Skip to main content

Location: Africa

CIMMYT’s work in Africa helps farmers access new maize and wheat systems-based technologies, information and markets, raising incomes and enhancing crop resilience to drought and climate change. CIMMYT sets priorities in consultation with ministries of agriculture, seed companies, farming communities and other stakeholders in the maize and wheat value chains. Our activities in Africa are wide ranging and include: breeding maize for drought tolerance and low-fertility soils, and for resistance to insect pests, foliar diseases and parasitic weeds; sustainably intensifying production in maize- and wheat-based systems; and investigating opportunities to reduce micronutrient and protein malnutrition among women and young children.

Silo project celebrates successful first year, calls for policy reforms

By Wandera Ojanji/CIMMYT

Photos: Wandera Ojanji/CIMMYT
Photos: Wandera Ojanji/CIMMYT

The wide adoption of metal silos for grain storage by smallholder farmers in eastern and southern Africa requires the identification of policy gaps, incentives and disincentives and institutional partnerships, according to CIMMYT policy economist Jones Govereh.

Metal silos are effective long-term storage facilities, protecting grain from pests such as grain borers and maize weevils. While lauding the decision of some governments to reduce the corporate tax on farming from 30 percent to 25 percent in 2010, Govereh called on them to include galvanized metal sheets imported solely for grain storage silos under the tax exemptions in place for other agricultural imports. “Farmers are not going to realize the benefits of storage investments without proper policies in place,” Govereh said. “Governments in the region need marketing and storage policies that support a liberalized marketing environment and avoid a maize marketing monopoly, which distorts investments in storage technologies. We also need policies that facilitate better coordination of public-private operations to avoid overlaps and conflicts.”

Govereh spoke during the regional annual review and planning meeting of the Effective Grain Storage for Sustainable Livelihoods of African Farmers (EGSP) Phase-II Project held in Nairobi, Kenya, from 20-21 August. Building on the successes of the previous phase (2008-2011), EGSP-II (2012-2016) is improving food security and reducing the vulnerability of resourcepoor farmers – particularly women farmers – in eastern and southern Africa through the dissemination of metal silos. The project is funded by the Swiss Agency for Development and Cooperation (SDC). The annual review had three main objectives: to evaluate progress, achievements and challenges; to exchange ideas, information and research outputs among CIMMYT, SDC and other key partners; and to plan for the future.

The meeting was attended by implementing partners in Kenya, Malawi, Zambia and Zimbabwe, CIMMYT project staff and SDC representatives. The meeting allowed participants to share ideas and information on implementation, raise awareness on promotion and dissemination of effective grain storage technologies and consult stakeholders on effective post-harvest technologies, policy environment and market issues. The project also held exchange visits to Kenya and Malawi for key partners. Participants shared experiences on project implementation, learned about the project’s impact on smallholder farmers’ livelihoods and discussed challenges. Tadele Tefera, CIMMYT entomologist and project coordinator, praised national teams and partners for achieving research and dissemination targets for the year.

Jones Govereh speaks during a meeting.
Jones Govereh speaks during a meeting.

Hugo De Groote, CIMMYT economist, said metal silos have a major impact on farmers’ livelihoods. Those who have not adopted the technology sell most of their maize at harvest (when prices are at their lowest because the supply is at its peak) while adopters sell much of their grain in the fifth month at higher prices, he said. Adopters stored their maize for two months longer than non-adopters and were food secure for one month longer. Vongai Kandiwa, CIMMYT gender and development specialist, noted the importance of mainstreaming gender in the project to minimize the risk of creating, maintaining or exacerbating gender gaps.

Stakeholders also reported several challenges, including an inadequate number of skilled and competent artisans with entrepreneurship skills; lack of fabrication materials; expensive materials; low awareness and knowledge of the technology; and inadequate extension services.To overcome these challenges, stakeholders agreed to boost awareness through promotional events, engage in capacity building of collaborators and strengthen the artisan network. Olaf Erenstein, director of CIMMYT’s Socioeconomics Program, thanked the implementing partners and other stakeholders for their dedication and commitment and SDC for its continued support.

Course teaches farming system analysis

By Frédéric Baudron /CIMMYT

An international group of Ph.D. students was trained on farming systems and rural livelihoods during a course this month in Ethiopia. CIMMYT, Hawassa University and Wageningen University organized “Farming System and Rural Livelihoods: Adaptation and Vulnerability” from 6-18 October.

Photo: Frédéric Baudron/CIMMYT
Photo: Frédéric Baudron/CIMMYT

Twenty-five Ph.D. students from 17 countries – including Burkina Faso, Ethiopia, Ghana, the Netherlands, Niger, Nigeria, Portugal, Rwanda, South Africa, Sweden, Uganda, the United States and Zimbabwe – participated. CIMMYT Ph.D. students Yodit Kebede, Tesfaye Shiferaw and Alain Ndoli also attended the course. The course provided participants with the theory behind farming systems analysis; participatory methods to characterize farming systems; practical use of the sustainable rural livelihood framework; methods of farm-scale yield gap analysis; and methods for scenario analysis and optimization. The four study sites were targets of the Sustainable Intensification for Maize-Legume systems in Eastern and Southern Africa (SIMLESA) project in southern Ethiopia. FrĂ©dĂ©ric Baudron from CIMMYT Ethiopia was one of the course supervisors. He co-organized field activities, assisted students with group assignments and gave a lecture titled “Farming System (Re)Design and Scenario Development.”

From Kenya to southern Africa: Effective grain storage crosses borders

By Wandera Ojanji

Delegates stand with a modified metal silo at a workshop at the Baraka Agricultural College in Molo, Nakuru County, Kenya. Photos: Wandera Ojanji/CIMMYT
Delegates stand with a modified metal silo at a workshop at the Baraka Agricultural College in Molo, Nakuru County, Kenya. Photos: Wandera Ojanji/CIMMYT

Officials from Malawi and Zambia learned about the benefits of effective grain storage for the livelihoods of smallholder farmers during a visit to Kenya from 7 to 12 October. Malawi and Zambia are target countries of CIMMYT’s Effective Grain Storage for Sustainable Livelihoods of African Farmers (EGSP) Phase II Project. EGSP-II (2012-2016) builds on the previous phase (2008-2011) to improve the food security and reduce the vulnerability of resource-poor farmers – particularly women – in eastern and southern Africa through the dissemination of effective grain storage technology. The project is funded by the Swiss Agency for Development and Cooperation (SDC) and will help smallholder farmers in Kenya, Malawi, Zambia and Zimbabwe acquire more than 16,000 metal silos, which reduce grain losses from storage pests.

The visiting delegation included officials from ministries of agriculture, the Chitedze Research Station in Malawi, the Zambia Agricultural Research Institute and silo artisans from the two EGSP countries. They were accompanied by implementing counterparts in Kenya from the Catholic Dioceses of Embu and Nakuru and the Kenya Agricultural Research Institute.

The tour started in Embu County in eastern Kenya with a visit to the homestead of Gladys Nthiga, a farmer who recently acquired two metals silos with a capacity of 450 kg each. She had not used the silos before but was excited to find technology to protect her harvests from maize weevils and the larger grain borer. “Despite treating my grains with pesticides, I was still losing about nearly half a ton of maize every year,” said Nthiga, whose annual maize harvest averages 1.8 tons. “If what I have been told about the technology is true, then my problems with these pests are over.” Peter Njiiru, the principal of Kierie Secondary School in Embu County, said he purchased a metal silo in June for maize storage and planned to add three more.

The delegation then visited Nakuru County. Grace Githui, the county liaison officer, noted that Nakuru is a primary maize-producing area and experiences high post-harvest losses due to smallholder farmers’ ineffective storage options. “We are very grateful to CIMMYT for introducing the metal silo technology in this area,” Githui said. “The silos’ effectiveness has been demonstrated against weevils and the larger grain borer, the two pests that are responsible for much of the county’s post-harvest losses. The silos provide enormous benefits to the farmers who have adopted them. We are urging widespread adoption and investing heavily to create awareness among farmers.” Maize is a major component of the diet in Kenyan schools.

Paddy Likhayo, an entomologist with KARI, explains to the delegation the on-station demonstration trials at the Nakuru Agricultural Technology Development Center. Photo: Wandera Ojanji/CIMMYT
Paddy Likhayo, an entomologist with KARI, explains to the delegation the on-station demonstration trials at the Nakuru Agricultural Technology Development Center. Photo: Wandera Ojanji/CIMMYT

Jane Obwocha, the deputy principal of Uhuru High School in Nakuru, noted the school avoids purchasing maize in bulk due to heavy losses during storage, a factor she attributed to poor storage facilities. “The metal silo is indeed a timely and critical intervention in maize storage as most schools, just like ours, lack effective storage facilities,” Obwocha said. The delegation also met with members of BOLESA, a group for women living with HIV/AIDS and former commercial sex workers under rehabilitation. The members, drawn from Boror, Lelechwet and Salgaa villages in Nakuru, are using a 900 kg-capacity metal silo acquired last year to store their maize. At Baraka Agricultural College, the delegation saw a new metal silo prototype that facilitates removing the grain stored.

The college has also started creating awareness about the technology and promotes it to farmers from Kenya and other parts of eastern Africa. The visiting delegates were impressed by the adoption of metal silos by farmers, grain dealers, vulnerable people, schools and colleges to protect their grain and avoid purchasing expensive storage chemicals. The visit also helped the delegates identify issues to address for successful project implementation.

Workshop advances promising maize and wheat technology modeling

By Sika Gbegbelegbe, Kindie Tesfaye and Uran Chung/CIMMYT

Photo: Kindie Tesfaye/CIMMYT
Photo: Kindie Tesfaye/CIMMYT

A workshop on modeling promising maize and wheat technologies brought together modelers, breeders, physiologists and socio-economists in Addis Ababa, Ethiopia, from 27 to 30 August. The workshop was organized by the CGIAR Research Program on Policies, Institutions and Markets (PIM). Workshop attendees reviewed progress made on modeling maize and wheat technologies; reached agreement on the conceptual framework developed for modeling benchmark, promising and ‘ideal’ technologies; identified and prioritized traits and crop management practices for foresight analysis of maize and wheat systems; identified plausible adoption pathways relative to estimating the benefits of investments in promising and “ideal” technologies; and facilitated interaction and data exchange among scientists working in different fields.

Bekele Shiferaw presented on workshop objectives, the importance of foresight analysis – or studies on the future of agriculture – in identifying priorities, threats to food security and the role modeling plays in foresight. Progress on modeling maize and wheat technologies was presented by Sika Gbegbelegbe, Kindie Tesfaye and Uran Chung from CIMMYT. Senthold Asseng, a crop modeler from the University of Florida, shared insights on the methodological concepts used in crop modeling. CIMMYT’s Kai Sonder presented progress on improving maize and wheat mega-environments – or specially classified maize and wheat growing regions – and domains that are important for geospatial crop modeling. Breeders and physiologists shared their insights on relevant traits and performance characteristics of improved germplasm. P.H. Zaidi and Biswanath Das presented on maize while Bekele Abeyo and Marta Lopes presented on wheat. Participants also discussed the bioeconomic impact of climate change, including the impact of weather extremes on food security in the developing world.

Participants visited ongoing wheat and maize research activities at the Kulumsa and Melkassa Agricultural Research Centers. CIMMYT collaborates with both research centers, which are part of the Ethiopian Agricultural Research Institute (EIAR). Attendees talked about the role of modeling in foresight, breeding and physiology, trait identification for modeling, model data requirements, data availability and data gaps during working sessions. The maize working group agreed on minimum datasets that need to be collected in field trials for modeling and progress on breeding improved germplasm with tolerance to drought, heat and other stresses. It also agreed on the need to revise the current maize mega-environments.

The wheat working group focused its discussion on tolerance to drought and heat stresses and key traits that influence yield potential. The wheat breeders and physiologists shared their knowledge on key traits and reached an agreement with the crop modelers on how such traits should be translated in crop models.

Climate change workshop addresses research outputs in Ethiopia

By Kindie Tesfaye

Photo: Kindie Tesfaye/CIMMYT
Photo: Kindie Tesfaye/CIMMYT

Climate change research in Ethiopia must be nationally relevant for research outputs to be used broadly – from farms to influencing policy – a CIMMYT researcher said at the country’s National Climate Change Adaptation Workshop last month. The Biometrics, GIS and Agrometeorology Directorate (BGAD) of the Ethiopian Institute of Agricultural Research (EIAR) organized the event with CIMMYT, the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) and the Rockefeller Foundation. More than 50 participants from CGIAR centers, the community, federal and regional research institutions, NGOs, the media and universities attended the workshop in Addis Ababa on 19 September. The purpose of the workshop was to receive feedback from stakeholders on the climate change research EIAR is conducting with its partners.

Major issues presented, discussed and displayed at the workshop included: decadal and seasonal climate forecast information provided to farmers; the mainstreaming of climate change; the trends and implications of extreme climatic events; downscaling future climate data for local climate change analysis; drought frequencies and trends; climate change vulnerability mapping; and climate database building. Fantahun Mengistu, Director General of EIAR, said climate change is already affecting Ethiopian agriculture in the form of frequent droughts and floods, which affect the livelihoods of millions of smallholder farmers. He added that the Ethiopian government is aware of the challenges posed by climate change and has policies, strategies and programs in place to increase the resilience of the agriculture sector and the economy, such as the national Climate Resilient Green Economy (CRGE) strategy.

CIMMYT’s Kindie Tesfaye said the major reason CIMMYT-CCAFS works with EIAR and other stakeholders in Ethiopia is to make its climate change research applicable on a national level. The climate research outputs generated by BGAD and partners were used as inputs during the development of Ethiopia’s CRGE strategy and in advising the firm developing the national climate change adaptation strategy. BGAD Director Andualem Shimelis highlighted the importance of agriculture in Ethiopia’s economy and its vulnerability to the threat of climate change. He said Ethiopia needs to adapt agriculture to the threat of climate change because agriculture is crucial in achieving food security and advancing rural development. Promoting integrated agricultural technologies and knowledge of climate science in Ethiopia’s development arena is not a choice, but a matter of survival, Mengistu said. All those involved in climate change research and development should work together in order to contribute to a climate-adapted agricultural sector and a climate-resilient economy in the country.

Two-wheel tractor seed drill modified for African smallholder maize farmers

The modified ‘Gongli Africa +.’ Photo: FrĂ©dĂ©ric Baudron/CIMMYT

By Frédéric Baudron/CIMMYT

The Farm Mechanization and Conservation Agriculture for Sustainable Intensification (FACASI) project is addressing the decline of farm power in Africa. The project is working with smallholder farmers to deliver small mechanization based on inexpensive, two-wheel tractors and introduce power-saving technologies, such as conservation agriculture.

Last March, participants evaluated the performance of the Gongli seeder – a seed drill sold in China – under the typical conditions of maize smallholder farmers in Kenya and Tanzania. Gongli inventor Jeff Esdaile, engineers from the Centre for Agricultural Mechanization and Rural Technology (CAMATEC) and engineers from the Kenya Network for Dissemination of Agricultural Technologies met at a CAMATEC workshop from 9 to 20 September in Arusha, Tanzania, to modify the Gongli seeder and produce the Gongli Africa +. The original Gongli seeder is well suited to seed small-grain crops in close rows into fields without long, loose residue or heavy weeds. For sowing maize in a typical field around Arusha, however, the machine had several shortfalls: it handled loose maize residues and heavy weeds poorly; the pressing wheels got in the way of the operator’s walk; the seed and fertilizer hoppers were too high and blocked the operator’s visibility; the seed meters were not precise enough for maize planting; and transporting the machine from field to field required walking long distances because the machine cannot be ridden and does not fit in a trailer.

The modified Gongli Africa + features cutting discs that can be fitted in front of the standard tines for heavy mulch and weed loads. Two large back tires, used as pressing wheels in the field, were added, as well as a platform for the operator to stand on, facilitating transport to and from the fields. Because the machine will be used to sow a maximum of two rows, the third bar was removed from the seeder. The seed and fertilizer hoppers were lowered, and, finally, specialized seed metering systems for large seeds such as those of maize were installed. Results from initial field testing were encouraging. Thorough field testing will take place next November in Tanzania and Kenya. After minor modifications, the specifications of the Gongli Africa + will be sent to Gongli LTD for commercial manufacturing.

Partnering to build the capacity of seed companies in Africa

By Florence Sipalla/CIMMYT

CIMMYT seed sytems lead John MacRobert facilitates a SEMIs seed production class at the College of Agriculture and Veterinary Sciences at the University of Nairobi. Photo: David Ndung’u/SEMIs
CIMMYT seed sytems lead John MacRobert facilitates a SEMIs seed production class at the College of Agriculture and Veterinary Sciences at the University of Nairobi. Photo: David Ndung’u/SEMIs

CIMMYT and partner organizations are helping to build the human capacity of seed companies, which contribute to food security by ensuring farmers have access to quality seed. Certified seed is one of the most important inputs farmers need to improve their grain yields and livelihoods.

CIMMYT organizes regular training sessions for seed companies in different countries across Africa, in collaboration with the Seed Enterprise Management Institute (SEMIs) project, which is funded by the Alliance for a Green Revolution (AGRA) and hosted at the University of Nairobi College of Agriculture and Veterinary Services. “AGRA realized that many seed companies across the continent lacked knowledge on seed production, processing, marketing and aspects of seed quality,” said David Ndung’u, project manager for the SEMIs project. Both AGRA and CIMMYT receive funding from the Bill & Melinda Gates Foundation. In the past three years, SEMIs has trained more than 450 seed producers from 17 Sub-Saharan African countries, including Burkina Faso, Ethiopia, Ghana, Kenya, Liberia, Malawi, Mali, Mozambique, Niger, Nigeria, Rwanda, Sierra Leone, Tanzania, Uganda and Zambia. “This training has been identified as one of the triggers for the huge increase in production of high-quality seed by AGRA-funded seed companies all over Sub-Saharan Africa,” Ndung’u said. The seed production course, taught by John MacRobert, seed systems lead for CIMMYT, is among the most popular with seed companies, Ndung’u said.
SEMIs-pic-to-CimmytThe course focuses on challenges companies face in managing hybrid maize seed. “John brings a wealth of experience in this field,” Ndung’u continued. “He is helping seed companies plan better and improve their seed production capabilities.” MacRobert’s book, Seed Business Management in Africa, is included in the course materials. CIMMYT’s Drought Tolerant Maize for Africa project (DTMA) also utilizes MacRobert’s book in training sessions for seed company staff. CIMMYT has conducted seed production management courses in Angola, Ethiopia, Swaziland, Tanzania, Uganda and Zimbabwe, training more than 200 personnel from the private and public sectors over the past six years.

The trainings emphasize cooperative learning while providing technical information and management tools. CIMMYT seed systems specialists also made more than 80 follow-up visits to seed company partners in 2013. Ngila Kimotho, the CEO of Dryland Seed Company, based in Machakos, Kenya, attended a 2008-09 seed course. “The course was very useful in enhancing my understanding of seed business management through the value chain – from research to the market,” Kimotho said. “My knowledge in the field has greatly improved, as I didn’t understand the business initially,” added Kimotho, whose background is in food technology. In 2011, Gloria Kimotho, Kimotho’s daughter, attended a CIMMYT course in Zimbabwe and is now actively involved in the Dryland Seeds management team. SEMIs and CIMMYT are also collaborating in field demonstrations of DTMA varieties – a way to promote adoption by farmers because seed companies are able to pick suitable products by closely watching field performance. “Having many seed varieties is good for diversity,” explained Mosisa Worku Regasa, a seed systems specialist. “With the emergence of maize lethal necrosis (MLN) disease, many maize varieties from seed companies in eastern Africa are susceptible to the disease.” An efficient seed system will contribute to the rapid scale-up and dissemination of MLN-resistant varieties.

“To be a great ‘seeds man’ you really need to understand your plants well,” said Ndung’u, who worked as a visiting scientist for DTMA under CIMMYT maize breeder Dan Makumbi. “My knowledge and understanding were greatly enhanced during my time at CIMMYT

CIMMYT trustee receives Yara Prize for agricultural improvement in Africa

Photo courtesy of Yara

By Brenna Goth/CIMMYT

A member of CIMMYT’s Board of Trustees received the 2013 Yara Prize, an award that honors people who have significantly contributed to African agriculture. Dr. Lindiwe Majele Sibanda, CEO of the Food, Agriculture and Natural Resources Policy Analysis Network (FANRPAN), was honored for her work with African farmers. The prize this year focused on agricultural innovators and entrepreneurs. Award winners are chosen by a committee considering their work improving sustainable agriculture and food security.

Nnaemeka Ikegwuonu, founder and CEO of the Smallholders Foundation in Nigeria, also received the Yara Prize. The two were honored this month at a ceremony in Oslo by Jþrgen Ole Haslestad, President, CEO and Chairman of Yara and the Yara Prize Committee. Both Sibanda and Ikegwuonu are entrepreneurs, spread knowledge to smallholder farmers and youth and are “true examples of the can-do spirit and drive that plays a vital role in transforming agriculture in Africa,” according to a Yara Prize report on the award ceremony.

Sibanda, a trained animal scientist and practicing commercial beef farmer from Zimbabwe, became CEO of FANRPAN in 2004 and has been a researcher and advocate in southern Africa for years. FANRPAN focuses on food and agricultural policies to reduce poverty, improve food security and foster sustainable development in Africa. Sibanda developed the organization’s current strategy and has helped FANRPAN grow as a policy research and advocacy organization with a global voice, focusing especially on female farmers and youth.

In addition to being a member of CIMMYT’s Board of Trustees, she chairs the International Livestock Research Institute Board of Trustees. “Advocacy is something that is close to my heart and I’m passionate about it,” Sibanda told the publication Africa Green Media after winning the award. “I am an animal scientist by training, but this passion for policy advocacy developed when I realized that we were failing to put research into use.”

Strengthening maize technicians’ capacity in Mozambique

Maize technicians received a training course in Mozambique.
Maize technicians received a training course in Mozambique.

Forty participants from various agricultural research stations, private seed companies, and communitybased seed production schemes attended a training course for maize technicians during 8–12 July in Chimoio, Mozambique.

The objective of the course was to update maize technical staff on seed production and implementation of on-station and on-farm trials. The training included practical sessions as well as theoretical lectures on seed production, breeding for biotic and abiotic stresses, and trial lay-out using the alpha lattice design.

The course was organized under the auspices of Drought Tolerant Maize for Africa (DTMA), Sustainable Intensification of Maize-Legume Systems for the Eastern and Southern Africa (SIMLESA), and USAID Mozambique in collaboration with the Instituto de Investigação Agråria de Moçambique (IIAM). During the course, SIMLESA representatives emphasized on-farm testing using the mother baby trial and the principles of conservation agriculture. USAID-Mozambique and DTMA focused on the importance of producing quality seed and scaling up seed to reach smallholder farmers.

Mozambique has recently released two drought tolerant maize hybrids and one early maturing open pollinated variety (OPV) under the DTMA project. With very few seed companies in the country, most of the seed in Mozambique is sourced from the informal seed sector. The training session came at a crucial stage, as several communities are ready to begin production of newly released OPVs. The course was coordinated by Peter Setimela and Cosmos Magorokosho from CIMMYT-Zimbabwe, and David Mariote and Pedro Fato from IIAM.

Tanzanian seed company holds field days to popularize drought tolerant maize varieties

Farmers gather during a field day hosted by a seed company in Tanzania.
Farmers gather during a field day hosted by a seed company in Tanzania.

Yield is one of the key things farmers consider when deciding what seed to buy. Farmers in Arusha, Tanzania shared this fact during a field day held by Suba Agro Trading & Engineering Company. The seed company held two field days in June in Arusha and Moshi to give farmers the chance to examine new drought tolerant maize hybrids, TZH536 and TZH538, in the field.

Farmers often get information on what variety to plant based on what they observe doing well in fields in their locale, the advice they receive from other farmers, and the information they receive from the agrovets they buy seed from. About 30 farmers drawn from the Arusha, Kilimanjaro and Moshi districts attended the Moshi field day, as well as local agricultural extension workers and civic leaders from the area. The meeting was held just in front of the field by the roadside, so as the discussions were going on, farmers were able to see the maize being referred to. The maize was labeled and Suba Agro field staff also cut some plants and exposed the cobs for the farmers to see their yield potential.

In Arusha, the field day was held on a Saturday which was market day. Many people popped in to learn about the new maize varieties before returning to the market to buy or sell wares. “Comparing what I see on this [demonstration] field with what is on the neighboring plot, I can see it is drought tolerant,” said Mariamu Hemedi, a local farmer. “We can see that it has not been watered—there is no tap or well here but the maize has thrived. Now we want to know how it is when it is shelled,” Hemedi added. As participants walked through the field examining the cobs, Sarah Muya, an administrator and assistant to the managing director at Suba Agro encouraged them to taste the grains from the green cobs. “It has a good taste,” she said while offering a cob to taste.

Farmers identified the double cobbing in TZH538 as a key feature they liked because it demonstrated they would get higher yields. “When farmers get good yields, it contributes to development as the extra money gained from selling surplus grain contributes to other development initiatives,” said Eliahidi Mvambi, another farmer. W. S. Chonya, the company’s product development manager, told farmers to buy seed early to be prepared for the rain. Muya advised farmers to ensure they buy certified seed and keep receipts of all their seed purchases to enable them trace the source of ‘bad’ seed. “Take up farming as a business,” Muya said, advising farmers to invest in inputs such as improved seed and fertilizer.

Rose E. Moshi, the ward agricultural extension officer, spoke at the event and urged the seed company to ensure the new seed varieties were distributed in the area before the start of the planting season. “Sometimes farmers identify good seed but when they go to the shops, it is unavailable,” Moshi said. She also spoke on the importance of seed purity, citing it as one of the key challenges farmers face. Chonya then explained the features on Suba Agro seed packets to the farmers, highlighting the quality of the paper and the Tanzanian flag at the top of the pack to help farmers identify and avoid counterfeit seed. “Now that you have seen how this seed performs in a farmer’s field, we request you to be our ambassadors in your villages,” Chonya said. The company is in the process of multiplying the seed for these varieties in preparation for the next planting season. The company also participated in agricultural shows in August in Arusha, Mbeya and Morogoro to give more farmers information about its products.

NSIMA: Seeding hope for smallholder farmers through partnerships

DSC_6274_loading-maize-seed-for-transportationTo achieve food security, smallholder farmers in Southern Africa require access to improved seed and inputs for higher yields. “Seed is one of the key movers in agricultural development,” says John MacRobert, New Seed Initiative for Maize in Southern Africa (NSIMA) leader, indicating the importance of going beyond developing improved seed varieties to encompass their dissemination, promotion, and adoption in developing strategies around seed development. These issues, together with NSIMA’s to date progress (the project is in its third phase) and strategies for the next phase, were discussed at a meeting in Lusaka, Zambia, during 7-9 August 2013. About 50 participants from institutions collaborating on the project led by CIMMYT and funded by the Swiss Agency for Development and Cooperation (SDC) were present; among them were representatives from national agricultural research institutes, seed companies, and institutions of higher learning from Angola, Botswana, Democratic Republic of the Congo, Lesotho, Malawi, Mozambique, Swaziland, South Africa, Zambia, and Zimbabwe.

“Some of the challenges of the maize crop can be addressed by research,” said Moses Mwale, Zambia Agricultural Research Institute (ZARI) director, during the opening ceremony. “The rest can be addressed by other players in the maize sector,” he added, emphasizing the importance of collaboration within the maize seed value chain. Challenges such as variable distribution of rainfall, low soil fertility, and heat and drought stress can be addressed by improved varieties from CIMMYT-led projects including the Drought Tolerant Maize for Africa (DTMA) and Improved Maize for African Soils (IMAS). Other climate-change related issues in small-scale farming could be confronted via conservation agriculture. For example, cover crops and crop residue left on the soil help to retain moisture and thus mitigate the impact of droughts.

DSC_6239_Seed-Cos-Edgar-Rupende-addressing-participantsBut do smallholder farmers have access to the new seeds, technologies, and information? The answer is often no. “Integrating stress tolerant maize and legumes, such as pigeon peas, beans, and cowpeas, leads to sustainable production systems. We need effective seed road maps to enhance access and availability of improved maize and legume seeds,” CIMMYT regional director for Southern Africa Mulugetta Mekuria said, giving an example of one such gap in the system.

Seed companies and community-based organizations producing seed play a very significant role in fixing these issues. Nelson Munyaka from the SDC Seeds and Markets Project spoke of the success of Zaka Superseeds, a nascent seed company that transformed from a community seed enterprise. MacRobert agreed: “In Benin and Congo, where we do not have seed companies, the community seed producers could learn from Zaka’s experience and grow into full-fledged seed businesses with the proper structures.” DTMA project leader Tsedeke Abate added that mainstreaming drought tolerant maize varieties in the product portfolio of seed enterprises could have a significant impact.

Policy makers in the seed value chain must be engaged as well. “Many projects do not seem to believe in smallholder ability,” said consultant Michael Jenrich. The policies that govern the seed trade tend to vary among the Southern African Development Community (SADC) countries. An SDC-funded initiative to implement harmonized seed laws in all SADC countries to facilitate easier intra-regional seed movement is currently under way. “So far, 10 countries have signed the memorandum of understanding,” said K C Kawonga, SADC Seed Centre interim coordinator. Such laws would enhance seed trade and contribute to food security by ensuring farmers’ access to improved seed, especially during times of disaster.

DSC_6338_plaque-for-Malawi“Private sector players steer away from smallholders viewing them as high risk because of their poor infrastructure, lack of credit, and land tenure, while governments may not view them as a viable investment,” Jenrich summarized the lack of interest in smallholders’ problems. Zaka Superseeds proves them wrong; cooperating with smallholders can, in fact, be beneficial for seed companies, as they can work more closely with the community consuming their seed. Zaka, for example, is removing a product from its selection after consultations with the community during which they found out the discussed maize variety has a long maturity period and is thus undesirable.

The meeting ended on a high note with the announcement of the 2012 DTMA Breeding and Dissemination Awards winners. Malawi won first prize for both categories; the breeding award runners-up were Zambia and Zimbabwe, and Zimbabwe also took second position in drought tolerant technologies dissemination.

The struggle of maize against climate change in Zimbabwe

usar-esta-foto-Foto-2“Maize production is likely to suffer the most due to climate change compared to other crops in Southern Africa,” said CIMMYT physiologist Jill Cairns, who presented on CIMMYT work under the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) at the FAO Agriculture Coordination & Information Forum in Harare, Zimbabwe, on 25 July 2013. During her presentation on future climate scenarios in Zimbabwe, Cairns focused on adaptation strategies to climate change, temperature and rainfall projections for 2050, and climate change implications for maize production.

CIMMYT’s ongoing research in Zimbabwe shows an increase in extreme temperature events and the intensity of droughts, which are conditions likely to reduce harvests and affect the suitability of current crops. Discussing the key adaptation strategies for Zimbabwe, including improved varieties, redefined agro-ecological zones, new policies, and better management, Cairns stressed that the initial climate change projections are not downscaled enough to make decisions at the country level. This is important as agricultural responses to climate change cannot be determined and priorities for adaptation strategies cannot be set without the ability to accurately predict future climate scenarios.

The major climate-related threats to maize in Zimbabwe right now are low rainfall and drought stress under high temperatures. “CIMMYT research in Southern Africa has shown that maize production linearly decreases with every accumulated degree above 30 degrees,” said Cairns. “While the amount of rainfall during the maize growing season in the drought-prone areas may increase slightly, it is unlikely to translate into higher yields as evapotranspiration will increase under higher temperatures.”

The challenges are not easy to tackle, but there are opportunities to offset losses. To mitigate the effect of increased temperature, maize lines with tolerance to combined drought and heat stress need to be developed. Such lines have been already identified and can be used to adapt maize production to climate change in Southern Africa.

The presentation, prepared by Cairns with significant input from CIMMYT specialist in geographic information systems, Kai Sonder, was well received by the FAO representatives.

Learning to breed insect-resistant maize at CIMMYT-Kenya

IMG_2264“The trip was an eye opener for me. We have no mass rearing facility in Ethiopia; neither do we practice artificial infestation of stem borers. We only undertake natural infestation for our trials, which does not give uniform infestation, leading us to wrong conclusions,” said Midekssa Ardessa from Bako Agricultural Research Center at the Ethiopian Institute of Agricultural Research (EIAR), who visited CIMMYT-Kenya during 21-27 July 2013 with a team of scientists from Ethiopia, Uganda, Tanzania, and Mozambique, to gain hands-on experience in breeding insect-resistant maize. “We are now very knowledgeable on mass rearing of stem borers and on running an insectary after our visit and practical sessions at the CIMMYT Katumani Insectary,” added Abiy Dibaba from EIAR’s Melkasa Agricultural Research Center. “At the CIMMYT Kiboko Postharvest Lab, we learned a lot about maize weevils and the larger grain borer, and how to screen maize for resistance against these postharvest pests.”

The visit, organized and facilitated by the Insect Resistant Maize for Africa (IRMA III Conventional) and the Water Efficient Maize for Africa (WEMA) projects, aimed to build capacity in maize breeding for insect resistance using conventional approaches, insect resistance screening, and management of field and lab infestations. Participants came from EIAR; Kenya Agricultural Research Institute (KARI); Selian Agricultural Research Institute (SARI), Tanzania; National Biological Control Program, Tanzania; Ministry of Agriculture, Tanzania; National Crops Resources Research Institute (NACRRI) of the National Agricultural Research Organization (NARO), Uganda; and National Institute of Agronomic Research (IIAM), Mozambique.

“The visit provided an opportunity for the scientists to understand IRMA’s and WEMA’s research work in Kenya and a forum to share experiences in mass rearing, breeding, and pest control among participating countries,” said Stephen Mugo, CIMMYT principal scientist/maize breeder and IRMA and WEMA projects coordinator. It is also a learning process for CIMMYT scientists, he added. The team visited CIMMYT insect pests resistant germplasm nurseries and trials at the Embu, Kirinyaga University College, and Kiboko sites where they learned how to set up, infest, manage, and take data on stem borer trials and nurseries. At the KARI-Katumani IRMA III Conventional collaborative stem borer mass rearing facilities, participants learned to set up, equip, and manage stem borer mass rearing; in Kiboko they focused on the set up, management, and data collection for storage pests screening. The field and lab practical sessions were facilitated by CIMMYT scientist/entomologist Tadele Tefera.

IMG_2327The annual IRMA project’s program has trained more than 50 scientists since its inception in 2009. “Most of us talk very easily and confidently about insect rearing. However, it is quite a challenge when we engage in the practical aspects,” said Tefera. “What we have exposed you to is just a tip of the iceberg in the business of mass rearing of insects. There is still a lot to learn, much of it by yourself as you engage in the practical aspects of it.” The participants appreciated the effort taken by the organizers. One of them, Egas Nhamucho of IIAM, said: “Infestation of maize with stem borers was a real learning point for me, a real delicate task of picking out very tiny 10 insect larvae, ensuring that you do not pierce and kill them with the camel brush, and carefully and strategically placing them on each maize plant. The practical sessions really made me appreciate some of the tasks we have always taken for granted.”

Concluding the event, CIMMYT scientist/maize breeder Yoseph Beyene called on the participating scientists to ensure that as many people as possible get access to the knowledge they gained. “Invest in people to effectively and successfully undertake your research,” he said.

WEMA project manager Sylvester Oikeh thanked CIMMYT scientists for the support they provided to the Ugandan team in setting up the Namulonge Insectary. “I am looking forward to other countries emulating Uganda and setting up their insectaries,” Oikeh added.

Wheat-for-Africa gains momentum

Wheat-for-AfricaWheat was not a traditional staple in much of Africa, but urbanization, a growing middle class, and changing lifestyles are driving a rapid increase in demand for it. The urban and rural poor in Africa eat wheat, as do more prosperous consumers, and demand is burgeoning with rising populations. But leading wheat producing countries in Africa grow enough to meet at most 40% of their demand, so the continent imports more than US$ 15 billion-worth of grain each year.

Efforts to put wheat on the food and trade agenda in Africa recently came together at the Forum for Agricultural Research in Africa (FARA) meeting in Accra during 15–20 July 2013, when senior research, development, and policy experts met with representatives of CGIAR’s WHEAT research program to develop a strategy for promoting African wheat production. “The idea is to put together all the actors—the production side, the legislation, the demand and markets,” said Victor Kommerell, manager of the CIMMYT-led WHEAT Program. “Initially the strategy should focus on gathering more evidence of production and market potential, particularly regarding smallholder farmers’ chances to grow wheat as a cash crop, and then looking at future consumption and regional trade.”

The connections made at FARA in July followed the release of a key study in late 2012 at the ground-breaking conference Wheat for Food Security in Africa in Addis Ababa. Shortly after that conference, African Union agriculture ministers endorsed wheat as a strategic crop for Africa. Their heads of government, at African Union level, endorsed this a few months later.

“As a rough-and-ready estimate, most countries are fulfilling less than a quarter of their wheat production potential,” said CIMMYT socioeconomist Bekele Shiferaw, a key author of the wheat study. “There are many opportunities both to expand the area devoted to wheat and to increase yields from existing acreage.”

According to Shiferaw, this will require a fundamental change in the way participants look at the entire wheat value chain—from farm to market and from government office to donor boardroom. More research is needed on potential constraints on improved wheat production, including issues related to markets, land, labor, and how food aid is distributed.

Challenges affecting farming at different scales in different country contexts must be carefully considered—from small farms’ lack of mechanization, labor, and access to markets, to problems that have undermined large-scale wheat farming projects in Africa in the past. The aim is to ensure the best mix of small, medium, and large farms, as well as fitting options to the differing conditions of high- versus low-population density nations and current highland wheat-growing areas. The 2012 study focused on rainfed wheat, according to Kommerell. Irrigated wheat also has great potential—and unique challenges—in Africa. Release of a report by WHEAT on irrigated wheat for Africa is planned for September 2013.

Stepping up the fight against maize lethal necrosis in Eastern Africa

MLN-Eastern-Africa1“I can now identify with accuracy plants affected with maize lethal necrotic disease,” stated Regina Tende, PhD student attached to CIMMYT, after attending the CIMMYT-Kenya Agricultural Research Institute (KARI) “Identification and Management of Maize Lethal Necrosis” workshop in Narok, Kenya, during 30 June-3 July 2013. This was not the case a few weeks ago when Tende, who is also a senior research officer at KARI-Katumani, received leaf samples from a farmer for maize lethal necrosis (MLN) verification.

Tende is one of many scientists and technicians who experienced difficulty in differentiating MLN from  other diseases or abiotic stresses with similar symptoms. According to Stephen Mugo, CIMMYT Global Maize Program (GMP) principal scientist and organizer of the workshop, this difficulty encouraged CIMMYT and KARI to organize this event to raise awareness about MLN among scientists, technicians, and skilled field staff; provide training on MLN diagnosis especially at field nurseries, trials, and seed production fields; train on MLN severity scoring to improve the quality of data generation in screening trials; and introduce MLN management in field screening sites to scientists, technicians, and skilled staff. The workshop brought together over 80 scientists and technicians from CIMMYT, KARI, and other national agricultural research systems (NARS) partners from Tanzania, Uganda, Rwanda, and Zimbabwe.

“It is important that all the people on the ground, particularly the technicians who interact daily with the plants and supervise research activities at the stations, understand the disease, are able to systematically scout for it, and have the ability to spot it out from similar symptomatic diseases and conditions like nutrient deficiency,” stated GMP director B.M. Prasanna.

Proper and timely identification of the MLN disease, which is a pre-requisite for effective control, is not easy. CIMMYT maize breeder Biswanath Das explains: “First of all, the disease is caused by a combination of two viruses, Maize chlorotic mottle virus (MCMV) and Sugarcane mosaic virus (SCMV). Secondly, its symptoms –severe mottling of leaves, dead heart, stunted growth (shortened internode distance), leaf necrosis, sterility, poor seed set, shriveled seeds– are not always unique to MLN but could be due to other fungal diseases and abiotic conditions.”  The training workshop was one of CIMMYT/KARI initiatives to combat the disease threatening all the gains made so far in maize breeding. “With nearly 99% of the commercial maize varieties so far released in Kenya being susceptible to MLN, it is important that institutions like CIMMYT and KARI, in strong collaboration with the seed sector, develop and deploy MLN disease resistant varieties in an accelerated manner,” stated Prasanna. One of the key initiatives in this fight is the establishment of a centralized MLN screening facility under artificial inoculation for Eastern Africa at the KARI Livestock Research Farm in Naivasha. Plans are also underway to establish a network of MLN testing sites (under natural disease pressure) in the region to evaluate promising materials from artificial inoculation trials in Naivasha. The state of the art maize doubled haploid (DH) facility currently under construction in Kiboko will also play a crucial role in accelerating MLN resistant germplasm development. “The DH technology, in combination with molecular markers, can help reduce by half the time taken for developing MLN resistant versions of existing elite susceptible lines,” stated Prasanna.

MLN-Eastern-Africa2During his opening speech, Joseph Ng’etich, deputy director of Crop Protection, Ministry of Agriculture, noted that about 26,000 hectares of maize in Kenya were affected in 2012, resulting in an estimated loss of 56,730 tons, valued at approximately US$ 23.5 million. Seed producers also lost significant acreages of pre-basic seed in 2012: Agriseed lost 10 acres in Narok; Kenya Seed lost 75; and Monsanto 20 at Migtyo farm in Baringo, according to Dickson Ligeyo, KARI senior research officer and head of Maize Working Group in Kenya.

While this loss represents only 1.7%, Ligeyo assured everyone that Kenya is not taking any chances and has come up with a raft of measures and recommendations: farmers in areas where rainfall is all year round or maize is produced under irrigation are advised to plant maize only once a year; local quarantine has been enforced and farmers are to remove all infected materials from the fields and stop all movement of green maize from affected to non-affected areas; seed companies must ensure that seeds are treated with appropriate seed dressers at recommended rates, they must also promote good agricultural practices, crop diversification, and rotation with non-cereal crops.

Throughout the workshop, participants learned about theoretical aspects of MLN, such as the disease dynamics, management of MLN trials and nurseries, and identification of germplasm for resistance to MLN. They also participated in practical sessions on artificial inoculation, and identification and scoring. Several CIMMYT scientists played an active role in organizing the workshop, including breeders Stephen Mugo, Biswanath Das, Yoseph Beyene, and Lewis Machida; entomologist Tadele Tefera; and seed systems specialist Mosisa Regasa. They were accompanied by KARI scientist Bramwel Wanjala, KEPHIS regulatory officer Florence Munguti, and NARS maize research leaders Claver Ngaboyisonga (Rwanda), Dickson Ligeyo (Kenya), Julius Serumaga (Uganda), and Kheri Kitenge (Tanzania). During his closing remarks, KARI Food Crops program officer Raphael Ngigi, on behalf of KARI director, urged participants to rigorously implement what they had learnt during the workshop in their respective countries or Kenya regions to help combat MLN at both research farms and farmers’ fields.

Commenting on the usefulness of the workshop, technical officer at KARI-Embu Fred Manyara stated: “I will no longer say I do not know or I am not sure, when confronted by a farmer’s question on MLN.”