Howard G. Buffett Foundation. The varieties were officially launched in March 2009.

“In Malawi, each adult eats 300 kilos of maize annually, and ZM 309 and ZM 523 will give farmers a boost in safeguarding their maize harvests from the increasing threat of drought,” says Wilfred Mwangi, associate director of CIMMYT’s Global Maize Program and leader of the DTMA project.

First introduced by local extension agents to farmers in the drought-prone Balaka area through farmer-managed demonstration plots, these varieties have rapidly become popular among farmers, who have been impressed by their superior performance and accepted them. Compared to other popular commercially marketed varieties, farmers have found ZM 309 and ZM 523 to have higher yields, mature earlier, offer better resistance to common maize leafy diseases, and be better for pounding into flour. Locally, ZM 309 is known as Msunga banja, Chichewa for “that which takes care of or feeds the family,” while ZM 523 is Mwayi, which means “fortunate.”

Malawi supports for food security
In March 2009, farmers recommended ZM 309 for inclusion in Malawi’s Agricultural Input Subsidy Program, introduced in 2004 and credited with improving the country’s agricultural productivity and food security. Targeting smallholder farmers with access to land and other production resources, the program involves distribution of coupons for subsidized improved maize seed and fertilizer–one for a 100-kilogram bag of fertilizer and another for either 3 kilograms of standard seed or 2 kilograms of hybrid seed. In September 2009, Malawi’s President Dr. Bingu wa Mutharika endorsed ZM 309 saying, “ZM 309 will give Malawi farmers an advantage because it is high-yielding and drought tolerant. We welcome this research because it will help Malawi cope with climate change and improve food security.” The inclusion of ZM 309 in the subsidy program has seen the variety grown in six of the most drought-prone districts in Malawi, contributing to improved food security of thousands of farm families.

No more hungry months
One such family is that of Bamusi Stambuli, 63. Together with his wife Sagulani, they have they have 7 children and 5 grandchildren. In April 2010, Stambuli harvested nearly 1.8 tons of ZM 309 from his 0.6-hectare plot. “I will now be able to feed my family for a whole year,” says Stambuli proudly.

This year Stambuli will save at least USD 330 that he would have spent to purchase maize for his family. Farmers who grew ZM 309 obtained yields of 3.0 to 3.5 tons per hectare–twice those for the popular local varieties, Kanjelenjele and Kagolo.

In an area where locals rely on farming, fishing, basket-making, sale of firewood, and general trading, Stambuli’s success with ZM 309 is drawing many peers to his farm to buy ZM 309 seed.

Business as (un)usual
ZM 309 and ZM 523 are open pollinated varieties (OPVs), meaning farmers can save seed from one season and plant it for up to three subsequent seasons without punitive losses in yields or other desirable traits. Ordinarily, OPVs are not as attractive to commercial seed companies as hybrids, because with hybrids farmers have to buy and sow fresh seed every season or risk decreased performance of their crops. With ZM 309 and ZM 523 this is not the case. Seed Co. is changing its business model and investing in producing adequate amounts of both varieties to meet increased demand from farmers.

“We hope that from seeing the performance of ZM 309, farmers will be encouraged to start buying certified maize seed to boost production,” says Phiri.

No maize, no life!

CIMMYT E-News, vol 6 no. 4, June 2009

In Morogoro, a drought-prone area in Tanzania, farmers are using certified maize seed and urging other farmers to grow a new drought tolerant variety, TAN 250, which they say is like “an insurance against hunger and total crop failure, even under hot, dry conditions like those of recent years.”

Continue reading

Fostering global food security for wheat: No country is an island

CIMMYT E-News, vol 5 no. 10, October 2008

oct03As the price of wheat goes up, countries such as the Republic of Mauritius are feeling the pinch. A former British colony off the coast of Madagascar, it imports most of its wheat from France and Australia. But with help from CIMMYT, the island has started trials to grow its own wheat—and results to date look promising.

The CIMMYT germplasm bank freely distributes maize and wheat seed to hundreds of partners worldwide each year. In January 2008, Tom Payne, Head of CIMMYT’s wheat germplasm bank (seed bank), received a request for wheat seed from Mala Gungadurdoss, Head of the Mauritanian Agronomy Department at the Ministry of Agro-industry. “The rising price of imported wheat coupled with a scarcity on the international market (made us) revisit our food and agricultural policy,” explains Gungadurdoss, who is also Principle Research Scientist of the Agricultural Research and Extension Unit. “Our food security is at stake, since Mauritius imports most of its staples.”

Payne sent a “yield trial” of 49 elite spring wheat lines that he thought might flourish in the climactic conditions and disease spectrum of the island. “In a way, it’s kind of an exploratory experiment,” he says. “I don’t really know their environment and they don’t really know wheat, so I sent them something to see if it fit their conditions.”

Payne’s selection was apparently successful. “I am really satisfied with the yields of above 5 tons per hectare for 13 of the lines,” says Gungadurdoss. “I consider these yields to be very good when I compare them to yields of 1.5-3 tons per hectare obtained in the trials of 1985-1993,” referring to the last period during which the country grew wheat trials. Gungadurdoss admits that recent conditions were conducive to achieving good yields; but the highest yields for this year’s trial ranging from 5.8 to 6.4 tons per hectare are not only vastly superior to the results of previous trials; they are more than twice wheat’s global average of 2.5 tons per hectare.

Wheat’s roots in Mauritius

The Dutch introduced wheat to Mauritius in 1598 and it was grown on a commercial scale in the 1820s. But only about 1,700 hectares were under cultivation by the end of the 1930s, when the island began focusing on growing the more profitable sugarcane and importing wheat, which was far less expensive to buy, according to Gungadurdoss. “Up until three years ago, wheat was very cheap,” says Payne. “It was overproduced in Europe, North America, and Australia. This is one of the reasons the price of wheat and other grains stayed low for long time.”

Most people who live on Mauritius are of Indian origin and eat food staples such as chappatis, pharatas, puris, and bread made from wheat and wheat flour, says Gungadurdoss. In 2007 the island imported around 140,000 tons of unmilled wheat and 9,000 tons of flour. Over the last 5 years the country imported an average of 137,000 tons of unmilled wheat and 9,500 tons of wheat flour costing USD 28 million. The per capita consumption of wheat flour averaged 74 kilograms per year, and this is expected to increase in the future, according to Gungadurdoss.

oct04

Thanks to the wheat breeding lines sent by CIMMYT, agronomists on Mauritius can screen promising wheat lines for high grain yield, early maturity, resistance to major pests and diseases, and good baking characteristics; assess wheat’s economic feasibility under local conditions; identify the main constraints to production and devise corrective measures; and conserve their own elite germplasm (seeds and genetic material).

“Based on whatever results the agronomists from Mauritius send us, we can send them more lines from CIMMYT’s wheat germplasm bank and international nurseries,” says Payne. “These lines will have much broader genetic variation and will be even better suited for the island.”

Homegrown wheat could be within reach

For now, growing wheat in Mauritius is still in the early stages; sowing, weeding, harvesting, threshing and winnowing were done manually at Réduit Crop Research Station. One of the next steps will be to research the economic viability of growing and processing wheat using mechanization which will be tested on a much larger scale, possibly with interested farmers in 2009, according to Gungadurdoss.

“Once the economic feasibility is determined, we can decide on our future move: maybe large-scale production in line with cross border initiatives with Madagascar or Mozambique to substitute part of our imports can be considered.”

“I think Mauritius gets enough rainfall for wheat, and it’s on roughly the same latitude as countries or regions that get good yields, such as Uruguay, Zimbabwe, and northern Mexico, so high wheat yields should definitely be possible,” says Hans-Joachim Braun, Director of CIMMYT’s Global Wheat Program.

For more information: Tom Payne, Head, Wheat Germplasm Bank (t.payne@cgiar.org)

More stories on agriculture in Mauritius (both in French)

Mala Gungadurdoss (Areu) : «Du riz et du blĂ© Made in Mauritius, c’est possible»

Le blé made in Mauritius bientÎt à portée de bouche

Maize without borders: Reforming maize seed sector policies to meet farmers’ needs in Africa

CIMMYT E-News, vol 5 no. 10, October 2008

Senior policy makers from sub-Saharan Africa have recently made recommendations for policy actions to reform operations in the maize seed sector. At stake is better access for millions of small-scale farmers to affordable, quality seed of maize, the region’s food staple. CIMMYT is closely involved.

oct01In the 2006-07 cropping season, 82 registered maize seed companies produced the bulk of just over 100,000 tons of improved maize seed that were marketed in the major maize producing countries of eastern and southern Africa (excluding South Africa) — enough to sow 35% of the maize land in those countries.

A recent CIMMYT study found that restrictive national policies, lack of credit opportunities, inadequate seed production capacities, insufficient numbers of recently released public sector varieties, and challenging marketing situations were the main reasons why maize seed sector growth is slow in many African countries. Worse, this situation contributes significantly to Africa’s poor food security and farm incomes.

“The good news is that we have today four times more seed companies than ten years ago and they have increased seed provision from 26% to 35% of the total planted maize area,” says CIMMYT socioeconomist Augustine Langyintuo. “Yet there is still a significant, unmet demand for seed, and this underscores the need for new policies that support efficient seed production, processing, and marketing.”

In 2007 Langyintuo led the above-mentioned study to characterize seed providers and bottlenecks to seed supplies in eastern and southern Africa. A total of 117 representatives from seed companies, national research programs, and CBOs/NGOs participated, and information was gathered on the seed sectors in Angola, Ethiopia, Kenya, Malawi, Mozambique, South Africa, Tanzania, Uganda, Zambia, and Zimbabwe.

In July 2008, more than 60 senior policy makers from agriculture ministries, private seed companies, seed trade associations, and regional trade blocs from 13 sub-Saharan African countries met in Nairobi, Kenya and recommended ways to improve farmers’ access to seed of improved drought tolerant maize varieties through specific policy actions to enhance the production, release, and marketing of these varieties. They agreed with the findings of the 2007 seed sector study.

Understanding the hurdles

The main findings were that investment capital requirements and a shortage of qualified staff hinder the growth of small, local seed companies that have emerged over the past decade, according to Langyintuo. “The costs of setting up and running an office, recruiting and retaining qualified personnel, and procuring and operating production, processing, and storage facilities are beyond what many local businesses can afford, and access to operational credit is limited or nil,” he says.

oct02

Up to 60% of a seed company’s operational budget goes into seed production. Seed companies, therefore, need affordable credit over the mid-to-long term to produce enough seed to meet farmers’ needs. Marketing seed is also costly. “Most companies rely on third-party agents such as agro-dealers, large retail stores, NGOs, or the government to retail most of their seed,” says Langyintuo. “The majority of the agro-dealers lack funds to purchase seed, and so must take it on consignment, forcing companies to retrieve unsold seed at cost. The dealers are normally not knowledgeable enough about the seed they sell to promote it effectively, and some of them have also been known to adulterate seed with mere grain.”

Other hurdles identified include cumbersome varietal release, registration, and seed certification regulations, as well as a weak producer base, slow access to the best germplasm, uncompetitive prices in local grain markets, low adoption rates of improved varieties, restrictions on cross-border trade in seed, and poor infrastructure (such as bad roads and inadequate storage facilities).

Policy actions needed

To get farmers the seed they want will involve a range of players in the maize seed sector and calls for specific policy actions. Participants in the July 2008 meeting identified ways in which governments and international centers like CIMMYT and the International Institute of Tropical Agriculture (IITA) can assist and support current seed companies to improve their seed outputs and profits.

“The government is supporting the maize seed sector through initiatives such as increasing investments in agricultural research and extension, training of agro-dealers, and developing the National Seed Industry Policy,” confirms Kenya’s Assistant Minister of Agriculture, Japheth Mbiuki.

“Seed companies would benefit from access to a wider range of improved maize varieties, good seed production sites, affordable inputs, and training in effective business practices,” adds Langyintuo. CIMMYT normally distributes its experimental varieties freely to everyone, but granting companies some degree of exclusivity in their use would facilitate branding and promote sales. This would have to be tailored to specific country and company contexts, according to Langyintuo.

Maize seed without borders

No country is an island, and with increasing regional integration of economies around the world, it makes sense that the region should move as one in developing its maize seed sector. Regional trade blocs such as the Common Market for Eastern and Southern Africa (COMESA) are key. “Specific actions and commitments by national governments include dedicating increased funds (at least 10% of their national budgets) for agricultural development and harmonization of regional seed regulations,” says Ambassador Nagla El-Hussainy, COMESA Assistant Secretary General. “This will improve rates of variety release, lower costs in dealing with regulatory authorities, increase trade in seed of improved varieties and, ultimately, adoption by farmers.” In East Africa, for instance, the national seed policies of Kenya, Uganda and Tanzania are at various stages of development and are set to be harmonized soon.

“Effective trade and risk management strategies that buffer seed supply within countries are needed to stabilize and increase maize production in the region,” says Marianne BĂ€nziger, CIMMYT Global Maize Program Director. “These will mitigate the impact of drought and national production fluctuations, which are some of the harsh realities that farmers and consumers face.”

“Where applicable, carrying out the distinctness, uniformity and stability (DUS) tests alongside national performance trials (NPT) could speed up varietal releases,” adds Langyintuo. “Farmers’ awareness of the usefulness and availability of new varieties can be raised through improved extension message delivery, widespread demonstrations, and better retail networks.”

According to Richard Amoussou, an Assistant Secretary in the Ministry of Agriculture in Benin: “The links between (community-based) seed producers and seed companies should be strengthened through contracts. This will ensure that quality seed is produced and sold to seed companies, who must finally distribute the seed to the farmers, thus improving their access.”

“Streamlining the seed sector will directly benefit the productivity and incomes of small-scale farmers and result in more and more affordable food for consumers – significant in the current global food crisis,” concludes BĂ€nziger. She says this is crucial, given the twin challenges of the global food price crisis and more frequent droughts due to climate change.

For more information: Augustine Langyintuo, socioeconomist (a.langyintuo@cgiar.org)

Moving uphill: Maize’s growing role in Ethiopia

CIMMYT E-News, vol 6 no. 1, January 2009

 

Fueled by high-yielding varieties and national initiatives to promote the crop in highland areas, maize’s popularity is mounting rapidly in Ethiopia. Because farmers can get more food and income with the new varieties, they are calling out for seed. Suppliers—both private and government supported—are clamoring to meet the demand

“Farmers have expressed strong feelings for maize,” says a translator. A group of villagers at Sororo, Ejere District, Oromia, stand in the intense, mid-morning glare of highland Ethiopia and speak to visitors about their experiences with the improved maize varieties they had received from Demissew Abakemal, maize breeder with the Ethiopian Institute of Agricultural Research (EIAR). “It was a very dry year, and your maize is performing well,” the farmers say. “We have a surplus for food and even some for taking to the market—something we’d not seen in all our lives.” They have been harvesting and piling sheaves of wheat from the bottom of the hill, but take the visitors to maize fields up near their dwellings, and proudly show the large ears of the hybrid Arganne and a nearly-as-productive open-pollinated variety (OPV), Hora.

Continue reading

Doubled haploids speed development of drought tolerant maize for Africa

CIMMYT E-News, vol 5 no. 5, May 2008

may01CIMMYT is adapting an advanced technology—the doubled haploid approach—to develop inbred lines of tropical maize for sub-Saharan Africa. It promises to reduce costs and speed the arrival of better-adapted maize for resource-poor farmers in the world’s toughest environments.

CIMMYT scientists have begun developing drought tolerant varieties of tropical maize for places like sub-Saharan Africa using a high-tech approach—known as doubled haploids—previously applied principally by commercial seed companies working mostly on temperate maize.

“Haploid” refers to the number of chromosomes in a reproductive cell, like sperm or ovum. In grasses like maize, the reproductive cells—pollen and ovules—contain half the chromosomes of a full-grown individual. Fertilization joins the genetic information from the two parents, and offspring carry paired sets of chromosomes, reflecting the diversity of each parent.

“Maize breeders working on hybrids—the most productive type of maize variety and the one marketed by most seed companies—must at some point create genetically-stable and pure lines of desirable, individual plants, for use as parents of hybrids,” says CIMMYT maize physiologist Jose Luis Araus. Conventionally, breeders get the lines by repeatedly fertilizing selected, individual maize plants with the plant’s own pollen. The process requires expensive field space, labor, and time—normally, seven or more generations, which represents at least three years, even in settings where it’s possible to grow two crops per season.

Purer, faster, cheaper

In the latter part of the 20th century, crop scientists developed a quicker, cheaper path to genetically-uniform parent lines—though a technically intricate method. The first step involves crossing normal maize with special maize types called “inducers,” whose pollen causes the normal maize to produce seed containing haploid embryos. The haploid embryo carries a single set of its own chromosomes, rather than the normal paired sets. The embryos are planted, and subsequent treatment of the seedlings with a particular chemical causes them to make “photocopies” of their haploid chromosomes, resulting in a fertile plant endowed with a doubled set of identical chromosomes and able to produce seed of 100% genetic purity. “The actual treatment, as well as getting from the embryo to a reasonable amount of seed of the pure line, is very complicated,” says Ciro Sánchez Rodríguez, CIMMYT technician in charge of doubled haploid field trials, “but when the process is perfected, it only takes two generations—about one year—and the logistical advantages are tremendous.”

may04

First extensive use in the tropics

CIMMYT is implementing the doubled haploid technology on a research station in Mexico, using drought tolerant plants adapted to sub-Saharan Africa. “CIMMYT’s use of the practice is another example of how we put advanced technologies at the service of disadvantaged, small-scale farmers,” says Araus. “Among other things, this represents a significant opportunity to increase the availability of improved, drought tolerant maize varieties for sub-Saharan Africa,” he says.

Commercial seed companies in Europe and North America have been the main users of the doubled haploid technology, and the inducer genotypes available are of temperate adaptation. “The inducers perform very poorly in the tropical conditions of our Mexico stations,” says Vanessa Prigge, a PhD student from the University of Hohenheim working at CIMMYT to perfect the technique. To generate inducers that work better in tropical settings, Prigge and colleagues are crossing temperate inducers from Hohenheim with CIMMYT maize from Mexico, Kenya, and Zimbabwe. “We expect to have tropical versions of the inducers in a couple years,” she says.

Reaching farmers’ fields

Maize lines from this work will be used initially in the Drought Tolerant Maize for Africa (DTMA) and the Water Efficient Maize for Africa (WEMA) projects.

“This is a very exciting technology,” says Aida Kebede, an Ethiopian PhD student from Hohenheim helping to establish the doubled haploid technology at CIMMYT. “It holds the key to addressing more quickly the persistent problems of African maize growers: drought, disease pressure, and low productivity. I’m happy to contribute!”

Smallholder maize farmers in Zimbabwe lack knowledge of open-pollinated varieties

CIMMYT E-News, vol 4 no. 5, May 2007

OPVs perform as well as hybrids or better under the low-input conditions of many smallholder farmers in Zimbabwe, but farmers need information and training about how properly to use them.

A new study to assess the effectiveness of a large-scale maize seed relief effort in Zimbabwe during 2003-07 shows that, even among vulnerable, small-scale farmers living on the edge of survival under the most difficult conditions, a livelihood-saving technology like quality seed of open-pollinated maize varieties (OPVs) is not enough, without knowledge about how best to use it.

Farmers can save grain of OPVs from their harvest and sow it the following year without the yield or other qualities of the variety diminishing substantially. Hybrids normally yield more than OPVs under favorable conditions, but “recycling” the seed in subsequent seasons will result in a significant loss of that yield and of other advantages; farmers must purchase fresh seed each season to retain them. “Zimbabwe farmers have historically favored hybrids, and they have limited knowledge about OPVs,” says Augustine Langyintuo, CIMMYT socioeconomist and lead author of the study. “Changing economic circumstances in the country have meant that many farmers can no longer purchase fertilizer to take best advantage of hybrid yield potential. We interviewed 597 households in 6 districts of Zimbabwe where a major seed-relief effort had, among other aims, promoted the broader diffusion of OPVs over hybrids, thereby giving smallholder farmers the possibility to save and re-use their own seed without sacrificing their meager yields.”

The seed aid effort, which was funded by British Department for International Development (DfID) and coordinated by the Food and Agricultural Organization (FAO) regional office in Harare, enlisted the assistance of 16 non-government organizations (NGOs) to distribute improved maize seed to more than 25,000 needy farmers. “The average household size in our survey group was 6.5 members, supported by a cultivated farm size of just 1.7 hectares, over 60% of which is planted to maize,” says Langyintuo. “Nearly a third of the households were headed by widowed females, a factor highly correlated with poverty.”

Under the relief program, the NGOs were expected to inform farmers of the types of seed being distributed and the need to select, store, and re-use the seed properly in subsequent seasons. Less than half the beneficiaries in the first year of the program were informed of the type of seeds to be provided, although the proportion increased to more than 60% over time. Information on OPVs was limited to the fact that they can be recycled. Less than half were ever taught how to select or store their seed.

According to Langyintuo, many farmers continue to recycle hybrids, or improperly select OPV grain for future use as seed, or—in the worst cases—eat all their grain and hope for another aid shipment to sow next year. “The relatively well-endowed farmers were more willing to recycle OPV seed. In future efforts, NGOs should perhaps target them to ensure larger-scale spillovers,” he says. “In general, whoever distributes seed of improved OPVs should provide information on proper seed selection and follow up with field-level training. Farmers should also be involved in the choice of the varieties.”

Another key issue to grapple with is the unavailability of OPV seed on the market. This stems from the unwillingness of seed companies to develop and promote OPVs, given the perception that farmers will simply recycle them and never buy fresh seed. “Zimbabwe farmers recycle both OPVs and hybrids, but if given a choice, they will purchase fresh seed whenever they can,” says Langyintuo. “OPVs perform as well as hybrids or better under the low-input conditions of many smallholder farmers in Zimbabwe, so they constitute a good option for such farmers.”

You can view or download the study “Assessment of the effectiveness of maize seed assistance to vulnerable farm households in Zimbabwe.”

For more information: Augustine Langyintuo, socioeconomist (a.langyintuo@cgiar.org)

Resistant wheats and Ethiopian farmers battle deadly fungus

When a devastating stripe rust epidemic hit Ethiopia last year, newly-released wheat varieties derived from international partnerships proved resistant to the disease, and are now being multiplied for seed.

Wheat farmers and breeders are embroiled in a constant arms race against the rust diseases, as new rust races evolve to conquer previously resistant varieties. Ethiopia’s wheat crop became the latest casualty when a severe stripe rust epidemic struck in 2010. “The dominant wheat varieties were hit by this disease, and in some of the cases where fungicide application was not done there was extremely high yield loss,” says Firdissa Eticha, national wheat research program coordinator with the Ethiopian Institute of Agricultural Research (EIAR). “This is a threat for the future because there is climate change—which has already been experienced in Ethiopia—and the varieties which we have at hand were totally hit by this stripe rust.”

Ethiopia is not alone; stripe rust has become a serious problem across Africa, the Middle East, and Asia, with epidemics in 2009 and 2010 which many countries have struggled to control. What’s new is the evolution of stripe rust races that are able to overcome Yr27, a major rust resistance gene that many important wheat varieties rely on. Although recent weather conditions have allowed the new rust races to thrive, they first began to emerge more than a decade ago, and CIMMYT’s wheat program, always looking forward to the next threat, began selection for resistance to Yr27-virulent races in 1998.

“CIMMYT has a number of wheat lines that have shown good-to-excellent resistance to stripe rust without relying on Yr27, in screening in Mexico, Ecuador, and Kenya,” says Ravi Singh, CIMMYT distinguished scientist and rust expert who leads the breeding effort in Mexico. Many of these are also resistant to the stem rust race Ug99 and have 10-15% higher yields than currently-grown varieties, according to Singh. The current step is to work with national programs to identify and promote the most useful of the resistant materials for their environments—a process that was underway in Ethiopia when the epidemic struck.

Eticha is leading his country’s fight against stripe rust. Reflecting on the disease, he says: “For me it is as important as stem rust. I find it like a wildfire when there is a susceptible variety. You see very beautiful fields actually, yellow like a canola field in flower. But for farmers it is a very sad sight. Stripe rust can cause up to 100% yield loss.” There is no official figure yet on the overall loss to Ethiopia’s wheat harvest for 2010, but it is expected to be more than 20%.

Stripe rust symptoms in the field in Ethiopia. | Photo: Firdissa Eticha

The other common name for stripe rust is yellow rust. Severely-infected plants look bright yellow, due to a photosynthesis-blocking coating of spores of the fungus Puccinia striiformis, which causes the disease. These spores are yellow to orange-yellow in color, and form pustules. These usually appear as narrow stripes along the leaves, and can cover the leaves in susceptible varieties, as well as affecting the leaf sheaths and the spikes. The disease lowers both yield and grain quality, causing stunted and weakened plants, fewer spikes, fewer grains per spike, and shriveled grains with reduced weight.

Epidemic flourishes with damp weather

Normally, Ethiopia has two distinct rainy seasons, one short and one main, allowing for two wheat cropping cycles per year. However, 2010 saw persistent gentle rains throughout the year, with prolonged dews and cool temperatures—perfect weather for stripe rust. Most wheat varieties planted in Ethiopia were susceptible, including the two most popular, Kubsa and Galema, so damage was severe. Under normal conditions, the disease only attacks high-altitude wheat in Ethiopia, but last year it was rampant even at low altitudes. This could reflect the appearance of a new race that is less temperature sensitive, or simply the unusual weather conditions; Ethiopian researchers are currently waiting for the results of a rust race analysis.

There was little Ethiopia could do to prevent the epidemic; imported fungicides controlled the disease where they were applied on time, but supplies were limited and expensive. Newly-released, resistant varieties provide a way out of danger. In particular, two CIMMYT lines released in Ethiopia in 2010 proved resistant to stripe rust in their target environments: Picaflor#1, which was released in Ethiopia as Kakaba, and Danphe#1, released as Danda’a. Picaflor#1 is targeted to environments where Kubsa is grown, and so has the potential to replace it, and Danphe#1 could similarly replace Galema. Both varieties are also high-yielding and resistant to Ug99.

CIMMYT scientists Hans-Joachim Braun (left) and Bekele Abeyo visit the fields of the Kulumsa Research Station where CIMMYT materials resistant to stripe rust are being multiplied for seed supply to Ethiopian farmers.

Seed multiplication of resistant CIMMYT varieties

As soon as the situation became clear, EIAR and the Ethiopian Seed Enterprise (the state-owned organization responsible for multiplication and distribution of improved seed of all major crops in Ethiopia) worked together to speed the multiplication of seed of these varieties, using irrigation during the dry seasons. This is happening now, with almost 500 hectares under multiplication over the winter—421 of Picaflor#1 and 70 of Danphe#1. Financial support from this project came from the USAID Famine Fund. Two resistant lines from the International Center for Agricultural Research in the Dry Areas (ICARDA) were released in Ethiopia in 2011, and will add to the diversity for resistance.

Eticha does not foresee any difficulty encouraging farmers to adopt the new varieties. In 2010 they were grown by 900 farmers on small on-farm demonstration plots, as part of EIAR’s routine annual program, so they have been seen—free of stripe rust—by thousands of farmers, and there will be more demonstration plots as more seed becomes available. However, “farmers are at risk still even if the varieties are there,” he says, “the problem is seed supply.” Some seed will reach farmers this year, but the priority will be ongoing multiplication to build up availability as fast as possible.

Hans-Joachim Braun, director of CIMMYT’s Global Wheat Program, visited Ethiopia in 2010. “The epidemic was a real wake-up call,” he says. “Researchers have known for more than ten years that the varieties grown are susceptible. Farmers are not aware of the danger, so it is the responsibility of researchers and seed producers, if we know a variety is susceptible, to replace it with something better.”

Exploring rust solutions in Syria

The ongoing fight against the wheat rust diseases is an international, collaborative effort involving many partners in national programs and international organizations. CIMMYT works closely with ICARDA, which leads efforts against the wheat rust diseases in Central and West Asia and North Africa. At the International Wheat Stripe Rust Symposium, organized by ICARDA in Aleppo, Syria, during 18-20 April 2011, global experts developed strategies to prevent future rust outbreaks and to ensure the control and reduction of rust diseases in the long term.

Other participating organizations included CIMMYT, the Borlaug Global Rust Initiative (BGRI), the Food and Agricultural Organization (FAO) of the UN, the International Development Research Center (IDRC, Canada), and the International Fund for Agricultural Development (IFAD). More than 100 scientists from 31 countries presented work and shared ideas on wheat rust surveillance and monitoring, development and promotion of rust-resistant wheat varieties, and crop diversity strategies to slow the progress of rust outbreaks.

CIMMYT was represented by Hans-Joachim Braun and Ravi Singh. “Wheat crops and stripe rust like exactly the same conditions,” says Braun, “and they both love nitrogen. This means that where a farmer has a high yield potential, stripe rust takes it away, if the wheat variety is susceptible. In addition to the really devastating epidemics, the disease is very important because even in bumper years, farmers who grow susceptible varieties still can’t get a good yield.”

One thing all the attendees agreed on was the immediacy of the rust threat. New variants of both stem rust (also known as black rust) and stripe rust (or yellow rust), able to overcome the resistance of popular wheat varieties, are thriving under the more variable conditions caused by climate change, increasing their chances of spreading rapidly. Breeders in turn are quickly developing the varieties farmers need, with durable resistance to stem and stripe rust, as well as improved yield performance, drought tolerance, and regional suitability.

Other major areas of focus are the development of systems for monitoring and surveillance of rust to enable rapid response to initial outbreaks, and overcoming bottlenecks in getting resistant seed quickly to farmers. There is much to be done, but Singh is confident: “If donors, including national programs and the private sector, are willing to invest in wheat research and seed production, we can achieve significant results in a short time.”

“Ethiopian scientists responded quickly to the epidemic”, says Braun, “but there were heavy losses in 2010. What we need is better communications between scientists, seed producers, and decision makers to ensure the quick replacement of varieties.”

Building on a strong partnership

The value of the collaboration between CIMMYT and Ethiopia is already immeasurable for both partners. CIMMYT materials are routinely screened for rust at Meraro station, an Ethiopian hotspot, in increasing numbers as rust diseases have returned to the spotlight in recent years. CIMMYT lines are also a crucial input for Ethiopia’s national program.

“The contribution of CIMMYT is immense for us,” says Eticha. “CIMMYT provides us with a wide range of germplasm that is almost finished technology—one can say ready materials, that can be evaluated and released as varieties that can be used by farming communities.” Ethiopia has favorable agro-environments for wheat production, and the bread wheat area is expanding because of its high yields compared to indigenous tetraploid wheats. “Wheat is the third most important cereal crop in Ethiopia,” explains Eticha, “and it is really very important in transforming Ethiopia’s economy.”

Bekele Abeyo, CIMMYT senior scientist and wheat breeder based in Ethiopia, works closely with the national program. CIMMYT helps in many ways, he explains, for example with training and capacity building, as well as donation of materials, including computers, vehicles, and even chemicals for research. “In addition, we assign scientists to work closely with the national program, and facilitate germplasm exchange, providing high-yielding, disease resistant, widely-adapted varieties.” Speaking of the stripe rust epidemic, he says, “last year, the Ethiopian government spent more than USD 3.2 million just to buy fungicides, so imagine, the use of resistant varieties can save a lot of money. Most farmers are not able to buy these expensive fungicides. During the epidemic, fungicides were selling for three to four times their normal price, so you can see the value of resistant varieties.”

“I think East Africa is colonized by rust. Unless national programs work hard to overcome and contain disease pressure, wheat production is under great threat,” says Abeyo. “It is very important that we continue to strengthen the national programs to overcome the rust problem in the region.” With Yr27-virulent stripe rust races now widespread throughout the world, Ethiopia’s story has echoes in many CIMMYT partner countries. The challenge is to work quickly together to identify and replace susceptible varieties with the new, productive, resistant materials.

For more information: Bekele Abeyo, senior scientist and wheat breeder (b.abeyo@cgiar.org)