CIMMYT’s work in Africa helps farmers access new maize and wheat systems-based technologies, information and markets, raising incomes and enhancing crop resilience to drought and climate change. CIMMYT sets priorities in consultation with ministries of agriculture, seed companies, farming communities and other stakeholders in the maize and wheat value chains. Our activities in Africa are wide ranging and include: breeding maize for drought tolerance and low-fertility soils, and for resistance to insect pests, foliar diseases and parasitic weeds; sustainably intensifying production in maize- and wheat-based systems; and investigating opportunities to reduce micronutrient and protein malnutrition among women and young children.
Ephrem Tadesse is a Business Development Manager at CIMMYT.
He studies the economic viability of different technologies for smallholder farmers in different geography and crop patterns. For the last three and half year, he has been testing and identifying best-bet technologies in Ethiopia, together with local research institutes and private sector companies. Based on the performance of the machine and the economic viability for farmers and service providers, he has been working on adoption and scaling of technologies, through market linkages and facilitating access to finance.
A new small-scale agricultural machinery leasing scheme became operational in Amhara region, Ethiopia, in December 2019. The initiative offers farmers and group of farmers the opportunity to buy agricultural machineries with only 15-20% advance payment and the rest to be paid during a three-year period. Three farmers participated in the pilot phase of the project.
This initiative, led by the International Maize and Wheat Improvement Center (CIMMYT) and the German Development Agency (GIZ), is one more step to expand small-scale agricultural mechanization in Ethiopia. CIMMYT and GIZ have explored this area of work since 2015, in collaboration with government and private partners.
Subsistence modes of production, shortage of quality agricultural inputs and farm machinery services are some of the impediments to expand agricultural productivity and enhance food security in Ethiopia.
Small-scale agricultural mechanization, in the Ethiopian context, improves the quality of field operations. For example, farmers are benefiting from row planting, optimal plant population, more precise seed and fertilizer placement, efficient utilization of soil moisture during planting window. The timing of operations is also very important — delays in planting could have a serious negative impact on yield, and harvesting and threshing must be done at a time when there is no labor shortages. Small-scale mechanization drastically saves time and labor compared to conventional crop establishment systems, and reduces yield loss at the time of harvesting and threshing.
Farmers walk by irrigated potato fields during a field day to learn about the use of small-scale agricultural mechanization. (Photo: Simret Yasabu/CIMMYT)
Despite these advantages, the adoption rate has been too low. A survey conducted by IFPRI and Ethiopia’s Central Statistical Agency in 2015 shows that only 9% of farmers in Ethiopia use machine power to plough their land, harvest their output, or thresh their crops. A significant number of farmers continues to use conventional farming systems, using animal and human labor.
Ephrem Tadesse, small-scale mechanization project agribusiness specialist with CIMMYT, said that most of the land holdings in Ethiopia are small and fragmented, and thus not suitable for large agricultural machineries.
CIMMYT and its partners introduced the two-wheel tractor and tested it in different parts of the country. One of the challenges has been the issue of access to finance to buy tractors and their accessories, because of their relatively high costs for individual farmers to buy with their own cash, noted Ephrem.
CIMMYT and GIZ have been working with selected microfinance institutes to pilot a machinery leasing scheme for small-scale agricultural mechanization. For several years, they have partnered with Waliya Capital Goods Finance Business Share in the Amhara region and with Oromia Capital Goods Lease Finance Business Share Company in the Oromia region. In December 2019, three farmers in the Machakel district of the Amhara region were the first ones to receive their machines through this scheme.
Farmers in the district of Machakel participate in a field day to learn about the use of small-scale agricultural mechanization. (Photo: Simret Yasabu/CIMMYT)
Tesfaw Workneh is the father of one of the beneficiaries. “This is great opportunity for farmers like my son to access small-scale agricultural machinery,” said Tesfaw. His son only paid 30,000 Ethiopian birr, about $1,000 — that is 20% of the total cost to own the different agricultural implements. Now, he is able to provide service to other farmers and get income, he explained.
Several types of machinery are being considered for this leasing scheme, using the two wheel-tractor as the source of power: planters, harvesters/reapers, threshers/shellers, trailers and water pumps.
For farmers like Alemayew Ewnetu, this kind of machinery is a novelty that makes farming easier. “Today, my eyes have seen miracles. This is my first time seeing such machineries doing everything in a few minutes. We have always relayed on ourselves and the animals. Now I am considering selling some of my animals to buy the implements,” said Alemayew.
Demelsah Ynew, Deputy Director of Waliya Capital Goods Finance Business Share, noted that his company was established six years ago to provide services in the manufacturing sector. However, after a discussion with CIMMYT and GIZ, the company agreed to extend its services to the agriculture sector. When revising our role, he noted, we considered the limitations farmers have in adopting technologies and the vast opportunity presented in the agricultural sector. Demelsah explained that to benefit from the leasing scheme, farmers will have to fulfill a few minimal criteria, including being residents of the area and saving 15-20% of the total cost.
The worst desert-locust plague in Kenya in 70 years is threatening to spread further into East Africa, jeopardizing food security.
Swarms of the insects are already devouring crops and pasture in Ethiopia and Somalia, and they’re breeding in Djibouti, Eritrea and Sudan — all areas that are prone to drought and food shortages. There’s a high risk they may soon enter northeast Uganda and southeast South Sudan, the United Nations’ Food and Agriculture Organization said Friday.
In Kenya, the locusts have mainly ravaged pasture, putting livestock production at risk, Hugo de Groote, an agricultural economist with the International Maize and Wheat Improvement Center, said by phone. There is a need to monitor and control the insects to ensure swarms don’t reach the more southerly counties that grow corn, tea and coffee, he said.
A farm worker applies fertilizer in a field of Staha maize for seed production at Suba Agro’s Mbezi farm in Tanzania. (Photo: Peter Lowe/CIMMYT)
Crop yields in sub-Saharan Africa are generally low. This is in large part because of low fertilizer use. A recent study of six countries in sub-Saharan Africa showed that just 35% of farmers applied fertilizer. Some possible reasons for this could be that farmers may be unaware of the efficacy of fertilizer use; or have degraded soils that do not respond to fertilizer; they may not have the cash to purchase it; or because unpredictable rainfall makes such investments risky. It may also be because local fertilizer prices make their use insufficiently profitable for many farmers.
To better understand the potential fertilizer demand in a particular location, it is important to know how crops respond to fertilizer under local conditions, but it is critical to understand crop responses in terms of economic returns. This requires information about local market prices of fertilizers and other inputs, as well as the prices that a farmer could receive from selling the crop.
While national-level fertilizer prices may be available, it is necessary to consider the extent to which prices vary within countries, reflecting transportation costs and other factors. In the absence of such data, analysis of household-level behaviors requires assumptions about the prices smallholder farmers face — assumptions which may not be valid. For example, evaluations of the returns to production technologies settings have often assumed spatially invariant input and output prices or, in other words, that all farmers in a country face the same set of prices. This is at odds with what we know about economic remoteness and the highly variable market access conditions under which African smallholders operate.
An obstacle to using empirical data on sub-national disparities in fertilizer prices is the scarcity of such data. A new study focused on the spatial discrepancies in fertilizer prices. The study compiled local market urea price in eighteen countries in sub-Saharan Africa for the period between 2010-2018 and used spatial interpolation models — using points with known values to approximate values at other unknown points — to predict local prices at locations for which no empirical data was available. It was conducted by scientists at University of California, Davis, the International Maize and Wheat Improvement Center (CIMMYT) and the International Food Policy Research Institute (IFPRI). The authors note that this is the first major attempt to systematically describe the spatial variability of fertilizer prices within the target countries and test the ability to estimate the price at unsampled locations.
Predicted relative urea price (local price divided by the observed median national price) for areas with crop land in eight East African countries.
“Our study uncovers considerable spatial variation in fertilizer prices within African countries and gives a much more accurate representation of the economic realities faced by African smallholders than the picture suggested by using national average prices,” said Camila Bonilla Cedrez, PhD Candidate at University of California, Davis. “We show that in many countries, this variation can be predicted for unsampled locations by fitting models of prices as a function of longitude, latitude, and additional predictor variables that capture aspects of market access, demand, and environmental conditions.”
Urea prices were generally found to be more expensive in remote areas or away from large urban centers, ports of entry or blending facilities. There were some exceptions, though. In Benin, Ghana and Nigeria, prices went down when moving away from the coast, with the possible explanation being market prices in areas with higher demand are lower. In other locations, imports of fertilizer from neighboring countries with lower prices may be affecting prices in another country or region, much like political influence. Politically, well-connected villages can receive more input subsidies compared to the less connected ones.
“The performance of our price estimation methods and the simplicity of our approach suggest that large scale price mapping for rural areas is a cost-effective way to provide more useful price information for guiding policy, targeting interventions, and for enabling more realistic applied microeconomic research. For example, local price estimates could be incorporated into household-survey-based analysis of fertilizer adoption,” explained Jordan Chamberlin, CIMMYT spatial economist. “In addition, such predictive ‘price maps’ can be incorporated into targeting and planning frameworks for agricultural investments. For example, to target technology promotion efforts to the areas where those technologies are most likely to be profitable.”
Predicted relative urea price (local price divided by the observed median national price) for areas with crop land in nine West African countries.
“The evidence we have compiled in this paper suggests that, while investments in more comprehensive and spatially representative price data collection would be very useful, we may utilize spatial price prediction models to extend the value of existing data to better reflect local price variation through interpolation,” explained Robert J. Hijmans, professor at University of California, Davis. “Even if imperfect, such estimates almost certainly better reflect farmers’ economic realities than assumptions of spatially constant prices within a given country. We propose that spatial price estimation methods such as the ones we employ here serve for better approximating heterogeneous economic market landscapes.”
This study has illustrated new ways for incorporating spatial variation in prices into efforts to understand the profitability of agricultural technologies across rural areas in sub-Saharan Africa. The authors suggest that an important avenue for future empirical work would be to evaluate the extent to which the subnational price variation documented is a useful explanatory factor for observed variation in smallholder fertilizer use in sub-Saharan Africa, after controlling for local agronomic responses and output prices. One way to do that may be to integrate input and output price predictions into spatial crop models, and then evaluate the degree to which modeled fertilizer use profitability predicts observed fertilizer use rates across different locations.
Some of the participants at the “Gender dynamics in seed systems in sub-Saharan Africa” workshop held on December 2, 2019, in Nairobi, Kenya. (Photo: Kipenz Films/CIMMYT)
One important pillar of Africa’s food security is ensuring that quality seeds are developed and delivered to the millions of smallholder farmers that feed the continent. Reaching the last mile with climate-resilient and disease-resistant seeds remains a challenge in many parts of sub-Saharan Africa. “In countries where we invested in seed systems initiatives, we have seen an upsurge in smallholder farm productivity,” said Joseph DeVries, the President of Seed Systems Group. “A story that is not adequately told is that of the important role of women along the seed value chain. In Kenya, 40% of owners of agrodealer shops are women. The farming sector would gain a lot with a stronger role for women in developing a gender-sensitive seed sector,” he noted.
DeVries was one of the keynote speakers at the “Gender dynamics in seed systems in sub-Saharan Africa” workshop organized by the International Maize and Wheat Improvement Center (CIMMYT) on December 2, 2019 in Nairobi, Kenya. The meeting brought together researchers, development practitioners, donors, farmers’ representatives, farmers, seed companies and other private actors.
CIMMYT’s Gender and Development Specialist, Rahma Adam, observed that with the African seed sector being male-dominated, the patriarchal nature of the family and community systems make it harder for women to penetrate the sector easily. For instance, many women employed in the sector mostly dominate the low-paying jobs. Workshop participants agreed that while there are many opportunities for women in the sector, the barriers to entry are many.
Joseph DeVries, President of Seed Systems Group, addresses participants at the “Gender dynamics in seed systems in sub-Saharan Africa” workshop. (Photo: Kipenz Films/CIMMYT)
Acknowledging the gender gap in agriculture
“Decades of gender research have shown that where there is gender inequality, there is food insecurity,” remarked Jemimah Njuki, senior program specialist from the International Development Research Center (IDRC). The gender gap in agricultural productivity observed in sub-Saharan Africa — up to 30% in countries like Nigeria and Malawi — is often explained by unequal access to inputs and male labor for heavy operations such as land preparation, access to knowledge and capital.
Addressing such unequal access is not enough, according to Njuki. To switch to a truly gender-sensitive food system, “you need to address social norms and women’s agency and what they can do on their own.” Taking the example of financial services, women often find difficulties obtaining loans because banks ask for collateral like title deeds, which are typically in the name of the husband or a male in-law. Yet, women are very good at repaying their loans on time. Making finance institutions “womanable” as Njuki put it, would be good for the welfare of women and their family, hence good for business.
Jemimah Njuki, senior program officer at the International Development Research Center (IDRC), speaks at the workshop. (Photo: Kipenz Films/CIMMYT)
Is there such a thing as seed for women farmers?
Within a household, who has a say in buying new seeds? Do men and women farmers look for the same traits and attributes?
A study conducted in Ethiopia, Kenya, Tanzania and Uganda by Paswel Marenya, a senior agricultural economist at CIMMYT, revealed that in many cases, the man has a greater say in selecting new seed varieties. Other research shows that beyond grain yield, the characteristics of “a good variety” differ between men and women farmers. In the study, both genders mention what they were willing to pay as trade-off against yield. Women would favor a variety with a longer grain shelf-life (ability to store 3-4 months). Men preferred a variety that performs well with low fertilizer requirements. Equally, women farmers engaged in participatory varietal selections tended to provide more nuanced evaluation of varieties than men. Despite this evidence, seed companies do not often adapt their seed marketing strategy according to gender.
Making institutions and seed systems gender-sensitive
CIMMYT’s gender and development specialist Rahma Adam addresses participants at the “Gender dynamics in seed systems in sub-Saharan Africa” workshop. (Photo: Kipenz Films/CIMMYT)
Are there missed opportunities for the seed sector by being “gender-blind”? Rahma Adam believes “the current one-size-fits-all model does not work for many women farmers”. She advises seed companies to be more gender-sensitive when organizing seed marketing operations. Women tend to have less time to attend field demos, the major marketing tool for seed companies. Packaging may not be adapted to suit their more limited purchasing power.
There are good examples of women seed entrepreneurs that have established their niche and reach out to women farmers. Janey Leakey, Director of Leldet Seed Company in Nakuru, Kenya, is one such example. She markets small seed packs called Leldet bouquet, a mix of improved maize and legume seeds at the cost of a cup of tea, to enable women farmers test new varieties.
For the more informal sweet potato seed systems, many women farmers have been successfully engaged in lucrative vine multiplication, thanks to the use of women extensionists and women groups to teach appropriate storage techniques in drought-prone regions. “Such seed business can empower women within the household,” noted Jan Low, co-leader of the Sweetpotato for Profit and Health Initiative (SPHI) at the International Potato Center (CIP) and 2016 World Food Prize Laureate. A woman vine multiplier was able to negotiate with the husband for more land and water access to increase production.
Many other important actors in the public, private and development sectors have also been more deliberate in structuring some of their project or business implementation plans to include or benefit more women in the seed value chain. Among the players are CARE International, Kenya’s Ministry of Agriculture, the Centre for Agriculture and Bioscience International (CABI), the Seed Trade Association of Kenya (STAK), SeedCo, the Agricultural Market Development Trust (AGMARK), World Vision, the Food and Agriculture Organization (FAO), which attended and participated very actively in this workshop.
Some of the plans entail helping more women to access information on climate change to understand their cropping seasons, contracting women farmers as seed out-growers, encouraging and supporting them to join forces to produce seed in group settings. Some of these actors also train women to enhance their entrepreneurial acumen, help them to access finance, obtain the appropriate labor and time-saving machinery, and acquire small seed packs.
Ultimately, designing a seed system that works for men and women requires a holistic approach, from building women’s agency, addressing norms and unequal access to resources. It requires time, dedication, financial and human resources, as well as capabilities and multi-stakeholder collaboration. “The main take-home message is that building a gender-sensitive seed system starts with us,” said Amanda Lanzarone, program officer at the Bill & Melinda Gates Foundation.
With new pathogens of crop diseases continuously emerging and threatening food production and security, wheat breeder and wheat rust pathologist Mandeep Randhawa and his colleagues at the International Maize and Wheat Improvement Center (CIMMYT) and the Kenya Agricultural and Research Organization (KALRO) are working tirelessly to identify new sources of rust resistance through gene mapping tools and rigorous field testing.
With wheat accounting for around 20% of the world’s calories and protein, outbreaks of disease can pose a major threat to global food security and farmer livelihoods. The most common and prevalent diseases are wheat rusts — fungal diseases that can be dispersed by wind over long distances, which can quickly cause devastating epidemics and dramatically reduce wheat yields.
To tackle the problem, Randhawa and his colleagues work on developing improved wheat varieties by combining disease-resistant traits with high yielding ones, to ensure that farmers can get the best wheat yields possible while evading diseases.
Screening for disease
A native of the Punjab state of India, Randhawa joined CIMMYT as a Post-doctoral Fellow in Wheat Rust Resistance Genetics in 2015. He now works as a CIMMYT scientist and manages the Stem Rust Screening Platform in Njoro, Kenya, which supports screening against stem rust of up to 50,000 wheat lines per year from as many as 20 countries. Over the last 10 years about 650,000 wheat lines have been evaluated for stem rust resistance at the facility.
“The platform’s main focus is on evaluation of wheat lines against the stem rust race Ug99 and its derivative races prevalent in Eastern to Southern Africa, the Middle East and Iran,” explains Randhawa. Ug99 is a highly virulent race of stem rust, first discovered two decades ago in Uganda. The race caused major epidemics in Kenya in 2002 and 2004.
“East African highlands are also a hotspot for stripe wheat rust so, at the same time, we evaluate wheat lines for this disease,” adds Randhawa.
The facility supports a shuttle breeding scheme between CIMMYT Mexico and Kenya, which allows breeders to plant at two locations, select for stem rust (Ug99) resistance and speed up the development of disease-resistant wheat lines.
“Wheat rusts in general are very fast evolving and new strains are continuously emerging. Previously developed rust-resistant wheat varieties can succumb to new virulent strains, making the varieties susceptible. If the farmers grow susceptible varieties, rust will take on those varieties, resulting in huge yield losses if no control measures are adopted,” explains Randhawa.
Helping and sharing
For Randhawa, helping farmers is the main goal. “Our focus is on resource-poor farmers from developing countries. They don’t have enough resources to buy the fungicide. Using chemicals to control diseases is expensive and harmful to the environment. So in that case we provide them solutions in the form of wheat varieties which are high yielding but they have long-lasting resistance to different diseases as well.”
Under the Borlaug Global Rust Initiative, Randhawa and his team collaborate with KALRO to facilitate the transfer of promising wheat lines with high yield potential and rust resistance to a national pipeline for soon-to-be-released wheat varieties.
When he is not screening for wheat rusts diseases, Randhawa also organizes annual trainings on stem rust diagnosis and germplasm evaluation for young wheat breeders and pathologists from developing countries. More than 220 wheat researchers have been trained over the last decade.
Mandeep Randhawa (left) talks to the participants of the 11th annual training on stem rust notetaking and germplasm evaluation. (Photo: Jerome Bossuet/CIMMYT)
A farmer at heart
Randhawa always had an interest in agricultural science. “Initially, my parents wanted me to be a medical doctor, but I was more interested in teaching science to school students,” he says. “Since my childhood, I used to hear of wheat and diseases affecting wheat crops, especially yellow rust — which is called peeli kungi in my local language.” This childhood interest led him to study wheat genetics at Punjab Agricultural University in Ludhiana, India.
His mentors encouraged him to pursue a doctorate from the Plant Breeding Institute (PBI) Cobbitty at the University of Sydney in Australia, which Randhawa describes as “the mecca of wheat rust research.” He characterized two new stripe rust resistance genes formally named as Yr51 and Yr57 from a wheat landrace. He also contributed to the mapping of a new adult plant stem rust resistance gene Sr56.
Coming from India, his move to Australia was a pivotal moment for him in his career and his identity — he now considers himself Indian-Australian.
If he had not become a scientist, Randhawa would be a farmer, he says. “Farming is my passion, as I like to grow crops and to have rich harvest using my scientific knowledge and modern technologies.”
At CIMMYT, Randhawa has a constant stream of work identifying and characterizing new sources of rust resistance. “Dealing with different types of challenges in the wheat field is what keeps me on my toes. New races of diseases are continuously emerging. As pests and pathogens have no boundaries, we must work hand-in-hand to develop tools and technologies to fight fast evolving pests and pathogens,” says Randhawa.
He credits his mentor Ravi Singh, Scientist and Head of Global Wheat Improvement at CIMMYT, for motivating him to continue his work. “Tireless efforts and energetic thoughts of my professional guru Dr. Ravi Singh inspire and drive me to achieve research objectives.”
Marc Corbeels holds a PhD in Agronomy from the University of Ghent, Belgium, and an HDR (accreditation to supervise doctoral research) from the University of Montpellier, France. His current research focuses on ecological intensification options for smallholder farmers in sub-Saharan Africa in the context of climate variability and climate change.
Corbeels has worked for more than 15 years in the tropical regions of Africa and Brazil. He has authored more than 90 journal articles and book chapters and >100 conference papers on farming systems research and agricultural production in smallholder agriculture covering diverse topics including soil and water management, soil carbon and nitrogen cycling, crop growth simulation modelling, climatic risk management, adaption to climate change and farming systems analysis and design. He is associate editor of Field Crops Research.
The International Maize and Wheat Improvement Center (CIMMYT) introduced farmers Kassim Massi and Joyce Makawa to conservation agriculture, along with five other families in their community.
“I have learnt a lot from this experiment. I can see that with crop rotation, mulching and intercropping I get bigger and healthier maize cobs. The right maize spacing, one seed at the time planted in a row, creates a good canopy which preserves the soil moisture in addition to the mulch effect,” Massi explains.
How big do farms need to be to enable farmers to escape poverty by farming alone? And what alternative avenues can lead them to sustainable development? New paper explores how much rural households can benefit from agricultural intensification.
How big do farms need to be to enable farmers to escape poverty by farming alone? And what alternative avenues can lead them to sustainable development?
These issues were explored in a paper in which we examined how much rural households can benefit from agricultural intensification. In particular we, together with colleagues, looked at the size of smallholder farms and their potential profitability and alternative strategies for support. In sub-Saharan Africa smallholder farms are, on average, smaller than two hectares.
Maize plants at the MLN screening facility in Naivasha, Kenya. (Photo: Jennifer Johnson/CIMMYT)
The maize lethal necrosis (MLN) artificial inoculation screening site in Naivasha, Kenya, will begin its phenotyping (screening/indexing) cycle of 2020 at the beginning of January 2020, which will continue in four other intervals throughout the year. Interested organizations from both the private and public sectors are invited to send maize germplasm for screening.
In 2013, the International Maize and Wheat Improvement Center (CIMMYT) and the Kenya Agricultural & Livestock Research Organization (KALRO) jointly established the MLN screening facility at the KALRO Naivasha research station in Kenya’s Rift Valley, with support from the Bill & Melinda Gates Foundation and the Syngenta Foundation for Sustainable Agriculture.
MLN was first discovered in Kenya in 2011 and quickly spread to other parts of eastern Africa. The disease causes premature plant death and unfilled, poorly formed maize cobs, which can lead to up to 100% yield loss in farmers’ fields.
CIMMYT and partners are dedicated to stopping the spread of this deadly maize disease by effectively managing the risk of MLN on maize production through screening and identifying MLN-resistant germplasm. The MLN screening facility supports countries in sub-Saharan Africa to screen maize germplasm — for hybrid, inbred and open pollinated varieties — against MLN in a quarantined environment.
This is the largest dedicated MLN screening facility in East Africa. Since its inception in 2013, the facility has evaluated more than 200,000 accessions — more than 300,000 rows of maize — from more than 15 multinational and national seed companies and national research programs.
Partners can now plan for annual MLN phenotyping (screening/indexing) during 2020 with the schedule below. The improved and streamlined approach for MLN phenotyping should enable partners to accelerate breeding programs to improve resistance for MLN for sub-Saharan Africa.
Kassim Massi and Joyce Makawa have learned how conservation agriculture nurtures the soil of their 2.5-acres farm in Lemu, Malawi, and helps them to better cope with regular dry spells and storm rains. With four children and two grandchildren, their livelihoods depend on rainfed crop farming, in particular maize, the main staple in Malawi, and a few goats and free-range poultry. The International Maize and Wheat Improvement Center (CIMMYT) introduced them to conservation agriculture, along with five other families in their community.
“I have learnt a lot from this experiment. I can see that with crop rotation, mulching and intercropping I get bigger and healthier maize cobs. The right maize spacing, one seed at the time planted in a row, creates a good canopy which preserves the soil moisture in addition to the mulch effect,” Massi explains. “The mulch also helps to limit water runoff when there are heavy rains. I don’t see the streams of mud flowing out of this plot like for my other field where I only planted maize as usual on ridges,” he adds.
Massi and Makawa started small, on a quarter acre, testing maize and maize-pigeon pea intercropping under conservation agriculture. Later they diversified to a maize-groundnut rotation with pigeon pea alleys, while introducing different drought-tolerant maize varieties on their plot. Pigeon pea and groundnut are legume crops that enrich the soil in nitrogen via nodules that host specific bacteria called rhizobia in their root systems. Massi and Makawa also put layers of maize stalks and groundnut haulms on the ground after harvest, creating a mulch that not only enriches the soil in organic matter but retains soil moisture and improves soil structure.
While they got only two bags of 50kg maize grain from their conventionally tilled maize field, they harvested almost three times more maize grain plus three bags of groundnuts, and two and half bags of pigeonpea from the 0.1 hectares grown under conservation agriculture. “This plot has become our food insurance and we plan to expand it.”
Family farmers Kassim Massi and Joyce Makawa in Lemu, Malawi. (Photo: Shiela Chikulo/CIMMYT)
Good for the soil and good for the farmer
“Building healthy soils over the years is one of the great impacts of conservation agriculture,” explains Christian Thierfelder, an agronomist with CIMMYT in Zimbabwe. “With no tillage, legume rotation or intercropping and crop residue management, a beneficial soil pore structure is developed over time. This enables water to infiltrate into the soil where it is available for plant growth in times of drought or during in-season dry spells.”
Under the GIZ-funded Out scaling climate-smart technologies to smallholder farmers in Malawi, Zambia & Zimbabwe initiative, the different ecosystem services that soils bring have been measured against the typical ploughed maize monocropping system. Fifteen year-long experiments show that 48.5mm more water infiltrates per hour under no-till as compared with the conventional method. Soil erosion is reduced by 64% for ripline-seeded maize with legume intercropping. At the Henderson Research station in Zimbabwe where soil erosion loss has been quantified, it means 90 metric tons per hectare of topsoil saved over twelve years.
“Conservation agriculture is good for the soil, and it is good for the farmer. The maize-legume intercropping under conservation agriculture provides very good financial return to labor and investment in most rural communities we worked with,” Thierfelder notes.
Climate mitigation or resilience?
There is growing recognition of the importance of soils in our quest for sustainability.
Soils play for instance an important role in climate regulation. Plants fix carbon dioxide (CO2) through photosynthesis and when those plants die and decompose, the living organisms of the soil, such as bacteria, fungi or earthworms, transform them into organic matter. That way, soils capture huge quantities of the carbon emissions that fuel climate change. This soil organic carbon is also essential for our food security because it retains water, and soil nutrients, essential for growing crops.
The quantity of carbon soils capture depends on the way farmers grow their crops. Conservation agriculture improves soil biodiversity and carbon sequestration by retaining crop residues as mulch, compared to conventional practices.
“Research shows that practices such as conservation agriculture can restore soil organic carbon at the level of four per thousand when farmers apply all principles of conservation agriculture: no-till, soil cover and crop diversification,” explains Marc Corbeels, agronomist seconded to CIMMYT from Cirad. Increasing soil organic content stocks globally by 0.4% per year is the objective of the “4 per 1000” initiative as a way to mitigate climate change and improve food security. At global level, sequestrating 0.4% more soil organic carbon annually combined with stopping deforestation would counteract the annual rise in atmospheric CO2.
“The overall soil organic carbon sequestration potential of conservation agriculture should however not be overestimated,” Corbeels warns. “Carbon sequestration is complex and context-specific. It depends for instance on the type of soils and the initial soil organic status, and the crop and biomass productivity as enough crop residues should be produced.”
“Now farmers in Malawi, Zambia and Zimbabwe are facing prolonged drought and, in some parts, farming communities got hit by flash floods. With degraded and barren soils in this tropical environment, it is a disaster. In my experience, more than mitigation, improved climate resilience is a bigger benefit of conservation agriculture for the farmers”, Corbeels says.
“Science is important to build up solid evidence of the benefits of a healthy soil and push forward much-needed policy interventions to incentivize soil conservation,” Thierfelder states.
Scaling out conservation agriculture practices is what has driven him over the past decade in southern Africa.
“One big lesson I learnt from my years of research with farmers is that if you treat well your soil, your soil will treat you well. Conservation agriculture adopters like Kassim Massi and his family are more resilient to these successive shocks. We need more farmers like them to achieve greater food security and climate resilience in the region,” he concludes.
December 5, we are celebrating World Soil Day under the theme “Stop Soil Erosion, Save our Future!” As CIMMYT’s research shows, farmers cannot deliver sustainable food security without healthy soils, as the farming land producing our staple crops provide important environmental services as well. CIMMYT calls for soil-smart agriculture and food systems.
More than 11,000 scientists signed on to a recent report showing that planet Earth is facing a climate emergency and the United Nations warned that the world is on course for a 3.2 degree spike by 2100, even if 2015 Paris Agreement commitments are met.
Agriculture, forestry, and land-use change are implicated in roughly a quarter of global greenhouse gas emissions.
Agriculture also offers opportunities to mitigate climate change and to help farmers — particularly smallholders in developing and emerging economies who have been hardest hit by hot weather and reduced, more erratic rainfall.
Most of CIMMYT’s work relates to climate change, helping farmers adapt to shocks while meeting the rising demand for food and, where possible, reducing emissions.
Family farmer Geofrey Kurgat (center) with his mother Elice Tole (left) and his nephew Ronny Kiprotich in their 1-acre field of Korongo wheat near Belbur, Nukuru, Kenya. (Photo: Peter Lowe/CIMMYT)
Climate-resilient crops and farming practices
53 million people are benefiting from drought-tolerant maize. Drought-tolerant maize varieties developed using conventional breeding provide at least 25% more grain than other varieties in dry conditions in sub-Saharan Africa — this represents as much as 1 ton per hectare more grain on average. These varieties are now grown on nearly 2.5 million hectares, benefiting an estimated 6 million households or 53 million people in the continent. One study shows that drought-tolerant maize can provide farming families in Zimbabwe an extra 9 months of food at no additional cost. The greatest productivity results when these varieties are used with reduced or zero tillage and keeping crop residues on the soil, as was demonstrated in southern Africa during the 2015-16 El Niño drought. Finally, tolerance in maize to high temperatures in combination with drought tolerance has a benefit at least twice that of either trait alone.
Wheat yields rise in difficult environments. Nearly two decades of data from 740 locations in more than 60 countries shows that CIMMYT breeding is pushing up wheat yields by almost 2% each year — that’s some 38 kilograms per hectare more annually over almost 20 years — under dry or otherwise challenging conditions. This is partly through use of drought-tolerant lines and crosses with wild grasses that boost wheat’s resilience. An international consortium is applying cutting-edge science to develop climate-resilient wheat. Three widely-adopted heat and drought-tolerant wheat lines from this work are helping farmers in Pakistan, a wheat powerhouse facing rising temperatures and drier conditions; the most popular was grown on an estimated 40,000 hectares in 2018.
Climate-smart soil and fertilizer management. Rice-wheat rotations are the predominant farming system on more than 13 million hectares in the Indo-Gangetic Plains of South Asia, providing food and livelihoods for hundreds of millions. If farmers in India alone fine-tuned crop fertilizer dosages using available technologies such as cellphones and photosynthesis sensors, each year they could produce nearly 14 million tons more grain, save 1.4 million tons of fertilizer, and cut CO2-equivalent greenhouse gas emissions by 5.3 million tons. Scientists have been studying and widely promoting such practices, as well as the use of direct seeding without tillage and keeping crop residues on the soil, farming methods that help capture and hold carbon and can save up to a ton of CO2 emissions per hectare, each crop cycle. Informed by CIMMYT researchers, India state officials seeking to reduce seasonal pollution in New Delhi and other cities have implemented policy measures to curb the burning of rice straw in northern India through widespread use of zero tillage.
Farmers going home for breakfast in Motoko district, Zimbabwe. (Photo: Peter Lowe/CIMMYT)
Measuring climate change impacts and savings
In a landmark study involving CIMMYT wheat physiologists and underlining nutritional impacts of climate change, it was found that increased atmospheric CO2 reduces wheat grain protein content. Given wheat’s role as a key source of protein in the diets of millions of the poor, the results show the need for breeding and other measures to address this effect.
CIMMYT scientists are devising approaches to gauge organic carbon stocks in soils. The stored carbon improves soil resilience and fertility and reduces its emissions of greenhouse gases. Their research also provides the basis for a new global soil information system and to assess the effectiveness of resource-conserving crop management practices.
CIMMYT scientist Francisco Pinto operates a drone over wheat plots at CIMMYT’s experimental station in Ciudad Obregon, Mexico. (Photo: Alfonso Cortés/CIMMYT)
Managing pests and diseases
Rising temperatures and shifting precipitation are causing the emergence and spread of deadly new crop diseases and insect pests. Research partners worldwide are helping farmers to gain an upper hand by monitoring and sharing information about pathogen and pest movements, by spreading control measures and fostering timely access to fungicides and pesticides, and by developing maize and wheat varieties that feature genetic resistance to these organisms.
Viruses and moth larvae assail maize. Rapid and coordinated action among public and private institutions across sub-Saharan Africa has averted a food security disaster by containing the spread of maize lethal necrosis, a viral disease which appeared in Kenya in 2011 and quickly moved to maize fields regionwide. Measures have included capacity development with seed companies, extension workers, and farmers the development of new disease-resilient maize hybrids.
The insect known as fall armyworm hit Africa in 2016, quickly ranged across nearly all the continent’s maize lands and is now spreading in Asia. Regional and international consortia are combating the pest with guidance on integrated pest management, organized trainings and videos to support smallholder farmers, and breeding maize varieties that can at least partly resist fall armyworm.
New fungal diseases threaten world wheat harvests. The Ug99 race of wheat stem rust emerged in eastern Africa in the late 1990s and spawned 13 new strains that eventually appeared in 13 countries of Africa and beyond. Adding to wheat’s adversity, a devastating malady from the Americas known as “wheat blast” suddenly appeared in Bangladesh in 2016, causing wheat crop losses as high as 30% on a large area and threatening to move quickly throughout South Asia’s vast wheat lands.
A community volunteer of an agricultural cooperative (left) uses the Plantix smartphone app to help a farmer diagnose pests in his maize field in Bardiya district, Nepal. (Photo: Bandana Pradhan/CIMMYT)
Partners and funders of CIMMYT’s climate research
A global leader in publicly-funded maize and wheat research and related farming systems, CIMMYT is a member of CGIAR and leads the South Asia Regional Program of the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS).
CIMMYT receives support for research relating to climate change from national governments, foundations, development banks and other public and private agencies. Top funders include CGIAR Research Programs and Platforms, the Bill & Melinda Gates Foundation, Mexico’s Secretary of Agriculture and Rural Development (SADER), the United States Agency for International Development (USAID), the UK Department for International Development (DFID), the Australian Centre for International Agricultural Research (ACIAR), Cornell University, the German aid agency GIZ, the UK Biotechnology and Biological Sciences Research Council (BBSRC), and CGIAR Trust Fund Contributors to Window 1 &2.
The United Nations Framework Convention on Climate Change estimates that temperatures in Africa are set to rise significantly in coming years, with devastating results for farmers. Some regions could experience two droughts every five years, and see drastic reductions in maize yields over the next three decades.
Research demonstrates that climate-smart agriculture (CSA) is good method of mitigating the effects of climate change, for both farmers and the planet. Associated practices, which increase soil moisture levels and soil biodiversity have been shown to decrease soil erosion by up to 64%. They also have the potential to increase maize yields by 136% and incomes in dry environments by more than twice as much.
However, adoption rates remain low in some of the countries which stand to benefit the most, such as Malawi, Zambia and Zimbabwe, where the adoption of complete conservation agriculture systems is currently at 2.5%.
A new series of infographics describes some of the farming constraints will have to be addressed in order to scale climate-smart agricultural practices successfully in the region, taking into account both benefits and challenges for farmers.
To protect crops, a rapid alert system has been developed which is able to predict the spread of wheat rust and warns policy makers and farmers allowing timely and targeted interventions.
The project involved a multidisciplinary team – biologists, meteorologists, agronomists, IT and telecommunications experts – and the system was developed by the University of Cambridge, the Met Office of Great Britain, the Ethiopian Agricultural Research Institute (EIAR), the Ethiopian Agricultural Transformation Agency (ATA) and the International Maize and Wheat Improvement Center (CIMMYT).
At the base of it all is the data. Read more here.