Skip to main content

Location: Africa

CIMMYT’s work in Africa helps farmers access new maize and wheat systems-based technologies, information and markets, raising incomes and enhancing crop resilience to drought and climate change. CIMMYT sets priorities in consultation with ministries of agriculture, seed companies, farming communities and other stakeholders in the maize and wheat value chains. Our activities in Africa are wide ranging and include: breeding maize for drought tolerance and low-fertility soils, and for resistance to insect pests, foliar diseases and parasitic weeds; sustainably intensifying production in maize- and wheat-based systems; and investigating opportunities to reduce micronutrient and protein malnutrition among women and young children.

CIMMYT-CCAFS modeling team discusses gender in Ethiopia

CIMMYT-CCAFS2Exploring the potential for integrating gender at a range of scales in the work of the CIMMYT-CCAFS modeling team, members of the team accompanied by colleagues from the International Water Management Institute (IWMI) gathered in Addis Ababa, Ethiopia, on 4 July 2013 for a half-day explanatory CIMMYT-CCAFS Gender and Modeling Workshop. The workshop was organized by gender consultant Cathy Farnworth as part of a wider drive to bring gender into CIMMYT-CCAFS work.

The workshop began with a series of presentations, first of which was by IWMI hydrologist Tracy Baker. Baker focused on ‘Incorporating gender and other perceptions into physically based modeling environments,’ emphasizing that incorporating gender into modeling was part of a wider need to integrate the complexities of human nature into models. Gender incorporation can improve models because women and men use landscapes in different ways, Baker stressed, pointing out Participatory Geographic Information System (PGIS) modeling as one option that may offer insights into gendered uses of landscape. Baker demonstrated gendered uses and perceptions of landscape through a case study of her own work in Kenya, in which she showed that women and men use the same landscape in very different ways.

CIMMYT climate economist Songporne Tongruksawattana discussed ‘Gender issues in farm household modeling’ describing a typical household model and the challenges climate change poses for intra-household decision-making.

CIMMYT’s crop modeler and GIS specialist Kindie Tesfaye presented work on ‘Biophysical and economic modeling at scale,’ conducted by himself, Sika Gbegbelegbe, Uran Chung, and Kai Sonder, and focused on simulating climate change impacts and scenarios and the role of promising technologies at different spatial and temporal scales. He concluded his presentation by listing pertinent questions on the opportunities and challenges of incorporating gender into biophysical and economic modeling.

CIMMYT’s agricultural anthropologist Michael Misiko’s work was titled ‘Handling gender issues in agriculture: A tricky balance between biophysical and social facets’, and examined how mechanization in conjunction with the promotion of conservation agriculture (CA) exposes gender relations in farming systems and can lead to both opportunities and new inequalities between women and men. He pointed out that while machines and tools are not gendered and can be used equally by women and men, in practice women are frequently not able to take advantage of machinery. From a purely technical point of view CA should be ideal for women, since it should minimize drudgery, particularly weeding, but in reality women’s tasks are often hard to mechanize due to their intrinsic nature, women’s often small and scattered plots, and because women are not a target priority group for mechanization by extension agents.

The workshop continued with a group discussion led by Baker. Issues raised and discussed included: How to ask the right questions at the right scale? How can we combine PGIS derived maps created by women/men and different ethnic communities? Whose voices are prioritized? Who participates and why? Who decides who participates? Whose reality are you trying to capture?

Participants then discussed ways forward and agreed to create a gender and modeling taskforce and a cross-CGIAR forum for discussion and engagement; they hope to follow up with another, larger-scale, workshop in 2014. Later, CIMMYT-CCAFS modeling team members discussed how to strengthen gender in their work plans.

CIMMYT’s work highly appreciated in Ethiopia

Bekeles-EthiopiaThe third Dialogue on Ethiopian Agricultural Development: Agricultural Research for National Development in the Face of Climate Change and Food Security was held during 4-5 July 2013 at the Haramaya University of Agriculture, Haramaya Harar. The Dialogue aimed to provide a platform for discussion on agricultural research for development and transformation of the sector for food security in Ethiopia.

The Dialogue was attended by World Food Prize Laureate and distinguished professor Gebissa Ejeta; two members of the agricultural standing committee of the Ethiopian parliament; alumni of the Haramaya University working at various national, regional, and international top-level positions, such as Berhane Gebrekidan, Sime Debela, Zemedu Worku, Ephirem Mamo, and Solomon Bekure; senior staff of Haramaya, Jimma, Hawassa, Dire Dawa, and Mekele universities; members of USAID’s Capacity to Improve Agriculture and Food Security (CIAFS); representatives of the Ethiopian Institute of Agricultural Research (EIAR); the Ethiopian Seed Enterprise; CIMMYT; and ILRI.

Panel discussions covered 60 years of agricultural research in Ethiopia; agricultural research at regional institutes and Ethiopian universities; perspectives of users of technologies generated by the national agricultural research system (NARS); linking research at international levels with NARS for greater impact; the Ethiopian experience; presentations on contributions of agricultural research in Ethiopia in terms of food security, foreign earnings, and climate change adaptation; reflections on dialogues and issues deserving special attention; and recommendations for enhancing efficiency and productivity of NARS.

Three CIMMYT scientists –Drought Tolerant Maize for Africa project leader Tsedeke Abate, Bekele Shiferaw from the Socioeconomics Program, and Bekele Abeyo from the Global Wheat Program– presented during the panel discussions. The presentations were followed by a Q&A session, during which CIMMYT was named as top-rated CG center in Ethiopia due to its contributions, along with other institutions and centers, to national agricultural education, research for development, and extension with outputs and impacts. CIMMYT was commended by the current and former EIAR directors general and deputy director general, as well as Haramaya University senior alumni and political representatives, for its long-standing relations and close collaborative work with the NARS in generating technologies, strengthening national capacities, and reaching farmers.

As the meeting assessed the gaps and constraints of agriculture for development, ways forward, and future continuity of the dialogue, Abeyo assured the participants that “CIMMYT is committed to continue and maintain its high-quality contributions to Ethiopia.”

Tracking the adoption patterns in maize and legume farming system in Ethiopia

DSC_5826_Group-photo-900x4001Myths and cultural practices can block farmers’ acceptance of a new technology, particularly the principles of reduced tillage, residue retention, and cropping rotations that underlie conservation agriculture. This was one observation in a recent visit to farmers in four districts in Ethiopia by Australian International Food Security Centre (AIFSC) director, Mellissa Wood, and AIFSC Biosecurity and Food Safety Manager, Dennis Bittisnich.

Farmers in one village who continued intensive tilling instead of conservation agriculture said that tillage helps control crop diseases. Many Ethiopian farmers also keep livestock, so crop residues have higher value as fodder for cows than as cover for soils. “Maize stover is also used as fuel for cooking fires,” said CIMMYT socioeconomist Menale Kassie, who is also regional leader for the project Adoption Pathways to Sustainable Intensification in Eastern and Southern Africa. “Understanding the constraints and incentives affecting adoption is crucial, if innovations are to be relevant for farmers.”

The four-year adoption pathways project is funded by AIFSC, managed by the Australian

Fatuma Hirpo on her conservation agriculture demonstration plot where she has intercropped drought tolerant maize variety Melkassa II with beans.
Fatuma Hirpo on her conservation agriculture demonstration plot where she has intercropped drought tolerant maize variety Melkassa II with beans.

Centre for International Agricultural Research (ACIAR), and led by CIMMYT, in collaboration with national universities and research institutes in Ethiopia, Kenya, Malawi, Mozambique, and Tanzania; the University of Queensland, Australia; the Norwegian University of Life Sciences; and the International Food Policy Research Institute (IFPRI).

According to Menale, the project is closely linked to the Sustainable Intensification of Maize-Legume Systems for Food Security in East and Southern Africa (SIMLESA) program; working where SIMLESA has been promoting and testing conservation agriculture using demonstrations on farms and on national agriculture research stations.

Farmers learn from their peers, particularly early adopters and those who lend their farms to showcase the practices. Fatuma, a widowed mother of 10 and an early adopter who farms with help from her children, says reducing tillage has cut her work load. She is a role model to other farmers—a rare feat for a woman, according to village sources—and neighbors have decided to try conservation agriculture after seeing Fatuma’s crops flourish.

“The project will evaluate the data and use the rich survey information to advise on potential policy and technical interventions,” said Yirga, researcher with the Ethiopian Institute of Agriculture Research (EIAR) and country coordinator for the project. Innovative livestock management and community engagement can help, according to Chilot Yirga, as can providing alternative cattle feeds such as intercropped legume fodders, which also enrich soils by fixing nitrogen. “The way to show this is through on-farm demonstrations,” said Wood, lauding the researchers for the on-station trials and on-farm engagement. “In Australia, conservation agriculture is very important as we have a lot of drought and changing rainfall patterns; CA makes us more productive.”

SIMLESA scientists receive agronomy training in South Africa

SIMLESA-ARC-traineesFifteen young scientists from SIMLESA partner and spillover countries were recently trained by the Agricultural Research Council of South Africa (ARC-SA) on various aspects of agronomy and innovation learning platforms (ILePs), including conservation agriculture principles, nitrogen fixation, experimental design and field layout, agro-climatology principles, and data collection and analysis.

The training took place during 06-17 May 2013 at three ARC institutes: Institute for Soil, Climate and Water (ARC-ISCW), Plant Protection Research Institute (ARC-PPRI), and Grain Crops Institute (ARC-GCI), and aimed to expose the scientists to grain production information and to enable assimilation of terms, theories, and principles through practice. The training was based on experiential learning principles and employed a variety of interactive learning methods, scientific presentations, discussions, multiple practical sessions in the laboratory, and field demonstrations.

During field visits, such as the one to SOYGRO, a company manufacturing rhizobium inoculant and related products, trainees got to experience how the grain industry functions in South Africa from manufacturing and packing to the distribution processes.

Trainees also visited the NAMPO Harvest Day in Bothaville, Free State, taking place during the NAMPO Agricultural Trade Show, one of the largest privately organized and owned exhibitions in the world and the largest agricultural machinery and livestock show in the Southern Hemisphere. The show draws more than 650 exhibitors each year from all over the world, including Australia, Sweden, the USA, Italy, Brazil, and Germany. Another visit on the program was to the Unit of Environmental Sciences and Management at the North-West University, where Professor Driekie Fourie introduced the trainees to the University research programs and related study fields. Before the trip, Professor Johnny van den Berg from the University had given an introductory talk on integrated pest management.

The program was coordinated by CIMMYT agronomist Fred Kanampiu, Yolisa Pakela-Jezile from ARC-CO, and Annelie de Beer from ARC-GCI. Participants are expected to use their newly acquired knowledge and skills to train their colleagues.

Under the Memorandum of Understanding between ARC and CIMMYT under SIMLESA, ARC is responsible for organizing capacity building of scientists and extension officers in the five target countries (Ethiopia, Kenya, Malawi, Mozambique, and Tanzania) and the seven spillover countries (Uganda, Botswana, Rwanda, and South Sudan). SIMLESA is funded by the Australian government through ACIAR.

Tackling toxins with aflasafe™

Introducing-aflasafe-to-farmers-300dpi-1“All the maize for my home consumption comes from my aflasafe™-treated field,” says farmer Alhaji Al-Hassan from Nigeria’s Kaduna State. “When I take my maize to the market, buyers rush for it because the quality looks better. The grains look clean.”

First developed by the USDA and adapted for use in Nigeria by the International Institute for Tropical Agriculture (IITA) and the African Agricultural Technology Foundation (AATF), aflasafe™ is fast gaining ground across Africa as a non-toxic and affordable solution to one of the continent’s most serious food safety issues.

Aflatoxins are invisible, tasteless poisons produced by Aspergillus flavus, a mould commonly found infecting crops such as maize and groundnut, both in the field and in storage. While acute exposure to aflatoxins can kill, prolonged exposure leads to impeded growth, liver disease, immune suppression and cancer with women, children and the poor and most vulnerable. Aflatoxins also impact international trade, with African economies losing US$450 million every year from barred exports.

Competitive exclusion

Aflasafe™ works by ‘pushing out’ harmful, toxin-producing strains of A. flavus from the field through the deliberate introduction of indigenous but non-toxic, harmless strains – a process known as ‘competitive exclusion’. Heat-killed sorghum grains are coated with the non-toxic fungal strains and scattered by hand in the field prior to crop flowering. Field tests in Nigeria between 2009 and 2012 showed that use of aflasafe™ consistently reduced aflatoxin contamination in maize and groundnut crops by 80-90%.

In 2012, these findings led to the adoption of the biocontrol product by several extension agencies in Nigeria. IITA is currently constructing a low-cost manufacturing facility at its Ibadan campus in order to optimize the production process for aflasafe™ so that it can be taken up by other developing countries. The facility, which will be able to produce up to five tons of aflasafe™ per hour will also test commercialization models. Market linkages between aflasafe™ users and quality conscious food processors are also being developed, in collaboration with the private sector. With aflatoxin-contaminated maize in poultry feed being a major risk to animal health, links are also being developed with poultry producers.

Spreading the science

The success of aflasafe™ has led to an expansion in biocontrol research in Burkina Faso, Ghana, Kenya, Mali, Senegal, Tanzania, and Zambia. In Kenya, IITA has identified four non-toxic strains of A. flavus in locally grown maize, which are now being used to make a Kenya-specific product called aflasafe™-KE01. Researchers from the Institute are currently gathering efficacy data to determine where the product will be deployed. “We are happy with the innovative scientific solution which has done well in Nigeria,” says Wilson Songa, Kenya’s agriculture secretary. “The ball is now in our court, and we shall move fast… We needed the technology yesterday!”

Senegal is also developing its own version – aflasafe™-SE01, and IITA is optimistic that both Kenya and Senegal will have their own fully registered versions of aflasafe™ in two years, with Burkina Faso reaching the same point in three years and Zambia in four. Meanwhile, at the 2012 G20 meeting in Mexico, G20 leaders announced that aflasafe™ will be one of three initial pilot projects to be supported under the ‘AgResults’ initiative which aims to incentivize the adoption of agricultural technologies by the poor.

Affordable technology

IITA’s experience in Nigeria suggests that the cost of aflasafe™ – at US$1.5 per kg, with a recommended usage of 10 kg per hectare – is affordable for most farmers in the country. The Institute calculates that adoption of biocontrol with other management practices will reduce aflatoxin contamination by more than 70% in maize and groundnut and increase crop value by at least 25%, as well as improving the health of women and children.

With mass production and commercialization of the technology now imminent in Nigeria, the country’s Minister of Agriculture and Rural Development, Hon. Akinwumi Adesina, has been enthusiastic in his support. “For too many years we have neglected to regulate aflatoxin in the production of food,” Adesina says. “IITA has worked tirelessly to control aflatoxin and educate farmers on the harmful effects of this toxin. When we consider the potential benefits of aflasafe™, it is ultimately smallholders who stand to gain the most,” he concludes.

The CRP MAIZE will be discussing the role of maize in Africa at the Africa Agriculture Science Week (15-20 July) on 16 July in Accra, Ghana. Join us if you can and follow the AASW Blog and #AASW6 on Twitter.

Inspired by women communal farmers

BenhildaMasuka-02
Benhilda Masuka is a maize physiologist who joined CIMMYT Zimbabwe in 2009.

How would you describe your experience of becoming a female researcher in a traditionally male-dominated field?

Masuka: During the school year I lived with my father in a small farming town called Rusape, Zimbabwe. In December and January, I spent the holiday planting and weeding with my mom and my siblings in our village. I also helped harvesting the crops in April and May. Next to our village was a successful commercial farming community (the Mazoe district). The agriculture I observed around the two farming towns inspired me. At the same time, I hoped that by pursuing a career in agriculture I could help the communal farming communities (like where my mother farmed) which were dominated by women of all ages. Most of the men migrated (and still migrate) to urban areas for employment opportunities.

In 1996, I made up my mind to join the male-dominated field of agriculture research. It was a bold decision only because I was discouraged by the general opinion of the community that thought agricultural research was only suitable for men. As soon as I completed training in 1999, I taught agriculture in high school. It was only after some parents saw the practical application of what their children were learning in their own gardens and fields that they appreciated what the ‘lady agriculture teacher’ was capable of. When I joined a local agriculture college in 2003, the perception was different. They appreciated the presence of a woman in the team as a way of encouraging female students, to show them they could also make it in agriculture research and production. By then, the government had begun promoting women empowerment, too, and this made my experience easier.

While the presence of a female researcher is appreciated, there is still a tendency to look down upon women, assuming that certain types of work could only be done by men. Sometimes, the men I work with resist a woman’s leadership but I don’t let this discourage me. On the contrary, it gives me motivation to prove that female researchers are equally capable. I also try to maintain high personal standards in my work in order to encourage female researchers and colleagues at all levels. I owe a debt of gratitude to senior scientists who supported me – and who still support me — and who appreciate the participation of female scientists.

With the Drought Tolerant Maize for Africa (DTMA) and Improved Maize for African Soils (IMAS) projects, I have been involved in improved variety development, testing and screening, and the dissemination of low nitrogen and drought tolerant varieties. I think the field is becoming more accepting of women scientists but in some parts of the world, there is still resistance.

In many parts of Africa/the world, women farmers are key actors in agricultural production and food security. How can your work empower them?

Masuka: It’s true in most parts of Africa women stay in the villages doing most of the farming while the men seek employment in the cities. Trends are changing, but the communal farming community is still dominated by women farmers. These women do not have sufficient capital to invest in improved seed, inorganic fertilizers, and irrigation facilities. They are farming in marginal areas with pulverized soils, sandy soils, and low rainfall.

The varieties developed by CIMMYT are reaching women farmers in sub-Saharan Africa. Hopefully, with better yields, they can not only feed their families year-round but also sell their surplus crops to afford family health care and education.

What advice would you give to young girls wanting to study science?

Masuka: Science can be academically challenging but that applies to both men and women. It can be frustrating as a woman because, despite having gone through the same rigorous training, some people will think science is only for men. Men and women have the same capabilities when it comes to research. My advice for the young women who wish to become future researchers is to be passionate, determined, committed, and focused and you will make it.

The CRP MAIZE will be hosting a side event on the role of maize in Africa at the Africa Agriculture Science Week (15-20 July) on 16 July in Accra, Ghana. Join us if you can and follow the AASW Blog and #AASW6 on Twitter.

Building capacity of East African seed companies through training

Seed production workshop participants visited a hybrid seed field at East African Seeds in Uganda.
Seed production workshop participants visited a hybrid seed field at East African Seeds in Uganda.

In recent years seed companies in Tanzania and Uganda have seen tremendous growth, resulting largely from the uptake of new drought tolerant maize varieties from both national and international organizations (see Table 1). This is accompanied by an increasing number of improved maize varieties taken up by the companies, growth in seed production, and general expansion of the companies’ work volume, which results in need for more well-trained technical staff. Recognizing this, several companies in the region turned to CIMMYT with a request for a training course to equip seed technicians with skills to produce seed of various classes and to supply farmers with quality seeds. In response to the request, CIMMYT organized two training sessions: from 8-10 January 2013 in Tanzania and from 10-12 June 2013 in Uganda.

Click on the table to zoom in.
Click on the table to zoom in.

Delivered by James Gethi, Biswanath Das, and Mosisa Worku Regasa, together with Godfrey Asea in Uganda, the course covered all aspects of the seed value chain, including seed processing, quality control of seed production, customer service, contracting growers, maize varieties and their characteristics, seed storage, marketing strategies, and handling of unsold stock; it also touched on agronomy.

In Tanzania the course attracted 25 participants from 8 seed companies; in Uganda there were 39 attendees from 14 seed companies, the Uganda Seed Trade Association (USTA), and the National Crops Resources Research Institute (NaCRRI).

“Capacity building in local seed companies is important,” said Bob Shuma, executive director of the Tanzania Seed Trade Association (TASTA), encouraging participants to seek opportunities to enhance their skills and knowledge of the seed business from CIMMYT and other partners. “Products and services of good quality are key in the process of building customers’ trust, which contributes to the success of the company. This can only be achieved through training and adherence to laws and regulations set by the government,” he added.

To determine the effectiveness of the course and delivery methods, participants were evaluated before and after the course. The pre- and post-course quizzes indicated an improvement of knowledge in both countries by over 34%. Those with top scores on the quiz were recognized for their outstanding performance, and all participants received a CD with resource materials and a copy of The Seed Business Management in Africa (MacRobert 2009).

Godfrey Asea, crop breeder and cereal research leader at NaCRRI, and Masagazi Cliff-Richard, USTA chairman and managing director of Pearl Seeds Ltd, who participated in the course in Uganda, thanked CIMMYT for organizing the training and urged everyone to use the newly-acquired knowledge to produce and supply quality seed to Ugandan farmers. “Uganda needs an improved seed industry,” said Cliff-Richard emphasizing the value of the course.Tanzania-Group-photograph2

The CRP MAIZE will be hosting a side event on the role of maize in Africa at the Africa Agriculture Science Week (15-20 July) on 16 July in Accra, Ghana. Join us if you can and follow the AASW Blog and #AASW6 on Twitter.

Four new maize varieties released in Ethiopia

A happy farmer holding cobs of BH547 (right hand) and BH546 (left hand).

The national productivity of maize, one of the most important staple crops grown in Ethiopia, is close to 3 tons/ha, a 50% increase since 2008. This increase is attributed mainly to the use of new technologies, including improved varieties such as the ones developed and provided to smallholder farmers by the Ethiopian Institute of Agricultural Research (EIAR) and CIMMYT. This year, the National Maize Research Program of EIAR in collaboration with CIMMYT released four new varieties for high-potential and drought-prone maize growing areas.

The new varieties include BH546 and BH547, intermediate maturing, three-way cross hybrids released for high-potential maize growing areas, and MH140 and Melkassa-1Q for drought-prone areas. The varieties were either developed from CIMMYT source germplasm or they contain CIMMYT inbred lines as one of their parents. BH546 has a yield advantage of 30% and 10% over BH540 and BH543, the most popular hybrids adapted to the same agro-ecology, with a mean yield potential of 8.7 tons/ha across several locations under optimum management conditions. Its narrow semi-erect leaves make it desirable for high-density planting and inter-cropping with legumes, a common practice in most maize growing areas of the country. BH547 has a grain yield advantage of 26.4% and 7% over BH540 and BH543, respectively, and mean grain yield of 10 tons/ ha. Farmers participating in variety selection preferred the hybrids over the popular varieties for their bigger cob size, good husk cover, high yield potential, and better reaction to known diseases of the area.

BH546 in the field.
BH546 in the field.

MH140, originally developed by CIMMYT-Zimbabwe, is a highly stable high-yielding hybrid tolerant to drought and low nitrogen stresses, as well as major foliar diseases of the central rift valley of Ethiopia. MH140 showed a yield advantage of 18% and 10% over the popular hybrids of the drought prone areas, MH130 and MHQ138, respectively. Melkasa1Q, developed for dry and marginal maize growing areas of Ethiopia, is a quality protein maize version of an extra-early maturing open-pollinated variety Melkasa-1 developed through backcrossing-cum- recurrent selection. The whole grain of Melkasa1Q contains 3.9% lysine and 0.9% tryptophan, about twofold of the levels in Melkassa-1; it shows an 11% grain yield increase over Melkasa-1, with mean grain yield of 4.6 tons/ha.

EIAR in collaboration with CIMMYT and the Ministry of Agriculture have begun variety demonstration and popularization to promote the seed delivery system. Private and public seed companies involved in seed production can take up these varieties and embark on their production and marketing.

EIAR thanks CIMMYT breeders, seed specialists, and project leaders Dagne Wegary, Dan Makumbi, Amsal Tarekegne, Cosmos Magorokosho, Tsedeke Abate, and Mulugeta Mekuria for their technical and financial support leading to the release of the varieties.

Conservation agriculture: The Green Revolution for Africa?

SaidiThe Global Conservation Agriculture Program (GCAP) works closely with partners all over the world toward an ultimate vision of widespread use of sustainable systems by smallholder farmers, based on the principles of conservation agriculture (CA). Our key partner in Africa is the African Conservation Tillage Network (ACT). We asked their Executive Secretary, Saidi Mkomwa, about the current status and future of CA in Africa.

ACT was established in 1998. Has Africa seen a big change in CA adoption since then?

Mkomwa: The adoption rate isn’t very big, but we think it’s good. It took Brazil 17 years to get the first one million hectares under CA; it’s been a shorter time in Africa and we have almost reached one million hectares already. It is happening at a slower rate than we would want, but it’s getting there. We have seen partial adoption of CA principles across the continent. For example, during one of our exchange visits to Zambia, we met a woman – we nicknamed her Barefoot Woman – who had no shoes but she was rich and she was proud to be a farmer. She wasn’t practicing all three principles, only reduced tillage combined with some mechanization, but it’s a start.

Why do you think that CA is key in improving food security in Africa?

Mkomwa: The Green Revolution that has been so helpful in Asia has passed by and Africa has not benefited from it. We think it’s primarily because of the continent’s poor infrastructure: getting fertilizers to people is a problem because transportation is difficult; farmers don’t have cash and there are no banks to borrow from. But even when farmers can efficiently utilize fertilizers and improved seeds, their work is hampered by degraded soil, inadequate soil moisture, and inadequate access to water. For Africa to benefit, the soil has to improve. We believe that the Green Revolution in Africa has to start with smallholder rainfed farmers and CA is a possible intervention, more affordable than, for example, building irrigation schemes.

We have been promoting CA a lot by looking at the yields. A lot of people will ask how much the yield increase is. I’ll say that we should also be looking at the annual productivity of the land, annual productivity of labor. You can have a modest yield of 3 tons per hectare, but if you can have two crops in there instead of one, we’re looking at 6 tons per hectare per year in the end. This is affordable intensification. And it’s not only that: CA also increases the soil moisture retention, thus increasing annual productivity of the land and – through the use of crop residues – decreasing the dependency on external inputs, such as fertilizers, which farmers fail to acquire.

What are the biggest challenges you’re facing in your work?

Mkomwa: One is that people don’t know about CA. We organize a lot of awareness creation activities, from conferences to exchange visits. What makes this worse, though, is that many of our colleges are still training their graduates to work in conventional systems. We are telling people not to plough and the professors are training the next generation of extension staff to plough. We have established a community of practice of researchers and academia through which we try to sensitize the professors themselves so that they can change their curricula. Changing people’s mindset is another challenge. They have been farming a certain way all their lives and, all of a sudden, we come and tell them to do something different.

However, the challenges differ depending on the farming system and farmers’ resources. You cannot be prescriptive; you have to work with the farmers to create a solution relevant to them. In an agropastoralist system, you have to integrate livestock, although we have seen promoters of CA seeing livestock as a threat. In reality, livestock integration benefits the farming system; it can increase the value of our cereals: instead of taking grains to the market, you take milk or eggs. In West Africa, you literally can’t talk about leaving crop residues on the field as soil cover. People will think you’re crazy, since some of the crop residues have a higher value as livestock feed. Again, you have to look into alternatives, such as shrubs and trees.

Are there any downsides to CA?

Mkomwa: So far we have not encountered any. CA should create a win-win-win situation: provide more food for farmers, reverse environmental degradation, and arrest climate change for future generations.

Does the climate change argument help convince African farmers to adopt CA?

Mkomwa: It is one of the biggest promoters of CA. Farmers practicing CA have proven to their neighbors that they’re able to get some crop when conventional agriculture gets zero. Then we don’t need to say anything. The resilience of CA fields is much higher. The message is straightforward.

If I was an African smallholder farmer, how would you convince me to adopt CA?

Mkomwa: You’ve been farming for the last 40 years, can you tell me how far has this farming taken you? The reflection on how conventional farming has managed to feed farmers’ families is important: it has failed to feed them and they have to look at alternatives. And we’re offering one. But if you’re an African farmer, we should take you to your nearest neighbor who is doing well so that you can talk to them. If we talk to you as scientists or development workers, you might think we’re adding salt to the benefits. That’s the challenge we’re facing: having enough model farmers.

How is CIMMYT helping your work?

Mkomwa: CIMMYT is an important partner in capacity building and research. We don’t have a research system in place and GCAP is thus a great asset to our work. CIMMYT is also leading the ‘Farm power and conservation agriculture for sustainable intensification’ (FACASI) project. We are part of this project and as we see mechanization as one of the bottlenecks hindering CA adoption in Africa, it is a very valuable partnership. Furthermore, we are jointly organizing – with CIMMYT, FAO, and NEPAD – the upcoming Africa Congress on Conservation Agriculture (18-21 March 2014, Lusaka, Zambia). With farmers at the center of the Congress, we hope to hear about their problems and progress. We need them to move forward as we believe that an increase in CA adoption would have a great impact on food security on both national and continental level.

Seed systems in a snapshot

snapshot1
CIMMYT seed systems specialists Peter Setimela and James Gethi and Crop Breeding Institute’s Busiso Mavankeni review seed parent trials in Kadoma, Zimbabwe.

Curbing maize post-harvest losses continues

zambia2“Reducing post-harvest losses is key to increasing availability of food as it is not only important to increase domestic food production but also to protect what is produced by minimizing losses,” stated Zechariah Luhanga, Permanent Secretary, Provincial Administration at the Office of the President, Eastern Province, at the Provincial Stakeholders Workshop on Effective Grain Storage for Sustainable Livelihoods of African Farmers Project (EGSP-II) held in Chipata, Zambia, on 29 May 2013. “We as the key stakeholders and participants in the agricultural sector can enhance food security and improve incomes of resource poor farmers and artisans by promoting improved storage technologies such as metal silos and hermetic bags in Zambia.”

The workshop had five main objectives: (1) to provide a forum for exchange of ideas, information, and research outputs on EGSP-II among stakeholders in Chipata; (2) to raise awareness on post-harvest losses and dissemination of effective grain storage technologies among provincial stakeholders; (3) to consult provincial stakeholders on effective postharvest technologies, policy environment, and market issues for the purpose of refining, updating, and implementing EGSP-II; (4) to engage in policy dialogue on matters related to storage and find means of enhancing adoption of the technology; and (5) to acquaint key stakeholders in the province with the post-harvest technology and ways to enhance its adoption among farmers.

Maize suffers heavy post-harvest losses estimated at 20-30%. “The main underlying factor is that most of the small-scale farmers do not have access to improved storage facilities,” explains Tadele Tefera, CIMMYT entomologist and EGSP-II coordinator. Ivor Mukuka, EGSP national coordinator for Zambia, noted that since the larger grain borer was first found in Zambia in 1993, there have been sporadic outbreaks causing substantial losses in maize. “For instance, rapid loss assessments in Lundazi and Chama districts revealed losses ranging from 5-74%. Other studies indicate storage losses of between 45-90% based on farmers’ estimation,” he added.

Luhanga reminded participants that grain post-harvest management development requires active participation of all stakeholders, including government, research systems, non-governmental organizations, and the private sector in bringing the technologies to farmers’ doorsteps. “You need to make sure to set priority activities so that they address the challenges faced by smallholder farmers regarding maize grain post-harvest management, but also expand their opportunities in the maize sector,” Luhanga urged more than 50 stakeholders present in the meeting.

Besides post-harvest loss reduction, the metal silo technology provides huge business opportunities to artisans. “Engaging in metal silo fabrication and marketing can create jobs and rural enterprise development,” said Egbet Munganama, principal agricultural engineer at the Department of Mechanization, Ministry of Agriculture and Livestock, Zambia. According to Jones Govereh, EGSP policy analyst, artisans can earn over US$ 3,000 per year if they fabricates just five silos a month on average. “This is an attractive income for micro-entrepreneurs but commercially oriented entrepreneurs can earn much more,” he explained.

“Improved maize storage technologies have a great potential impact on food security as most households lose much of their maize due to poor storage facilities,” concluded CIMMYT principal economist Hugo De Groote, considering that maize is the major food crop in Zambia.

Tadele thanked the Swiss Agency for Development and Cooperation (SDC) for funding EGSP-II, a project aiming to reduce post-harvest losses, enhance food security, and improve incomes of resource-poor farmers in Zambia.

Promising CIMMYT maize inbreds and pre-commercial hybrids identified against maize lethal necrosis (MLN)

maize-inbreds-against-MLNThe maize lethal necrosis (MLN) disease first appeared in Kenya’s Rift Valley in 2011 and quickly spread to other parts of Kenya, as well as to Uganda and Tanzania. Caused by a synergistic interplay of maize chlorotic mottle virus (MCMV) and any of the cereal viruses in the family, Potyviridae, such as Sugarcane mosaic virus (SCMV), Maize dwarf mosaic virus (MDMV), or Wheat streak mosaic virus (WSMV), MLN can cause total crop loss if not controlled effectively.

A regional workshop on MLN and the control strategies was organized by CIMMYT and KARI during February 12-14, 2013 in Nairobi, which was attended by some 70 scientists, seed company breeders and managers, and representatives of ministries of agriculture and regulatory authorities in Kenya, Uganda, Tanzania, and the USA. The Workshop led to identification of important action points steps for effectively controlling the disease.

CIMMYT scientists have been working closely with virology experts from USDA-ARS and Kenya Agricultural Research Institute (KARI) to develop suitable protocols for testing the responses of maize germplasm against MLN, and to identify promising inbred lines and hybrids with resistance to MLN. During the 2012-2013 crop season, the CIMMYT-KARI team undertook extensive screening of inbred lines, pre-commercial and commercial hybrids in Naivasha and Narok in Kenya, under high natural disease pressure and artificial inoculation, respectively.

A trial featuring 119 commercial maize varieties (released in Kenya) under artificial inoculation during 2012-2013 revealed that as many as 117 varieties were susceptible to MLN. Another set of trials including 335 elite inbred lines, 366 pre-commercial hybrids and 7 commercial hybrids (as checks) under MLN artificial inoculation in Narok, and another set of trials comprising 350 elite inbred lines and 135 pre-commercial hybrids under natural disease pressure in Naivasha, led to identification of some promising CIMMYT inbred lines as well as pre-commercial hybrids showing resistance or moderate resistance. These results offer considerable hope to combat, through breeding efforts, the deadly MLN disease that has severely affected maize harvests and discouraged farmers from growing maize in eastern Africa.

Table 1
Table 1

Notes on trial results

The details of the promising CIMMYT elite inbred lines and pre-commercial hybrids against MLN are presented in Table 1 and Table 2, respectively. The results presented in Table 1 are based on evaluation of CIMMYT inbred lines in four independent trials, two under artificial inoculation (Narok) and two under natural disease pressure (Naivasha) during 2012-2013. In each trial, entries were replicated (minimum two), and MLN severity scores (on a 1-5 scale basis) were recorded three or more times during the crop cycle, from the vegetative to the reproductive stage. The highest average MLN severity score (max. MLN score), recorded at any stage during the trial, is presented as representative of a given entry.

Table 2
Table 2

The data must be critically assessed and cautiously used by stakeholders and partners. More weight should be given to data from artificially inoculated trials, since trials under natural disease pressure are more liable to ‘disease escapes’ and identification of false positives. Caution must be exercised when using specific lines identified as potentially resistant (R) or moderately resistant (MR), especially when classification is based on data from only one trial (even under artificial inoculation). Please note that in such cases, the responses of the lines need to be validated by CIMMYT through further trials.

CIMMYT is working closely with both public and private sector partners to significantly expand the MLN evaluation network capacity in eastern Africa, and will continue the intensive efforts to identify/develop and deliver new sources of resistance to MLN.

For further information on:
MLN research-for-development efforts undertaken by CIMMYT, please contact: Dr BM Prasanna, Director, Global Maize Program, CIMMYT, Nairobi, Kenya; Email: b.m.prasanna@cgiar.org.
Availability of seed material of the promising lines and pre-commercial hybrids, please contact: Dr Mosisa Regasa (m.regasa@cgiar.org) if your institution is based in eastern Africa, or Dr James Gethi (j.gethi@cgiar.org) if your institution is based in southern Africa or outside eastern and southern Africa.

Additional resources

UPDATE: Promising CIMMYT maize inbreds and pre-commercial hybrids identified against maize lethal necrosis (MLN) in eastern Africa
Maize lethal necrosis (MLN) disease in Kenya and Tanzania: Facts and actions (Download )
KARI-CIMMYT maize lethal necrosis (MLN) screeing facility (1.43 MB)
Maize lethal necrosis: Scientists and key stakeholders discuss strategies as the battle continues

Videos

MLN: A farmer's pleaMLN: A farmer’s plea
Maize lethal necrosis disease: A new challenge for maize scientists in eastern AfricaMaize lethal necrosis disease: A new challenge
for maize scientists in eastern Africa 

Media coverage

Deadly maize disease resurfaces in N. Rift. Business Daily, 31 May 2013.

Fresh viral maize disease worries farmers. Daily Nation, 31 May 2013.

Alert out in Coast over maize disease. Daily Nation, 31 May 2013.

Table 2Download table in pdf format

Extension personnel urged to lead by example in promoting metal silos

Metal-Silos5Agricultural extension service staff members in Zambia have been challenged to be the first adopters of metal silos to help promote the technology for effective grain storage. “I implore you, extension workers, to be the first adopters and users of the metal silo technology. As citizens that live side by side with farmers, go and be the first to practice what you will be preaching. You must lead by example,” stated Bert Mushala, the Permanent Secretary, Provincial Administration, Office of the President, Eastern Province, in a speech read on his behalf by his assistant Beenzu Chichuka at the official opening of the Improved Postharvest Management Training Workshop for Extension and Media Personnel held during 27- 28 May 2013 in Chipata, Zambia. “Farmers learn by seeing. Therefore, before they start using the metal silos, they want to see the chief executives, the business executives, extension workers, journalists, and other opinion leaders in the forefront, zealously storing maize in the metal silos,” he added.

The purpose of the training was to build technical capacity on hermetic grain storage technologies, such as metal silos and super grain bags, among extension and media staff in the project implementation districts of Chipata and Katete. The workshop intended to create awareness on the importance of grain post-harvest management, help gain insights into different factors affecting post-harvest management, and provide a better understanding of traditional and improved post-harvest technologies and their use in grain loss reduction, summarized Tadele Tefera, CIMMYT entomologist and the Effective Grain Storage for Sustainable Livelihoods of African Farmers Project (EGSP II) coordinator. Ivor Mukuka, EGSP national coordinator for Zambia and ZARI chief agricultural research officer, noted that this was part of the process of sharing information on EGSP as a means of promoting effective grain storage and thus helping smallholder farmers safely keep their grains for longer and sell when the time and price are right.

Reiterating the importance of the technology, Mushala noted that self-sufficiency in food grains in the country does not depend only on increased production and productivity, but also on minimizing losses both in the field and during storage. Over the years, supporting organizations and other partners, including the Ministry of Agriculture and Livestock, have poured colossal amounts of resources into the production component of the sector. “The resultant improved yield gains, especially in maize, have largely been wasted through post-harvest losses,” regretted Mushala, adding that “this project is therefore unique and outstanding to us in Zambia as it focuses on the comparatively neglected storage aspects. It is the first one of its kind and could not have come at a better time.”

Mushala then reminded the journalists that they had an enormous task of educating the masses on the new form of storage as many citizens, even in urban areas, are engaged in agriculture. “Go and empower the masses with this information so that together, we can reduce on-farm storage losses to zero,” Mushala urged the participants. Eastern Province Agriculture coordinator Obvious Kabinda called for commitment: “You must have confidence and belief in the technology if you are to successfully promote it to others.”

The messages did not get lost on the participants. “I have gained good knowledge of the technology and, like other trainees, will be using it to ensure that farmers are aware of its existence, have access to it, and are able to adopt the metal silos,” said Michelo Lubinda, a producer with the Zambia News and Information Services (ZANIS), confirming the usefulness of the workshop.

Tefera thanked the Zambia Agricultural Research Institute (ZARI) and the Ministry of Agriculture for their commitment in implementing the project in Zambia, and the Swiss Agency for Development and Cooperation (SDC) for funding the project.

The training was organized by CIMMYT, ZARI, and the Department of Mechanization, Ministry of Agriculture, and facilitated by Tefera, Mukuka, CIMMYT agricultural economist Hugo De Groote, EGSP policy economist Jones Govereh, and senior mechanization specialist Moffat Khosa and principal agricultural engineer Egbet Munganama from the Department of Mechanization Ministry of Agriculture, Zambia.

Three new drought-tolerant maize hybrids released in Malawi

Malawi-hybrid-releaseThree drought-tolerant maize hybrids performing well in drought-prone areas and tolerant of Malawi’s major maize diseases have been released in Malawi. The new hybrids, said a member of the Agricultural Technology Clearing Committee, will contribute to the subsidy program that has seen Malawi become self-sufficient in maize production and even export surplus maize to neighboring countries. They will also be important in mitigating climate change. “Maize accounts for over 70% of cereal production,” maize commodity team leader Kesbelll Kaonga explained the importance of maize for the country, adding that Malawians consume on average about 300 kg per year.

The hybrids, developed under the Drought Tolerant Maize for Africa (DTMA) project by the Malawian Ministry of Agriculture and Food Security and Chitedze Research Station in collaboration with CIMMYT and the International Institute of Tropical Agriculture (IITA), were also tested in farmers’ fields. “The farmers liked them because of the high grain yield, drought tolerance, and flint grains,” Kaonga said, explaining that Malawian farmers prefer flint maize because its grains store better and provide more flour per kilogram compared to dent maize. The new hybrids can yield up to eight tons per hectare under optimum conditions.

The hybrids—Malawi Hybrids 30, 31, and 32—have been allocated to local seed companies that will start seed production during the coming season. Most of the emerging seed companies depend on germplasm from CIMMYT and the national agricultural research systems, as they do not have their own breeding programs. Variety demonstrations and publicity materials are planned to promote seed delivery in collaboration with seed companies and the Chitedze Research Station. The Department of Agricultural Research thanked CIMMYT breeders and seed specialists Peter Setimela, Amsal Tarekegne, John MacRobert, and Cosmos Magorokosho, who worked closely with them to get the hybrids released.

The CRP MAIZE will be hosting a side event on the role of maize in Africa at the Africa Agriculture Science Week (15-20 July) on 16 July in Accra, Ghana. Join us if you can and follow the AASW Blog and #AASW6 on Twitter.

DTMA traveling workshop combines peer learning and evaluation

DSC_5209-Group-photo-at-trial-field-in-MozambiqueCovering 2,400 km, a multinational team toured Drought Tolerant Maize in Africa (DTMA) trial and demonstration plots in Malawi, Mozambique, Zambia, and Zimbabwe from 21–30 April in a traveling workshop that combined peer learning and project monitoring and evaluation. The team of 17 was made up of breeders from the national programs, DTMA scientists, and DTMA Advisory Board Chair Dave Westphal. Participants had the opportunity to compare notes, gain new knowledge based on the experiences of colleagues in other countries, and gauge themselves against their peers based on practical, real-life results. “Having a diverse group like this is very educational,” said DTMA Seed Systems Objective Leader John MacRobert.

DTMA addresses a real need in the region: “Drought is part and parcel of our farming systems,” said Zamseed veteran breeder Verma Bhoola when he hosted the team at the company’s farm. “Over 90% of maize grown in Zambia is rainfed, so prone to drought,” he said, emphasizing the importance of breeding for drought tolerance not only in Zambia but also in the rest of Africa, where most maize farming depends on rain patterns that are increasingly unpredictable as a result of climate change. “Twenty-five percent of maize production in Africa is threatened by frequent drought, while 40% is affected by occasional drought,” said DTMA project leader Tsedeke Abate during a feedback session at the end of the workshop.

The project is making significant strides. “We are on track in terms of overall production of drought-tolerant maize seed,” said Abate. More than 100 varieties have been released in 13 countries. “Zimbabwe is leading in seed production, with over 7,000 metric tons of drought-tolerant seeds produced by the end of 2012,” he said.

The tour ended with awards for the top-performing teams in breeding and dissemination. Malawi won top honors in both categories, for the trial plots at the research station and a well-managed demonstration plot in Mkanda Village, on the outskirts of Lilongwe, run by the Vibrant Mkanda Women’s Group. “This really demonstrates what DTMA is doing in partnership with the seed companies and national programs,” said Westphal. DTMA aims to produce and market 70,000 tons of seed annually by 2016.