Skip to main content

Location: Africa

CIMMYT’s work in Africa helps farmers access new maize and wheat systems-based technologies, information and markets, raising incomes and enhancing crop resilience to drought and climate change. CIMMYT sets priorities in consultation with ministries of agriculture, seed companies, farming communities and other stakeholders in the maize and wheat value chains. Our activities in Africa are wide ranging and include: breeding maize for drought tolerance and low-fertility soils, and for resistance to insect pests, foliar diseases and parasitic weeds; sustainably intensifying production in maize- and wheat-based systems; and investigating opportunities to reduce micronutrient and protein malnutrition among women and young children.

Rebecca’s Story of Turning Waste into a Livelihood

Rebecca Benson, a 30-year-old mother of three from Igurusi village in Mbeya, Tanzania, is living proof of how small efforts against food loss can significantly impact people’s lives. Her journey unfolded during a recent USAID field mission in Tanzania for CIMMYT’s Southern Africa Accelerated Innovation Delivery Initiative (AID-I) project when we visited a grain storage facility operated by the Igurusi Agricultural Marketing Cooperative Society (AMCOS). This local cooperative provides storage facilities and connects rice farmers to buyers, ensuring their produce is preserved and marketed efficiently. The warehouse stores over 1,000 tons of paddy, which is dried, stored, and ready for market.

As we toured the warehouse, we noticed that between the collection and storage of produce, small amounts of paddy had spilled onto the ground. Although this might seem like a minor oversight, it quickly became clear that what could have been discarded as waste was, for some, a valuable resource.

Turning Food Loss into Livelihood

A few meters away, we noticed Rebecca winnowing paddy. Intrigued by the picturesque scene of wind blowing away chaff, we approached her and soon discovered her remarkable story. Initially shy, Rebecca gradually opened up to us and shared her story of resilience and great inspiration. Four years ago, Rebecca left a comfortable life for one filled with struggle. She had been in an abusive marriage but decided to rebuild her life after an altercation with her husband almost turned fatal.

“He would drink and become very violent. I had endured a lot but realized that he might one day kill me. I was very scared,” Rebecca narrated.

Starting life on her own and without access to her family’s land, she struggled to continue her rice farming, facing the overwhelming costs of leasing land and maintaining a farm. As her situation worsened, she found it increasingly difficult to provide for her children.

A happy Rebecca Benson winnowing paddy she collected from the ground at the Igurusi AMCOS (Photo: Maria Monayo, CIMMYT)

In her quest for survival, Rebecca began collecting waste paddy from spillage at the AMCOS warehouse. Initially, after threshing, it was just enough for her family to feed on, but she soon realized she could sell some of the rice to generate income. With the cooperative’s permission, she started collecting, cleaning, and selling the grains at Tsh 700 per kilogram. On average, Rebecca gathers over 20 kg of rice daily, which helps her pay rent, school fees, and feed her family. Although a tedious task to sift through the soil and rocks, Rebecca does it enthusiastically.

While she hopes to one day acquire land and return to farming, Rebecca remains grateful for the opportunity she has now. “It is hard work, and I want to improve my life and that of my children. I have not been able to save enough to lease land for farming, but that is my goal,” she said. The work also keeps her busy and has granted her independence from her abusive partner, allowing her to support her family on her own.

The Reality of Post-Harvest Grain Loss

In Sub-Saharan Africa, post-harvest grain loss amounts to millions of dollars in lost revenue and a reduction in food security due to inadequate storage facilities and improper handling during drying and transport. While AMCOS works hard to preserve crops and prevent large-scale food loss, the small quantities of spilled rice are an unavoidable consequence of handling large volumes. For Rebecca, however, these spilled grains represent a lifeline. Through her resourcefulness, she has turned what could have been wasted into an opportunity, providing her family with food and financial stability.

How effective soil aggregate management can boost productivity and climate resilience

Soils are the bedrock for plant health and sustenance, but how do we protect and enhance them to maximize their nutritional potential? Years of conventional farming practices have left many soils depleted, raising urgent concerns about how to rejuvenate them. The recent El Niño event during the 2023/24 farming season in southern Africa, bringing extreme weather conditions—ranging from prolonged droughts to intense floods—has exposed the vulnerability of these soils. Poorly managed soils, already strained by years of excessive tillage and lack of cover, struggle to retain moisture under such stress, leading to crop failures even after rainfall.

However, conservation agriculture (CA) offers a vital solution. By improving soil structure and moisture retention, CA practices provide a lifeline for crops in challenging conditions. Recognizing this, CIMMYT scientists are actively promoting CA among smallholder farmers across sub-Saharan Africa, highlighting its critical role in sustaining soil health and resilience in the face of climate challenges.

Isaiah Nyagumbo demonstrating soil aggregate stability (CIMMYT)

Described as lumps of soil particles that bind together strongly, soil aggregates play a vital role in maintaining soil health, supporting plant growth, and sustaining agricultural productivity. Formed by the combined effects of biological, chemical, and physical processes, the structure and stability of soil aggregates are crucial for several soil functions—primarily water infiltration, root growth, and resistance to erosion. Soil aggregates consist of various soil particles, including sand, silt, clay, and organic matter. There are different types of soil aggregates, including macroaggregates (>0.25 mm) and microaggregates (<0.25 mm), with macroaggregates typically more stable and beneficial for soil structure and functions.

Demonstrating the value of soil aggregate stability
A CIMMYT researcher holding a soil aggregate from a CA field (CIMMYT)

Imagine three soil aggregate samples taken from the same field but under different management regimes—from virgin soil that has not been previously cropped, to land under conservation agriculture practices for the last 5 to 8 years, and soil conventionally ploughed annually before crop planting for many years. When these soil aggregates are gently immersed in clear water, stark differences can be noted. The aggregates from conventionally tilled soil, weakened by years of intensive cultivation, quickly disintegrate, turning the water murky and brown.

In contrast, the aggregates from virgin soil remain intact, preserving the water’s clarity even after several hours. The CA soil aggregates exhibit much better stability than those from the conventionally tilled soil but fail to remain as intact as those from the natural virgin soil. A simple lesson is drawn from this demonstration! Restoring degraded soils is a serious challenge. Even after 5 years of CA practices, soil organic carbon levels may only show modest improvement, and the aggregates, while more stable, still don’t match the condition of aggregates from virgin soil.

Soil recovery from a degraded state is a slow process that is not “a walk in the park.” Transitioning from conventional tillage to CA is challenging and slow, requiring years to rebuild organic matter and improve aggregate stability. Patience and careful soil management are vital, as degradation can occur rapidly, but recovery is a lengthy process. However, incorporating organic soil amendments like manure and compost, along with diversifying crops by introducing legumes such as cowpea, groundnut, soybean, mucuna, and pigeon pea, can accelerate this recovery. While degradation occurs rapidly, soil restoration demands a long-term commitment, but the rewards are worth the effort.

Exploring conservation agriculture as a source to improve soil health

Conservation agriculture is built on three key principles: reduced soil disturbance, permanent soil cover, and diverse crop rotation. Minimizing soil disturbance helps preserve soil structure, while permanent soil cover shields the soil against splash erosion and boosts microbial activity. Crop rotation enhances soil fertility, maintains aggregate structure, and disrupts pest and disease cycles. These principles are essential for soil recovery and the retention of organic matter.

Among these, permanent soil cover is often the most challenging for farmers to implement, yet it is critical for effective soil management. Demonstrating its importance, a simple test with water applied to soil samples with varying levels of cover illustrates splash erosion effects.

“Such a simple test mimics real-life conditions farmers face during rains. Soils without cover suffer significant erosion, while those with minimal or substantial cover show reduced erosion and improved water retention. This emphasizes the importance of maintaining permanent soil cover to foster microbial activity and enhance soil health,” highlighted Isaiah Nyagumbo, cropping systems agronomist.

In a nutshell, soil aggregate management is fundamental to climate resilience and agricultural sustainability. Through the adoption of conservation agriculture practices, smallholder farmers can significantly improve soil health, enhance water and nutrient retention, and increase crop resilience to climate stress. The journey from degraded to healthy soil is long and challenging, but with careful management and patience, the benefits are profound and lasting. By understanding and implementing these principles, farmers can build a more sustainable and resilient food system.

Empowering women in Zanzibar: the transformative impact of amaranth farming

Mariam Salim with amaranth grain that is ready to harvest from her vegetable field. (Photo: World Vegetable Centre)

On Pemba Island, part of Tanzania’s Zanzibar archipelago, more women are engaging in vegetable production and value addition, bolstering household nutrition and income security. This movement is significant in areas where modern agricultural technology and awareness of nutrient-rich crops like amaranth—a vegetable high in fiber, protein, and essential micronutrients—are limited.

Mariam Salim, who lives in Mjini Ole village on Pemba Island, is among the women embracing amaranth cultivation. Along with 272 other farmers, 53% of whom are women, she attended a three-day training course on vegetable cultivation and value addition. Funded by the United States Agency for International Development (USAID), through CIMMYT under the Southern Africa Accelerated Innovation Delivery Initiative (AID-I) project, and implemented by the World Vegetable Center, the training covered good agricultural practices, as well as the cultivation and processing of grain amaranth into flour.

The training equipped Mariam with essential knowledge and skills to enhance her agricultural productivity and livelihood.

Sowing seeds for success

Participants received seed kits containing eight varieties of nutritious traditional African vegetables, including African eggplant, African nightshade, amaranth, cowpea, and Ethiopian mustard. Farming a diverse range of crops supports food security and improves community nutrition.

During the training, Mariam realized the potential of growing grain amaranth for seed production. “I discovered that I could produce my own seeds and amaranth flour,” she said. “This opened up new opportunities for me to take control of my farming practices and increase my self-sufficiency.”

Seed production is a vital part of sustainable agriculture, enabling farmers like Mariam to boost productivity, diversify crops, and adopt climate-smart practices. By venturing into seed production, Mariam not only gained a valuable skill but also contributed to conserving and propagating important crop varieties within her community.

Mariam now sells seeds to other farmers, providing her with a new income source while supporting the broader agricultural community by facilitating access to quality seeds. Since the training in July 2023, Mariam has harvested 150 kg of seeds, selling them per kilogram (kg), earning US $450 and enhancing her household income security.

Healthy choices for communities

As the first woman in her community to undertake such an endeavor, Mariam is inspiring other women to explore new farming and food processing opportunities. Through the AID-I project on Zanzibar Island, more than 500 women have started home gardening to access quality vegetables for family consumption and business purposes, introducing new crop varieties and increasing household vegetable consumption.

This light bulb moment underscores the transformative power of education and knowledge-sharing initiatives under AID-I. By providing farmers with information on vegetable grain production and value addition, the project fosters self-reliance and innovation in sustainable farming practices.

Mariam’s detailed description of her seed production process highlights her dedication to agricultural innovation and community health. “It takes three months to harvest seeds, so I must be patient and committed to nurturing healthy crops,” she said. “I must also be precise in caring for the seeds through harvesting, drying, tapping, and sifting.”

The World Vegetable Center promotes home gardening among women. More than 500 participants actively cultivate and process vegetables into nutrient-dense packs. By growing their own vegetables, these women access nutritious food for their families, generate income from surplus produce, and improve health and well-being within the community.

Mariam Salim’s light bulb moment came during a training session on amaranth grain, where she recognized the potential of producing her own seeds. (Photo: World Vegetable Center)

Collins Makatiani Bulinda

Bulinda is a Value Chains Specialist with 8 years of experience leading Value Chains design and analysis, Livelihood, and Social Protection Programs in rural and humanitarian settings across the country. He interacts closely with policy processes and actively engages in generating knowledge that improves the delivery of development programs in the region.

Bulinda is currently a consulting research associate at CIMMYT. He has previously worked for other organizations and projects, providing technical support in strategy and project design, implementation, monitoring and evaluations, and humanitarian programming. He has specifically worked on projects for CHASP, ACTS, ICIPE, GROOTS Kenya, AfriDev Consulting, 3R-Netherlands’s project, ILRI, and Policy and Market Options.

He holds a Bachelor’s degree in Agribusiness Management and an MSc degree in Agribusiness Management at The Centre of Excellence in Sustainable Agriculture and Agribusiness Management (CESAAM) from Egerton University.

Building Resilience in Tigray: How CSA is pioneering sustainable agriculture in Ethiopia

Farmer Gidey explaining to the CIMMYT research team and implementing partners the multiple benefits of the CSA intervention in Folfolo village (Photo: Desalegne Tadesse).

Agricultural activities, particularly the production of cereal crops and major staple foods like maize, wheat, teff, barley, and sorghum, are vital to the livelihoods of rural communities in Ethiopia. For example, about 80% of agricultural operations in the Tigray region’s Adwa district are related to cereal production. However, this, as well as agriculture in general, is highly susceptible to the effects of climate variability and change, which have a direct influence on farming communities’ rural livelihoods.

With support from the Development Fund (DF), CIMMYT is collaborating with several partners to address the challenges caused by climate variability in agriculture through the implementation of Climate-Smart Agriculture (CSA) technologies and practices. Efforts are currently focused on the Folfolo and Lalay Logomti watersheds in Adwa, where CSA demonstration sites are being implemented through Ethiopia’s Climate Adaptation and Rural Development (CARD)-II Program.

On 2 August 2024, CIMMYT scientists and experts from CSA-implementing partners under the CARD-II program visited the CSA demonstration sites to observe the ongoing activities, interact with farmers, and share their thoughts on progress so far.

Rehabilitating the natural environment

Since 2021, CIMMYT and partners, including the Relief Society of Tigray (REST), iDE, Women Empowerment Action, ORDA-Ethiopia, and HELVETAS, have been implementing numerous CSA-related activities on hillsides, farmlands, homesteads, and gullies. These activities provide multiple benefits for farmers to ensure food and nutrition security and include the management of natural resources, such as creating an arboretum, constructing trenches, and planting indigenous trees and forage plants in the upper catchments. Lower catchments and farmlands are undergoing biological and physical reclamation of gullies and riverbanks, trench construction, percolation ponds, crop diversification, and homestead plantations.

Moti Jaleta, a CIMMYT agricultural economist coordinating the implementation of CSA activities under the CARD-II Program, was excited by the visit and the effort farmers and partners have put into rehabilitating the natural environment and degraded croplands. He was also impressed by the food and feed crop technologies farmers have integrated into the rehabilitation work, as well as the overall benefits farmers have witnessed from their efforts.

“It is crucial to understand that the benefits of CSA technologies often extend beyond boosting yields,” said CIMMYT systems agronomist Tesfaye Shiferaw, who passionately described the program’s successes so far. “For example, in smallholder farming systems facing terminal droughts, an improvement in soil moisture content that would extend crop growth duration by just ten days can mean the difference between a complete crop failure and a normal yield.”

“This underscores the vital role of CSA technologies, especially under challenging conditions,” he explained. “During our field visit to those sites, such anecdotes were repeatedly emphasized.”

Natural resource management activity demo site at Gedeba watershed in Folfolo village (Photo: Desalegne Tadesse).

Streams begin to flow

Farmer testimonies from the field attest to the numerous benefits of CSA practices. “This area was known for its high runoff and water erosion some years ago,” said Giday Hagos, a 70-year-old farmer from Folfolo village. “Producing crops and engaging in other agricultural pursuits seemed unimaginable. But following the intervention of the CSA, I was very excited when the streams at the mountain’s base began to flow, and I started farming immediately using the stream for supplementary irrigation.”

Hagos used to grow cereal crops, but he was excited to make use of the potential offered by CSA technologies and has now shifted to market-driven commodities. “Last year, I was able to generate an income of about ETB 90,000 (approx. $815) from the sale of onions,” he explained. “And this year, expanded the farming activities to other areas by renting additional plots.”

The program was designed to increase productivity, adaptation, and sustainability while enhancing resilience to climate shocks through mitigation. So far, the successes are numerous. Upper catchment hills have seen an increase in vegetation cover, degraded lands have undergone regeneration, water runoff has decreased, groundwater yield has increased, streams and springs are thriving, soil moisture and forage availability have increased, and farmers have diversified their crop and livestock production. These are just a few of the multiple effects of the CSA technologies and practices implemented at the watershed level by the local farming community, the Relief Society of Tigray (REST), the Ethiopian government, and other local partners. The adoption of CSA technologies has also provided greater opportunities to reduce the harmful effects of climate change on agriculture and improve rural livelihoods.

Farmer Gidey Hagos, a champion farmer who practices CSA to grow maize intercropping with fruits and other crops using the percolation ponds at Folfolo watershed (Photo: Desalegne Tadesse).

The Sudan Food Security Initiative: Early wins amidst conflict and crisis

As the summer cultivation season began in May 2024, Fatima Hassan, a 52-year-old farmer from New Halfa, Kassala State, in eastern Sudan, faced an uncertain future. Like thousands of other farmers in her region, Fatima lacked the financial means to purchase seeds, fertilizers, herbicides, or even hire a tractor. The ongoing armed conflict in Sudan had severely disrupted agricultural activities, leaving farmers without the necessary resources to cultivate their land.

‘When I learned about the Sudan Food Security Initiative (SFSI), I was extremely happy. The support from the initiative has given me and my family renewed hope,’ Fatima said while tending to her groundnut farm.”

Fatima Hassan weeds her groundnut field cultivated with support from the SFSI. (Photo credit: Suliman Fadlalla/CIMMYT)

Under the aegis of the SASAS program, the USAID-funded SFSI was launched in May 2024 in response to Sudan’s food security challenges. Targeting over 50,000 farmers in the New Halfa scheme, the initiative aims to strengthen resilient food production systems by providing significantly subsidized agricultural inputs and technologies, ensuring that farmers can sustain and enhance their farming practices despite the ongoing conflict in the region.

Hamid Rahama expresses his gratitude to the tractor driver ploughing his land in New Halfa as part of the SFSI. (Photo credit: Suliman Fadlalla/CIMMYT)

Sowing seeds of optimism

‘Support from SASAS came at a critical time as the armed conflict spread into new areas across the country, de-risking the crucial summer planting season. Through the SFSI, we are enabling farmers to adopt improved technologies and inputs at more affordable rates, thereby enhancing Sudan’s domestic food production,’ said SASAS Program Chief of Party Abdelrahman Kheir.

The SFSI provides each farmer with a 70% subsidy on a comprehensive package that includes land preparation for 0.42 hectares (ha), improved seeds for groundnut and sorghum, crop protection supplies, fertilizers, and agricultural advisory services. This initiative has already resulted in the planting of 14,568 ha of sorghum and 5,882 ha of groundnut. The crops are showing promising signs, with germination progressing well across all cultivated areas.

‘We had lost all hope of benefiting during this cultivation season. The subsidized land preparation, seed purchase, and other inputs have given us a lifeline. In the past, I was not able to buy fertilizers and herbicides, so my sorghum production was poor. This time things have changed dramatically, and we are well-equipped for a good cultivation season,’ said Hamid Rahama, a farmer from northern Halfa. Hamid echoes the optimism shared by many farmers in the region.”

Focus on a sustainable and food secure ecosystem

One of the most significant aspects of the initiative is its focus on building a sustainable seed production system. In partnership with 120 farmers and a private seed company, 252 ha (189 ha of sorghum and 63 ha of groundnut) were established for seed production in New Halfa. The initiative is projected to yield 360 metric tons (t) of sorghum and 270 t of groundnut seeds, thereby enhancing the resilience of the local agricultural ecosystem.

The anticipated yields from these efforts instill a much-needed optimism in an otherwise challenging situation. For groundnuts, the expected yield is 4.5 t/ha, resulting in an output of 26,000 t, enough to meet the nutritional needs of over 1.2 million people. Likewise, the sorghum harvest is projected to reach 54,000 t, providing sustenance for approximately 720,000 people.

An agricultural expert from SASAS inspects the growth of groundnuts cultivated under the SFSI in New Halfa. (Photo credit: Suliman Fadlalla/CIMMYT)
A farmer inspects the growth of his sorghum field in New Halfa cultivated with support from the SFSI. (Photo credit: Suliman Fadlalla/CIMMYT)

The bold sections indicate the changes made for grammatical correctness, including unit consistency and phrasing adjustments.

In addition to providing inputs, the SASAS program also addresses broader food security challenges by ensuring that farmers receive the necessary technical support throughout various agricultural operations. This includes the introduction of drought-tolerant sorghum varieties, which are showcased to farmers through field days and demonstration plots.

Despite the numerous challenges posed by the ongoing conflict in Sudan, CIMMYT and its partners involved in implementing the SASAS initiative remain undeterred. Although the ongoing armed conflict has compelled many local agriculture advisory companies to scale back their operations due to security and logistical difficulties, the teams remain committed to supporting Sudanese farmers and improving agricultural productivity, thereby contributing to Sudan’s overall food security.

‘We lost a significant number of improved seed production fields due to the conflict. Nevertheless, we ensured the provision of all necessary certified seeds for the SFSI, along with top-quality herbicides,’ said the CEO of Harvest Agricultural Company Isam Ali. He added that despite considerable challenges in transporting agricultural machinery due to security issues, the company completed all land preparations in a timely manner for farmers.

The early impact of SFSI is evident in the renewed hope and optimism among farmers in New Halfa, who are now better equipped to face the challenges of the summer cropping season and contribute to the nation’s food security. With the harvest dates approaching—November for groundnuts and December for sorghum—the initiative is on track to significantly enhance food production in the region, providing a lifeline to thousands of farmers such as Fatima and Hamid.

Packing improved sorghum seeds for delivery to farmers as part of the SFSI in New Halfa. (Photo credit: Suliman Fadlalla/CIMMYT)

Buffering Climate Extremes in Zambia: The Essential Role of Delivery with a Difference

Dr Sieg Snapp is Program Director, Sustainable Agrifood Systems, International Maize and Wheat Improvement Center (CIMMYT)

Climate change is upending weather patterns across Africa, presenting dire challenges for farming communities. In Zambia, the impact is particularly harsh. Agriculture is the lifeblood of the economy, with two-thirds of the country’s workforce employed in agriculture, and 78% of these workers are women.

The country faced a severe El Niño during the 2023/2024 season, causing a severe drought that devastated over 1 million hectares of cropland. The president declared it a national disaster. El Niño events typically result in catastrophic drops in crop yields, often reducing maize harvests by 30-40%. These events not only impact food security but also hinder economic growth, with the agricultural sector’s contribution to Zambia’s GDP dropping from 9.4% to 3.39%.

The devastating El Niño-induced drought in Zambia is starkly illustrated by the story of Melody Limweta, a 31-year-old farmer. She and her husband, Collins Manenekela, have seen their already fragile livelihood pushed to the brink by severe water shortages. Typically, they rely on dry season gardening and small-scale farming, including raising chickens, during the rainy season. However, the drought has dried up local water sources, making gardening impossible and sharply reducing their income. The couple’s practice of planting maize in the same field each year with recycled seeds and traditional methods has worsened their situation, as the El Niño-induced rainfall deficits have led to poor yields. Their primary source of food and income has withered in the field due to insufficient rainfall.

A consortium of partners led by the International Maize and Wheat Improvement Center (CIMMYT) have joined together as a rapid delivery hub for these challenging times, providing vital support to rural communities and families such as Melody and Collins. Farmers have a strong voice in this unique delivery mode. With support from the people of the U.S. government, the Southern Africa Accelerated Innovation Delivery Initiative (AID-I) is promoting access to drought-tolerant crops, climate-busting and nutritious legume seeds, agricultural advice and early warning systems to combat climate change. AID-I provides critical support to ensure that millions of smallholder farmers in the Haut-Katanga region of DR Congo, Malawi, Tanzania, and Zambia have access to information and innovations needed for gains in food production that help buffer drought, flood and rising food, fuel, and fertilizer prices.

Speed and Scale: planting drought-tolerant maize

The idea of the ADI-I as a rapid delivery hub is to make available innovations and agronomic information at both speed and scale. Traditional farming methods and crops struggle with climate extremes like El Niño, which bring prolonged dry spells and heatwaves. Drought-tolerant maize varieties offer a promising solution by enhancing agricultural resilience. These adapted maize varieties yield 30-50% more than traditional ones under drought conditions, as demonstrated in recent trials during El Niño periods. However, these improved varieties are only useful when in farmers’ hands.

Working with local partners, AID-I is scaling drought-tolerant maize varieties to help Zambian farmers manage unpredictable weather patterns. In the 2023/2024 season, approximately 27% of Zambia’s smallholder farmers saw a significant boost in their maize harvests, benefiting over 900 thousand people in drought-affected regions, owing to drought-tolerant maize varieties. Over six hundred thousand households planted drought-tolerant maize varieties and produced 235 thousand metric tons of maize, accounting for 19% of Zambia’s maize production in the 2023/2024 season. This is huge return, as only 10% of the maize-growing area being planted with these resilient varieties.

Crop diversification for family nutrition

In addition to drought-tolerant maize, studies indicate that diversifying with legume crops is crucial for managing weather extremes, especially droughts and for improving soil health. Planting legumes helps spread the risk with varied planting and harvest times, cushioning the impact of erratic rainfall on crop yields. Women can feed their families due to crops like peanuts that mature early and need less rainfall. The benefits are sustained over time, as combining legumes with cereals improves overall nutrition and soil health, even amid unpredictable weather.

To support this effort, AID-I linked over 2,000 farmers to high-quality seeds for groundnuts (peanuts) and soybeans. On average, each household harvested about 80 kg of groundnuts and 175 kg of soybeans, earning roughly $75 and $58, respectively. Collectively, this initiative produced about 205 metric tons of these crops, accounting for around 14.3% of Zambia’s total production in the drought-stricken season. Farmers had a voice in choosing which crop varieties to grow through a feedback system called ‘let’s chat’ where with an ordinary flip phone farmers could call in and learn from their neighbour’s recorded commentary and testimonials. For the first time ever, farmers could provide comments on which crops they preferred, providing a lifeline of communication with agritraders, government and agricultural advisors.

A recent assessment found that Zambian women made up 60% of those benefiting from cowpeas, 65% from groundnuts, 62% from soybeans, and 36% from drought-tolerant maize.

Forewarned is forearmed – early-warning systems

Weather information services, especially early warnings about upcoming droughts, are vital for helping farmers adapt to climate change. Accurate and timely weather forecasts enable farmers to make informed decisions about planting, resource use, and crop management. This reduces losses and boosts productivity. Research shows that access to climate information can significantly increase crop yields and incomes, with some farmers experiencing up to a 66% boost in yields and a 24% rise in income.

The forecast of an El Niño for the 2023/2024 season prompted an early warning campaign to raise awareness about the hazards associated with El Niño and provide response mechanisms for smallholder farmers.  AID-I used an Interactive Voice Response platform hosted by Viamo, a global social enterprise that uses mobile technology to connect people to valuable information and services. This rapid El Niño advisory campaign reached over 500 thousand farmers, with 60% male and 40% female listeners, and 93% of them under 35 years old. The campaign provided crucial advice on planting schedules, drought-resistant crops, and water-saving techniques.

Additionally, AID-I established demonstration sites that showcased effective winter crop production methods and introduced over 2,000 farmers to innovative agricultural practices. These interventions significantly improved farmers’ ability to respond to the drought.

Looking ahead

Scaling the adoption of drought-tolerant maize, improved legumes, and timely advisories is vital to protecting Zambia’s agriculture from climate extremes. The introduction of an AID-I-supported digital advisory campaign in September 2023 was a turning point for farmers like Melody and Collins. By engaging with the content, they learned about improved seeds, crop rotation, and better agronomic practices, which helped them cope with ongoing challenges and protect their resources. Initiatives like this can help families on the margins survive and rebuild agricultural production faster.

AID-I’s impact on families like Melody and Collins shows that investing in rapid delivery hubs is crucial for building resilience in farming communities. Expanding such initiatives will ensure more smallholder farmers have access to the innovations needed to maintain or increase food production amid climatic challenges.

Additionally, studies by organizations like Springer and the American Geophysical Union highlight the importance of integrating rapid delivery hubs into mainstream agricultural programs to enhance climate resilience and food security. Therefore, this necessitates an open call for international development allies—including donors, governments, NGOs, and businesses—to incorporate initiatives like AID-I into broader agricultural agendas, essential for fostering resilience and ensuring the future stability of farming communities in Zambia and beyond.

*Dr. Sieg Snapp is a leading agricultural scientist, renowned for creating the “mother and baby” trial design, a global method that enhances farmer-researcher collaboration, improving genetics and soil management in 30 countries. As Program Director at CIMMYT in Mexico, she oversees sustainable agrifood systems research, leading a large team focused on supporting smallholder farmers in Latin America, Africa, and Asia. Her work emphasizes gender-aware, inclusive development and has fostered partnerships for sustainable agricultural practices. A Professor at Michigan State University with over 180 publications, Dr. Snapp has also significantly influenced agricultural policy and technology adoption in Africa. Her contributions have earned her numerous prestigious awards, and she holds a Ph.D. from the University of California Davis.

Original article published in Pan African Visions

Enhancing farmer’s crop productivity with resilient maize varieties tailored to their needs

Dorothy Mandaza, local farmer from ward 19 of Seke District, inspecting her maize cobs (CIMMYT)

Maize productivity in eastern and southern Africa faces numerous challenges, including biotic and abiotic stresses, as well as socio-economic factors. To tackle these constraints, CIMMYT, in collaboration with partners, has been developing elite multiple stress-tolerant maize hybrids for different market segments. The hybrids are rigorously evaluated in research stations under managed stresses, especially those faced by farmers, including drought, heat, and low nitrogen. The process is complemented with evaluations conducted in actual farmer conditions through a participatory approach, which enables researchers to identify traits preferred by farmers.

Over the years, and through consistent engagement with farming communities, CIMMYT and partners have established a large on-farm testing network to allow farmers to test the best-performing hybrids within their own fields and management. This ensures that new varieties selected for commercialization suit the needs, constraints, and priorities of smallholder farmers.

Centrality of ROFT in the variety development process
Regional on-farm trials (ROFTs) are a crucial step towards maximizing the impact of breeding investments. ROFTs help scientists understand the performance of pipeline hybrids under diverse management conditions. The data and insights gathered from these trials, led by district leads, are instrumental in identifying the best varieties to release. In Zimbabwe, the extensive on-farm testing is conducted with support from Zimbabwe’s government extension arm, the Department of Agricultural, Technical, and Extension Services (Agritex), and selected seed companies.

To help track the progress or challenges in varietal performance evaluation at the farm level, CIMMYT has been convening feedback sessions with district agriculture extension officers (DAEOs) across 19 districts. These sessions have been instrumental in strengthening the collaboration with Agritex, standardizing data collection, and improving data quality and returns from the established on-farm testing network.

Conversations with district agriculture extension officers in Harare during a feedback session. (Photo/CIMMYT)

The ROFT trials have been ongoing in Zimbabwe for over a decade across 19 districts, located in natural regions I, II, and III. These trials have been implemented by more than 137 AEOs and have involved over 1,000 farmers. The network deliberately included a diverse range of farmers, with around 40% being female plot managers, to encompass a wide range of smallholder farming practices.

Participatory engagement is key
Every year, CIMMYT produces improved varieties that are then taken up by partners, including National Agricultural Research System (NARS) partners and seed companies. The on-farm trials aim to generate agronomic performance data in comparison to the widely grown commercial varieties and farmers’ own varieties. This data is used for a rigorous advancement process, where varieties that pass the test are then furthered for licensing and possible commercialization by CIMMYT’s partners.

Farmer involvement at the final stage of the variety selection process is key to the success of these trials. Farmers evaluate the varieties based on their specific needs, on their farms. This step is crucial as it empowers farmers to have a say in the variety development process. CIMMYT actively uses this participatory selection approach, seeking input from farmers and refining breeding targets as necessary. Farmers communicate their preferences and feedback through the farmer evaluation sheets, helping breeders fine-tune their targets and develop varieties that meet farmers’ needs.

Another key element of the on-farm trials is that they help assess breeding progress in farmers’ fields in terms of crop productivity and return on investment.

CGIAR launches pilot programme on agroecological solutions

CGIAR has launched a pilot program in Zimbabwe’s Mbire and Murehwa districts to promote agroecological solutions, with CIMMYT as a key partner. The initiative aims to develop sustainable farming practices by addressing challenges like pest outbreaks, drought, and access to quality seeds. CIMMYT’s involvement includes introducing innovative technologies such as demonstration plots and seed fairs, designed to enhance agricultural resilience and sustainability in the region. This collaborative effort seeks to empower local farmers and create a more sustainable agricultural system in Zimbabwe.

Read the full story.

How Training Farmers to Produce Improved Seeds helps Mitigating Food Insecurity in the Conflict-Ridden Sudan

Umm Zeina, a 40-year-old farmer living in El Nahal, in Sudan’s Gadarif State, was not happy with her yield, blaming the poor seeds and traditional techniques she was using. This was until she participated in the extensive seeds production training program organized by the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT).

“We learned a lot on how to produce seeds and how to control the parasite Striga mixed with crops. The training draws our attention to the fact that the availability of quality seed is the foundation for food production and productivity. As traditional farmers, we had very poor information about the availability, characteristics, and prices of seed of improved varieties,” Umm Zeina stressed.

ICRISAT’s extensive training attracted more than 350 (68 female) seed producer farmers from El Fashaga and El Nahal localities aimed at helping seed producers provide seeds of appropriate varieties for use by different categories of farmers. Farmers were also trained in better selection, treatment, and storage of seed from their own farms. The training also focused on the production of disease-free seeds to support agricultural productivity and success. The training helped to enhance farmers’ demand for improved seeds and eventually aimed to deliver improved seeds to more than 6000 farmers in El Fashaga, El Nahal and other neighboring localities.

This training was held as part of CIMMYT’s Sustainable Agrifood Systems Approach for Sudan (SASAS) program, which empowers farmers and herders to reduce the need for humanitarian assistance even in conflict-affected Sudan. In the context of the atrocious food crisis in Sudan, SASAS and partners work to ensure that farmers produce the quality seeds they need to enhance food production amid escalating conflict.

In El Fashaga and El Nahal localities, the seeds production training focused on sorghum, as this crop is widely adapted and drought tolerant as well as it is a staple crop to strengthen food security and contributes to agricultural diversity and economic growth in the regions where it is cultivated.

“During the training, we learnt a lot on how to choose the best seeds to produce improved seeds and how to choose the land, isolation area, and cleanliness to harvest. I was extremely interested to learn more about how to keep the seed to its purest form for replanting purposes and human or animal consumption,” said Tarig Hassan, a farmer living in El Nahal locality.

The seeds production training also aimed at maintaining seeds quality control through training and regulatory systems, and how to multiply and distribute seeds in a timely manner and at a price affordable for farmers. Farmers also learnt to use a revolving seed mechanism to make available seeds for many new seed producer farmers for the next season through farmer-to-farmer seeds distribution.

“The seed production training is not only on how to produce quality seeds and protect loss of seeds, but also about the use of diversified seeds of sorghum, millet and ground nut that serve for both food and nutrition security”, said Gizaw Desta, Senior Scientist in ICRISAT.

SASAS’s objective is to improve food security and access to income-generating opportunities through the adoption of sustainable agriculture practices and the promotion of agri-processing and post-harvest management. It focuses on supporting smallholder crop and livestock farmers to adapt their farming activities to climate change and abiotic pressures by diversifying their crops to further cushion themselves from climatic vagaries, reduce post-harvest loss, and improve market participation, and functionality. Women and youth are supported through training and agricultural and veterinary inputs to increase income generation activities and access to economic resources.

“At SASAS, we strive to train farmers in basic farm seed production. This helps preserve and expand the diversity of the seed on which our food systems in Sudan rely. Considering the dire food security situation in the country, we fully encourage farmers to be engaged in seeds production to provide different and improved seed varieties,” said Abdelrahman Kheir, SASAS Chief of Party in Sudan.

SASAS works with ICRISAT to uplift smallholder farmers and ensure food security in semi-arid tropics. SASAS partners are committed to elevating crop productivity, resilience, and sustainability vital to dryland communities’ prosperity. This steadfast commitment profoundly affects millions in the world’s most challenging agricultural regions.

Deployment of new tools and technologies into the CGIAR-NARS breeding program increases the rate of genetic gain per dollar invested

Food security in the prevailing uncertain climatic and economic conditions can only be guaranteed by deliberate actions toward maximizing production, especially in stress-prone environments. The main priority of the CGIAR and NARS breeding programs is to enhance genetic gain in crops through the assessment of seed varieties with drought-resilient, nutritional, and yield traits. This is achieved by leveraging data-driven approaches and embracing contemporary tools and methodologies.

Innovative approaches such as molecular tools, doubled haploid technology, and refined breeding schemes have greatly contributed to the strides made in CIMMYT’s endeavor to elevate genetic gain within breeding pipelines. These advancements not only drive improved productivity but also promise cost-effective strategies for navigating the challenges posed by climate variability.

Molecular Tools

In maize breeding, traditionally, at each stage of the pipeline, entries are grown in multi-location trials. Phenotyping in multiple environments helps to select the best entries not only based on their genetic values but also on environmental factors and their interaction with diverse environments. However, this is also a labor-intensive and time-consuming step in the breeding pipeline. Molecular breeding offers a transformative solution by expanding breeding programs while minimizing phenotyping requirements. It is a well-known fact that trait phenotype results from both genetic and non-genetic factors, with genetic factors being contributed by the expression of genes at the DNA level.

Identifying genomic regions close to causative genes for traits of interest, such as high yield, disease resistance, or quality, can help to incorporate desirable genes/alleles into selected elite genotypes. DNA-based markers aid in efficiently tracking the inheritance of genetic traits, thereby facilitating the selection of desired traits in breeding programs. Marker-assisted forward breeding accelerates the selection of plants with desired traits by identifying the genetic markers associated with those traits. With such harnessed genotypic information, breeders can pre-select genetic material before embarking on the resource-intensive phenotyping stages. This strategic utilization of molecular markers, particularly in identifying susceptibility to key diseases like maize streak virus (MSV) and maize lethal necrosis (MLN), enables the judicious allocation of resources for phenotyping.

 

Figure 1. Summary of marker-assisted forward breeding across six breeding pipelines for MLN- and MSV-resistance haplotypes over the past six years.

Since 2018, CIMMYT has been implementing marker-assisted forward breeding for MSV and MLN. Since then, more than 100,000 pure breeding lines have been tested by examining their favorable haplotypes with a small set of 10 genetic markers and discarding the lines carrying unfavorable haplotypes for MSV and MLN resistance. In the last six years, nearly 30,000 lines have been rejected before undergoing field testing. In southern Africa, for instance, a rapid response to seed movement using molecular and serological techniques prevented the spread of MLN and facilitated the incorporation of resistance traits into new plant varieties.

Most hybrids in the final stages of breeding pipelines are passed through forward breeding. While Fall Armyworm, Gray Leaf Spot, common rust, and Turcicum Leaf Blight also cause substantial yield reductions in sub-Saharan Africa, research carried out under the AGG project indicates that the genetic makeup of these traits is oligogenic, governed by both moderate and small effect quantitative trait loci (QTLs), but lacking a single major-effect QTL and not amenable to forward breeding. This means that their resistance is influenced by complex multiple genetic factors, rather than being primarily controlled by a few major genetic regions. Alternatively, these biotic stress traits can be improved effectively through genomic selection.

Genomic selection is used to improve complex traits that are controlled by many small-effect QTLs. This approach does not require prior genetic information about the trait of interest and uses genome-wide marker information to estimate all marker effects and select individuals with high genomic-estimated breeding values (GEBVs). This means it uses data from various genetic markers to predict which individuals are likely to have desirable alleles for MSV and MLN. Genomic selection is being applied for grain yield under drought stress, and efforts are underway to extend its application to address more complex challenges related to plant diseases and pests. Foliar diseases are moderately complex traits.

Proof of concept on applying genomic selection for foliar diseases like gray leaf spot and northern corn leaf blight showed high prediction accuracies, supporting the implementation of genomic selection together with forward breeding for other traits at the early stage of the breeding pipeline. Implementing genomic selection for GY under optimum and drought management proved that maize breeders could obtain the same gain as with conventional breeding, where all entries are phenotyped in the field, but at approximately 35-40% less cost. Many candidate hybrids now entering the advanced stages of the breeding pipeline were developed using genomic selection. Several of our earlier studies (Beyene et al., 2015, 2016, 2019, 2021; Chaikam et al., 2019; Crossa et al., 2017; Prasanna et al., 2022; Vivek et al., 2017) showed that breeding pipelines achieved high genetic gain by adopting new molecular tools, thus confirming the benefit of adopting molecular breeding tools.

Currently, in CIMMYT’s eastern and southern breeding pipelines, all product profiles are using genomic selection at stage I, where the training population is evaluated in multiple locations with a sparse design, estimating the GEBVs for the unphenotyped lines, and using GEBVs and phenotypic BLUPs of test crosses in the selection for stage II. This process allows the handling of a large number of lines at stage I with a fixed budget without losing selection accuracy. Since 2017, we have used the “test half and predict half” strategy (Figure 2), where all the lines were genotyped with mid-density markers, and the selected ~50% of the total stage I lines were testcrossed and evaluated in multiple locations to be used as a training population to estimate the GEBVs for the other 50% of the unphenotyped lines for the traits of interest. High prediction correlations were observed in three selected product profiles for GY under optimum, managed drought, and low soil N conditions (Figure 3).

Genomic selection is also implemented to reduce the breeding cycle. However, our final products are three-way cross hybrids, where genomic selection is applied only to select the best line rather than selecting the best hybrid combinations. Historical data were used to test the possibility of reducing the breeding cycle. However, our results showed that the use of historical data to predict 100% of lines from the current year yielded low to moderate prediction correlations both under optimum and drought conditions for GY, anthesis date, and plant height (Figure 4). Incorporating 10 to 30% of the testing population into the training population leads to high prediction correlations. This concludes that by using historical data, the training population, which needs to be test-crossed and evaluated in multiple locations every year, can be reduced from 50% to 10-30%, which helps breeders allocate the saved resources to evaluate more lines without losing prediction accuracy.

Doubled Haploid Technology

Doubled haploid technology speeds up the creation of inbred lines by producing entirely uniform lines. Pedigree line development is a traditional method in plant breeding aimed at gradually improving and stabilizing the genetic makeup of the new variety over time. It involves multiple generations of controlled crosses between parent plants with known characteristics. Each subsequent generation is carefully selected based on specific traits of interest, such as yield, disease resistance, or quality. Pedigree line development is expensive, particularly when nurseries are in remote locations.

Unlike traditional methods where some genetic variation remains, doubled haploid lines are completely homogeneous. This means that there is increased heritability of desirable traits and improved accuracy of selection. Doubled haploid technology, which is more compatible with the use of molecular markers, simplifies breeding processes and shortens the time needed to develop inbred lines (Chaikam et al., 2019).

The first doubled haploid facility in Africa was established in 2013 and is extensively used by the CGIAR, NARES, and the private sector. Over the past five years, 1,349 populations have been induced and more than 223,144 doubled haploid lines delivered to breeding programs from CGIAR, NARES, and the private sector in sub-Saharan Africa. Shifting from traditional pedigree-based breeding to doubled haploid technology has shown a high impact on key breeding metrics (gain per cycle and gain per year) not only in CIMMYT but also in national partners’ breeding programs, thus increasing genetic gain within the available budget.

Figure 2. Number of lines evaluated with phenotypic selection (PS) and genomic selection (GS) at stage I in EAPP1 product profile from 2017 to 2023. (PS – phenotypic selection, GS – genomic selection)
Figure 3. Prediction correlations for grain yield (GY) under optimum (OPT), drought (MDt) and low soil N (low N) management conditions in EAPP1, EAPP2 and SAPP1 at stage I in 2023

 

Figure 4. Prediction accuracies for grain yield (GY), anthesis date (AD) and plant height (PH) estimated from independent validation schemes using a training population (TRN) consisting of 2017- and 2018-years breeding data and 10%, 30%, 50%, 70% and 90% of 2019 data converted from the testing population (TST) to the training population under optimum and managed drought conditions

 

References

Beyene, Y., Gowda, M., Olsen, M., Robbins, K. R., Pérez-Rodríguez, P., Alvarado, G., Dreher, K., Gao, S. Y., Mugo, S., and Prasanna, B. M. (2019). Empirical comparison of tropical maize hybrids selected through genomic and phenotypic selections. Frontiers in plant science 10, 1502.

Beyene, Y., Gowda, M., Pérez-Rodríguez, P., Olsen, M., Robbins, K. R., Burgueño, J., Prasanna, B. M., and Crossa, J. (2021). Application of genomic selection at the early stage of breeding pipeline in tropical maize. Frontiers in Plant Science 12, 685488.

Beyene, Y., Gowda, M., Suresh, L. M., Mugo, S., Olsen, M., Oikeh, S. O., Juma, C., Tarekegne, A., and Prasanna, B. M. (2017). Genetic analysis of tropical maize inbred lines for resistance to maize lethal necrosis disease. Euphytica 213.

Beyene, Y., Semagn, K., Crossa, J., Mugo, S., Atlin, G. N., Tarekegne, A., et al. (2016). Improving maize grain yield under drought stress and non-stress environments in sub-saharan africa using marker-assisted recurrent selection. Crop Science 56, 344–353. doi: 10.2135/cropsci2015.02.0135

Beyene, Y., Semagn, K., Mugo, S., Tarekegne, A., Babu, R., Meisel, B., Sehabiague, P., Makumbi, D., Magorokosho, C., and Oikeh, S. (2015). Genetic gains in grain yield through genomic selection in eight bi‐parental maize populations under drought stress. Crop Science 55, 154-163.

Chaikam, V., Molenaar, W., Melchinger, A. E., and Prasanna, B. M. (2019). Doubled haploid technology for line development in maize: technical advances and prospects. Theor. Appl. Genet. 132, 3227–3243. doi: 10.1007/s00122-019-03433-x

Crossa, J., PĂ©rez-RodrĂ­guez, P., Cuevas, J., Montesinos-LĂłpez, O., JarquĂ­n, D., de los Campos, G., et al. (2017). Genomic selection in plant breeding: Methods, models, and perspectives. Trend Plant Sci. 22, 961–975. doi: 10.1016/j.tplants.2017.08.011

Prasanna BM, Burgueño J, Beyene Y, Makumbi D, Asea G, Woyengo V, Tarekegne A, Magorokosho C, Wegary D, Ndhlela T, Zaman-Allah M, Matova PM, Mwansa K, Mashingaidze K, Fato P, Teklewold A, Vivek BS, Zaidi PH, Vinayan MT, Patne N, Rakshit S, Kumar R, Jat SL, Singh SB, Kuchanur PH, Lohithaswa HC, Singh NK, Koirala KB, Ahmed S, San Vicente F, Dhliwayo T, Cairns JE. 2022. Genetic trends in CIMMYT’s tropical maize breeding pipelines. Scientific Reports 12, 20110. https://doi.org/10.1038/s41598-022-24536-4

Vivek, B. S., Krishna, G. K., Vengadessan, V., Babu, R., Zaidi, P. H., Kha, L. Q., et al. (2017). Use of genomic estimated breeding values results in rapid genetic gains for drought tolerance in maize. Plant Genome 10, 1–8. doi: 10.3835/plantgenome2016.07.0070

African, Chinese stakeholders convene in Kenya amid call to transform food systems

The Africa-China-CIMMYT Science Forum in Nairobi gathered experts from China and Africa to explore strategies for transforming agrifood systems through innovation and cooperation. Organized by CAAS and CIMMYT, the forum emphasized the importance of collaboration in addressing food security, rural poverty, and climate resilience in Africa. Key discussions focused on the benefits of technology transfer and research partnerships to support smallholder farmers and advance agricultural modernization across the continent.

Read the full story.

Potential for independent performance information to shape farmers’ seed choice for hybrid maize: Insights from Kenya

Maize production in Kenya is a critical component of the country’s agriculture and food security. However, climate change poses a serious threat to its production. Changes in temperature and precipitation patterns can affect maize growth, reduce yields, and increase the incidence of pests and diseases.

Prolonged droughts and unpredictable rainfall can lead to crop failures, while extreme weather events can damage crops and infrastructure. As the climate continues to change, it is essential for Kenyan farmers to adopt resilient agricultural practices and more adapted seed products to safeguard maize production and ensure food security for the population.

For decades, seed companies as well as governments and donors have invested in maize hybrid breeding. Dozens of new hybrids have been made available to seed companies throughout East Africa for multiplication and distribution. These hybrids are designed and tested to outperform older hybrids in terms of yield under rainfed conditions, to include tolerance to drought and pests.

However, the potential impact of these investments has been hampered by the slow turnover of hybrids among farmers. Research has shown that, despite the availability of newer, higher-performing varieties, farmers tend to purchase older, less productive hybrids. The ‘turnover problem’ in Kenya has been described by CIMMYT researchers in a recent publication.[1]

One of the constraints responsible for the low turnover of varieties is a lack of information among farmers on the performance of the newer products. Despite advancements in the development of new seeds and the retail infrastructure to reach farmers, neither the public nor the private sector is generating and disseminating information on the performance of different maize seed products across various agroecologies. Farmers therefore have choice overload but lack objective information on relative seed performance required to make informed seed choices across seasons and growing conditions.

CIMMYT conducted a field experiment to shed light on the potential influence of seed-product performance information on farmers’ seed choices. The study involved aggregating and packaging farmer reported yield data for some seed products and presenting this to randomly selected farmers at the point of sale to assess whether the new information would influence their choice of products. The study was conducted in Kirinyaga and Embu counties where, like many parts of Kenya, farmers have access to a diverse range of maize seed products from seed companies which promise benefits like higher yields and improved resilience but lack objective information on their performance which could support their choices, including when to switch and to what.

[1] https://journals.sagepub.com/doi/full/10.1177/0030727019900520

 

The experiment

The study was conducted in March 2024, at the onset of the long rain season. The research team collaborated with 36 local agro-dealers in five towns and surveyed over one thousand farmers.  Farmers were intercepted as they approached the agro-dealer outlets and briefed about the study. Upon consent, they were informed on the benefits of trying something new (experimenting with varieties) and  were offered a voucher for one free bag of maize seed to encourage them to try a seed product new to them. They then were randomly assigned to two experimental groups: treatment and comparison. Participants in the treatment group were shown a chart containing product-specific yield data on maize hybrids grown in their counties (see the chart below). The chart contained farmer-reported yields from the previous year’s long rain season aggregated at two levels: county average yield and the average yield of the top 25% of farmers who realized the highest yields. The latter demonstrated the actual potential of a seed product. They were asked that, if they wished, they could choose the voucher product for experimentation from the list but they were not required to. Participants in the comparison group were offered placebo information that would not affect their seed choice: they were given some fun facts about Kenya and agriculture in Kenya. We assess the effect of the information on the choice of the bag of seed they were buying with the voucher to experiment with.

Table 1: Product-specific performance information on maize seed products in Kirinyaga March-August 2023 *actual product names have been removed for this blog*

Before they made any purchases, the customers were asked about which maize seed they intended to buy. After purchase, they were interviewed again to find out which maize seeds they bought and how they had used the voucher.

 

 

 

 

 

 

What we found

Majority of the treatment farmers had a very positive evaluation of the information they received, indicating that they found it relevant and useful when making seed choice. Specifically, over 90% of them said that the information was trustworthy and easy to understand while about 80% said that the information was easy to recall. Over 80% of them disagreed that the list of varieties was too long to comprehend, the information on varieties was similar and hard to differentiate and that it was hard for them to choose a variety from the list.

This positive evaluation of the information is also reflected in their seed choices. Pre-purchases (before they entered the agrodealer store), farmers who were exposed to the performance information showed increased certainty in their choices and a higher inclination towards products listed in the product performance data, particularly the top-performing varieties. While 5% of the comparison farmers indicated that they did not know what to buy with their vouchers, only 2% of the treatment farmers suffered the same uncertainty. Such farmers relied mostly on agro-dealers to recommend a product they could experiment with.

As shown by the bar chat below, only 7% of comparison group farmers desired to use their vouchers on (or had an effective demand for) products which were the top two in the product performance lists. This increased to 27% among the information group farmers, representing an increase of 286% in the demand of top performing products.

However, although our intervention relaxed an essential constraint (product performance information) and increased the demand for some seed products, the actual purchases were subject to other constraints, stock-outs key among them. As a result, both groups showed shifts from initially desired products in their actual purchases. Even so, the treatment group maintained a stronger alignment with the listed products, exhibiting a higher likelihood of purchasing top-performing products. Only 5% of farmers in comparison group used their vouchers to purchase products which were top two in the product performance lists. This increased to 13% among farmers in the treatment group, representing a 160% increase in the likelihood of purchasing the best performing products in the lists.

Reflections

Slow varietal turnover among maize farmers in E. Africa is a pervasive problem and there is no one solution to it. This research shows that information on product performance can be an effective approach in bringing to the attention of farmers newer, more adapted and better yielding seed products. Dissemination of such information can be incorporated in extension programs, shared at the point of sale, shared through SMSs and WhatsApp messages, displayed in posters fixed in public places, etc.

The findings offer clear recommendations for future investments in seed systems development. These include the implementation of new product testing regimes to ensure quality and objectivity of performance data, testing what other information would be useful to farmers – beyond yield data, exploring new marketing options to reach farmers more effectively, and considering additional approaches to empower farmers with the knowledge they need to make informed decisions thus leading to improved agricultural productivity, resilience, and livelihoods.

Helping farmers access waterlogged agricultural lands amid prevailing food insecurity in Sudan

In conflict-ridden Sudan, Gadarif State in Eastern Sudan is the most important region for sorghum production, with about 5-6 million feddan (5.18-6.22 acres) cultivated on an annual basis on large scale farms equipped with agricultural machinery. However, like the country, the state is covered with vertisols, clay-rich soils that shrink and swell with changes in moisture content, that become waterlogged and cannot be properly cultivated during rainy season.

To address the issue, technical experts from the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) are mapping areas affected by waterlogging in two localities, namely El Fashaga and El Nahal, to identify the most suitable lands to establish large drainage implementing sites integrated with improved crop varieties of sorghum. This work is part of CIMMYT’s Sustainable Agrifood Systems Approach for Sudan (SASAS) program, which works with farmers and herders to reduce their need for humanitarian assistance in conflict-affected Sudan.

“To address the issue of vertisols affected by water logging in Al Gadarif, the prominent agricultural region in Sudan, we used the map developed by ICRISAT in 2023 and consulted with local farmers to identify 100 hectares El Fashaga and El Nahal localities to improve drainage and avoid waterlogging,” said Gizaw Desta, senior scientist at ICRISAT.

Waterlogging is common on poorly drained soil or when heavy soil is compacted, preventing water from being drained away. This leaves no air spaces in the saturated soil, and plant roots literally drown. Waterlogging can be a major constraint to plant growth and production and, under certain conditions, will cause plant death. In Gadarif state, 2.3 million hectares and 1.8 million hectares of vertisols are under high and moderate waterlogging conditions that impair crop production during the rainy season, leading to food insecurity if not reversed with appropriate agricultural practices.

Experts evaluate the compacted soil. (Photo: CIMMYT)

“For years, my farm has been flooded by water during the rainy season, and I cannot cultivate sorghum as plants die of water suffocation”, said Ali Ahmed, a farmer from Al-Saeeda area of ​​Al-Nahal locality who is affected by waterlogging. “Alternatively, we as farmers affected by waterlogging were forced to cultivate watermelon instead of our main staple food sorghum. This shift in the crops we cultivate is hardly affecting our income.  I am glad that ICRISAT is working to establish drainage systems and address waterlogging within our lands.”

“At SASAS, we strive to ensure that farmers have access to fertile lands and other agricultural inputs. We work with our partners to address all problems facing farmers including waterlogging to help farmers continue producing their staple food and cash crops,” said Abdelrahman Kheir, SASAS chief of party in Sudan.

Innovating agroecology living landscapes in Zimbabwe

Local farmers have conversations with the CGIAR Initiative on Agroecology partners in Zimbabwe during the co-designing process. (Photo: CIMMYT)

In the rural districts of Mbire and Murehwa in Zimbabwe, the CGIAR Agroecology Initiative (AE-I) has embarked on a comprehensive strategy that places farmers’ opinions at the heart of interventions to tackle the multifaceted challenges of agroecosystems. Recognizing challenges such as pest and disease outbreaks, periodic drought, inadequate grazing lands, and limited access to quality seeds and livestock breeds, the AE-I team has initiated a collaborative process involving various stakeholders to develop tailored agroecological solutions.

This integrated approach emphasizes active participation and cooperation among agricultural extension services, including the Department of Agricultural Technical and Extension Services of Zimbabwe (AGRITEX), food system actors (FSAs), and technology providers. These organizations have collaborated to form Agroecology Living Landscapes (ALLs) to identify, test, and iterate relevant innovations.

“This collaborative innovation and ongoing co-designing cycle empower local communities and fosters agricultural sustainability, positioning Zimbabwe as a model for agroecology transition,” said Vimbayi Chimonyo, CIMMYT scientist and crop modeler. “With these efforts, the AE-I is improving current agricultural practices but also building a foundation for future resilience in Zimbabwe’s rural districts.”

A representation diagram of the co-designing cycle.

To ensure a well-informed process, the AE-I research team began its efforts by identifying dominant value chains in the two districts. In Murehwa, these included horticulture, maize, groundnuts, and poultry; while in Mbire, sorghum, cotton, and livestock. Challenges noted included production constraints (availability of improved seed and labor), biophysical constraints (water availability, increased incidents of fall armyworm), economic (market access) and social (agency).

Next, the AE-I research team, and the ALLs conducted a series of surveys, focus group discussions, and key informant interviews to understand existing opportunities that might address the challenges and aid in strengthening the value chains. The AE-I team discovered opportunities related to addressing labor shortages and improving access to improved technologies.

As a result, the research team introduced appropriate scale machinery, suggested seed and livestock fairs to increase access to agroecological inputs, established a series of demonstration plots to showcase technologies that improve water use, and increased mitigation efforts for fall armyworm. After introducing machinery, seed and livestock fairs, and testing the technologies during the 2022/23 season, AE-I returned to ALL members to discuss the impact the activities had on their production systems and determine if any modifications were necessary.

Participants suggested increased visibility of the new technologies and methods, so the AE-I team enhanced demonstration plots and added 100 baby plots during the 2023-24 farming season.

Integrating adaptive testing and feedback yielded valuable information from farmers, providing a strong base for further adaptations in the 2023-24 farming season. This continuous engagement promoted adaptive and context-specific solutions within the AE-I, ensuring that interventions aligned with evolving community needs.

Technologies being tested

To achieve the visions of each ALL, context-specific technologies are being tested to ensure synergy across the identified value chains and collaboration among different food system actors.

Technology/Innovation Description
Demo plots 2022-23: Twenty mother plots were established to compare the performance of cereal planted in, push-pull, and conventional practices on productivity, rainwater use efficiency, and pest biocontrol.

2023-24: Additional treatments, including biochar, live mulch, and traditional treatments, were introduced. One hundred eleven baby plots were established where farmers adapted mother protocols to suit their contexts.

Farmer Field Days Conducted for the established demonstration plots in Mbire and Murehwa, these field days showcased the technologies to a broader audience and acted as an agent of evaluation and feedback for the AE-I team.
Mechanization A service provider model was adopted to introduce appropriate scale machinery, addressing the drudgery associated with farming operations. Equipment provided included threshers, basin diggers, two-wheel tractors, rippers, mowers, chopper grinders, and balers. Training on operation, repair, and maintenance was also provided.
Capacity building Yearly work plans, co-designed by ALLs, identification of  training needs, gaps, and priorities. Facilitated by AGRITEX, these trainings equip farmers with knowledge essential to facilitate agroecology transition and fulfil ALL visions.

 

Monitoring and evaluation is a valuable component in the co-designing process where the AE-I establishes a feedback loop, engaging farmers and government stakeholders in participatory monitoring and evaluation. This ongoing exercise analyzes various indicators across different experimental treatments, providing valuable insights into the effectiveness and suitability of these approaches within the agricultural context. This continuous analysis leads to further co-designing of tailored solutions for facilitating the agroecology transition.

Farmers and stakeholders from AGRITEX welcomed and appreciated the co-designing process, as they felt empowered by the entire process. They expressed how it gives them ownership of the technologies being implemented through the AE-I project.

The success of the AE-I in the Mbire and Murehwa districts hinges on active participation and collaboration among FSAs. By continuously evaluating and integrating feedback on innovations and addressing challenges through context-specific interventions, the initiative is paving the way for adopting agroecological practices in farming, enhancing the resilience of local food systems.

This original piece was written by Craig E. Murazhi, Telma Sibanda, Dorcas Matangi, and Vimbayi G. P. Chimonyo.