Skip to main content

Location: Africa

CIMMYT’s work in Africa helps farmers access new maize and wheat systems-based technologies, information and markets, raising incomes and enhancing crop resilience to drought and climate change. CIMMYT sets priorities in consultation with ministries of agriculture, seed companies, farming communities and other stakeholders in the maize and wheat value chains. Our activities in Africa are wide ranging and include: breeding maize for drought tolerance and low-fertility soils, and for resistance to insect pests, foliar diseases and parasitic weeds; sustainably intensifying production in maize- and wheat-based systems; and investigating opportunities to reduce micronutrient and protein malnutrition among women and young children.

Double Burden of Malnutrition in Zimbabwe

The “double burden of malnutrition” refers to the seemingly paradoxical coexistence of obesity and undernutrition. It affects people whose diet consists primarily of “empty” calories: high-energy foods lacking in essential vitamins and minerals.

This project takes aim at both issues by combining improved agronomic practices with the use of biofortified maize varieties, to increase the nutritional value of maize, Zimbabwe’s most important, high-calorie staple food crop.

This project, whose full title is “Addressing malnutrition with biofortified maize in Zimbabwe: From crop management to policy and consumers”, will carry out on-station trials at Harare Research Station and Domboshava Training Centre, and conduct on-farm trials with 60 farmers in two wards in Murehwa district. These trials will help researchers predict the effect of bio + agro fortification at the national level. Project findings will be broadly disseminated through a well-defined stakeholder engagement strategy.

Objectives:

  • Evaluate new Provitamin A maize varieties and the next generation of multiple-biofortified lines under different agronomic practices to gain knowledge on the combination of bio + agronomic fortification.
  • Determine the actual nutrient content of the new Provitamin A lines in farmers’ fields with a range of different soil fertility levels and under farmers crop management.
  • Evaluate the possible impact of the combined bio + agro fortification approach on micronutrient uptake and human health by integrating the new grain composition with food supply data from household/individual dietary surveys at country level in Zimbabwe.
  • To move knowledge into practice, the information developed throughout the project will be distributed to stakeholders working in nutrition in Zimbabwe. This will ensure that the knowledge generated in the project helps farmers and consumers to maximize the benefits from biofortified crops.

The beginning of a beautiful partnership

In most developing countries, smallholder farmers are the main source of food production, relying heavily on animal and human power. Women play a significant role in this process — from the early days of land preparation to harvesting. However, the sector not only lacks appropriate technologies — such as storage that could reduce postharvest loss and ultimately maximize both the quality and quantity of the farm produce — but fails to include women in the design and validation of these technologies from the beginning.

“Agricultural outputs can be increased if policy makers and other stakeholders consider mechanization beyond simply more power and tractorization in the field,” says Rabe Yahaya, an agricultural mechanization expert at CIMMYT. “Increases in productivity start from planting all the way to storage and processing, and when women are empowered and included at all levels of the value chain.”

In recent years, mechanization has become a hot topic, strongly supported by the German Federal Ministry for Economic Cooperation and Development (BMZ). Under the commission of BMZ, the German development agency GIZ set up the Green Innovation Centers (GIC) program, under which the International Maize and Wheat Improvement Center (CIMMYT) supports mechanization projects in 16 countries — 14 in Africa and two in Asia.

As part of the GIC program, a cross-country working group on agricultural mechanization is striving to improve knowledge on mechanization, exchange best practices among country projects and programs, and foster links between members and other mechanization experts. In this context, CIMMYT has facilitated the development of a matchmaking and south-south learning matrix where each country can indicate what experience they need and what they can offer to the others in the working group. CIMMYT has also developed an expert database for GIC so country teams can reach external consultants to get the support they need.

“The Green Innovation Centers have the resources and mandate to really have an impact at scale, and it is great that CIMMYT was asked to bring the latest thinking around sustainable scaling,” says CIMMYT scaling advisor Lennart Woltering. “This is a beautiful partnership where the added value of each partner is very clear, and we hope to forge more of these partnerships with other development organizations so that CIMMYT can do the research in and for development.”

This approach strongly supports organizational capacity development and improves cooperation between the country projects, explains Joachim Stahl, a capacity development expert at CIMMYT. “This is a fantastic opportunity to support GIZ in working with a strategic approach.” Like Woltering and Yahaya, Stahl is a GIZ-CIM integrated expert, whose position at CIMMYT is directly supported through GIZ.

A catalyst for South-South learning and cooperation

Earlier this year, CIMMYT and GIZ jointly organized the mechanization working group’s annual meeting, which focused on finding storage technologies and mechanization solutions that benefit and include women. Held from July 7–10 July, the virtual event brought together around 60 experts and professionals from 20 countries, who shared their experiences and presented the most successful storage solutions that have been accepted by farmers in Africa for their adaptability, innovativeness and cost and that fit best with local realities.

CIMMYT postharvest specialist Sylvanus Odjo outlined how to reduce postharvest losses and improve food security in smallholder farming systems using inert dusts such as silica, detailing how these can be applied to large-scale agriculture and what viable business models could look like. Alongside this and the presentation of Purdue University’s improved crop storage bags, participants had the opportunity to discuss new technologies in detail, asking questions about profitability analysis and the many variables that may slow uptake in the regions where they work.

Harvested maize cobs are exposed to the elements in an open-air storage unit in Ethiopia. (Photo: Simret Yasabu/CIMMYT)
Harvested maize cobs are exposed to the elements in an open-air storage unit in Ethiopia. (Photo: Simret Yasabu/CIMMYT)

Discussions at the meeting also focused heavily on gender and mechanization – specifically, how women can benefit from mechanized farming and the frameworks available to increase their access to relevant technologies. Modernizing the agricultural sector in developing countries in ways that would benefit both men and women has remained a challenge for many professionals. Many argue that the existing technologies are not gender-sensitive or affordable for women, and in many cases, women are not well informed about the available technologies.

However, gender-sensitive and affordable technologies will support smallholder farmers produce more while saving time and energy. Speaking at a panel discussion, representatives from AfricaRice and the Food and Agriculture Organization of the United Nations (FAO) highlighted the importance of involving women during the design, creation and validation of agricultural solutions to ensure that they are gender-sensitive, inclusive and can be used easily by women. Increasing their engagement with existing business models and developing tailored digital services and trainings will help foster technology adaptation and adoption, releasing women farmers from labor drudgery and postharvest losses while improving livelihoods in rural communities and supporting economic transformation in Africa.

Fostering solutions

By the end of the meeting, participants had identified and developed key work packages both for storage technologies and solutions for engaging women in mechanization. For the former, the new work packages proposed the promotion of national and regional dialogues on postharvest, cross-country testing of various postharvest packages, promotion of renewable energies for power supply in storing systems and cross-country scaling of hermetically sealed bags.

To foster solutions for women in mechanization, participants suggested the promotion and scaling of existing business models such as ‘Woman mechanized agro-service provider cooperative’, piloting and scaling gender-inclusive and climate-smart postharvest technologies for smallholder rice value chain actors in Africa, and the identification and testing of gender-sensitive mechanization technologies aimed at finding appropriate tools or approaches.

Cover image: A member of Dellet – an agricultural mechanization youth association in Ethiopia’s Tigray region – fills a two-wheel tractor with water before irrigation. (Photo: Simret Yasabu/CIMMYT)

Farmers flock towards nutritious, orange maize

At seed fair in Masvingo District, Zimbabwe, farmers browse numerous displays of maize, sorghum, millet, groundnuts and cowpeas presented by the seed companies gathered at Muchakata Business Centre.

The event — organized by the International Maize and Wheat Improvement Center (CIMMYT) as part of the R4 Rural Resilience Initiative — is promoting a range of stress-tolerant seeds, but there is a particular rush for the vitamin A-rich, orange maize on offer. Farmers excitedly show each other the distinctive orange packets they are purchasing and in no time all, this maize seed is sold out at the Mukushi Seeds stand.

“I first saw this orange maize in the plot of my neighbor, Florence Chimhini, who was participating in a CIMMYT project,” explains Dorcus Musingarimi, a farmer from Ward 17, Masvingo. “I was fascinated by the deep orange color and Florence told me that this maize was nutritious and contained vitamin A which helps to maintain normal vision and maintain a strong immune system.”

“I would like to grow it for myself and consume it with my family,” says Enna Mutasa, who also purchased the seed. “I heard that it is good for eyesight and skin — and it is also tasty.”

A customer shows off her orange maize purchases at a seed fair in Masvingo, Zimbabwe. (Photo: S. Chikulo/CIMMYT)
A customer shows off her orange maize purchases at a seed fair in Masvingo, Zimbabwe. (Photo: S. Chikulo/CIMMYT)

Knowledge transfer through mother trials

Florence Chimhini is one of ten farmers who has participated in the “mother trials” organized as part of the Zambuko/R4 Rural Resilience Initiative since 2018.

These trials were designed in a way that allows farmers to test the performance of six different maize varieties suited to the climatic conditions of their semi-arid region, while also growing them under the principles of conservation agriculture. Using this method, farmers like Chimhini could witness the traits of the different maize varieties for themselves and compare their performance under their own farm conditions.

An important outcome of the mother trials was a growing interest in new varieties previously unknown to smallholders in the area, such as the orange maize varieties ZS244A and ZS500  which are sold commercially by Mukushi Seeds.

“Recent breeding efforts have significantly advanced the vitamin A content of orange maize varieties,” says Christian Thierfelder, a cropping systems agronomist at CIMMYT. “However, the orange color has previously been associated with relief food — which has negative connotations due to major food crises which brought low quality yellow maize to Zimbabwe.”

“Now that farmers have grown this maize in their own mother trial plots and got first-hand experience, their comments are overwhelmingly positive. The local dishes of roasted maize and maize porridge are tastier and have become a special treat for the farmers,” he explains.

“Though not as high yielding as current white maize varieties, growing orange maize under climate-smart conservation agriculture systems can also provide sustained and stable yields for farm families in Zimbabwe’s drought-prone areas.”

A seed company representative outlines the benefits of an orange maize variety at a seed fair in Masvingo, Zimbabwe. (Photo: S.Chikulo/CIMMYT)
Grison Rowai, a seed systems officer at HarvestPlus outlines the benefits of an orange maize variety at a seed fair in Masvingo, Zimbabwe. (Photo: S.Chikulo/CIMMYT)

Addressing micronutrient deficiency

In Zimbabwe, at least one in every five children suffers from ailments caused by vitamin A deficiency, from low levels of concentration to stunting and blindness. The vitamin is commonly found in leafy green vegetables, fruits and animal products — sources that may be unavailable or unaffordable for many resource-poor households.

Staple maize grain, however, is often available to smallholder families and thus serves as a reliable means through which to provide additional micronutrient requirements through conventional biofortification. This allows people to improve their nutrition through the foods that they already grow and eat every day, says Lorence Mjere, a seed systems officer at HarvestPlus Zimbabwe.

The beta-carotene in orange maize gives it its distinctive orange color and provides consumers with up to 50% of their daily vitamin A requirements.

“Orange maize addresses hidden hunger in family diets by providing the much-needed pro-vitamin A which is converted to retinol upon consumption,” explains Thokozile Ndhlela, a maize breeder at CIMMYT. “In doing so, it helps alleviate symptoms of deficiency such as night blindness and poor growth in children, to name just a few.”

The success of the recent seed fairs shows that provitamin A maize is gaining momentum among smallholder farmers in Masvingo and its continued promotion will support all other efforts to improve food and nutrition security in rural farming communities of southern Africa.

Wheat disease common to South America jumps to Africa

Pawan Kumar Singh, head, wheat pathology, International Maize and Wheat Improvement Center (CIMMYT) says that the fast-acting and devastating fungal disease known as wheat blast was first spotted in Africa in the Zambian rainfed wheat production system in the 2017-2018 crop cycle.

Read more here: https://www.scidev.net/sub-saharan-africa/agriculture/news/wheat-disease-common-to-asia-jumps-to-africa.html

Pamela Sithole Chirwa

Pamela Sithole Chirwa is an Administrative Coordinator with CIMMYT’s Global Maize Program, based in Zimbabwe.

James Gethi

James Gethi is a Maize Seed Systems Specialist with CIMMYT’s Global Maize Program, based in Zimbabwe.

CIMMYT-supported researcher earns doctorate for work on gender, maize value chains and food security

Gebre received his doctorate in Agricultural and Resource Economics from Kyushu University, Japan.

On September 25, with financial and academic support from the International Maize and Wheat Improvement Center (CIMMYT), Girma Gezimu Gebre upgraded his honorific from mister to doctor. Born in Dawuro zone, in southern Ethiopia, Gebre received his doctorate in Agricultural and Resource Economics from Kyushu University, Japan.

His dissertation—Gender Dimensions of the Maize Value Chain and Food Security: The Case of Dawuro Zone in Southern Ethiopia—was supported by CIMMYT through the Stress Tolerant Maize for Africa (STMA) project. Dil Rahut, global program manager of the socioeconomics and sustainable intensification programs at CIMMYT, served on his committee.

Asked about Gebre’s achievement, Rahut alluded to his hard work and dedication. “Desire is the starting point of all achievements while hard work and commitment are the end points of all the high achievements,” he said.

Gebre’s research explores how and to what degree gender plays a role in the adoption of improved maize varieties, maize productivity, maize market participation, and marketing channel choices, as well as food security among smallholder households across the maize value chain. Gebre already boasts published articles on the impact of gender on various dimensions of agriculture and agricultural development as well as various other topics— from the development of sustainable banana value chains in Ethiopia to barriers to farmers’ innovativeness.

At Kyushu University Gebre was awarded the 2020 Graduate School of Bioresources and Bioenvironmental Science “Outstanding Student Prize.” He was also awarded the 2020 Department of Agricultural and Resource Economics Prize in recognition of his excellent academic achievements and quality as a role model for other students.

Before pursuing a Ph.D., Gebre received a Master’s degree in Economics (Development Policy Analysis) from Mekelle University, Ethiopia, and a Master’s degree in Agricultural Production Chain Management—Horticulture Chain from Van Hall Larenstein University of Applied Sciences in the Netherlands. He has served as the coordinator of the postgraduate program in Agribusiness and Value Chain Management and as the head of the Department of Agricultural Economics at Aksum University, Ethiopia.

Beyhan Akin

Beyhan Akin is a senior scientist with CIMMYT’s Global Wheat Program, based in Turkey.

She joined CIMMYT in 1987 and has since worked across different areas of the International Winter Wheat Program (IWWIP), including supporting capacity development for national and regional collaborators and conducting in-service trainings for young researchers from the Central and West Asia and North Africa (CWANA) region. Since 2020, she is leading the International Winter Wheat Improvement Program for CIMMYT and the Spring Wheat Program in Turkey.

Akin obtained her PhD from the Aegean University in Izmir, Turkey, in 2007. She had post-graduate research activities at Washington State University in 2009 on Yellow Rust.

Reflections on resilience

Approaching Ward 6 in Mwenezi, southern Zimbabwe, tracts of empty fields around homesteads on either side of the road signal the end of harvesting for the 2019/20 farming season. Farmers have stored away maize fodder on tree branches or inside the family compounds.

At one of the homesteads in the village of Chikwalakwala A, ten farmers are gathered while agricultural extension officers weigh grain and legume samples. They are participating in mother trials from the International Maize and Wheat Improvement Center (CIMMYT), using improved farming practices and drought-resilient seed varieties. This is one of the eight villages in Ward 6 where CIMMYT has established demonstration sites, as part of the Zambuko Livelihoods Initiative, supported by the United States Agency for International Development (USAID).

“Most of us here were born and raised in this ward, helping our parents with farming activities and continuing with farming when we finally had our own families,” farmer Tevera Romichi explains. However, the dry spells, high temperatures and erratic rainfall have become increasingly disturbing for him in recent years. “It became difficult to determine when we would receive enough rain to plant our crops without risking long dry spells,” he says.

The onset of rains in Mwenezi has shifted over the years, from late September to the end of October or early November. With most families in the district depending on agriculture for their livelihoods, the adverse change in climatic conditions has compromised food security. These farmers grow crops such as millet, sorghum and groundnut.

Clemence Hlungwane, another farmer participating in mother trials, further explains how traditional practices of repeated tillage with ox-drawn ploughs weakened the soil structure, exposing it to soil erosion and loss of fertility. “These soils have been overused without any thought of how to replenish all the nutrients that were found in the soil in past years,” he says. The result for families like Hlungwane’s were poor germination, susceptibility to pests and diseases and poor yields.

Lablab fixes nitrogen into the soil and provides residue for mulching and feed for livestock.
Lablab fixes nitrogen into the soil and provides residue for mulching and feed for livestock. (Photo: Christian Thierfelder/CIMMYT)

Being smart in the field

The introduction of climate-smart technologies by CIMMYT provided a channel through which mother-trial farmers in Ward 6 could explore alternative farming practices in a sustainable way while adapting to climate-induced risks. The principles of conservation agriculture, which encourage the preservation of soil moisture and nutrients, underpinned the technologies introduced by CIMMYT.

Initially, mother trial farmers expressed mixed feelings when the CIMMYT team and the Agricultural Extension and Technical Services (AGRITEX) officials took them through the process of establishing the demonstration plots. “It seemed like a lot of work,” Charleton Midzi recalls. “There was a lot of measuring, pegging and marking the demonstration plots but we soon realized that this would be important when planting the small grains and legumes.”

“At the same time, I was curious to see how ploughing with a ripper would help the soil and crops along with the practice of mulching,” Midzi says. “Where mulch was applied, the moisture was well preserved, and the crops looked much healthier and vibrant than in portions without mulch.” Another important lesson was understanding the importance of record keeping for planting dates, harvesting dates and rainfall records to inform the next season. In addition, good agronomy practices such as spacing, correct application of nutrients and use of pesticides contributed to the successful production at the demonstration plots.

“We no longer waste inputs,” says Caleb Matandare, a farmer in the village of Chikwalakwala C. “Being smart in the field means applying the correct amount of fertilizer using the measuring cups provided and keeping a record of the suitable amount for the crop.”

By the end of the season, the mother farmers observed the evident difference in the higher quality of the millet and sorghum planted on the conservation agriculture plots, compared to the conventional plots. From the yields of sorghum, millet and cowpeas, Matandare’s family of 13 are guaranteed enough diverse and nutritious food, particularly in the “lean season,” the period between harvests.

Margaret Mapuranga, a mother-trial farmer in Ward 6, Mwenezi district, shows a sample of velvet bean from the demonstration plot.
Margaret Mapuranga, a mother-trial farmer in Ward 6, Mwenezi district, shows a sample of velvet bean from the demonstration plot. (Photo: Shiela Chikulo/CIMMYT)

Baby-trial farmers eager to learn

Since the establishment of the mother trials in Ward 6, several farmers witnessing the advantages of producing under conservation agriculture and using drought-resilient varieties are keen to adopt the improved technologies.

Margaret Mapuranga shares how her neighbor inquired about the legume crops. “I explained to her how lablab, velvet bean and cowpeas fix nitrogen in the soil, which will be useful for the grain crops in the next season. She would like to try out the same in her own field in the coming season.” Mapuranga is confident that she can promote these sustainable practices with farmers selected for the baby trials in her village.

The coming 2020/21 season looks promising as more farmers in Ward 6 adopt the improved technologies. Mother-trial farmers are eager to expand conservation agriculture practices to other portions of their land as a safeguard against climate risks. For them, the ability to share the climate-smart technologies promoted by CIMMYT is an empowering process that will transform agriculture in the ward and beyond.

Somalia agriculture partners learn about integrated fall armyworm control practices

Fall armyworm continues to cause havoc in Africa. Farmers in Somalia have not been spared since this unwelcome guest showed up in the country over three years ago. As part of the mitigation measures, the Somali Agriculture Technical Group (SATG) in partnership with the International Maize and Wheat Improvement Center (CIMMYT) and the International Committee of the Red Cross (ICRC) recently conducted online trainings on fall armyworm management for sustainable crop protection. The online trainings, targeting national agriculture stakeholders in the country, took place on August 25 and September 30, 2020, with nearly 250 participants attending both webinars.

“This is the first of our efforts to reach out to our partners in Somalia, especially the Somali Agriculture Technical Group and the national agricultural research system, to increase the awareness on the integrated pest management approaches that can help combat this highly destructive pest,” said B.M. Prasanna, Director of CIMMYT’s Global Maize Program and the CGIAR Research Program on Maize (MAIZE).

“This training was designed to help participants to gain a better understanding about fall armyworm, how to identify it, how to monitor and scout for it, how to effectively implement a management strategy that is environmentally and ecologically benign, in order to protect the food security and livelihoods of farmers and their families,” Prasanna said.

An integrated pest management strategy for sustainable control of fall armyworm should consider various interventions, including regular scouting and monitoring of the pest in the fields, host plant resistance, biological and biorational control, agroecological management, and use of environmentally safer pesticides and good agronomic practices tailored for the socio-cultural and economic contexts of the farmers. Ultimately, the purpose of a functional integrated pest management approach is to suppress pest population by applying techniques that minimize human and environmental harm, while protecting the crops from economic damage.

“I am happy to see the expertise from high levels of research at CIMMYT, icipe, IITA, universities, SATG and the humanitarian sector coming together to tackle and solve problems linked to food production and consumption. I believe that such important trainings have great value for Somalia, and should be further strengthened and encouraged,” said Abdalla Togola from the ICRC.

B.M. Prasanna presents at training.
B.M. Prasanna, Director of CIMMYT Global Maize Program and the CGIAR Research Program MAIZE, presents at the online training on integrated pest management-based fall armyworm control. (Photo: Joshua Masinde/CIMMYT)
Hussein Haji presents at training.
Hussein Haji, the Executive Director of Somali Agriculture Technical Group speaks at the fall armyworm online training on integrated pest management-based fall armyworm control. (Photo: Joshua Masinde/CIMMYT)
Professor Dan McGrath presents at training.
Professor Dan McGrath of Oregon State University, USA, delivering a training on integrated pest management-based fall armyworm control. (Photo: Joshua Masinde/CIMMYT)
John Karonga presents at training.
John Karonga, an agronomist at the International Committee of the Red Cross (ICRC) speaks at the online training on integrated pest management-based fall armyworm control. (Photo: Joshua Masinde/CIMMYT)

Hussein Haji, the Executive Director of SATG was optimistic that the training would go a long way to empower farmers in Somalia, through their cooperatives, and could lead to better ways of tackling challenges such as fall armyworm, already made worse by other stresses like drought and desert locusts.

“Through our extension workers, we hope this information will trickle down to our cooperatives, who produce mainly maize and sorghum seed in Somalia,” he added.

This comes on the back of a partnership between the ICRC and SATG to implement activities intended to improve food production among rural communities in six regions of Somalia. The partnership would enhance quality seed production with a focus on maize and sorghum, the major staple crops in the country.

Besides Prasanna, the key resource persons included Dan McGrath (Professor Emeritus, Oregon State University, USA), Joseph Huesing (CIMMYT Consultant on integrated pest management) and Georg Goergen (Entomologist, International Institute of Tropical Agriculture), Frederic Baudron (CIMMYT Systems Agronomist), Anani Bruce (CIMMYT Entomologist), Yoseph Beyene (CIMMYT Regional Breeding Coordinator for Africa) and Saliou Niassy (Head of Agricultural Technology Transfer Unit, International Center of Insect Physiology and Ecology).

The fall armyworm, a voracious caterpillar officially reported for the first time in Africa in Nigeria in 2016, remains a serious pest with devastating consequences on millions of farmers’ food and livelihood security. The pest has spread quickly throughout sub-Saharan Africa, primarily attacking maize and sorghum, two main staple crops in the region. The Food and Agriculture Organization of the United Nations (FAO) estimates up to 18 million tons of maize are lost to the pest annually, at an estimated economic loss of $4.6 billion.

To reduce the losses, experts have been recommending a toolbox of integrated pest management (IPM) practices to minimize the damage on smallholder farmers’ fields. Scientists at CIMMYT are also working intensively to develop improved maize varieties with native genetic resistance to this devastating insect pest.

Cover photo: Kowthar Abdirahman Afyare studies agriculture at the Somali National University. (Photo: AMISOM Public Information)

Breaking Ground: Isaiah Nyagumbo advances climate-smart technologies to improve smallholder farming systems

Most small farmers in sub-Saharan Africa rely on rain-fed agriculture to sufficiently feed their families. However, they are increasingly confronted with climate-induced challenges which hinder crop production and yields.

In recent years, evidence of variable rainfall patterns, higher temperatures, depleted soil quality and infestations of destructive pests like fall armyworm cause imbalances in the wider ecosystem and present a bleak outlook for farmers.

Addressing these diverse challenges requires a unique skill set that is found in the role of systems agronomist.

Isaiah Nyagumbo joined the International Maize and Wheat Improvement Center (CIMMYT) in 2010 as a Cropping Systems Agronomist. Working with the Sustainable Intensification program, Nyagumbo has committed his efforts to developing  conservation agriculture  technologies  for small farming systems.

“A unique characteristic of systems agronomists,” Nyagumbo explains, “is the need to holistically understand and address the diverse challenges faced by farming households, and their agro-ecological and socio-economic environment. They need to have a decent understanding of the facets that make technology development happen on the ground.”

“This understanding, combined with technical and agronomical skills, allows systems agronomists to innovate around increasing productivity, profitability and efficient farming practices, and to strengthen farmers’ capacity to adapt to evolving challenges, in particular those related to climate change and variability,” Nyagumbo says.

Isaiah Nyagumbo stands next to a field of maize and pigeon pea. Currently, Nyagumbo’s research seeks to better understand the resilience benefits of cereal-legume cropping systems and how different planting configurations can help to improve system productivity. (Photo: CIMMYT)
Isaiah Nyagumbo stands next to a field of maize and pigeon pea. Currently, Nyagumbo’s research seeks to better understand the resilience benefits of cereal-legume cropping systems and how different planting configurations can help to improve system productivity. (Photo: CIMMYT)

Gaining expert knowledge

Raised by parents who doubled as teachers and small-scale commercial farmers, Nyagumbo was exposed to the realities of producing crops for food and income while assisting with farming activities at his rural home in Dowa, Rusape, northeastern Zimbabwe. This experience shaped his decision to study for a bachelor’s degree in agriculture specializing in soil science at the University of Zimbabwe and later a master’s degree in soil and water engineering at Silsoe College, Cranfield University, United Kingdom.

Between 1989 and 1994, Nyagumbo worked with public and private sector companies in Zimbabwe researching how to develop conservation tillage systems in the smallholder farming sector, which at the time focused on reducing soil erosion-induced land degradation.

Through participatory technology development and learning, Nyagumbo developed a passion for closely interacting with smallholder farmers from Zimbabwe’s communal areas as it dawned to him that top-down technology transfer approaches had their limits when it comes to scaling technologies. He proceeded to study for his PhD in 1995, focusing on water conservation and groundwater recharge under different tillage technologies.

Upon completion of his PhD, Nyagumbo started lecturing at the University of Zimbabwe in 2001, at the Department of Soil Science and Agricultural Engineering, a route that opened collaborative opportunities with key international partners including CIMMYT.

“This is how I began my engagements with CIMMYT, as a collaborator and jointly implementing on-farm trials on conservation agriculture and later broadening the scope towards climate-smart agriculture technologies,” Nyagumbo recalls.

By the time an opportunity arose to join CIMMYT in 2010, Nyagumbo realized that “it was the right organization for me, moving forward the agenda of sustainability and focusing on improving productivity of smallholder farmers.”

Climate-smart results

Cropping systems agronomist Isaiah Nyagumbo inspects a maize ear at the Chimbadzwa plot in Ward 4, Murewa, Zimbabwe. (Photo: CIMMYT)
Cropping systems agronomist Isaiah Nyagumbo inspects a maize ear at the Chimbadzwa plot in Ward 4, Murewa, Zimbabwe. (Photo: CIMMYT)

Projects such as SIMLESA show results of intensification practices and climate-smart technologies aimed at improving smallholder farming systems in eastern and southern Africa.

One study showed that when conservation agriculture principles such as minimum tillage, rotation, mulching and intercropping are applied, yield increases ranging from 30-50 percent can be achieved,” Nyagumbo says.

Another recent publication demonstrated that the maize yield superiority of conservation agriculture systems was highest under low-rainfall conditions while high-rainfall conditions depressed these yield advantages.

Furthermore, studies spanning across eastern and southern Africa also showed how drainage characteristics of soils affect the performance of conservation agriculture technologies. “If we have soils that are poorly drained, the yield difference between conventional farming practices and conservation agriculture tends to be depressed, but if the soils are well drained, higher margins of the performance of conservation agriculture are witnessed,” he says.

Currently, Nyagumbo’s research efforts in various countries in eastern and southern Africa seek to better understand the resilience benefits of cereal-legume cropping systems and how different planting configurations can help to improve system productivity.

“Right now, I am focused on understanding better the ‘climate-smartness’ of sustainable intensification technologies.”

In Malawi, Nyagumbo is part of a team evaluating the usefulness of different agronomic practices and indigenous methods to control fall armyworm in maize-based systems. Fall armyworm has been a troublesome pest particularly for maize in the last four or five seasons in eastern and southern Africa, and finding cost effective solutions is important for farmers in the region.

Future efforts are set to focus further on crop-livestock integration and will investigate how newly developed nutrient-dense maize varieties can contribute to improved feed for livestock in arid and semi-arid regions in Zimbabwe.

Sharing results

Another important aspiration for Nyagumbo is the generation of publications to share the emerging results and experiences gained from his research with partners and the public. Working in collaboration with others, Nyagumbo has published more than 30 articles based on extensive research work.

“Through the data sharing policy promoted by CIMMYT, we have so much data generated across the five SIMLESA project countries which is now available to the public who can download and use it,” Nyagumbo says.

While experiences with COVID-19 have shifted working conditions and restricted travel, Nyagumbo believes “through the use of virtual platforms and ICTs we can still achieve a lot and keep in touch with our partners and farmers in the region.”

Overall, he is interested in impact. “The greatest reward for me is seeing happy and transformed farmers on the ground, and knowing my role is making a difference in farmers’ livelihoods.”

See our coverage of World Food Day 2020.
See our coverage of World Food Day 2020.

Wheat blast has made the intercontinental jump to Africa

For the first time, wheat blast, a fast-acting and devastating fungal disease, has been reported on the African continent, according to a new article published by scientists from the Zambian Agricultural Research Institute (ZARI), the International Maize and Wheat Improvement Center (CIMMYT) and the US Department of Agriculture – Foreign Disease Weed Science Research Unit (USDA-ARS).

Read more: https://www.rural21.com/english/scientific-world/detail/article/wheat-blast-has-made-the-intercontinental-jump-to-africa.html

Food production in Africa: Role of improved seeds in enhancing food security

This year’s Nobel Peace Prize award is likely to turn the eyes of the world to the millions of people who suffer from, or face the threat of hunger. CGTN Africa has been running a series on food production in the continent. The series is in line with this year’s Nobel Peace Prize theme — making food security an instrument of peace. This episode focuses on the impact of improved seeds.

Watch here: https://www.youtube.com/watch?v=F0saDuHlVZs&feature=youtu.be

Breaking Ground: Jordan Chamberlin avidly explores the changing landscapes of Africa

Sub-Saharan Africa is undergoing important transformations, including climate change, population growth, urbanization and migration flows, and growth in digital technologies. What can we say about the likely development trajectories that African rural economies are on, and the implications for poor farming households? These are central questions for Jordan Chamberlin, an economist at the International Maize and Wheat Improvement Center (CIMMYT) in Kenya.

Chamberlin’s desk is covered with screens teeming with numbers, complex mathematical equations, lines of code and aerial views of African landscapes. He combines traditional microeconomic analysis with geospatial modelling skills to study some of the ways in which rural transformations are occurring. In this era of big data, he examines the wealth of spatial and socioeconomic datasets to explore the relationships between drivers of change and smallholder welfare, sometimes revealing surprising insights on how rural communities in Africa are evolving.

Are commercial farms good or bad for neighboring smallholder farmers? Which households can benefit from the rapidly evolving rural land markets in Africa? What drives migration between rural areas? These are some examples of the complex but increasingly important questions that inform how we understand the evolution of agri-food systems in developing countries,” Chamberlin explains. “Fortunately, we also increasingly have access to new data that helps us explore these issues.”

In addition to household survey datasets — the bread and butter of applied social scientists — today’s researchers are also able to draw on an ever-expanding set of geospatial data that helps us to better contextualize the decisions smallholder farmers make.

He cites current work, which seeks to understand input adoption behaviors through better measurement of the biophysical and marketing contexts in which small farms operate. “Evidence suggests that low use rates of inorganic fertilizer by smallholders is due in part to poor expected returns on such investments,” he explains, “which are the result of site-specific agronomic responses, rainfall uncertainty, variation in input-output price ratios, and other factors.”

We are increasingly able to control for such factors explicitly: one of Chamberlin’s recent papers shows the importance of soil organic carbon for location-specific economic returns to fertilizer investments in Tanzania. “After all, farmers do not care about yields for yields’ sake — they make agronomic investments on the basis of how those investments affect their economic welfare.”

Better data and models may help to explain why farmers sometimes do not adopt technologies that we generally think of as profitable. A related strand of his research seeks to better model the spatial distribution of rural market prices.

Jordan Chamberlin (left) talks to a farmer in Ethiopia’s Tigray region in 2019, while conducting research on youth outmigration from rural areas. (Photo: Jordan Chamberlin)
Jordan Chamberlin (left) talks to a farmer in Ethiopia’s Tigray region in 2019, while conducting research on youth outmigration from rural areas. (Photo: Jordan Chamberlin)

A spatial economist’s journey on Earth

Ever since his experience as a Peace Corps volunteer in Paraguay, where he worked as a beekeeping specialist, Chamberlin knew he wanted to spend his professional life working with smallholder farmers. He wanted to better understand how rural development takes place, and how policies and investments can help rural households to improve their welfare.

In pursuit of these interests, his academic journey took him from anthropology to quantitative geography, before leading him to agricultural economics. “While my fundamental interest in rural development has not changed, the analytical tools I have preferred have evolved over the years, and my training reflects that evolution,” he says.

Along with his research interests, he has always been passionate about working with institutions within the countries where his research has focused. While working with the International Food Policy Research Institute (IFPRI) in Ethiopia, he helped establish a policy-oriented GIS lab at the Ethiopian Development Research Institute (EDRI). Years later, as part of his work with Michigan State University, he served as director of capacity building at the Indaba Agricultural Policy Research Institute (IAPRI), a not-for-profit Zambian research organization. He continues to serve as an external advisor on PhD committees, and considers mentorship a key part of his professional commitments.

He joined CIMMYT at the Ethiopia office in 2015 as spatial economist, part of the foresight and ex ante group of the Socioeconomics program.

As part of his research portfolio, he explores the role of new technologies, data sources and extension methods in the scaling of production technologies. Under the Taking Maize Agronomy to Scale in Africa (TAMASA) project, one area he has been working on is how we may better design location-specific agronomic advisory tools. Working with the Nutrient Expert tool, developed by the African Plant Nutrition Institute (APNI), he and his research team have conducted randomized control trials in Ethiopia and Nigeria to evaluate the impacts of such decision-support tools on farmer investments and productivity outcomes. They found that such tools appear to contribute to productivity gains, although tool design matters — for example, Nigerian farmers were more likely to take up site-specific agronomic recommendations when such information was accompanied by information about uncertainty of financial returns.

Jordan Chamberlin (center) talks to colleagues during a staff gathering in Nairobi. (Photo. Joshua Masinde/CIMMYT)
Jordan Chamberlin (center) talks to colleagues during a staff gathering in Nairobi. (Photo. Joshua Masinde/CIMMYT)

Creative rethinking

While Chamberlin’s research portfolio is diverse, one commonality is the drive to use new data and tools to better guide how development resources are allocated.

“Given the scarcity of resources available to governments and their partners, it is important to have sound empirical foundations for the allocation of these resources. Within CIMMYT, I see my role as part of a multidisciplinary team whose goal is to generate such empirical guidance,” he says.

This research also contributes to better design of agricultural development policies.

“Even though many of the research topics that my team addresses are not traditional areas of emphasis within CIMMYT’s socioeconomic work, I hope that we are demonstrating the value of broad thinking about development questions, which are of fundamental importance to one of our core constituencies: the small farmers of the region’s maize and wheat-based farming systems.”