CIMMYT’s work in Africa helps farmers access new maize and wheat systems-based technologies, information and markets, raising incomes and enhancing crop resilience to drought and climate change. CIMMYT sets priorities in consultation with ministries of agriculture, seed companies, farming communities and other stakeholders in the maize and wheat value chains. Our activities in Africa are wide ranging and include: breeding maize for drought tolerance and low-fertility soils, and for resistance to insect pests, foliar diseases and parasitic weeds; sustainably intensifying production in maize- and wheat-based systems; and investigating opportunities to reduce micronutrient and protein malnutrition among women and young children.
The International Maize and Wheat Improvement Center (CIMMYT) has released a set of 12 new maize lines adapted to the tropical environments targeted by CIMMYT and partner institutions.
Maize ears of the newly released set of CIMMYT maize lines. (Photo: CIMMYT)
The International Maize and Wheat Improvement Center (CIMMYT) is pleased to announce the release of a set of 12 new CIMMYT maize lines (CMLs). These lines were developed at various breeding locations of CIMMYT’s Global Maize program by a multi-disciplinary team of scientists in sub-Saharan Africa and Asia. The lines are adapted to the tropical maize production environments targeted by CIMMYT and partner institutions.
CIMMYT seeks to develop improved maize inbred lines in different product profiles, with superior performance and multiple stress tolerance to improve maize productivity for smallholder farmers. CMLs are released after intensive evaluation in hybrid combinations under various abiotic and biotic stresses, besides optimum conditions. Suitability as either seed or pollen parent is also thoroughly evaluated.
To increase the utilization of the CMLs in maize breeding programs of partner institutions, all the new CMLs have been tested for their heterotic behavior and have been assigned to specific heterotic groups of CIMMYT: A and B. As a new practice, the heterotic group assignment is included in the name of each CML, after the CML number — for example, CML604A or CML605B.
Release of a CML does not guarantee high combining ability or per se performance in all environments. Rather, it indicates that the line is promising or useful as a parent for pedigree breeding or as a potential parent of hybrid combinations for specific mega-environments. The description of the lines includes heterotic group classification, along with information on their specific strengths, and their combining ability with some of the widely used CMLs or CIMMYT lines.
Plants of the newly released set of CIMMYT maize lines. (Photo: CIMMYT)
For further details regarding the released CMLs, please contact B.M. Prasanna, Director of the Global Maize Program, CIMMYT, and the CGIAR Research Program on Maize.
Lindiwe Majele Sibanda is an animal scientist and a practicing farmer with extensive experience, serving as a policy advisor to numerous African governments and global institutions. She is Professor, Director and Chair of the African Research Universities Alliance (ARUA) Centre of Excellence in Food Systems at the University of Pretoria, in South Africa. She is a Nestlé SA Board Member and serves on the Board of WorldVeg. She is an Associate Fellow at Chatham House, and member of Champions 12.3, accelerating progress on UN Sustainable Development Goal (SDG) target 12.3, halving global per capita food waste.
She previously served as Board Chair for the International Livestock Research Institution (ILRI); Board Member of the International Maize and Wheat Improvement Center (CIMMYT); and program advisor to the International Food Policy Research Institute (IFPRI), International Water Management Institute (IWMI) and CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). She also served on the EAT-Lancet Commission on healthy diets from sustainable food systems and as a member of the Australian Centre for International Agricultural Research (ACIAR) Policy Advisory Council. She has served in senior leadership positions in various organizations, including co-Chair of the Global Alliance for Climate-Smart Agriculture (GACSA),Vice-President, Country Support, Policy and Partnerships for the Alliance for a Green Revolution in Africa (AGRA), and CEO and Head of Mission of the pan-African Food, Agriculture and Natural Resources Policy Analysis Network (FANRPAN). She holds a PhD and MSc in Agriculture from the University of Reading, and a BSc in Animal Production from the University of Alexandria, Egypt.
She was appointed to the CGIAR System Board in April 2021.
Last month, the CGIAR Excellence in Breeding (EiB) platform handed over digitization equipment to the Kenya Agricultural and Livestock Research Organization (KALRO) as part of ongoing efforts to modernize the public agency’s crop breeding programs. The handover of the equipment, valued at roughly $85,000, took place at KALRO headquarters in Nairobi on March 8, 2021, with representatives from the International Maize and Wheat Improvement Center (CIMMYT), EiB and KALRO in attendance.
KALRO received 23 units of equipment including seed counters, label printers, handheld data collectors, tablets and package printers. These will help the organization speed up and enhance the accuracy of various breeding processes, including seed preparation, data collection and data analysis. They will also support inventory management within KALRO’s maize, wheat, rice, sorghum, bean, soybean and potato breeding programs at six of its research centers in Kenya.
(L-R) CIMMYT Regional Representative for Africa and Kenya Country Representatives Moses Siambi, CGIAR EiB NARS Coordinator Biswanath Das, KALRO Director General Eliud Kireger and KALRO Deputy Director General for Crops Felister Makini at the digitization equipment handover event in Nairobi, Kenya. (Photo: Joshua Masinde/CIMMYT)
Dispensing with laborious systems
A lack of digitization equipment hampers the research efforts of many national agricultural research systems (NARS) across Africa. This adverse situation is compounded by unreliable institutional memory, which constrains NARS efforts to breed an assortment of crop varieties efficiently.
“Currently, KALRO uses very laborious systems including manual layouts and collection, followed by manual data entry into computers. This old age process is prone to data entry errors and delays in analysis, publication and reporting,” says KALRO Director General Eliud Kireger.
“With the equipment we are receiving, information and data can be recalled by a click of a button. The equipment will also significantly reduce research costs related to labor, thus freeing our scientists to focus on core research activities.”
The equipment will also support KALRO’s ongoing efforts to digitize its historical data, especially for the maize and wheat programs using the Breeding Management System (BMS). So far, 20 years of maize historical data has been uploaded onto the BMS platform for ease of access.
Prepped for emerging challenges
The CGIAR EiB platform was established in 2017 to help modernize public breeding programs in the CGIAR and NARS to increase their rates of genetic gain. In recent years, there has been an upsurge in challenges including climate change, population growth, rapid urbanization, changing dietary inclinations, transboundary movement of pests and diseases. These have exerted an enormous strain on food production systems and elicited the urgency to prioritize the adoption of new plant breeding techniques and technologies to address current and emerging threats. This calls for a holistic approach to tackle the issues including better agronomy and policy, according to EiB NARS Coordinator Biswanath Das.
“Modernizing our plant breeding programs to develop new, climate smart, market driven varieties will be at the heart of the solution,” says Das. “We must ensure that public plant breeding programs are not left behind because for many crops in Africa, there is limited private sector interest. Public breeding programs must shoulder the responsibility for ensuring the development and adoption of the next generation of crop varieties.”
CGIAR EiB NARS Coordinator Biswanath Das shares remarks at the digitization handover event in Nairobi, Kenya. (Photo: Joshua Masinde/CIMMYT)
Already, KALRO breeding programs, in collaboration with international CGIAR centers, have played a leading role in supporting farmers in sub–Saharan Africa to address many emerging plant threats such as wheat rust (UG99), maize lethal necrosis (MLN) and fall armyworm.
As part of its commitment to supporting NARS partners, EiB provided over 10 million Kenyan shillings ($92,000) worth of material and in-kind support to various KALRO breeding operations in 2020. This included genotyping support for maize and wheat, support to adopt the BMS digital data management system, technical support and training of KALRO breeders. Much of the digitization work is driven by EiB’s Operations and Phenoytyping module, led by Gustavo Teixeira. “We’ll continue to consider a whole range of devices and solutions,” says Teixeira. “It’s a part of our culture of continuous improvement, so breeding programs can focus on what really adds value to their clients.”
EiB will continue to support NARS across Africa and beyond to digitize their operations, and is working with partners to secure more equipment, training and resources. With this digitization project, EiB has targeted 24 breeding programs in 14 African countries. These include programs run by AfricaRice, CIMMYT, the International Institute of Tropical Agriculture (IITA) and the International Rice Research Institute (IRRI).
“We want to do more to support centers to improve their operations so they can achieve the most effective and cost efficient phenotypic processes — agronomic practices, seed processing and other areas,” explains Teixeira. “We aim to expand to more programs and partners.”
In Ethiopia, farming systems rely heavily on animal and human power, reducing productivity and efficiency. In recent years, the government and development partners have made significant efforts to modernize agriculture.
In 2013, CIMMYT introduced one-axel multipurpose tractors in various districts of Amhara, Oromia, South and Tigray regions. This new technology has helped to improve farmers’ lives and phase out outdated farming practices. Farmers have reduced drudgery, improved productivity and gained higher profits. This short video shows the impacts the two-wheel tractor brough to smallholder farmers in Ethiopia.
Financial support for this initiative came from the German development agency GIZ, USAID and the Australian government.
Field workers in Ethiopia weight the grain. (Photo: Hailemariam Ayalew/CIMMYT)
Quantifying agricultural productivity relies on measures of crop production and land area. Those measures need to be accurate, but it is often difficult to source reliable data. Inaccurate measurements affect our understanding of the relationship between agricultural productivity and land area.
Researchers examined the sensitivity of empirical assessments of this relationship to alternative measurement protocols. Scientists from the International Maize and Wheat Improvement Center (CIMMYT), Trinity College Dublin and the International Food Policy Research Institute (IFPRI) analyzed different methods of plot-level production and area measurement.
The study, to be published, is said to be the first to evaluate errors along the two dimensions —production and area — in all available measurement techniques.
Researchers found that errors from both production and area measurements explain the estimated inverse productivity-size relationship. When using a combination of the most accurate measures for yield and area — full plot harvest and total station — the inverse relationship vanishes. Consistent with previous studies, the study also shows that addressing one of the other sources of error — for example, either production or area estimates — does not eliminate the bias associated with measurement error.
For this study, the research team collected and used a unique dataset on maize production from Ethiopia, addressing measurement issues commonly found in other datasets that hinder accurate estimation of the size-productivity relationship. Specifically, the researchers considered six alternative land area measures: farmers’ self-reported estimates; estimates from low-cost old generation consumer-grade dedicated GPS receivers that have frequently been used in field data collection by research organizations over the past decade; estimates from single- and dual-frequency mobile phone GPS receivers; compass-and-rope estimates; and total station theodolite measurement.
An enumerator in Ethiopia measures grain moisture. (Photo: Hailemariam Ayalew/CIMMYT)
Most cost-effective measurement methods
The study also provides a cost-effectiveness analysis of the different measurement methods. According to the researchers, the most expensive combination to use is full harvest yield with total station measurement. The cost is potentially prohibitively high for traditional surveys involving large samples.
It concludes that the optimal combination is crop-cut random quadrant measurements coupled with GPS measurement. This offers the best value for money of all the methods considered, since the results for the productivity-size regressions are like what is found when the gold-standard for yield and area measurement protocols are used.
Musa Hasani Mtambo and his family in their conservation agriculture plot in Hai, Tanzania. (Photo: Peter Lowe/CIMMYT)
Between 1995-2015, nearly 60% of all maize varieties released in 18 African countries were CGIAR-related. At the end of this period, in 2015, almost half of the maize area in these countries grew CGIAR-related maize varieties. All that was accomplished through modest, maximum yearly investment of about $30 million, which showed high returns: in 2015, the aggregate yearly economic benefits for using CGIAR-related maize varieties released after 1994 were estimated to be between $660 million and $1.05 billion.
Since its introduction to Africa in the 16th century, maize has become one of the most important food crops in the continent.
It accounts for almost a third of the calories consumed in sub-Saharan Africa. And it’s grown on over 38 million hectares in the region, mostly by rainfall-dependent smallholder farmers.
Climate change poses an existential threat to the millions who depend on the crop for their livelihood or for their next meal. Already 65% of the maize growing areas in sub-Saharan Africa face some level of drought stress.
Long-term commitment
Through the International Maize and Wheat Improvement Center (CIMMYT) and the International Institute of Tropical Agriculture (IITA), CGIAR has been working alongside countless regional partners since 1980s to develop and deploy climate-smart maize varieties in Africa.
This work builds on various investments including Drought-Tolerant Maize for Africa (DTMA) and Stress Tolerant Maize for Africa (STMA). Support for this game-changing work has generated massive impacts for smallholder farmers, maize consumers, and seed markets in the region. Throughout, the determination to strengthen the climate resilience of maize agri-food systems in Africa has remained the same.
To understand the impact of their work — and how to build on it in the coming years — researchers at CIMMYT and IITA took a deep dive into two decades’ worth of this work across 18 countries in sub-Saharan Africa. These findings add to our understanding of the impact of work that today benefits an estimated 8.6 million farmers in the region.
Big challenges remain. But with the right partnerships, know-how and resources we can have an outsize impact on meeting those challenges head on.
In our hyper-connected world, it should come as no surprise that recent years have shown a major uptick in the spread of transboundary pests and diseases. Integrated approaches have been effective in sustainably managing these border-jumping threats to farmers’ livelihoods and food security.
But a truly integrated approach accounts for not just the “cure,” but also how it can be sustainably incorporated into the agri-food system and social landscape. For example, how do we know if the farmers who adopt disease- and pest-resistant seed will be able to derive better incomes? And how do we ensure that incentives are aligning with community norms and values to enable better adoption of integrated disease or pest management approaches?
Experts from across the CGIAR research system and its partners weighed in on this topic in the recent webinar on Integrated Pest and Disease Management, the third in the International Year of Plant Health Webinar series. Panelists shared valuable perspectives on the science of outbreaks, the social dimensions of crop pest and disease control, zoonotic disease risk, and how national, regional and global organizations can better coordinate their responses.
“The combination of science, global partnerships and knowledge helps all of us be better prepared to avoid the losses we’ve seen. . . Today, we’re going to see what this looks like in practice,” said Rob Bertram, chief scientist for the Bureau for Resilience and Food Security at USAID, and moderator of the event.
Participants on the webinar on Integrated Pest and Disease Management. (Photo: CIMMYT)
Understanding the sources
Wheat and maize, the key crops studied at the International Maize and Wheat Improvement Center (CIMMYT) are no stranger to destructive diseases or pests, with fall armyworm, wheat blast, or maize lethal necrosis topping the list. But other staple crops and their respective economies are suffering as well — from infestations of cassava brown streak, potato cyst nematode, taro blight, desert locusts, and fusarium wilt, just to name a few.
What are the reasons for the expansion of these outbreaks? B.M. Prasanna, director of CIMMYT’s Global Maize Program explained that there are several: “Infected seed or planting material, vector movement, strong migratory capacity, contaminated field equipment, improper crop production commercialization practices, and global air and sea traffic” are all major causes.
Prevention and control of diseases and pests requires an integral strategy which mobilizes synergies of multiple institutions. (Graphic: B.M. Prasanna/CIMMYT)
Preventing outbreaks is always better than scrambling to find a cure, but as Prasanna pointed out, this requires a holistic, multi-institutional strategy including surveillance and early warning, quarantine and phytosanitary regulations, and technological solutions. Better access to monitoring and surveillance data, and sensitive, easy-to-use and affordable diagnostic equipment are essential, as is the proactive deployment of resistant crop varieties.
Building awareness about integrated disease and pest management is just as important, he told the attendees. “We must remember that IPM is not just Integrated Pest Management, but also ‘Integrating People’s Mindsets.’ That remains a major challenge. We need to think beyond our narrow disciplines and institutions and really come together to put IPM solutions into farmers’ fields,” Prasanna said.
Not all outbreaks are the same, but lessons can be shared
Regina Eddy, coordinator for the Fall Armyworm Interagency Task Force at USAID, works closely with the complex issue of scaling when it comes to disaster response and the roles of national, regional and global organizations.
“We need to develop inclusive partner stakeholder platforms, not designed ‘for them,’ but ‘with them,’” said Eddy. “We cannot tackle food security issues alone. Full stop.”
Closing the gap between social and biophysical science
Nozomi Kawarazuka, social anthropologist at the International Potato Center (CIP) explained how researchers can improve the uptake of their new seed, innovation, or agronomic practice by involving social scientists to understand the gender norms and social landscape at the beginning of the project — in the initial assessment phase.
Kawarazuka highlighted how involving women experts and extension workers in sectors that are typically male-dominated helps reduce bias and works towards changing perceptions.
“In South Asia, women farmers hesitate to engage with male government extension workers,” she said. “Women experts and extension workers reduce this barrier. Gender and social diversity in the plant health sector is an entry point to develop innovations that are acceptable to women as well as men and helps scale up adoption of innovations in the community.
Gender and social dimensions of pest and disease control: a call for collaboration (Graphic: Nozomi Kawarazuka/CIP)
The world is watching agriculture and livestock
Zoonotic diseases, or zoonoses, are caused by pathogens spread between animals and people. Understanding zoonotic disease risk is an essential and timely topic in the discussion of integrated pest management. Poor livestock management practices, lack of general knowledge on diseases and unsafe yet common food handling practices put populations at risk.
“It’s especially timely, [to have this] zoonosis discussion in our COVID-plagued planet. The whole world is going to be looking to the food and agricultural sectors to do better,” Bertram said.
Annet Mulema, a gender and social scientist at the International Livestock Research Institute (ILRI) described results of a study showing how community conversations transformed gender relations and zoonotic disease risk in rural Ethiopia, where 80% of the population depends on agriculture and has direct contact with livestock.
“There were noticeable changes in attitude and practices among men and women regarding unsafe handling of animals and consumption of animal-source foods,” Mulema explained. “Community conversations give men and women involved a voice, it allows for a variety of ideas to be expressed and discussed, leads to community ownership of conclusions and action plans, and opens communication channels among local service providers and community members.”
Proportion of women and men practicing safe handling of livestock and animal source foods, before and after community conversation intervention. (Graphic: Annet Mulema/ILRI)
Local to global, and global to local
Panelists agreed that improving capacity is the most powerful lever to advance approaches for integrated pest management and plant health, while connected and inclusive partnerships along the value chain make the whole system more resilient. The amount of scientific knowledge on ways to combat plant pests and diseases is increasing, and we have new tools to connect the global with the local and bring this knowledge to the community level.
The fourth and final CGIAR webinar on plant health is scheduled for March 31 and will focus on a the intersectional health of people, animals, plants and their environments in a “One Health” approach.
East African Seed Company has a rich history of nearly 50 years, serving farmers with improved climate-resilient seed varieties. Established in 1972, the company produces and sells improved seed, through a wide distribution network in at least 15 countries in sub-Saharan Africa. It also markets agrochemicals and other farm inputs, and has ambitions of expanding to the rest of Africa, trading as Agriscope Africa Limited.
Smallholder farmers in sub-Saharan Africa continue to face multiple biotic and abiotic stresses as they try to improve their farms’ productivity and their livelihoods. Maize seed that guarantees high yield is a key trait, coupled with other key attributes such as drought tolerance, disease and pest resistance, early seedling vigor as well as suitability for food and animal feed.
With the varieties serving both small- and large-scale commercial farmers, challenges such as the fall armyworm, diminishing soil fertility and erratic rains have persisted in recent years and remain as key farming obstacles. “Such challenges diminish crop production and the grain quality thereby, lessening farmers’ profitability,” says Rogers Mugambi, Chief Operating Officer of East African Seed Company.
Scientists at the International Maize and Wheat Improvement Center (CIMMYT), in collaboration with partners in the national agriculture research systems and the commercial seed sector, continue to develop seed varieties that can guarantee decent yield even in times of climatic, disease and pest stress.
General view of the East African Seed warehouse. (Photo: Jerome Bossuet/CIMMYT)
Top-notch research trickles down to farmers
Over the years, East African Seed has inked partnerships with CIMMYT, national research institutes and other agencies in the countries where it operates. Such partnerships have been the driving force to its success and the impacts within the farming communities in sub-Saharan Africa.
“Our collaboration with CIMMYT began in 2008 with germplasm acquisition. The cooperation has expanded to include testing networks for new hybrids, early-generation seed production and marketing. The overall beneficiary is the smallholder farmer who can access quality seeds and produce more with climate-smart products,” Mugambi says.
Apart from the multi-stress-tolerant varieties developed and released over time by the national agricultural research programs, CIMMYT recently announced a breakthrough: fall armyworm-tolerant elite maize hybrids for eastern and southern Africa. This success followed three years of rigorous research and experiments conducted in Kenya and signified a key milestone in the fight against fall armyworm.
As part of the partnership in the Drought Tolerant Maize for Africa (DTMA) and Stress Tolerant Maize for Africa (STMA) projects, East African Seed Company (Agriscope Africa Limited) established demonstration farms and conducted field days in Kenya, reaching thousands of farmers as a result. It was also able to produce early generation seed, which supported production of 2,000 metric tons of certified seed. This partnership now continues in the Accelerating Genetic Gains in Maize and Wheat (AGG) project.
The company has contracted large- and small-scale growers across the country to meet its seed production targets.
“Most of our small-scale growers are clustered in groups of up to 30 farmers with less than five acres of farmland. The large growers have advanced irrigation facilities such as the pivot system and seed processing plants. The seed from the fields is pre-cleaned and dried in the out-grower facilities before delivery to our factory for further cleaning and processing,” Mugambi explains.
A handful of improved maize seed from the drought-tolerant variety TAN 250, developed and registered for sale in Tanzania through CIMMYT’s Drought Tolerant Maize for Africa (DTMA) project. (Photo: Anne Wangalachi/CIMMYT)
Out with the drought
Currently, of the 1,300 metric tons of drought-tolerant hybrid seeds it produces yearly, 500 metric tons constitute those derived from the partnership in the STMA project. Two notable hybrids, HODARI (MH501) and TOSHEKA (MH401), were derived during the DTMA and STMA projects. Released in 2014 and accepted for regional certification through the Common Market for Eastern and Southern Africa (COMESA)’s regional catalogue, the MH501 is a mid-altitude adapted and medium maturing three-way cross hybrid. The yield advantage of 15% over the local commercial checks triggered widespread adoption by the farmers, according to Mugambi. In Kenya, it was used as a commercial check during national performance trials, from 2017 to 2019.
The MH401, an early maturing hybrid with moderate drought tolerance, has been adopted in lowland and mid-altitude dry ecologies of Kenya and Tanzania. It has a 20% yield advantage over the local commercial checks.
As part of its varietal replacement, East African Seed Company looks to steadily retire older varieties such as KH600-15A and WE1101 and promote new ones including TAJIRI (EASH1220), TAJI (MH502) and FARAJA (MH503).
To promote new varieties and successfully reach smallholders, the company conducts field days, farm-level varietal demonstrations, road shows and radio programs. It also disseminates information on the benefits of new varieties while also dispensing promotional materials such as branded t-shirts and caps.
“Additionally, we organize annual field days at our research farm in Thika, where key and influential farmers and other stakeholders are invited from across Kenya and neighboring countries to learn about our new agricultural technologies,” Mugambi says.
A farmer assesses soil on his plot in Ethiopia. (Photo: Simret Yasabu/CIMMYT)
The first One Earth Root and Soil Health Forum took place on March 1, 2021. Over 800 people attended to discuss how to unlock the potential of better soil and root health to help transform food systems. The Forum brought together experts from farming, international organizations, NGOs, academia and the public and private sectors. Together they called for collective action in science and technology targeting the early stages of plant growth.
The main emphasis this year was on Africa, which has around 60% of the world’s uncultivated arable land. However, parallel workshops focusing on Turkey, the Middle East, Sub-Saharan Africa and South Africa enabled tailored discussions in regional languages. Plenary keynote speakers were Erik Fyrwald (Syngenta Group CEO and Chairman of the Syngenta Foundation for Sustainable Agriculture) and Dr Ismahane Elouafi (Chief Scientist at the UN Food and Agriculture Organization).
Erik Fyrwald underlined that “everything starts with soil. It is the foundation of productive farming practices – with healthy soil, you can have healthy plants, healthy people and a healthy planet. By acting on soil health through regenerative agriculture practices, we are acting on climate change, biodiversity loss and food security, as well as improving farmer livelihoods. The One Earth Soil and Root Health Forum helps an international community shift towards achieving this – together.”
Dr Ismahane Elouafi noted that “healthy soils are the foundation for agriculture, as they provide 95% of our food. Soils also provide fuel, fiber and medical products, and play a key role in the carbon cycle, storing and filtering water, and improving resilience to floods and droughts.”
Speaking on the opening panel, Michael Misiko, Africa Agriculture Director of The Nature Conservancy, noted that “climate change is inseparable from the life and health of our soils and the roots that must thrive within them.”
CIMMYT senior scientist and country representative for Turkey, Abdelfattah Dababat, underlining the importance of awareness raising action. “Growers basically do not recognize soil/root health to be a problem. Most of them are not aware of the root rot diseases and soil health issues in their fields, affecting their yield. This is why the term “hidden enemy” applies perfectly. Root and soil health management is therefore, not practiced and those yield losses are simply accepted.”
Speakers also underlined the link between soil and root health and the long-term economic productivity and the welfare of societies. Other points raised included technologies measuring soil health and their role in enabling informed decision-making by farmers and scientists. The importance of empowering smallholders and enabling access to modern technologies was also underlined as was the importance of public-private sector collaboration in achieving this.
The different parallel sessions covered i) solutions for soil borne diseases in protecting and enhancing root health, ii) supporting smallholder farmers to improve the health and fertility of their soils and the opportunities for public and private sectors to engage, iii) no tillage technologies and seed treatment for soil and root health and iv) the state of nematode soil pest pressures. The negative impact of conventional tillage systems include soil erosion and carbon emissions. The importance therefore of no tillage technologies was analyzed.
Health underfoot: why roots and soil are important
Around 95% of the food we eat grows in the earth. However, more than one-third of the world’s soils are degraded; without rapid action, this figure could rise to 90% by 2050. Soil erosion decreases the water, nutrients and root-space available to plants. Healthy roots enable better use of nutrients and water. They help produce more shoots and leaves from each seed, enabling farmers to produce more food and soil to capture more carbon. Healthy roots also help tackle soil erosion. Soil and root health help mitigate climate change. More carbon already resides in soil than in the atmosphere and all plant life combined. Studies show that there are 2,500 billion tons of carbon in soil, compared with 800 billion tons in the atmosphere and 560 billion tons in plant and animal life. Healthier soil can store even more. Healthy plants with good roots capture further carbon from the atmosphere.
The overall objective of the 5-year EU-funded DeSIRA action, led by the International Potato Center (CIP), is to improve climate change adaptation of agricultural and food systems in Malawi through research and uptake of integrated technological innovations.
CIMMYT’s role is focused on the following project outputs:
Identify and develop integrated technology options that effectively provide management options to contribute to reducing risks and increasing resilience and productivity of the smallholder farmers’ agrifood systems in Malawi. Towards this objective, CIMMYT will evaluate drought-tolerant and nutritious maize varieties under conservation agriculture and conventional practices, and assess the overall productivity gains from agronomic and germplasm improvements versus current farming practices.
Develop, test and promote robust integrated pest and disease management strategies to predict, monitor and control existing and emerging biotic threats to agriculture while minimizing risks to farmers’ health and damage to the environment. Towards this objective, CIMMYT will evaluate the effect of striga on maize performance under conservation agriculture and conventional practices; evaluate farmer methods and other alternatives to chemical sprays for the control of fall armyworm; and study the effect of time of planting for controlling fall armyworm.
Representing CIMMYT, Kinde Tesfaye (on the left) took part in the live radio programs. (Photo: CIMMYT)
The continuing increase in the number of farming families has led to a growing emphasis on approaches on how to reach more people at a time. Among others, individual, group and mass-media approaches to agricultural extension and advisory services have been used concurrently.
This year, the global COVID-19 pandemic presented yet another challenge to the agriculture sector due to travel restrictions and limited face-to-face interactions. This has obstructed capacity building for farmers as well as development agents to deliver seasonal and intra-seasonal agroclimate advisories for farmers to support farm decisions.
Realizing the importance of mass media in extension, the International Maize and Wheat Improvement Center (CIMMYT) in collaboration with the Ministry of Agriculture, the Ethiopian Institute of Agricultural Research (EIAR) and Climate Change, Agriculture and Food Security (CCAFS)-EA used live show radio program on Sunday mornings to provide climate advisories on the 2020 Kiremt (main cropping) season to farmers and extension workers on a two-weekly basis between June and November. The live show also allows listeners to call in and ask questions and provide feedback. Besides the climate agro-advisories, COVID-19 alerts and precautionary measures were provided to the radio audience.
Extremely low climate induced risk perception
CIMMYT-CASCAID II project baseline assessment indicates that the rural communities in the project intervention areas have an extremely low climate induced risk perception and are also quite resistant to change. The areas are also highly prone to recurring droughts. Erratic rainfall distribution and dry spells are common. Large areas of barren and uncultivable land, water shortage, poor soil quality, soil erosion due to high run off rate are adversely affecting the farming systems. Research shows that simple adaptation actions such as watershed management, changing planting dates and crop varieties could greatly reduce the climate variability and change impacts. However, communities being poorly linked to scientists and policy makers lack information about climate change adaptation options and government schemes related to the same. There are also challenges of communicating scientific research in simplified ways that are appropriate to local stakeholder needs.
In recent years, the use of improved technologies has been increasing due to the progressive national agricultural development policy and strategy that is in place coupled with advisories provided to help farmers to make timely and appropriate farm level decisions and practices.
Agroclimate advisory – the fourth production factor
The provision of agroclimate advisory is considered as the fourth production factor after labor, land, and capital and critical to the agricultural sector as climate and its associated adverse effects can negatively affect agricultural activities and productivities. Thus, ensuring the accessibility of relevant time sensitive forecast based advisory information to farming communities helps improve productivity and yields higher returns.
The advice will also assist smallholder farmers to manage climate risks through informed decisions such as identifying optimum planting time/sowing windows, planting density at the start of the rainy season, while at the same time managing fertilizer application. Moreover, it also benefits farmer decisions and practices on soil water, weeds, diseases, and pest management throughout the growing season. By monitoring weather and crop growth during the season, the same forecast information can assist in predicting crop yields well in advance of crop maturity and to allow farmers to decide whether to sell the product immediately after harvest or store it until it commands better prices later in the year.
Radio for disseminating agroclimate information
In Ethiopia, the use of ICT for the accumulation and dissemination of agroclimate information and other agricultural updates is still low. Radio transmission covers a large percentage of the country with most of the households own a radio. This makes the use of radio programs one of the most cost-effective channels for conveying weather forecast information and agricultural knowledge to rural communities which ultimately facilitate informed decision-making and adoption of new technologies and practices.
In collaboration with its partners, the CIMMYT-CASCADE II project through Fana FM radio implemented a six-month (June-November 2020) live radio program providing seasonal advisories at the start of the main season in June using seasonal forecast from the National Meteorology Agency which was downscaled to Woreda/Kebele level by EIAR, CCAFS-EA and CIMMYT. This was followed by a biweekly or monthly Wereda specific agro-climate advisories which focus on fertilizer application, weeding, crop protection, soil and water management and climate extremes such as flood and droughts.
The program also included experts from the Ministry of Agriculture, EIAR, and CGIAR Centers to provide professional explanations and updates from the perspective of in situational readiness to support issues coming from the radio audience. The program created an opportunity for the federal government to prepare in time on some activities like importing agricultural inputs such as pesticides and fungicides to control the outbreak of pests and diseases (e.g., desert locust infestation and wheat rust outbreak). The platform also provided an opportunity to reach to millions of farmers to convey COVID-19 prevention messages such as physical distancing, use of masks, handwashing and other precautions that need to be taken while working in groups.
Alinda Sarah shows a maize cob due for harvest on the farm she owns with her husband in Masindi, mid-western Uganda. (Photo: Joshua Masinde/CIMMYT)
The ultimate challenge for crop breeders is to increase genetic gain of a crop: literally, to increase the crop’s yield on farmers’ fields. Wheat and maize breeders from the International Maize and Wheat Improvement Center (CIMMYT) and partner institutions are working to achieve this in record time, developing new varieties tailored for farmers’ needs that are also pest- and disease-resistant, climate-resilient, and nutritious.
This work is part of the Accelerating Genetic Gain in Maize and Wheat for Improved Livelihoods (AGG) project. Among other methods, breeders are using state-of-the-art novel tools such as genomic selection to achieve this ambitious goal.
In genomic selection, breeders use information about a plant’s genetic makeup along with data on its visible and measurable traits, known as phenotypic data, to “train” a model to predict how a cross will turn out — information known as “genomic estimated breeding values (GEBV)” — without having to plant seeds, wait for them to grow, and physically measure their traits. In this way, they save time and costs by reducing the number of selection cycles.
However, research is still ongoing about the best way to use genomic selection that results in the most accurate predictions and ultimately reduces selection cycle time. A recent publication by CIMMYT scientist Sikiru Atanda and colleagues has identified an optimal genomic selection strategy that maximizes the efficiency of this novel technology. Although this research studied CIMMYT’s maize breeding programs, AGG scientists working on wheat genetic gain and zinc nutritional content see cross-crop impacts.
Shortening a lengthy process
In the typical breeding stages, breeders evaluate parental lines to create new crosses, and advance these lines through preliminary and elite yield trials. In the process, thousands of lines are sown, grown and analyzed, requiring considerable resources. In the traditional CIMMYT maize breeding scheme, for example, breeders conduct five stages of testing to identify parental lines for the next breeding cycle and develop high yielding hybrids that meet farmers’ needs.
In the current scheme using genomic selection, breeders phenotype 50% of a bi-parental population to predict the GEBVs of the remaining un-tested 50%. Though this reduces the cost of phenotyping, Atanda and his co-authors suggest it is not optimal because the breeder has to wait three to four months for the plant to grow before collecting the phenotypic data needed to calibrate the predictive model for the un-tested 50%.
Atanda and his colleagues’ findings specify how to calibrate a model based on existing historical phenotypic and genotypic data. They also offer a method for creating “experimental” sets to generate phenotypic information when the models don’t work due to low genetic connectedness between the new population and historical data.
This presents a way forward for breeders to accelerate the early yield testing stage based on genomic information, reduce the breeding cycle time and budget, and ultimately increase genetic gain.
Regional maize breeding coordinator for Africa Yoseph Beyene explained the leap forward this approach represents for CIMMYT’s maize breeding in Africa.
“For the last 5 years, CIMMYT’s African maize breeding program has applied genomic selection using the ‘test-half-and-predict-half’ strategy,” he said. “This has already reduced operational costs by 32% compared to the traditional phenotypic selection.”
“The prediction approach shown in this paper — using historical data alone to predict untested lines that go directly to stage-two trials — could reduce the breeding cycle by a year and save the cost of testcross formation and multi-location evaluation of stage-one testing. This research contributes to our efforts in the AGG project to mainstream genomic selection in all the product profiles.”
Effective for maize and wheat
Atanda, who now works on the use of novel breeding methods to enhance grain zinc content in CIMMYT’s wheat breeding program, believes these findings apply to wheat breeding as well.
“The implications of the research in maize are the same in wheat: accelerating early testing stage and reducing the breeding budget, which ultimately results in increasing genetic gain,” he said.
CIMMYT Global Wheat Program director Alison Bentley is optimistic about the crossover potential. “It is fantastic to welcome Atanda to the global wheat program, bringing skills in the use of quantitative genetic approaches,” she said. “The use of new breeding methods such as genomic selection is part of a portfolio of approaches we are using to accelerate breeding.”
CIMMYT’s wheat breeding relies heavily on a time-tested and validated method using managed environments to test lines for a range of growing environments — from drought to full irrigation, heat tolerance and more — in CIMMYT’s wheat experimental station in Ciudad Obregón, in Mexico’s state of Sonora.
According to CIMMYT senior scientist and wheat breeder Velu Govindan, using the approaches tested by Sikiru can make this even more efficient. As a specialist in biofortification — using traditional breeding techniques to develop crops with high levels of micronutrients — Govindan is taking the lead mainstreaming high zinc into all CIMMYT improved wheat varieties.
“This process could help us identify best lines to share with partners one year earlier — and it can be done for zinc content as easily as for grain yield.”
If this study seems like an excellent fit for the AGG project’s joint focus on accelerating genetic gain for both maize and wheat, that is no accident.
“The goal of the AGG project was the focus of my research,” Atanda said. “My study has shown that this goal is doable and achievable.”
Global thought leader, philanthropist and one of the International Maize and Wheat Improvement Center (CIMMYT) and CGIAR’s most vocal and generous supporters, Bill Gates, wrote a book about climate change and is now taking it around the world on a virtual book tour to share a message of urgency and hope.
With How to Avoid a Climate Disaster, Gates sets out a holistic and well-researched plan for how the world can get to zero greenhouse gas emissions in time to avoid a climate catastrophe. Part of this plan is to green everything from how we make things, move around, keep cool and stay warm, while also considering how we grow things and what can be done to innovate agriculture to lower its environmental impact.
Interviewed by actor and producer Rashida Jones, Gates explained his passion for action against climate change: “Avoiding a climate disaster will be one of the greatest challenges us humans have taken on. Greater than landing on the moon, greater than eradicating smallpox, even greater than putting a computer on every desk.”
“The world needs many breakthroughs. We need to get from 51 billion tons [of greenhouse gases] to zero while still meeting the planet’s basic needs. That means we need to transform the way we do almost everything.”
Bill Gates (left) talks to Rashida Jones during one of the events to present his new book.
Innovations in agriculture
When a book tour event attendee asked about the role of agriculture research in improving farmers’ livelihoods, Gates linked today’s challenge to that of the Green Revolution more than half a century ago. “There’s nothing more impactful to reduce the impacts of climate change than working on help for farmers. What we can do this time is even bigger than that. […] The most unfunded thing in this whole area is the seed research that has so much potential,” he said.
One such innovation and one of Gates’ favorite examples of CGIAR’s work is featured in Chapter 9 of his climate book – “Adapting to a warmer world” – and has been the source of generous funding from the Bill & Melinda Gates Foundation: drought-tolerant maize. “[…] as weather patterns have become more erratic, farmers are at greater risk of having smaller maize harvests, and sometimes no harvest at all. So, experts at CGIAR developed dozens of new maize varieties that could withstand drought conditions, each adapted to grow in specific regions of Africa. At first, many smallholder farmers were afraid to try new crop varieties. Understandably so. If you’re eking out a living, you won’t be eager to take a risk on seeds you’ve never planted before, because if they die, you have nothing to fall back on. But as experts worked with local farmers and seed dealers to explain the benefits of these new varieties, more and more people adopted them,” writes Gates.
We at CIMMYT are very proud and humbled by this mention as in collaboration with countless partners, CIMMYT and the International Institute of Tropical Agriculture (IITA) developed and promoted these varieties across 13 countries in sub-Saharan Africa and contributed to lifting millions of people above the poverty line across the continent.
For example, in Zimbabwe, farmers who used drought-tolerant maize varieties in dry years were able to harvest up to 600 kilograms more maize per hectare — enough for nine months for an average family of six — than farmers who sowed conventional varieties.
The world as we know it is over and, finally, humanity’s fight against climate change is becoming more and more mainstream. CIMMYT and its scientists, staff, partners and farmers across the globe are working hard to contribute to a transformation that responds to the climate challenge. We have a unique opportunity to make a difference. It is in this context that CGIAR has launched an ambitious new 10-year strategy that echoes Gates’s hopes for a better environment and food security for the generations to come. Let’s make sure that it ticks the boxes of smallholder farmers’ checklists.
A shop attendant displays drought-tolerant maize seed at the Dryland Seed Company shop in Machakos, Kenya. (Photo: Florence Sipalla/CIMMYT)
For several decades, the International Maize and Wheat Improvement Center (CIMMYT) has worked with partners and farmers to improve maize and wheat varieties. Packed with “upgrades” such as tolerance to environmental stresses, tolerance to diseases and pests, boosted nutrient content, higher yield potential and storage capabilities, and improved efficiency in using water and fertilizers, these seeds are rolled out by CIMMYT and its partners to create new opportunities for easier and better lives for farmers.
Together with national research partners, farmers, local governments and seed companies, CIMMYT’s work in seed systems has reaped results. Its experts are eager to put this experience into further action as CGIAR embarks on the next ten years of its journey to transform food, land, and water systems in a climate crisis. And rightly so: investments in CGIAR research — mainly through their contributions to enhancing yields of staple food crops — have returned ten-fold benefits and payoffs for poor people in terms of greater food abundance, lower prices of food, reduced food insecurity and poverty and reduced geographical footprint of agriculture. A large part of this impact is the result of CIMMYT’s day to day efforts to create a better world.
A Bangladeshi woman cuts up feed for her family’s livestock. They did not previously have animals, but were able to buy them after her husband, Gopal Mohanta, attended a farmer training from CIMMYT and its partners, which gave him access to better seed, technologies, and practices. Mohanta planted a wider range of crops, and in 2005 he planted maize for the first time, using improved seed based on CIMMYT materials. (Photo: S. Mojumder/Drik/CIMMYT)
Replacing old varieties, not as easy as it sounds
Slow variety turnover — that of more than ten years — makes farmers vulnerable to risks such as climate change and emerging biotic threats. On the other hand, planting improved varieties that match farmers’ needs and the geography they work in, can increase productivity gains and improve the nutritional status of smallholders and their families. This, in turn, contributes to increased household incomes. Indirectly, the benefits can reach the surrounding community by providing increased employment opportunities, wage increases and affordable access to food.
Despite its tremendous benefits, varietal turnover is no small feat.
When it comes to seeds, detailed multi-disciplinary research is behind every new variety and its deployment to farmers. Just as the production of a new snack, beverage or a car requires an in-depth study of what the customer wants, seed systems also must be demand-driven.
Socioeconomists have to work hand-in-hand with breeders and seed system specialists to understand the drivers and bottlenecks for improved varietal adoption, market needs, and gender and social inclusion in seed delivery. Bottlenecks include the lack of access by farmers — especially for resource-poor, socially-excluded ones — to reliable information about the advantages of new varieties. Even if farmers are aware of new varieties, seeds might not be available for sale where they live or they might be too expensive.
Possibly the most complex reason for slow variety turnover is risk vulnerability: some farmers simply can’t afford to take the risk of investing in something that might be good but could also disappoint. At the same time, seed companies also perceive a certain risk: they might not be interested in taking on an improved variety that trumps the seeds from older but more popular varieties they have on stock. For them, building and marketing a new brand of seeds requires significant investments.
Agricultural seed on sale by a vendor near Islamabad, Pakistan. For improved crop varieties to reach farmers, they usually must first reach local vendors like these, who form an essential link in the chain between researchers, seed producers and farmers. (Photo: M. DeFreese/CIMMYT)
New approaches are yielding results
Despite the complexity of the challenge, CIMMYT has been making progress, especially in Africa where slow variety turnover is creating roadblocks for increased food security and poverty alleviation.
Recent analysis of the weighted average age of CIMMYT-related improved maize varieties in 8 countries across eastern and southern Africa reveals that the overall weighted average age has decreased from 14.6 years in 2013 to 10.2 years in 2020. The remarkable progress in accelerating the rate of variety turnover and deploying the improved genetics — with climate resilience, nutritional-enhancement and grain yield — are benefiting more than eight million smallholders in Africa.
In Ethiopia, CIMMYT, EIAR and ICARDA’s work led to the adoption of improved rust-resistant varieties, corresponding productivity gains and economic benefits that, besides the urgent need to fight against the damaging rust epidemic, depended on a combination of enabling factors: pre-release seed multiplication, pro-active policies and rust awareness campaigns. The estimated income gain that farmers enjoyed due to adopting post-2010 varieties in 2016/2017 reached $48 million. For the country itself, the adoption of these varieties could save $65 million that otherwise would be spent on wheat imports.
Bill Gates echoes this in Chapter 9 of his new climate book, How to Avoid a Climate Disaster, as he describes CIMMYT and IITA’s drought-tolerant maize work: “[…] experts at CGIAR developed dozens of new maize varieties that could withstand drought conditions, each adapted to grow in specific regions of Africa. At first, many smallholder farmers were afraid to try new crop varieties. Understandably so. If you’re eking out a living, you won’t be eager to take a risk on seeds you’ve never planted before, because if they die, you have nothing to fall back on. But as experts worked with local farmers and seed dealers to explain the benefits of these new varieties, more and more people adopted them.”
Bidasem director general María Ester Rivas (center) stands for a photo with her seed processing team. Bidasem is a small seed company based in the city of Celaya in the central Mexican plains region known as the Bajío. Despite their small size, Bidasem and similar companies play an important role in reaching small farmers with improved seed that offers them better livelihoods. (Photo: X. Fonseca/CIMMYT)
Holistic action needed if we are to reach farmers with genetic innovations
Now more than ever, with increased frequency and intensification of erratic weather events on top of the complications of the COVID-19 pandemic, successful seed systems require the right investments, partnerships, efforts across disciplines, and enabling policies.
Varietal release and dissemination systems rely greatly on appropriate government policies and adoption of progressive seed laws and regulations. CGIAR’s commitment to farmers and the success of national seed systems is described in the recently launched 10-year strategy: “CGIAR will support effective seed systems by helping national governments and private sector companies and regulators build their capacities to play their roles successfully. New initiatives will be jointly designed along the seed distribution chain, including for regional seed registration, import and export procedures, efficient in-country trialing, registration and release of new varieties, and seed quality promotion through fit-for-purpose certification.”
In line with CGIAR’s ambitious goals, to provide farmers with a better service, small- and medium-size seed companies need to also be strengthened to become more market-oriented and dynamic. According to SPIA, helping local private seed dealers learn about new technology increases farm-level adoption by over 50% compared to the more commonly used approach, where public sector agricultural extension agents provide information about new seed to selected contact farmers.
CIMMYT socioeconomics and market experts are putting this in practice through working with agrodealers to develop retail strategies, such as targeted marketing materials, provision of in-store seed decision support and price incentives, to help both female and male farmers get the inputs that work best.
Within the new CGIAR, CIMMYT scientists will continue to work with partners to strongly improve the performance of wheat and maize in smallholder farmers’ fields. Concerted efforts from all actors conforming the entire seed system are essential to achieve our vision: to transform food systems for affordable, sufficient and healthy diets produced within planetary boundaries. Wheat and maize seed systems will form the basis to fulfill that vision and provide a tried and tested roadmap for other crops, including legumes, vegetables and fruits. Together, we can keep a finger on the pulse of farmers’ needs and build healthy diets for a better tomorrow from the ground up.