Skip to main content

Location: Africa

CIMMYT’s work in Africa helps farmers access new maize and wheat systems-based technologies, information and markets, raising incomes and enhancing crop resilience to drought and climate change. CIMMYT sets priorities in consultation with ministries of agriculture, seed companies, farming communities and other stakeholders in the maize and wheat value chains. Our activities in Africa are wide ranging and include: breeding maize for drought tolerance and low-fertility soils, and for resistance to insect pests, foliar diseases and parasitic weeds; sustainably intensifying production in maize- and wheat-based systems; and investigating opportunities to reduce micronutrient and protein malnutrition among women and young children.

Giving power to African farmers: learning from the Indian experience

Bhopal-096From 29 April to 10 May, 16 agricultural engineers, agronomists, machinery importers, and machinery manufacturers from Ethiopia, Kenya, Tanzania, and Zimbabwe took part in a study tour in India organized by CIMMYT, the Indian Council of Agricultural Research (ICAR), the Australian Centre for International Agricultural Research (ACIAR), and the Australian International Food Security Centre (AIFSC). The tour was organized as part of the “Farm Mechanization and Conservation Agriculture for Sustainable Intensification” (FACASI) project to identify opportunities for exchange of technologies and expertise between India and Africa and strengthen South-South collaborations in the area of farm mechanization. The project is funded by AIFSC and managed by ACIAR.

India is the world’s largest producer of pulses, and the second largest producer of wheat, rice, potatoes, and groundnuts. But would India’s agricultural performance be that high if the number of tractors in the country was divided by six and the number of draught animals by three? Such a reduction in farm power would bring Indian agriculture close to the current situation of Kenya and Tanzania. In India, most agricultural operations are mechanized, including planting, harvesting, threshing, shelling, and transportation to the market; in Africa, these are generally accomplished manually. Bringing African agriculture closer to the situation in India is the goal of the FACASI project. This tour was designed as the first step in the construction of an enduring trilateral partnership between Africa, India, and Australia, consolidated by CIMMYT, to facilitate exchange of research and development results in the area of farm mechanization.

During his opening speech, S. Ayyapan, ICAR director general, stressed the importance of farm mechanization for agricultural intensification, pointed at the commonalities between the circumstances of Indian and African smallholders, and invited the group to develop concrete country-specific proposals regarding possible partnerships with India. The participants then spent five days at the Central Institute of Agricultural Engineering (CIAE) in Bhopal, Madhya Pradesh state, where they were exposed to various low-cost gender-friendly technologies for post-harvest operations and weeding; sowing, fertilizing, spraying, and harvesting technologies adapted to animal traction; two-wheel and four-wheel tractors; as well as conservation agriculture based technologies. Through calibration exercises and other field activities, participants gained hands-on experience with these machines. The group also visited the Central Farm Machinery Training and Testing Institute in Budni.

The second part of the study tour took place in the states of Punjab and Haryana, where the group interacted with scientists from the Punjab Agricultural University (PAU) and the Borlaug Institute for South Asia (BISA), and was exposed to various Indian innovations including laser land levelers operated by two-wheel tractors, relay direct seeders, multi-crop planters, crop threshers, and rotary weeders. They also participated in a discussion session organized by a farmer cooperative society at Noorpur-Bet focusing on institutional innovations encouraging farmer access to mechanization, and interacted intensively with Indian agribusinesses such as National Agro-Industry, Dashmesh Mechanical Engineering, Amar Agro Industries, and All India Machinery Manufacturers Association.

The study tour was concluded by a visit of the Central Soil and Salinity Research Institute (CSSRI) in Karnal to observe the role of conservation agriculture in reclaiming degraded land, and a visit to the Indian Wheat Research Centre in Karnal.

The lessons learnt in India will be put in practice in Ethiopia, Kenya, Tanzania, and Zimbabwe through the FACASI project. The study tour has generated several ideas for the development of new machines by African engineers and created contacts between Indian manufacturers and African machinery importers which may materialize into business opportunities.

Swiss Ambassador visits CIMMYT-Harare

Physiologist Jill Cairns talks about climate change with the Swiss Ambassador.
Physiologist Jill Cairns talks about climate
change with the Swiss Ambassador.

The Ambassador of Switzerland to Angola, Malawi, Zambia, and Zimbabwe, Luciano Lavizzari, accompanied by the Swiss Agency for Development and Cooperation (SDC) Food Security program officer for Zimbabwe Mkhululi Ngwenya, visited the CIMMYT Regional office for Southern Africa in Harare, Zimbabwe, on 23 April 2013. The CIMMYT-Harare staff provided a tour around the facilities and briefed them on CIMMYT’s work on food security geared towards finding solutions to challenges faced by farmers.

In the beginning of the visit, CIMMYT physiologist Jill Cairns discussed the issue of climate change. “As a result of climate change, the seasons are going to be much shorter,” explained Cairns, adding that in a region with the lowest maize yields globally, a lot more effort is required to deploy germplasm and farming systems adapted to respond to constraints in the region. Cairns discussed the work done by CIMMYT scientists in countering stresses such as low nitrogen, drought, and heat stress along the maize breeding pipeline from population development, pedigree breeding, to regional and on-farm trials in over 100 diverse locations. She also covered the phenotyping tools used in the research work and highlighted research gains in maize yields, many of which result from highly drought-tolerant maize lines and improved efficiencies of maize breeding pipeline in Eastern and Southern Africa.

John MacRobert, seed systems specialist, highlighted the importance of harmonizing seed systems in the region. “Some countries, like Zimbabwe, have very well developed seed sectors, while others are largely informal,” MacRobert said, stressing the negative consequences this may have on farmers. He then explained the importance of on-farm trials in incorporating farmer preferences such as grain texture in breeding work, using the example of SDC-funded New Seed Initiative for Maize in Southern Africa (NSIMA), a project whose acronym is fashioned after a popular maize staple dish in Zambia and Malawi known as nsima: “NSIMA targets a subset of smallholder farmers who consume the maize that they grow.” MacRobert also highlighted collaboration with other SDC projects whose seed systems encourage community-based seed companies targeting smallholder farmers.

Next on the agenda was conservation agriculture covered by agronomist Christian Thierfelder. “It is crucial to link improved varieties with the best management practices to ensure the sustainability of the cropping system,” stressed Thierfelder who then went on to demonstrate a range of sowing equipment from a stick to animal traction planters used in conservation agriculture.

Seed systems specialist Peter Setimela explains the importance of regional on-farm trials to the Swiss Ambassador Luciano Lavizzari (middle) and SDC Food Security program officer for Zimbabwe Mkhululi Ngwenya.
Seed systems specialist Peter Setimela explains the importance of regional on-farm trials to the Swiss Ambassador Luciano Lavizzari (middle) and SDC Food Security program officer for Zimbabwe Mkhululi Ngwenya.

Socioeconomist Girma T. Kassie turned attention to the consequences of lack of funding for smallholder farmers. For example, lack of funding programs to help the smallholder farmers acquire equipment limits uptake of improved planting practices. “Research on the impact of improved technologies aimed at improving livelihoods of smallholder farmers can help identify the gaps in technology transfer,” he added. Afterwards, the visitors toured CIMMYT trials where they observed the discussed technologies in the field.

CIMMYT has had a long-standing relationship with Switzerland through SDC, which currently funds several CIMMYT projects geared towards improving food security of smallholder farmers in East and Southern Africa. The projects, focusing on post-harvest losses reduction, conservation agriculture, and improved seed systems, include the Effective Grain Storage Project (EGSP), Seeds and Markets Project (SAMP), Harmonized Seed Security Project (HaSSP), and NSIMA. In addition, the SDC funds the ‘SDC-Junior Professional Officer’ supporting agronomist Stephanie Cheesman at the Global Conservation Agriculture Program team. CIMMYT highly appreciates the continued support from the Swiss government through SDC.

Nutritious Maize for Ethiopia and gender

8212177139_56b53c6eea_n The Nutritious Maize for Ethiopia (NuME) aims to develop and promote quality protein maize (QPM) in the major maize growing areas of Ethiopia, including the highlands and the dry lands, to improve nutritional status of children. The project has a strong gender component, ensuring women’s full participation in all activities and equal share of benefits, which was discussed during a Gender Analysis and Strategy workshop at the ILRI campus in Addis Ababa, Ethiopia, on 16 April 2013. The purpose of the event was to present gender analysis and gender strategy developed by Kidist Gebreselasie, NuME gender consultant, to implementation partners, receive partners’ input, agree on strategy, and discuss future developments. The workshop was attended by representatives from the Ethiopian Institute of Agricultural Research (EIAR), ministries of health and agriculture, the Ethiopian Health and Nutrition Research Institute (EHNRI), SG2000, FRI, the Ethiopian Seed Enterprise, other seed companies, Hawassa University, Harvard Institute of Public Health, and CIDA (the project’s funder). CIMMYT was represented by Dagne Wegary (interim project coordinator), Dennis Friesen (project advisor/consultant), Vongai Kandiwa (gender specialist), and Hugo De Groote (agricultural economist).

In the opening session of the workshop, Gebreselasie presented her synthesis developed in collaboration with CIMMYT scientists and based on literature review, analysis of a baseline survey (both men and women were interviewed), and an indepth study of two target areas (including focus group discussions and key informant interviews). Gebreselasie found that while men are responsible for plowing and purchase of inputs, including seed, women are responsible for household chores such as cooking and child care. However, both men and women contribute to harvesting and weeding. Planting is either a shared activity, or one done by men. Children are also involved in agricultural activities as they play an important role in herding animals and providing feed and water. Dairy and poultry production management is largely a women’s responsibility; although women receive a substantial part of the income resulting from these activities, their access to resources, as compared to men’s, is largely limited, particularly when it comes to extension services. The agricultural extension system focuses on men and female-headed households; wives are expected to learn from their husbands. Women are also rarely invited to agricultural trainings, especially when they take place outside of their own farm. It is much easier for women to access health extension than agricultural extension workers.

Gebreselasie then outlined a gender strategy to address the above listed constraints and to improve women’s participation in project activities. This involves increasing women’s attendance at QPM demonstrations by inviting them directly and by organizing separate sessions for women during field days, ensuring that the time and place is convenient for them. Gebreselasie suggested involvement of health extension workers in QPM promotion and higher level of women’s involvement in farm radio activities (targeting women). Furthermore, partners should be given incentives to involve women more, and they should also be provided gender training at all levels.

After the presentation, the workshop participants reviewed their organizations’ experiences in gender activities and their responses to the analysis, and discussed ways to incorporate the strategy in their activities.

The NuME gender strategy was later presented and discussed during a meeting of the Project Steering Committee on 23 May at ILRI. CIDA representative Stefna Pacquette emphasized that the strategy needs to involve women in a meaningful way beyond simple participation in project activities. “While focusing on nutrition, NuME can provide a vehicle for strengthening women’s role in the household,” Pacquette noted. “It can also get men to feel more comfortable with women’s presence and participation in traditional male roles.” The next necessary step for NuME is the recruitment of a gender specialist to aid implementation of the strategy.

Successful partners’ day at CIMMYT-Harare showcasing research work

The value of CIMMYT’s research work is enhanced through partnerships supporting the development and dissemination of new maize production technologies. To encourage this collaboration, the CIMMYT Southern Africa regional office in Harare, Zimbabwe, holds an annual event during which stakeholders from the ministries of agriculture, academic institutions, seed companies, and donor representatives tour field trials and get acquainted with the station’s research outputs.

On 05 April 2013, the Australian ambassador Matthew Neuhaus together with donor representatives from the European Union, AusAID, and the Swiss Agency for Development and Cooperation joined stakeholders from Zimbabwe, Mozambique, Lesotho, Swaziland, South Africa, and the Democratic Republic of the Congo for a successful partners’ day. Over 200 visitors explored CIMMYT fields, observed various products on the maize breeding pipeline such as trials on drought tolerance, nitrogen use efficiency, and demonstrations on conservation agriculture. Visitors also learned about small-scale farm mechanization for conservation agriculture and management of post-harvest losses through the use of metal silos.

During the field tour, it was evident that CIMMYT is incorporating legumes into maize production systems. This not only includes cover crop that contributes to nitrogen fixing but also grain legumes to improve diversity in the farming households’ nutrition. “CIMMYT is keen to see farmers gain more yield per unit area as opposed to having them increase the acreage under maize,” explained Mulugetta Mekuria, regional liaison officer for southern Africa. “When the maize yield is increased on a small portion of the land, the family can then use the rest of the land to grow high value crops such as pigeon peas that are being successfully exported to India from Mozambique and Tanzania,” he added.

Nutrition was a topic of other parts of the partners’ day as well. Farmers in most of the African continent prefer white maize but where diets are predominantly based on maize, especially with weaned infants, nutritional deficiencies may arise. Two exciting options for overcoming such nutritional deficiencies are quality protein maize (QPM) and vitamin A maize (also called orange maize). The QPM varieties have increased amounts of the essential amino acids lysine and tryptophan thereby enhancing the protein quality of maize and contribute to reducing malnutrition that is often seen in children under five years of age who are commonly weaned on maize porridge. “The mothers may not be able to ensure their children’s nutrition needs with the food they currently have,” said seed systems specialist John MacRobert, as he explained the benefits of QPM varieties. The orange maize has improved levels of pro-vitamin A and may help in alleviating vitamin A deficiency. Two varieties have been released in Zambia and two are in pre-release in Zimbabwe. During the tour, seed company representatives were encouraged to identify pre-release materials in which they may be interested.

The tour elicited a lot of interest from the participants who engaged the scientists in discussions, asked questions, and commented on the benefits of new technologies. Kgotso Madisa, an extension officer from Botswana’s Ministry of Agriculture, highlighted the value of nitrogen use efficient maize for farmers who cannot afford to apply the recommended fertilizer doses. “Most of our smallholder farmers are resource poor, these varieties would be of benefit to them,” said Madisa with reference to the hybrids developed under the Improved Maize for African Soils (IMAS) project.

ArsĂ©nio Mutatisse from Mozambique’s Higher Polytechnic Institute of Manica confessed that he had been skeptical about conservation agriculture before the event. However, after hearing agronomist Christian Thierfelder explain how to implement conservation agriculture successfully and after observing the trial, Mutatisse said he was convinced about its benefits. “This event was really helpful for us to see how the varieties perform in trials as we work closely with CIMMYT to ensure they get to the farmers,” said Helene Dinova Nsolani, leader of a group of community seed producers in the Democratic Republic of the Congo.

The partners’ day was made possible through the help of CIMMYT’s national staff and intern students working at the station. Thanks to training provided by the regional office, the students have all the necessary knowledge and were thus instrumental in explaining the technologies on display. “We do capacity building to ensure that whenever we move on, we have people to continue with the breeding work,” explained maize breeder Cosmos Magorokosho.

DSC_3920The field day was followed by a feedback session and a technical seminar on the maize lethal necrosis (MLN) disease that has emerged recently in East Africa. During the seminar presented by Magorokosho and MacRobert, principal director of the Department of Agriculture Research Services Danisile Hikwa expressed her appreciation to CIMMYT for its efforts to develop MLN resistant varieties.

Provitamin A biofortified orange maize reaches farmers in Zambia

provitaminaA_HarvestPlusWith over 50% of Zambian children under five vitamin A deficient, Zambia faces a major public health problem. This has resulted in several government intervention programs including vitamin A supplementation and sugar fortification, efforts which will soon be complemented by the release of three orange maize hybrids with higher levels of provitamin A carotenoids (compounds converted to vitamin A when consumed) developed by CIMMYT in collaboration with the Zambia Agriculture Research Institute (ZARI) and funded by HarvestPlus.

The release, dissemination, and promotion plans of these new hybrids were discussed during 18-21 March 2013 when the HarvestPlus maize project held its 10th planning and review meeting in Lusaka, Zambia. The meeting was co-organized by CIMMYT and HarvestPlus and attended by experts from various disciplines including nutritionists, biochemists, biologists, social scientists, public health specialists, and crop development experts from Zambia and other countries in sub-Saharan Africa. CIMMYT was represented by scientists Kevin Pixley and Thanda Dhliwayo.

The first days of the meeting focused on knowledge sharing, identification of gaps in the development and dissemination of provitamin A maize, and lessons learned from the Zambian experience as the project plans to expand to other countries in the region. On 20 March participants visited a ZamSeed seed production site where one of the hybrids is being multiplied, an orange maize demonstration plot, and a provitamin A maize testing site at SeedCo Zambia. Later, they visited the Sibuyunji Agricultural Camp in the Sibuyunji District where farmers shared their thoughts on provitamin A orange maize. “We are very happy to have orange maize as an option to avert vitamin A deficiency in our children,” said a farmer growing one of the orange maize varieties. Taking advantage of the farmer-expert interactions, the day ended with a question-and-answer session between the farmers and the multidisciplinary expert team. The questions ranged from agronomy and orange maize production to its nutritional benefits.

The last day of the meeting was devoted to country presentations and the project’s expansion plans. It was also announced that after 10 years of dedicated culminating in the release of the 3 varieties in Zambia, Kevin Pixley would be unable to continue as HarvestPlus maize crop leader due to his appointment as CIMMYT Genetic Resources Director. Thanda Dhliwayo (CIMMYT) and Abebe Menkir (IITA) will co-lead the maize crop activities for HarvestPlus effective immediately.

SIMLESA progressing and gearing up for Phase II

IMG_0883Over 200 researchers, policy makers, donors, seed companies, and NGO representatives from Africa and Australia gathered in Chimoio, Mozambique, during 17-23 March 2013 for the third SIMLESA (Sustainable Intensification of Maize-Legume Systems for Food Security in Eastern and Southern Africa) annual regional planning and review meeting to discuss the project’s progress and achievements, share lessons learned throughout the last three years, and deliberate over better ways to design and implement future activities in the SIMLESA target (Ethiopia, Kenya, Tanzania, Malawi, and Mozambique) and spillover countries (Botswana, Uganda, South Sudan, and Zambia).

“SIMLESA had attained a ‘steady flight path’ and is on track to deliver significant impacts,” noted Derek Byerlee, Program Steering Committee (PSC) co-chair, and the Mid-Term Review (MTR) conducted last year supports his words: “The MTR Team has reviewed progress by objectives and the overall execution of the Program, and finds that in general it has made very good progress in its first two years.” Bekele Shiferaw, Program Management Committee chair, then highlighted MTR’s recommendations, including the following: SIMLESA should take concrete steps to overcome current socio-economic research capacity constraints in national agricultural research systems and in the areas of value chains, informal analyses, business management, participatory agronomy, and breeding research; focus on ‘smart’ sequences for testing conservation agriculture technologies with farmers resulting in step-wise adoption; and create representative and effective innovation platforms with clear roles, structures, and functions.

As SIMLESA Phase I is ending next year, participants brainstormed on key issues anticipated in Phase II, concluding that the overall approach should be holistic, flexible in dealing with complex systems, and should aim to devise effective ways to target different group of farmers, as one size does not fit all. Furthermore, it was noted that Phase II should focus on changing the mindset of farmers. “There are so many different technologies bombarding farmers. The real work therefore lies in dealing with the psychological, social, cultural, and environmental factors of the farmer that will determine the adoption of introduced technologies,” noted one of the participating groups during the plenary session. Following the discussion on Phase II, Byerlee shared PSC’s vision: apply a broader approach to system intensification (conservation agriculture elements, soil fertility, pest management, and diversification); be more country specific; create empowering, location-specific, and sustainable innovation platforms; and pay more attention to institutions and policies vis-à-vis technology.

In the words of Inacio Maposse, Agricultural Research Institute of Mozambique (IIAM) director general and PSC member, Phase II is not necessary only because Phase I is ending but also “because we want to add another dimension to the program, and perhaps a different philosophy, one that will lead us to success. And for me, success means to get farmers smile sustainably. Smile because they are better off. For this to happen, we have to design Phase II with heart and wisdom. We need Phase II because we are yet to produce significant adoption and impact on the farming communities.” John Dixon (senior advisor for cropping systems and economics and principal regional coordinator for Africa and South Asia, Australian Centre for International Agricultural Research) added another reason for why to continue with SIMLESA: “Where resources are limited, sustainable intensification is the only option to feed the extra two billion people by 2050.”

Mellissa Wood, Australian International Food Security Centre (AIFSC) director, then explained some of the reasons behind the close cooperation between Australia and Africa: “Australia and Africa share many common agricultural challenges, including limiting soils, highly variable climates, pests, and diseases.” Consequently, AIFSC aims to accelerate adoption; bridge the gap between research and development; find new ways to support African agricultural growth through adoption, policy, scale-out, improved market access, diversification, and nutrition.

In her closing remarks, Marianne BĂ€nziger (CIMMYT deputy director general for research and partnerships) called on the Phase II planners to design holistic packages that entail success and ensure SIMLESA provides farmers in the five target countries with diverse opportunities for improving their livelihoods. “Farmers should be able to get incomes not only from maize and legumes but also from other farm enterprises. You should come up with possible and realistic interventions in realistic time frames,” BĂ€nziger concluded.

Throughout the meeting, implementing partners, researchers, and seed companies showcased their achievements and products at the ‘SIMLESA poster village.’ Participants learned about farmers’ perspectives and practices through field visits to Sussudenga maize breeding and exploratory trial sites, participatory variety trials in Vanduzi and Polytechnic Institute of Manica, and conservation agriculture and innovation platforms scaling out sites in Makate.

ZimCLIFS integrates crop and livestock production research in Zimbabwe

DSCN4727 In 2012, three CG centers—the International Livestock Research Institute (ILRI), CIMMYT, and International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)—launched a joint project called Integrating Crops and Livestock for Improved Food Security and Livelihoods in Zimbabwe (ZimCLIFS). The goal of the project is to develop ways to increase agricultural production, improve household food security, alleviate poverty, and thereby reduce food-aid dependency in rural Zimbabwe through better integration of crop and livestock production and market participation. The inception workshop, held 17–19 October 2012, was attended by international project managers and local stakeholders, including research, extension, private-sector, and NGO personnel, and farmers, totaling 41 participants.

The project objectives are as follows:

  • Increase productivity of smallholder crop and livestock farming systems in four districts in two contrasting agro-ecological regions of Zimbabwe by identifying and adapting appropriate technologies and management practices.
  • Improve farmers’ access to resources, technologies, information, and markets by characterizing and strengthening value chains for crops (maize, sorghum, and legumes) and livestock (goats and cattle).
  • Increase the knowledge and skills of research, extension, and agribusiness staff, enabling the first two groups to design and implement integrated farming systems and value chain research, and the latter to apply knowledge generated by the project elsewhere in Zimbabwe.

Since its launch, the project has established field trials on 102 farm sites at a time when the cropping season had already started in the high-potential subhumid Murehwa and Goromonzi districts of Mashonaland East Province, where CIMMYT leads the agronomic activities including conservation agriculture as well as socio-economic components of the project. To support work on these trials, project partners including extension and NGO personnel convened on 16 January 2013 for a data collection training workshop facilitated by staff from ILRI and CIMMYT. The workshop sought to orient partners to the project’s objectives, activities, and operational framework; create awareness of the different types of agronomic experiments implemented in the 2012–13 season; train participants on data collection tools and expectations for the different types of agronomic experiments; and review trial implementation progress. Presentations covered topics such as ethics in agricultural research and the various ZimCLIFS activities and their data collection needs. “We thank the ZimCLIFS team for organizing this meeting, as it has helped to clarify our roles in this project and the direction it is taking,” remarked an extension officer from the Murehwa District in her closing remarks.

On 25 and 26 January 2013, two representatives of the Australian Center for International Agricultural Research, project manager John Dixon and consultant George Mburathi, visited ZimCLIFS staff at the CIMMYT office in Harare and project sites in Goromonzi to see how far the project had progressed. They witnessed conservation agriculture trials in which maize is grown along with livestock-palatable and unpalatable legume species, with the palatable species used to feed livestock and the unpalatable species used to generate biomass for soil cover in the subsequent season, given that livestock graze communally in the area. For example, mucuna (Mucuna pruriens) would be used to feed livestock, while residues from fish-poison-bean (Tephrosia vogelii) or dry sunn hemp (Crotalaria juncea) would be used to provide soil cover in the subsequent season as a new approach to managing residue cover provision in crop-livestock environments. They also visited a site where maize (Zea mays), soybean (Glycine max), cowpea (Vigna unguiculata), and mucuna rotation and intercropping were being tested with a view to intensifying maize-legume production. Other agronomic trials established by the project address the issues of residue types and residue rates in conservation agriculture systems where livestock competition exists. The visitors also witnessed cowpea screening and forage production trials that seek to demonstrate hay and silage making from legume sources such as cowpea and hyacinth bean (Dolichos lablab). Dixon also visited a local abattoir and a goat market as part of appreciating the value chain in livestock production.

Within its first season, ZimCLIFS has established trials in high- and low-potential sites with 303 farmers, about 63% of the targeted 480 households, an impressive start according to Dixon. The project runs until July 2015. Dry season activities will focus on livestock feeding, value chain studies, and establishment of innovation platforms as vehicles for dissemination and increased productivity.

Farm mechanization & conservation agriculture for sustainable intensification project launched

If asked “What is the most limiting factor to cereal production in sub-Saharan Africa,” most agronomists would say water, nitrogen, or phosphorus. Could farm power also have a place in this list? From 25 to 30 March 2013, a multidisciplinary group of 40 agronomists, agricultural engineers, economists, anthropologists, and private sector representatives from Kenya, Tanzania, Australia, India, and other countries attended a meeting in Arusha, Tanzania, to officially launch the ‘Farm Mechanization & Conservation Agriculture for Sustainable Intensification’ project, supported by the Australian International Food Security Centre (AIFSC) and managed by the Australian Centre for International Agricultural Research (ACIAR). The meeting focused largely on planning for activities that will take place in Kenya and Tanzania, but the project will eventually explore opportunities to accelerate the delivery and adoption of two-wheel tractors (2WTs) based conservation agriculture (CA) and other 2WT-based technologies (transport, shelling, threshing) by smallholders in Ethiopia, Kenya, Tanzania, and Zimbabwe. This project will be implemented over the next four years by CIMMYT and its partners.

Why do these issues matter? In many countries, the number of tractors has declined in the past decades (as a result of structural adjustment plans, for example), and so did the number of draught animals in many parts of the continent (due to biomass shortage, droughts, diseases, etc.). As a result, African agriculture increasingly relies on human muscle power. This problem is compounded by labor shortages arising from an ageing population, rural-urban migration, and HIV/ AIDS. Even in areas where rural population is increasing faster than the cultivated area, labor may be in short supply during critical field operations due to competition with more rewarding sectors, such as construction and mining. One consequence of low farm mechanization is high labor drudgery, which disproportionately affects women, as they play a predominant role in weeding, threshing, shelling, and transport by head-loading, and which makes farming unattractive to the youth. Sustainable intensification in sub-Saharan Africa appears unlikely if the issue of inadequate and declining farm power is not addressed. Power supply could be increased through appropriate and equitable mechanization, while power demand could be reduced through power saving technologies such as CA. Synergies can be exploited between these two avenues: for example, the elimination of soil inversion in CA systems reduces power requirements —typically by a factor of two— making the use of lower powered and more affordable tractors such as 2WTs a viable option. 2WTs are already present in Eastern and Southern Africa, albeit in low numbers and seldom used for CA in most countries. Several CA planters adapted for 2WTs have also been developed recently and are now commercially available. These are both manufactured outside (e.g. China, Brazil) and in the region (e.g. in Kenya and Tanzania).

The first set of the project’s activities will aim at identifying likely farmer demand by defining main sources of unmet power demand and labor drudgery. This will help determine the choice of technologies – from the 2WT-based technologies available for CA (seed drilling, strip tillage, ripping, etc.) and non-CA operations (transport, threshing, shelling) – to evaluate on-station and on farm, with participation of farmers and other stakeholders involved in technology transfer. The second set of activities will aim at identifying and testing site-specific unsubsidized business models – utilizing private sector service providers to support market systems – that will enable efficient and equitable delivery of the most promising 2WT-based technologies to a large number of smallholders; technologies affordable to the resource-poor and women-headed households. The project will also examine the institutional and policy constraints and opportunities that may affect the adoption of 2WT-based technologies in the four countries. Finally, it will create awareness on 2WT-based technologies in the sub-region and share knowledge and information with other regions, thanks to the establishment of a permanent knowledge platform hosted by the African Conservation Tillage network.

DTMA recognizes best-performing teams in Eastern Africa

During 25-26 February 2013, 22 participants drawn from seed companies, national agricultural research institutes, and CIMMYT met in Arusha, Tanzania, for the regional Maize Working Group (MWG) meeting, a forum that brings together participants from country MWGs in Ethiopia, Kenya, Tanzania, and Uganda. The Drought Tolerant Maize in Africa (DTMA) project used this opportunity to recognize national partners that perform well in breeding, maize technology development, and dissemination, as the project has done in previous years. The National Agricultural Research Organization (NARO) was awarded the best maize breeding team of 2012 prize, but its members were not the only ones receiving a plaque and certificates of recognition. “As this culture has served as a motivating tool for the partners involved in the project, it was decided to begin awarding not just the best team but also runners up,” explained the project’s administrator Kamau Kimani. “It is an honor to see recognition of the significant effort we have made in breeding and disseminating maize together with the private sector,” said Godfrey Asea, a NARO maize breeder. “It is also a challenge to keep the momentum to achieve targets in DTMA and translate this to food security for farmers,” added Asea.

DTMA5

Speaking during the meeting, the DTMA project leader Tsedeke Abate emphasized that drought tolerant varieties perform well even under optimal conditions and are therefore not only meant for marginal drought-prone areas. “Varieties have to be supported by good management practices, land preparation, timely planting, input use, and cultivation,” said Abate. The work, challenges, and successes of MWG partners in the four above-listed countries were discussed. The participants received feedback on sub-grant proposals they had made for support in maize research activities in the region. The national programs and seed companies have benefited through “access to improved maize varieties, more collaboration on multi-locational variety testing, and exposure through interaction with other scientists,” said Sammy Ajanga, the chair of MWG Kenya. “Our varieties have a better chance of being released to the farmers,” said Ajanga as he cited the advantages of the multi-locational field trials facilitated through collaborative research across the region.

Participants also observed a minute of silence in memory of the late CIMMYT maize breeder Strafford Twumasi-Afriyie, a former key member of the MWG and the leader of Nutritious Maize for Ethiopia (NuME). “Twumasi was a very passionate maize breeder,” said principal scientist Stephen Mugo, highlighting the work he did in quality protein maize breeding.

During the meeting, Peter Matowo, a maize breeder from Tanzania, was elected chair of the Eastern Africa Regional MWG.

Resource-conserving practices for smallholder farmers in Africa

“Today Embu farmers are reaping benefits associated with conservation agriculture, where SIMLESA started activities in 2010,” said Charles Wanjau, District Agricultural Officer, Embu East. “We hope that through CASFESA, the benefits that accrued from the SIMLESA project will spread to many more farmers in Embu and beyond for improved food security.”

Wanjau was referring to the project “Conservation Agriculture and Smallholder Farmers in Eastern and Southern Africa,” that begun in June 2012 in Ethiopia and January 2013 in Kenya, with EU-IFAD funding for a period of two and half years. The project will leverage institutional innovations and policies for sustainable intensification and food security in Ethiopia, Kenya, and Malawi, and demonstrate conservation agriculture as a sustainable and profitable farming practice in randomly selected villages. The effort is also meant to assess the effects of markets and institutions on adoption and impacts, through baseline and impact studies in both treatment and counterfactual (control) villages. In Kenya, activities are under way in 15 villages mainly in Embu-West and Embu-East Districts to establish researcher/farmer managed demonstration plots on the farms of two volunteer farmers per village. The demo plots are planted with farmer’s preferred maize and bean varieties using locally recommended seed rates and fertility inputs.

The first CASFESA stakeholder workshop in Kenya was held at Embu on 22 February 2013 and attended by 30 farmers hosting demo plots, 16 officers (mostly frontline extension agents) from the Ministry of Agriculture, and scientists from CIMMYT and the Kenyan Agricultural Research Institute (KARI). Other participants included the Kenyan Equity Bank, Kilimo Salama and Organic Africa representatives, providing farming credits insurance and inputs, respectively. The workshop included updates on project objectives and work plans, along with planning for the next year.

CIMMYT agronomist Fred Kanampiu presented on the fine points of conservation agriculture, followed by KARI-Embu agronomist, Alfred Micheni, who shared the KARI-SIMLESA experiences and take-aways for the CASFESA work plan. CIMMYT socioeconomist Moti Jaleta gave an in-depth talk on project objectives, meth odologies, selected sites, and plans for coming months.

Subsequent workshop discussions centered on demonstration planting details: between row and within row seed spacings, crop varieties to be sown, and land preparation. In-depth observations were drawn from farmers and the extension providers’ experiences. Also discussed were the Ministry of Agriculture recommendations, which encourage tillage, and when to inter-crop maize and beans. The varied labor roles of women and men came up in conversations, with the conclusion that women typically do the bulk of planting, weeding, and harvesting. There was an on-station demonstration of conservation agriculture practices— particularly ridge planting for maize—under the supervision of Kanampiu and Micheni. This was important because all (farmers and extension providers) needed to see a successful case before embarking on establishment of proposed demos based on furrows and tillage conservation tillage practice. The workshop ended with some notable positives, such as an agreement among stakeholders regarding planting procedures and periods, as well as great enthusiasm among farmers.

CASFESA-stakeholkders-planning-meeting_Embu_Kenya

“Sky Walker” advances phenotyping in Southern Africa

Thermal-imageTo free phenotyping of the varietal development bottleneck label, many new tools have been developed to enable an easier plant growth and development characterization and field variability. Until recently, these tools’ potential has been limited by the scale on which they can be used, but this is changing: a new affordable field-based phenotyping platform combining cutting edge aeronautics technology and image analysis was developed through collaboration between researchers from the University of Barcelona, Spain; Crop Breeding Institute, Zimbabwe; Instituto Nacional de Innovación Agraria, Peru; AirElectronics; and Sustainable Agricultural Institute of the High Research Council, Spain. The project was funded by MAIZE CRP as part of Strategic Initiative 9 activities focusing on new tools and methods for national agricultural research systems and small and medium enterprises to increase genetic gains in maize breeding.

DSC_2733The new platform uses ‘Sky Walker,’ an unmanned aerial vehicle which can fly at over 600-meter with an average speed of 45 km/h. The vehicle has thermal and spectral cameras mounted under each wing, and its flight path and image capturing are controlled via a laptop using Google Earth images. Jill Cairns and Mainassara Zaman-Allah tested the platform at CIMMYT-Harare along with JosĂ© Luis Araus (University of Barcelona), AntĂłn FernĂĄndez (AirElectronics president), and Alberto Hornero (Sustainable Agricultural Institute of the High Research Council) to establish the optimal flight path (distance between plane passes and height) for plot level measurements. Field experiments were phenotyped for spectral reflectance and canopy temperature within minutes; these will be compared to results from the GreenSeeker.

The measurement speed of the new platform helps to overcome problems associated with changes in cloud cover and the sun position. It will be used by the Crop Breeding Institute to assist in developing new maize hybrids with heat stress and drought stress tolerance under elevated temperatures.

DSC_2607

Women entering the workforce raises wheat consumption

MasonNicole Mason is an assistant professor of International Development at the Department of Agricultural, Food, and Resource Economics at Michigan State University.

Currently on long-term assignment with the Indaba Agricultural Policy Research Institute in Lusaka, Zambia, Mason completed her PhD in Agricultural Economics at MSU in August 2011. Her research focuses on various dimensions of agricultural input and output subsidy programs in Africa, including political economy aspects as well as program effects on smallholder farmer behavior, poverty, inequality, and maize market prices. Prior to joining MSU, Mason served as a Peace Corps volunteer in Guinea and worked with the Partnership to Cut Hunger & Poverty in Africa. Mason was an invited speaker at the conference “Wheat for food security in Africa: Science and policy dialogue about the future of wheat in Africa,” held in Addis Ababa, Ethiopia, during October 2012, and organized by the Ethiopian Institute of Agricultural Research (EIAR), CIMMYT, ICARDA, IFPRI, the African Union, and WHEAT-the CGIAR research program.

What drew you to international development research and outreach?

During my undergraduate studies at Allegheny College, I took a class entitled “Understanding Environmental Problems in Africa,” taught by the applied economist and returned Peace Corps volunteer Dr. Terrence Bensel. He piqued my interest in Africa and the Peace Corps, and I decided to join the Peace Corps after college. I had the privilege of serving as a volunteer in the rural community of Dalein in the Fouta Djallon region of Guinea in West Africa. I worked with smallholder farmers and women’s gardening cooperatives and saw firsthand the critical role that agriculture plays in the livelihoods of so many rural Africans. These experiences inspired me to pursue a career in international agricultural development research, capacity building, and outreach.

What drew you to work on the trends and drivers of wheat consumption in sub-Saharan Africa?

In the summer of 2007, I worked with colleagues from the Food Security Research Project and the Zambia Central Statistical Office to implement an Urban Consumption Survey in four cities in Zambia (Lusaka, Kitwe, Mansa, and Kasama). We interviewed over 2,000 households and asked them about all of the food and non-food items they had consumed in the preceding 30 days. We also visited many food retail outlets in the four cities, including supermarkets, bakeries, small grocers, and roadside and mobile vendors. I was struck by how popular bread and other wheat products were among respondents of all income groups. It was also interesting to see the long queues for bread in the supermarkets and the vendors selling bread at a slight markup right outside the supermarket to people who wanted to avoid the long lines inside. I learned that similar things were happening in other African cities and towns, and decided to work with MSU agricultural economist Thomas S. Jayne and CIMMYT socioeconomist Bekele Shiferaw to delve into the factors driving rising wheat consumption in Africa.

What did you discover?

I expected urbanization to be a key factor driving rising wheat consumption in Africa but surprisingly, our results suggest that after controlling for other factors like GDP, total population, and the prices of bread and products that are complements or substitutes for bread, changes in the percentage of the total population that resides in urban areas don’t have a significant effect on country-level wheat consumption. This was surprising because in most countries in Africa (Ethiopia is an exception), wheat consumption is much higher in urban than in rural areas. We’re still investigating this finding to unpack what is going on. One possibility is that it’s not urbanization per se that drives wheat consumption but rather the demographic and socioeconomic changes that go along with it. These are things like rising incomes and increased labor force participation by women.

What did you observe about gender and wheat consumption in Africa?

A key finding of our study related to gender is that rising labor force participation by women—especially if it rises faster than labor force participation by men—has a significant, positive effect on country-level wheat consumption. We suspect that this is because wheat products (bread, pasta, chapati, etc.) take less time to prepare than many other popular staple carbohydrates like maize meal porridge (called nshima in Zambia and consumed widely in eastern and southern Africa). When women work more outside of the home, they have less time to devote to food preparation and may prefer quicker options like these wheat products.

What types of changes (policy, research, etc.) do you think would help women and families in sub-Saharan Africa?

This is really broad. But in general, I believe women provide most of the labor for agricultural production in Africa but often don’t have much control over the revenue from the sales of products they helped to produce. Women also tend to have less access to productive assets and technologies that could help raise agricultural productivity. Empowering women—for example, through formal education as well as adult education on improved farming practices and business/management skills, improving their access to credit, etc.—is critical not only for improving the well-being of women but also that of their children, families, and communities.

To see the full study on rising wheat consumption in sub-Saharan Africa by Mason, Jayne, and Shiferaw,  please visit http://fsg.afre.msu.edu/papers/idwp127.pdf

 

Published 2013

Maize lethal necrosis: Scientists and key stakeholders discuss strategies as the battle continues

29A recently-emerged disease in Eastern Africa, maize lethal necrosis (MLN), remains a serious concern. A regional workshop on the disease and its management strategies was held during 12-14 February 2013 in Nairobi, Kenya. Organized by CIMMYT and the Kenya Agricultural Research Institute (KARI), the workshop brought together nearly 70 scientists, seed company breeders and managers, and representatives of ministries of agriculture and regulatory authorities in Kenya, Uganda, and Tanzania, as well as experts from the U.S.A.

The key objective of the meeting was to “establish a strong interface between research and regulatory institutions in Eastern Africa to effectively tackle the MLN challenge, including the ongoing efforts and further steps to identify and deploy disease-resistant germplasm, and to create a system that can ensure a constant flow of varieties,” explained B.M. Prasanna, CIMMYT Global Maize Program director. Prasanna highlighted the difficulties faced by the maize farming community from the disease, and emphasized the need to accelerate deployment of MLN resistant maize varieties and to generate necessary awareness among the relevant stakeholders on management strategies. “It is necessary to break the MLN disease cycle and tackle the problem from multiple perspectives,” added KARI director Ephraim Mukisira. He mentioned that besides partnering with CIMMYT on breeding for MLN resistant varieties, KARI will also be distributing seed of alternative crops to farmers in affected areas. “As a dairy farmer, I will be planting napier grass instead of maize this season,” noted Mukisira.

The first signs of a new disease appeared in 2011 and 2012 in the Rift Valley Province, Kenya. A team of CIMMYT and KARI scientists identified it as MLN, a disease caused by a double infection of the maize chlorotic mottle virus (MCMV) and the sugarcane mosaic virus (SCMV) and transmitted by insects. According to Godfrey Asea, plant breeder and head of the Cereals Program at the National Crops Resources Research Institute (NaCRRI), Kampala, MLN was also identified in Uganda. Furthermore, symptoms of MLN have been cited in Tanzania, said Kheri Kitenge, maize breeder at the Selian Agricultural Research Institute (SARI), Arusha.

Scientists, particularly breeders, have made significant progress in tackling the disease. Studies are already underway at two field sites (Naivasha and Narok) where responses of a wide array of inbred lines and pre-commercial hybrids are being evaluated under high natural disease pressure and artificial inoculation. Participants visited the Sunripe Farm in Naivasha, where they observed KARI-CIMMYT MLN trials under natural disease pressure. A trial under artificial inoculation in Naivasha featuring nearly 175 commercial maize varieties is showing high levels of susceptibility to MLN. Researchers remain hopeful as some of the elite inbred lines and pre-commercial hybrids developed under projects such as the Drought Tolerant Maize for Africa (DTMA) or Water Efficient Maize for Africa (WEMA) are showing resistance to the disease.

During the farm visit, KARI pathologist Anne Wangai and her team showed how to generate artificial inoculum for MCMV and SCMV, as well as the enzyme-linked immunosorbant assay (ELISA) based technique for pathogen diagnosis at the national agricultural research laboratories at the KARI campus. The participants observed an artificial inoculation of maize seedlings in the field, followed by a discussion on some of the major changes in maize seed demand resulting from MLN incidence. “The maize seed industry is under stress in Kenya due to the need to replace some popular but MLN-vulnerable varieties as soon as possible,” explained Evans Sikinyi, Seed Trade Association of Kenya (STAK) executive officer. All stakeholders agreed that the foremost priority is to identify and speed deployment of MLN resistant maize varieties. “We also have to enhance the diagnostic capacity in the labs and ensure there is a rapid response and surveillance on MLN,” added Esther Kimani, general manager of phytosanitary services at the Kenya Plant Health Inspectorate Service (KEPHIS).

In the concluding session of the workshop, stakeholders identified key research areas and discussed partnership opportunities.

Droughts in major wheat areas can fuel revolutions

Drougth-in-mayor-wheat-areaA February 2013 report from the Center for Climate & Security entitled “The Arab Spring and Climate Change” identifies climate change consequences—among them global and local wheat shortages and price hikes—as stressors that can ignite underlying causes of social conflict. In the opening chapter of the report, Oxford University Geographer Troy Sternberg notes how “
once-in-a-century winter drought in China reduced global wheat supply and contributed to global wheat shortages and skyrocketing bread prices in Egypt, the world’s largest wheat importer.” New York Times OpEd writer Tom Friedman wrote about the Center for Climate & Security study (see The Scary Hidden Stressor.)

Un informe publicado en febrero de este año por el Centro de Clima & Seguridad, bajo el tĂ­tulo “La primavera ĂĄrabe y el cambio climĂĄtico“, revela que los efectos del cambio climĂĄtico —como la escasez de trigo, local y mundial, y el alza de los precios— pudieran ser los factores detonantes de los conflictos sociales. En el primer capĂ­tulo, el geĂłgrafo Troy Sternberg de la Universidad de Oxford, narra cĂłmo “
la sequĂ­a que asolĂł China en invierno, de una magnitud que no se habĂ­a registrado en los Ășltimos 100 años, redujo el suministro global de trigo y contribuyĂł a la escasez y al alza desproporcionada de los precios del trigo en Egipto, el mayor importador de este producto en el mundo.” El reactor del New York Times Tom Friedman escribiĂł acerca del estudio del Centro del Clima y la Seguridad (ver  The Scary Hidden Stressor.)

High expectations among stakeholders as WEMA Phase II kicks off

IMG_9890During 4-8 February 2013, stakeholders of the Water Efficient Maize for Africa (WEMA) project gathered in Nairobi, Kenya, for the Fifth Review and Planning Meeting to discuss achievements and challenges of the recently concluded WEMA Phase I (2008-2013) and to plan for the second phase of the project (2013-2017) which begins in March this year. In the past four years, WEMA has made several key achievements, including the successful application and approval of permits to conduct confined field trials for transgenic varieties in Kenya, Uganda, and South Africa. Kenya and Uganda are now in their third year of trials, South Africa in its fourth. The project has also managed to submit conventional drought tolerant maize hybrids into the national performance trials in Kenya. “It is expected that farmers will have these WEMA conventional maize seeds by 2014,” says Denis Kyetere, African Agricultural Technology Foundation (AATF) executive director. CKH110078, one of the hybrids developed from the Drought Tolerant Maize for Africa (DTMA) materials, is in its final stage of approval in Kenya.

Emily Twinamasiko, Uganda’s National Agricultural Research Organization director general and WEMA Executive Advisory Board chair, was pleased with the achievements made in 2012 and commended all teams and the operations committee for their great efforts. Natalie DiNicola, Monsanto vice president for Africa and Europe, commented on the indicators of success: “The project will never be successful until the farmer has a product to plant and options to choose from.” Getting the seed to the farmers was stressed also by Ephraim Mukisira, Kenya Agricultural Research Institute (KARI) director, who called for speedy deployment of the varieties: “KARI wants to see the product with the farmer. The scientists must work hard so that impact can be seen and be seen today.”

B.M. Prasanna, Global Maize Program director, thanked Monsanto for donating the drought tolerant and Bt genes. “This is a tremendous opportunity to address some of the biggest challenges to African smallholder farmers [drought and stem borer infestation]. MON810 presents yet another great opportunity for WEMA to tap into the products from the Insect Resistant Maize for Africa project to develop a product that addresses many of the insect related constraints.” He added that new but exciting challenges were posed by maize lethal necrosis, particularly because it has allowed the WEMA team to assure partners that the materials being produced are resistant to the disease. During a visit to trials at KARI-Kiboko, stakeholders observed WEMA varieties, many of which have outperformed some of the best local hybrid checks on the market. They also visited the confined field trials for Bt MON810 and drought tolerant MON87460 that are in their first and fourth seasons of trials, respectively.

Shifting attention from successes to challenges, Stephen Mugo, CIMMYT principal scientist and co-chair of the WEMA Product Development team, spoke of the major lessons learnt by the team in Phase I that are crucial for the success of the second phase: continuous training in trials modernization and modern breeding techniques is necessary, as is a good quality assurance program for the exchange of germplasm between the private and public sectors to minimize the risk of inappropriate germplasm exchange. The stage is now set for Phase II after the meeting streamlined WEMA II milestones and developed the WEMA II 2013 work plans.

Lawrence Kent from the Bill & Melinda Gates Foundation noted that “with great privilege comes lots of responsibilities. We therefore expect great success from WEMA.” This sentiment was shared by other stakeholders, who were impressed by the achievements of Phase I and thus have high expectations for Phase II. “WEMA continues to be a success because of the combined and dedicated efforts within the partnership: the national agricultural research systems, CIMMYT, Monsanto, and AATF. All these partners have continued to work together, celebrating project gains and resolving any challenges together for the good of the larger goal and promise to smallholder farmers, a promise of food security and better livelihoods,” stated Kyetere. “A food secure continent is among the greatest inheritance and legacy we can leave the generations that are coming after us, our children and to our children’s children.”