Skip to main content

Location: Africa

CIMMYT’s work in Africa helps farmers access new maize and wheat systems-based technologies, information and markets, raising incomes and enhancing crop resilience to drought and climate change. CIMMYT sets priorities in consultation with ministries of agriculture, seed companies, farming communities and other stakeholders in the maize and wheat value chains. Our activities in Africa are wide ranging and include: breeding maize for drought tolerance and low-fertility soils, and for resistance to insect pests, foliar diseases and parasitic weeds; sustainably intensifying production in maize- and wheat-based systems; and investigating opportunities to reduce micronutrient and protein malnutrition among women and young children.

The future of agriculture in sub-Saharan Africa

The theme for International Youth Day 2020, Youth Engagement for Global Action, highlights the various ways in which the engagement of young people at local, national and global levels enriches national and multilateral institutions and processes.

Up to 60% of Africa’s youth face challenges such as limited employment opportunities, financial constraints to access land and adequate technical equipment. However, agriculture is increasingly providing options. Through it, young people are participating and leveraging on new technologies that can optimize farming systems and create employment.

This photo essay depicts youth in on-farm and off-farm activities across East and Southern Africa. These young men and women are innovators and adopters of improved technologies such as small scale mechanization, appropriate farming practices, employment opportunities and research innovations implemented by the International Maize and Wheat Improvement Center (CIMMYT).

In Embu County, Kenya, 25-year-old Jackline Wanja stands in a demonstration plot of high-yielding, drought-resilient and fast-maturing maize varieties. (Photo: Joshua Masinde/CIMMYT)
In Embu County, Kenya, 25-year-old Jackline Wanja stands in a demonstration plot of high-yielding, drought-resilient and fast-maturing maize varieties. (Photo: Joshua Masinde/CIMMYT)
Beyene Chufamo (28) is a two-wheel tractor technology service provider based in Meki, Ethiopia. In 2016, with the support of CIMMYT, he started providing repair and maintenance services to service providers in different areas. (Photo: Ephrem Tadesse/CIMMYT)
Beyene Chufamo (28) is a two-wheel tractor technology service provider based in Meki, Ethiopia. In 2016, with the support of CIMMYT, he started providing repair and maintenance services to service providers in different areas. (Photo: Ephrem Tadesse/CIMMYT)
Beyene Chufamo (center, in green t-shirt) provides technical training on operation, safety, repair and maintenance to machinery hire service providers in different CIMMYT operation sites. His participation in small mechanization supply chain enables service providers and farmers to effectively use their machinery and significantly reduce the downtime of their machinery. (Photo: Ephrem Tadesse/CIMMYT)
Beyene Chufamo (center, in green t-shirt) provides technical training on operation, safety, repair and maintenance to machinery hire service providers in different CIMMYT operation sites. His participation in small mechanization supply chain enables service providers and farmers to effectively use their machinery and significantly reduce the downtime of their machinery. (Photo: Ephrem Tadesse/CIMMYT)
Nancy Wawira (29) stands among ripening maize cobs of high yielding, drought-tolerant maize varieties on a demonstration farm in Embu County, Kenya. Involving young people like Wawira helps to accelerate the adoption of improved stress-tolerant maize varieties. (Photo: Joshua Masinde/CIMMYT)
Nancy Wawira (29) stands among ripening maize cobs of high yielding, drought-tolerant maize varieties on a demonstration farm in Embu County, Kenya. Involving young people like Wawira helps to accelerate the adoption of improved stress-tolerant maize varieties. (Photo: Joshua Masinde/CIMMYT)
Rose Salimanja (34) from Nyanga District, Zimbabwe, operates a two-wheel tractor and trailer during a trailer operations training course. Under the Zimbabwe Building Resilience Fund (ZRBF), CIMMYT is implementing appropriate small-scale mechanized solutions and services for smallholder farmers and service providers. (Photo: Dorcas Matangi/CIMMYT)
Rose Salimanja (34) from Nyanga District, Zimbabwe, operates a two-wheel tractor and trailer during a trailer operations training course. Under the Zimbabwe Building Resilience Fund (ZRBF), CIMMYT is implementing appropriate small-scale mechanized solutions and services for smallholder farmers and service providers. (Photo: Dorcas Matangi/CIMMYT)
Targeting youth in interventions such as the Farm Mechanization and Conservation Agriculture for Sustainable Intensification (FACASI) project provides pathways for training in appropriate mechanized solutions to support farmers in rural areas. The enterprising Mwanga Youth Group members Pinnot Karwizi (28), Shepherd Karwizi (26) and Masimba Mawire (32) provide grain shelling services to farmers in Makonde District, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)
Targeting youth in interventions such as the Farm Mechanization and Conservation Agriculture for Sustainable Intensification (FACASI) project provides pathways for training in appropriate mechanized solutions to support farmers in rural areas. The enterprising Mwanga Youth Group members Pinnot Karwizi (28), Shepherd Karwizi (26) and Masimba Mawire (32) provide grain shelling services to farmers in Makonde District, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)
Zvikomborero Karimudengu skillfully operates a two-wheel tractor and trailer during a training session in Nyanga South district, Zimbabwe. Small scale mechanization services are proving to be immensely useful during the COVID-19 pandemic as services can be provided while adhering to social distancing regulations and without requiring additional labour. (Photo: Dorcas Matangi/CIMMYT)
Zvikomborero Karimudengu skillfully operates a two-wheel tractor and trailer during a training session in Nyanga South district, Zimbabwe. Small scale mechanization services are proving to be immensely useful during the COVID-19 pandemic as services can be provided while adhering to social distancing regulations and without requiring additional labour. (Photo: Dorcas Matangi/CIMMYT)

Agency unveils seed resistant to disease

For more than a decade, Maize Lethal Necrosis Disease (MLND) has ravaged crops causing farmers to incur huge losses and threatening food security.

Kenya Seed Company (KSC) researchers through partnerships have developed a superior maize variety that can withstand the disease.

Read more here:

https://www.standardmedia.co.ke/farmkenya/article/2001382769/agency-unveils-seed-resistant-to-disease

AGG project to ramp up genetic gains in maize for better livelihoods

A new project, Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods (AGG), seeks to achieve these results by speeding up genetic gains in maize and wheat breeding to deliver improved, stress resilient, nutritious seed to smallholders in 13 countries in sub-Saharan Africa (SSA) and four in South Asia. The 5-year AGG project is funded by the Bill & Melinda Gates Foundation, the UK Department for International Development (DFID) and the U.S. Agency for International Development (USAID).

The maize component of the project brings together diverse partners, including the International Maize and Wheat Improvement Center (CIMMYT) and the International Institute of Tropical Agriculture (IITA) as co-implementers; national agricultural research systems (NARS); and small and medium-sized (SME) seed companies.

Read more here: https://africabusinesscommunities.com/agribusiness/news/agg-project-to-ramp-up-genetic-gains-in-maize-for-better-livelihoods/

New project to ramp up genetic gains in maize for better livelihoods

A new project, Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods (AGG), seeks to achieve these results by speeding up genetic gains in maize and wheat breeding to deliver improved, stress resilient, nutritious seed to smallholders in 13 countries in sub-Saharan Africa (SSA) and four in South Asia. The 5-year AGG project is funded by the Bill & Melinda Gates Foundation, the UK Department for International Development (DFID) and the U.S. Agency for International Development (USAID).

Read more here: http://www.therwandan.com/new-project-to-ramp-up-genetic-gains-in-maize-for-better-livelihoods/

Work to develop high yielding Striga tolerant maize seed is bearing fruit

Striga, an invasive parasitic weed with purple-colored flowers, looks striking and harmless. But, beyond that mark of beauty, is a nutrient-sucking monster that stunts crops such as maize and sorghum, leaving affected farmers counting losses.

Witchweed thrives in poor soils with low rainfall conditions. It is prevalent in farming systems with poor crop management practices and in communities where farmers use minimal or no fertilizer. Once maize begins germinating in Striga-prevalent soil, it stimulates Striga seeds to germinate. Striga then attaches to the roots of the host plant, sapping nutrients from the plant, leading to stunting. The potential yield loss can reach up to 100%. Some farmers attempt to uproot it once they notice it germinating alongside their maize plantation, but this is often too late because damage is done as soon as the parasite attaches to the maize roots. When mature, the weed deposits tens of thousands of tiny seeds into the soil. This makes it very difficult for farmers to get rid of it.

To tackle this challenge, farmers need to apply inorganic fertilizer, which is not always affordable, or animal manure to enrich the soil before planting. They are also advised by researchers and extensionists to practice crop rotation or intercropping with legumes such as beans, soybean or groundnuts that restrict Striga’s germination.  In the Assessment of Management Options on Striga Infestation and Maize Grain Yield in Kenya, for example, researchers recommend that Striga control measures include a combination of herbicide-resistant or maize varieties with native genetic resistance intercropped with legumes.

Nevertheless, while a few control measures have been moderately successful, the problem still persists, especially in western Kenya, eastern Uganda and lake zone of Tanzania, where farmers have frequently voiced their frustrations at the ubiquity of this invasive weed.

“While crop rotation with crops such as soybean or beans may break the cycle of Striga, its seed can stay in the soil and remain viable for up to 10 years,” says Dan Makumbi, a maize breeder with the International Maize and Wheat Improvement Center (CIMMYT), who is leading research efforts against the witchweed.

A sorghum field infested with Striga in Siaya County. (Photo: Joshua Masinde/CIMMYT)
A sorghum field infested with Striga in Siaya County. (Photo: Joshua Masinde/CIMMYT)
Norah Kayugi on a Striga-infested farm in Siaya County. (Photo: Joshua Masinde/CIMMYT)
Norah Kayugi on a Striga-infested farm in Siaya County. (Photo: Joshua Masinde/CIMMYT)
Norah Kayugi holds a bunch of Striga weeds she has uprooted on a farm she works as a casual laborer in Siaya. (Photo: Joshua Masinde/CIMMYT)
Norah Kayugi holds a bunch of Striga weeds she has uprooted on a farm she works as a casual laborer in Siaya. (Photo: Joshua Masinde/CIMMYT)

A blow to optimal yield potential

Maize is a staple crop that is predominantly cultivated by smallholder farmers in western Kenya and the lake region. It is an important source of food security and livelihoods of millions of people in the region, but constraints such as Striga prevent farmers from obtaining the crop’s ideal potential.

“The yield loss would have been adequate to cover my family’s food requirements for a year,” Naliaka said. “From two farming seasons, I could harvest a sufficient quantity of maize and sell some surplus to pay my children’s school fees. With the Striga menace, all that is but a dream.”

Just like Naliaka, Norah Kayugi, a 40-year-old widowed mother of six children from Siaya County in Kenya, has seen her maize production fall to less than 8 bags of 90kgs per acre. In normal circumstances, they would obtain at least 16 bags of maize per acre. The significant yield loss sets back many affected households in a big way, as they experience food shortage only a few months after harvest. Some divert their reduced incomes for food purchases, possibly leaving other priorities such as health and education of their children unattended.

Kayugi, who has been a farmer since 1997, now takes on casual jobs to supplement her farming in order to support her family, being the sole breadwinner following her husband’s demise years ago. “I plant vegetables, beans and maize to sustain my family. My one-acre farm yields about 10 bags of 90ks each. But I know for sure that were it not for this weed, the yield potential could reach 30 bags of 90kgs each per acre.”

A young, yet-to-flower Striga weed at the CIMMYT-KALRO Kibos Research Station in Kisumu. (Photo: Joshua Masinde/CIMMYT)
A young, yet-to-flower Striga weed at the CIMMYT-KALRO Kibos Research Station in Kisumu. (Photo: Joshua Masinde/CIMMYT)

Standing up to multiple farming stresses

These smallholders, like their counterparts elsewhere in sub-Saharan Africa, already face other farming challenges, including climate change-induced droughts, pests such as the fall armyworm, diseases like maize lethal necrosis (MLN), and declining soil fertility, among others. While CIMMYT has registered breakthroughs in developing maize varieties that tolerate such stresses, on-going efforts against Striga are also taking shape, challenges notwithstanding.

The development and deployment of the imazapyr-resistant (IR) maize has been one such instance of effective Striga control. With this method, herbicide-resistant maize seeds are coated with herbicide.  The seed germinates and absorbs some of the herbicide used to coat it. The germinating maize stimulates Striga to germinate and as it attaches to the maize root, it is killed before it can cause any damage. Despite its effectiveness, sustaining this technology presented a major challenge to seed companies.

“It was costly for seed companies, as they needed to establish and sustain the operation of separate seed treatment units dedicated to production of the herbicide-coated maize seed. Once you establish a line to dress the seed with the chemical, you cannot use it to treat any other seeds as the chemical will destroy them,” said Makumbi.

Seed companies — like NASECO in Uganda, Kenya Seed Company in Kenya, Western Seed Company and FreshCo in Kenya, and Meru Agro in Tanzania — obtained financial and technical support from a partnership initiative coordinated by African Agricultural Technology Foundation (AATF) and backed by CIMMYT to scale commercialisation of StrigAwayTM maize in East Africa. The initiative was funded by USAID’s Feed the Future Partnering for Innovation program through Fintrac and it supported the seed companies to establish seed treatment facilities to handle herbicide resistant maize. This allowed each of the companies to have a fully dedicated facility for herbicide resistant maize seed processing. “Right now, herbicide resistant maize hybrid seed is available on the market in Kenya, Tanzania and Uganda,” Makumbi said.

CIMMYT field technician Carolyne Adhiambo at a maize field experiment showing promise of Striga tolerance or resistance the Kibos Research station in Kisumu. (Photo: Joshua Masinde/CIMMYT)

Native hope

In the past few years, Makumbi and his team, in collaboration with the International Institute for Tropical Agriculture (IITA) and the Kenya Agricultural and Livestock Research Organization (KALRO), have redirected their efforts towards breeding for native genetic resistance to Striga. This means developing seeds which are naturally resistant to Striga, reducing the need for herbicides. The early indication is that there are several parental lines showing potential to tolerate or resist Striga, and these are being used to develop hybrids. The hybrids, which offer multiple benefits for farmers, are under wide scale testing in Kenya.

“In our tests, we are not only looking at Striga resistance alone but also other important traits such as good yield under optimal conditions, drought stress and low soil fertility, resistance to major foliar diseases including gray leaf spot, Turcicum leaf blight, maize streak virus and ear rots,” Makumbi noted.

As these breeding efforts continue, there is light at the end of the tunnel. The hope of farmers taking back full control of their maize farms from Striga’s “bewitching ways” in the near future remains alive.

“Better, faster, equitable, sustainable” – wheat research community partners join to kick off new breeding project

Wheat fields at the Campo Experimental Norman E. Borlaug (CENEB) near Ciudad Obregón, Sonora, Mexico. (Photo: M. Ellis/CIMMYT)
Wheat fields at the Campo Experimental Norman E. Borlaug (CENEB) near Ciudad Obregón, Sonora, Mexico. (Photo: M. Ellis/CIMMYT)

More than 100 scientists, crop breeders, researchers, and representatives from funding and national government agencies gathered virtually to initiate the wheat component of a groundbreaking and ambitious collaborative new crop breeding project led by the International Maize and Wheat Improvement Center (CIMMYT).

The new project, Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods, or AGG, brings together partners in the global science community and in national agricultural research and extension systems to accelerate the development of higher-yielding varieties of maize and wheat — two of the world’s most important staple crops.

Funded by the Bill & Melinda Gates Foundation, the U.K. Department for International Development (DFID), the U.S. Agency for International Development (USAID), and the Foundation for Food and Agriculture Research (FFAR), the project specifically focuses on supporting smallholder farmers in low- and middle-income countries. The international team uses innovative methods — such as rapid cycling and molecular breeding approaches — that improve breeding efficiency and precision to produce varieties that are climate-resilient, pest and disease resistant and highly nutritious, targeted to farmers’ specific needs.

The wheat component of AGG builds on breeding and variety adoption work that has its roots with Norman Borlaug’s Nobel Prize winning work developing high yielding and disease resistance dwarf wheat more than 50 years ago. Most recently, AGG builds on Delivering Genetic Gain in Wheat (DGGW), a 4-year project led by Cornell University, which ends this year.

“AGG challenges us to build on this foundation and make it better, faster, equitable and sustainable,” said CIMMYT Interim Deputy Director for Research Kevin Pixley.

At the virtual gathering on July 17, donors and partner representatives from target countries in South Asia joined CIMMYT scientists to describe both the technical objectives of the project and its overall significance.

“This program is probably the world’s single most impactful plant breeding program. Its products are used throughout the world on many millions of hectares,” said Gary Atlin from the Bill & Melinda Gates Foundation. “The AGG project moves this work even farther, with an emphasis on constant technological improvement and an explicit focus on improved capacity and poverty alleviation.”

Alan Tollervey from DFID spoke about the significance of the project in demonstrating the relevance and impact of wheat research.

“The AGG project helps build a case for funding wheat research based on wheat’s future,” he said.

Nora Lapitan from the USAID Bureau for Resilience and Food Security listed the high expectations AGG brings: increased genetic gains, variety replacement, optimal breeding approaches, and strong collaboration with national agricultural research systems in partner countries.

India’s farmers feed millions of people. (Photo: Dakshinamurthy Vedachalam)
India’s farmers feed millions of people. (Photo: Dakshinamurthy Vedachalam)

Reconnecting with trusted partners

The virtual meeting allowed agricultural scientists and wheat breeding experts from AGG target countries in South Asia, many of whom have been working collaboratively with CIMMYT for years, to reconnect and learn how the AGG project both challenges them to a new level of collaboration and supports their national wheat production ambitions.

“With wheat blast and wheat rust problems evolving in Bangladesh, we welcome the partnership with international partners, especially CIMMYT and the funders to help us overcome these challenges,” said Director General of the Bangladesh Wheat and Maize Research Institute Md. Israil Hossain.

Director of the Indian Institute for Wheat and Barley Research Gyanendra P. Singh praised CIMMYT’s role in developing better wheat varieties for farmers in India.

“Most of the recent varieties which have been developed and released by India are recommended for cultivation on over 20 million hectares. They are not only stress tolerant and high yielding but also fortified with nutritional qualities. I appreciate CIMMYT’s support on this,” he said.

Executive Director of the National Agricultural Research Council of Nepal Deepak K. Bhandari said he was impressed with the variety of activities of the project, which would be integral to the development of Nepal’s wheat program.

“Nepal envisions increased wheat productivity from 2.84 to 3.5 tons per hectare within five years. I hope this project will help us to achieve this goal. Fast tracking the replacement of seed to more recent varieties will certainly improve productivity and resilience of the wheat sector,” he said.

The National Wheat Coordinator at the National Agricultural Research Center of Pakistan, Atiq Ur-Rehman, told attendees that his government had recently launched a “mega project” to reduce poverty and hunger and to respond to climate change through sustainable intensification. He noted that the support of AGG would help the country increase its capacity in “vertical production” of wheat through speed breeding. “AGG will help us save 3 to 4 years” in breeding time,” he said.

For CIMMYT Global Wheat Program Director Hans Braun, the gathering was personal as well as professional.

“I have met many of you over the last decades,” he told attendees, mentioning his first CIMMYT trip to see wheat programs in India in 1985. “Together we have achieved a lot — wheat self-sufficiency for South Asia has been secured now for 50 years. This would not be possible without your close collaboration, your trust and your willingness to share germplasm and information, and I hope this will stay. “

Braun pointed out that in this project, many national partners will gain the tools and capacity to implement their own state of the art breeding strategies such as genomic selection.

“We are at the beginning of a new era in breeding,” Braun noted. “We are also initiating a new era of collaboration.”

The wheat component of AGG serves more than 30 million wheat farming households in Bangladesh, Ethiopia, India, Kenya, Nepal and Pakistan. A separate inception meeting for stakeholders in sub-Saharan Africa is planned for next month.

New project to ramp up genetic gains in maize for better livelihoods

A new project, Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods (AGG), seeks to achieve these results by speeding up genetic gains in maize and wheat breeding to deliver improved, stress resilient, nutritious seed to smallholders in 13 countries in sub-Saharan Africa (SSA) and four in South Asia. The 5-year AGG project is funded by the Bill & Melinda Gates Foundation, the UK Department for International Development (DFID) and the U.S. Agency for International Development (USAID).

Read more here.

New project to ramp up genetic gains in maize for better livelihoods

Drought tolerant maize route out of poverty for community-based seed producer, Kenya. (Photo: Anne Wangalachi/CIMMYT)
Drought tolerant maize route out of poverty for community-based seed producer, Kenya. (Photo: Anne Wangalachi/CIMMYT)

As plant pests and diseases continue to evolve, with stresses like drought and heat intensifying, a major priority for breeders and partners is developing better stress tolerant and higher yielding varieties faster and more cost effectively.

A new project, Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods (AGG), seeks to achieve these results by speeding up genetic gains in maize and wheat breeding to deliver improved, stress resilient, nutritious seed to smallholders in 13 countries in sub-Saharan Africa (SSA) and four in South Asia. The 5-year AGG project is funded by the Bill & Melinda Gates Foundation, the UK Department for International Development (DFID), the U.S. Agency for International Development (USAID), and the Foundation for Food and Agriculture Research (FFAR).

The maize component of the project brings together diverse partners, including the International Maize and Wheat Improvement Center (CIMMYT) and the International Institute of Tropical Agriculture (IITA) as co-implementers; national agricultural research systems (NARS); and small and medium-sized (SME) seed companies.

Ambitious targets

At the inception meeting of the maize component of AGG on July 10, 2020, project leaders, partners and funders lauded the ambitious targets that aim to bolster the resilience and better the livelihoods, food and nutritional security of millions of smallholder farmers in SSA. At least 150,000 metric tons of certified seed is expected to be produced, adopted by 10 million households, planted on 6 million hectares by 2024 and benefiting 64 million people.

“We are developing climate resilient, nutritious, efficient, productive maize varieties for the farming community in sub-Saharan Africa. We will continue to work closely with our partners to develop product profiles, which are centered on the varieties that are really needed,” said CIMMYT Interim Deputy Director for Research Kevin Pixley.

AGG draws a solid foundation from previous projects such as Drought Tolerant Maize for Africa (DTMA), Improved Maize for Africa Soils (IMAS), Water Efficient Maize for Africa (WEMA) and Stress Tolerant Maize for Africa (STMA). Several high-yielding maize varieties that tolerate and/or resist diseases such as maize lethal necrosis (MLN), gray leaf spot (GLS), northern corn leaf blight, maize streak virus (MSV), turcicum leaf blight (TLB) and are drought-tolerant (DT), were developed and released to farmers across SSA. Varieties with nutritional traits such as nitrogen use efficiency (NUE) and quality protein maize (QPM) were also developed in the preceding initiatives.

Drought Tolerant Maize for Africa (DTMA) project monitoring and evaluation takes place in Tanzania. (Photo: Florence Sipalla/CIMMYT)
Drought Tolerant Maize for Africa (DTMA) project monitoring and evaluation takes place in Tanzania. (Photo: Florence Sipalla/CIMMYT)

A matter of “life or death”

“When farmers are confronted by aggressive farming challenges, they want products that address those challenges at the earliest opportunity. Waiting for years could mean the difference between life and death,” remarked David Chikoye, the director of Southern Africa Hub at IITA.

A key focus of AGG is to incorporate gender-intentionality – special attention to the needs of women farmers and consumers – from the traits bred into new varieties, through the communication and technology deployment strategies.

“AGG provides an excellent opportunity to reorient our maize breeding, seed scaling and delivery strategies for greater impact on the livelihoods of smallholder farmers, especially women and the disadvantaged communities that are not well reached so far,” said B.M. Prasanna, director of CIMMYT’s Global Maize Program and the CGIAR Research Program on Maize. “Our vision is to accelerate genetic gains to 1.5-2 percent annually across different breeding pipelines in the 13 participating countries in SSA and to reach over 10 million households with improved varieties.”

AGG will strengthen the capacity of partners to achieve and sustain accelerated variety replacement — or turnover — and increase genetic gains in farmers’ fields.

Old vs new

Many improved varieties have been released in the past decade. However, the turnover of old and obsolete varieties with new and improved ones is not happening as quickly as anticipated.

“We are producing good products and getting them out, but not at the speed that farmers need. How do we make it possible and profitable for seed companies to quickly introduce new hybrids?” posed Gary Atlin, program officer at the Bill & Melinda Gates Foundation. “We need to move towards a breeding and seed system where we know that we can develop a new product in 4 or 5 years and then get it to the farmers much more quickly. This is a complex problem.”

To enhance AGG’s ability to identify new products that perform well for farmers under their challenging circumstances, on-farm testing will be scaled up significantly.

Guest of honor, Ethiopia’s Minister of State for Agriculture Mandefro Nigussie, lauded CIMMYT’s support in improving the resilience and productivity of maize and wheat in the country. He observed that this has helped improve maize productivity in Ethiopia from around 2 tons/ha to about 4 tons/ha over the past two decades.

“We consider such a huge accomplishment as a combination of efforts in germplasm development and breeding efforts of CIMMYT and the Ethiopian national programs. That partnership will flourish further in this new project,” he said.

Accelerating Genetic Gains in Maize and Wheat (AGG)

Accelerating Genetic Gains in Maize and Wheat (AGG)

Accelerating Genetic Gains in Maize and Wheat (AGG), a project led by the International Maize and Wheat Improvement Center (CIMMYT), brings together partners in the global science community and in national agricultural research and extension systems to accelerate the development of higher-yielding varieties of maize and wheat — two of the world’s most important staple crops.

Specifically focusing on supporting smallholder farmers in low- and middle-income countries, the project uses innovative methods that improve breeding efficiency and precision to produce varieties that are climate-resilient, pest- and disease-resistant, and highly nutritious, targeted to farmers’ specific needs.

The maize component of the project serves 13 target countries: Ethiopia, Kenya, Malawi, Mozambique, South Africa, Tanzania, Uganda, Zambia and Zimbabwe in eastern and southern Africa; and Benin, Ghana, Mali, and Nigeria in West Africa. The wheat component of the project serves six countries: Bangladesh, India, Nepal, and Pakistan in South Asia; and Ethiopia and Kenya in sub-Saharan Africa.

This project builds on the impact of the Delivering Genetic Gain in Wheat (DGGW) and Stress Tolerant Maize for Africa (STMA) projects.

Objectives

The project aims to accelerate the development and delivery of more productive, climate-resilient, gender-responsive, market-demanded, and nutritious maize and wheat varieties in support of sustainable agricultural transformation in sub-Saharan Africa and South Asia.

To encourage adoption of new varieties, the project works to improve equitable access, especially by women, to seed and information, as well as capacity building in breeding, disease surveillance, and seed marketing.

Funders

Project funding is provided by the Bill & Melinda Gates Foundation, the UK Foreign, Commonwealth & Development Office, the United States Agency for International Development and the Foundation for Food and Agricultural Research (FFAR).

Key partners

The primary partners for this project are the national agricultural research systems in the project target countries and, for the maize component, the International Institute for Tropical Agriculture (IITA) and small and medium enterprise (SME) seed companies.

Scientific and technical steering committees

We are grateful to our excellent maize and wheat scientific and technical steering committees for their suggestions and thoughtful question on key issues for the success of AGG. Read about the recommendations from the maize steering committee here and the wheat steering committee here.

Year 1 Executive Summary

In its first year of operation, AGG has made great strides in collaboration with our national partners towards the project goals –despite the unprecedented challenges of working through a global pandemic. For specific milestones achieved, we invite you to review our AGG Year 1 Executive Summary and Impact Report (PDF).

Year 2 Executive Summary

AGG has made progress towards all outcomes. Our scientists are implementing substantial modifications to breeding targets and schemes. AGG is also in a continuous improvement process for the partnership modalities, pursuing co-ownership and co-implementation that builds the capacities of all involved. For specific milestones achieved, we invite you to review our AGG Year 2 Executive Summary and Impact Report (PDF).

CIMMYT’s adult plant resistance breeding strategy

Download a summary of CIMMYT’s breeding strategy for adult plant resistance (PDF).

Subscribe to the AGG newsletter

Reaching farmers in the last mile with seeds they can trust

Seed companies play a crucial role in delivering improved seed varieties to smallholder farmers. Masindi Seed Company Limited, located in Uganda’s mid-western region, is one such enterprise.

It traces its beginnings back to the Masindi District Farmers Association (MADFA) more than a decade ago. At the time, the association, which was comprised of about 9,000 farmers, was organized into a seed out-grower scheme of the then government-led Uganda Seed Project.

While its members were well trained, operated professionally and did their out-grower work diligently, the association faced one major challenge that almost broke it up: the ‘certified’ seed they bought from some seed firms could not germinate.

“At the time that we were operating solely as a farmers’ association, we did our best to grow maize seed for various seed companies who would then go on to produce and supply certified seed,” said Eugene Lusige, Masindi Seed general manager. “But we soon realized that a lot of the certified seed that we bought was of very poor quality due to their inability to germinate or because of low germination rates. This caused our farmers huge losses. We instead took this situation as a blessing in disguise, venturing into the certified seed production business based on our experience.”

Such turn of events meant the association had to not only produce the right seed, at the right price, at the right time and with the attributes their farmers desired, but also had to provide an opportunity to generate income for its members. By establishing Masindi Seed Company in 2009, the association members fulfilled their dream and ended up killing several birds with one stone by addressing multiple seed production challenges.

Over the past few decades, the liberalization of the Ugandan seed industry has seen it morph from government control, largely with the support of public sector research institutions, to increased private sector participation. This saw a resurgence in local and foreign-based seed firms involved in seed production, processing and marketing, which significantly contributed to increased delivery of certified seed to farming communities.

A sign leading to the Masindi District Farmers Association (MADFA) offices in Masindi town. (Photo: Joshua Masinde/CIMMYT)
A sign leading to the Masindi District Farmers Association (MADFA) offices in Masindi town. (Photo: Joshua Masinde/CIMMYT)

Reliable and beneficial partnerships

As one of the enterprises operating in the formal seed market, Masindi Seed has grown from strength to strength over the years, working closely with the National Crops Resources Research Institute (NaCRRI) of the National Agricultural Research Organization (NARO) in Uganda. The Longe 5D, an open pollinated variety (OPV) — an improved version of the Longe 5 — was the first certified seed that ushered them into the seed production and marketing landscape in 2009. The company accessed hybrids and parental materials from NARO, which works very closely with the International Maize and Wheat Improvement Center (CIMMYT) to obtain improved stress tolerant maize.

“Besides the parental materials we receive from CIMMYT through NARO, we are trained on best practices in quality seed production, and receive materials and financial support for some of our operations,” Lusige said.

In the first year, the company produced about 120-150 tons of the Longe 5D variety, which has remained their flagship product over the past decade. Currently, the variety has up to 65 % share of the company’s annual seed production capacity, which stands at about 1,200 tons. The annual capacity is poised to reach 2,400 by 2025 due to growing demand from farmers. The first stress tolerant hybrid, UH5053, was introduced in 2013 and two more hybrids have since gone into commercial production.

“The hybrids have much higher yield than the OPVs and other varieties in the market in this region. They are stress tolerant and some are early maturing,” Lusige said “But, the advantage with the Longe 5D is that it is much cheaper, with a seed packet going for less than its hybrid equivalent. So, it is best suited for the resource-constrained farmers who may not have the funds to buy artificial fertilizer. However, under normal farmer conditions, it yields between 1.5-1.8 tons per acre compared to a hybrid that can produce about 3 tons or more.”

The Longe 5D is also a quality protein maize (QPM) variety, which combats hidden hunger by providing essential amino acids that children and lactating mothers need, according to Godfrey Asea, director of the National Crops Resources Research Institute at NARO.

“One of the initiatives we have been working on is nutritious maize, with some of the OPVs that we have released in the past being QPM varieties,” Asea said. “We are thinking of integrating more nutrient qualities such as vitamin ‘A’ in new varieties, some of which are in the release pipeline. We have also acquired genetic resources that are rich in zinc. QPM varieties, as well as varieties that are biofortified with vitamin A and zinc are very important in improving household nutrition in the future for resource-constrained maize-dependent communities.”

To make farmers aware of available seed and important attributes, marketing and promotional activities through radio, flyers, banners, field days and on-farm demonstrations come in handy. For some newer varieties, the company goes as far as issuing small seed packs to farmers so they can see for themselves how the variety performs.

Masindi Seed Company offices in Masindi town. (Photo: Joshua Masinde/CIMMYT)
Masindi Seed Company offices in Masindi town. (Photo: Joshua Masinde/CIMMYT)

From a regional outfit to the national stage

In the beginning, growth was slow for Masindi Seed due to capacity and financial constraints to sustain promotional activities. Around 2013 and 2015, the company received support from the Alliance for a Green Revolution in Africa (AGRA) to scale-up its marketing and promotional efforts, which greatly enhanced Masindi Seed’s capacity and visibility. From then on, Masindi Seed went from being just a small regional-focused outfit to a nation-wide seed firm, marketing seed as far as northern and eastern Uganda.

By working closely with farmers, Masindi Seed Company puts itself at a strategic position to understand farmers’ preferred traits better. They have found that farmers prefer traits that allow them to earn more, such as higher yield, which allows them to harvest much more maize and sell the surplus for much-needed income.

A double cobber maize crop on Alinda Sarah's farm in Masindi, western Uganda. (Photo: Joshua Masinde/CIMMYT)
A double cobber maize crop on Alinda Sarah’s farm in Masindi, western Uganda. (Photo: Joshua Masinde/CIMMYT)

Seed that farmers can trust

Alinda Sarah, who doubles up as both a contract farmer for Masindi Seed and a large-scale grower for maize grain, agrees that obtaining the right seed that is guaranteed to germinate and offers a higher yield is a major boost to her trade.

“All I require is seed that I trust to have the attributes I want. What works for me is the seed that offers a higher yield, and can tolerate common stresses including drought, diseases and pests. This way, I can sustain my farming business,” she says.

The second attribute the farmers keep mentioning to Masindi agricultural extensionists is the maturity period, with farmers inclined to prefer faster maturing varieties, such as varieties that mature in 90 days. Ultimately, beyond some of these desirable and beneficial traits, the farmer is, before anything else, interested in the germinability of the seed they buy.

“By confirming the attributes that we tell them regarding our varieties with what they see at demo farms, the farmers trust us more,” Lusige said. “Trust is good for a business like ours and we try our best to preserve it. In the past, we have seen how some companies who lost the trust of their customers quickly went out of business.”

“Besides offering improved seed to farmers, we encourage our partner seed companies to support and teach the farmers good agronomic practices such as proper fertilizer requirements and application rates, early planting, appropriate spacing, weed control, integrated pest management and intercropping with legumes,” said Daniel Bomet, maize breeder at NARO.

Cover photo: Alinda Sarah demostrates how happy she is with the maize cob due for harvest on the farm she owns with her husband in Masindi, mid-western Uganda. (Photo: Joshua Masinde/CIMMYT)

Ethiopia puts in place strategies to ensure food availability amid COVID-19 crisis

Kindie Tesfaye (CIMMYT) appears on Fana Television.
Kindie Tesfaye (CIMMYT) appears on Fana Television.

As the COVID-19 pandemic continues to widen, its effects on the agriculture sector are also becoming apparent. In countries like Ethiopia, where farming is the backbone of the nation’s economy, early preparation can help mitigate adverse effects.

Recently, Fana Broadcasting Corporate (Fana Television) organized a panel discussion on how the Ethiopian government and its partners are responding to this crisis. Analyzing this topic were Kindie Tesfaye from the International Maize and Wheat Improvement Center (CIMMYT), Mandefro Negussi of the Ethiopian Institute of Agricultural Research (EIAR) and Esayas Lemma from the Ministry of Agriculture.

The panelists highlighted Ethiopia’s readiness in response to COVID-19. The country established a team from various institutions to work on strategies and to ensure no further food shortages occur due to the pandemic. The strategy involves the continuation of activity already started during the Bleg season — short rainy season — and the preparation for the Meher season — long rainy season — to be complemented by food production through irrigation systems during the dry season, if the crisis continues beyond September 2020.

Tesfaye indicated that CIMMYT continues to work at the national and regional levels as before, and is represented in the advisory team. One of the activities underway, he said, is the plan to use the Agro-Climate Advisory Platform to disseminate COVID-19 related information to extension agents and farmers.

Panelists agreed that the pandemic will also impact the Ethiopian farming system, which is performed collectively and relies heavily on human labor. To minimize the spread of the virus, physical distancing is highly advisable. Digital media, social media and megaphones will be used to reach out to extension agents and farmers and encourage them to apply all the necessary precaution measures while on duty. Training will also continue through digital means as face to face meetings will not be possible.

Full interview in Amharic:

 

Tadele Asfaw Worku

Tadele Asfaw Worku is a Program and Administrative Manager based in Ethiopia. He holds an MBA from the International Institute of Church Management in Florida, USA, a BSc in Accounting from Bahirdar University, Ethiopia, and additional certifications in project and human resource management.

Asfaw has over 18 years of experience in financial and human resource management, procurement, logistics and administration, gained while working in both national and international government and non-government organizations. d

Targeted fertilizer recommendations improve maize productivity in Ethiopia

A study on the impact of providing site-specific fertilizer recommendations on fertilizer usage, productivity and welfare outcomes in Ethiopia shows that targeted fertilizer recommendations encourage fertilizer investments and lead to improved maize productivity outcomes.

Enumerators manually shelling maize cobs to test grain moisture. (Photo: Hailemariam Ayalew/CIMMYT)
Enumerators manually shelling maize cobs to test grain moisture. (Photo: Hailemariam Ayalew/CIMMYT)

Researchers from the International Maize and Wheat Improvement Center (CIMMYT) and the Department of Economics and Trinity Impact Evaluation unit (TIME), Trinity College Dublin, anticipate that the findings will provide valuable guidance to the design and delivery of improved extension services in developing countries.

Soil degradation and nutrient depletion have been serious threats to agricultural productivity and food security in Ethiopia. Over the years, soil fertility has also declined due to the increase in population size and decline in plot size. Studies have identified nitrogen (N) and phosphorus (P) as being the nutrients most lacking and have called for action to improve the nutrient status of soils.

In response to this, in 2007, the Ministry of Agriculture and Natural Resources and agricultural research centers together developed regional fertilizer recommendations. These recommendations, about fertilizer types and application rates for different crops, were disseminated to farmers through agricultural extension workers and development agents.

However, adoption of fertilizer remains low — and average application rates are generally lower than recommended. One reason for these low adoption rates is that the information provided is too broad and not tailored to the specific requirements of smallholder farmers.

A study conducted on 738 farm households randomly selected from the main maize growing areas of Ethiopia — Bako, Jimma and the East Shewa and West Gojjam zones — shows that well-targeted fertilizer recommendations can increase fertilizer usage in smallholder maize production.

Maize is one of Ethiopia’s most important crops in terms of production, productivity, and area coverage. It is a primary staple food in the major maize growing areas as well as a source of feed for animals and a raw material for industries.

The study examined the impact of providing site-specific fertilizer recommendations to farmers on fertilizer usage/adoption, farm productivity/production per hectare and consumer expenditure/welfare outcomes using a two-level cluster randomized control trial.

Tailored recommendations

CIMMYT researcher Hailemariam Ayalew examines maize crops during the study. (Photo: Hailemariam Ayalew/CIMMYT)
CIMMYT researcher Hailemariam Ayalew examines maize crops during the study. (Photo: Hailemariam Ayalew/CIMMYT)

The Nutrient Expert decision-support tool, developed by the International Plant Nutrition Institute (IPNI) in partnership with the CGIAR Research Center on Maize (MAIZE), was used to give site-specific recommendations to each farmer. With this tool, researchers offered tailored recommendations, using information on fertilizer blends available in Ethiopia, current farmers’ practices, relevant inputs and field history, and local conditions. The experiment also considered whether coupling the site-specific recommendation with crop insurance — to protect farmers’ fertilizer investment in the event of crop failure — enhanced adoption rates.

Results show that well-targeted fertilizer recommendations improve fertilizer usage and productivity of maize production. The intervention led to an increase of 5 quintals, or 0.5 tons, in average maize yields for plots in the treatment group. While the study did not find any evidence that these productivity gains led to household welfare improvements, it is likely that such improvements may take longer to realize.

The study found no differential effect of the site-specific recommendation when coupled with agricultural insurance, suggesting that the risk of crop failure is not a binding constraint to fertilizer adoption in the study setting. The findings of this research should help guide the design and delivery of improved extension services in relation to fertilizer usage and adoption in developing countries.

Cover photo: Workers harvesting green maize at Ambo Research Center, Ethiopia, 2015. (Photo: CIMMYT/ Peter Lowe)

Cheap maize sheller saves farmers tens of hours

The machine saves farmers the burden of physically removing maize from combs, a tedious, time wasting and costly exercise that is practiced by at least 85 per cent of smallholder farmers in the country according to a research dubbed ‘maize production, challenges and experience of smallholder farmers in East Africa by the International Maize and Wheat Improvement Center (CIMMYT).

Read more here: https://farmbizafrica.com/market-place/12-machinery/999-inexpensive-maize-sheller-saves-farmers-tens-of-hours