CIMMYTâs work in Africa helps farmers access new maize and wheat systems-based technologies, information and markets, raising incomes and enhancing crop resilience to drought and climate change. CIMMYT sets priorities in consultation with ministries of agriculture, seed companies, farming communities and other stakeholders in the maize and wheat value chains. Our activities in Africa are wide ranging and include: breeding maize for drought tolerance and low-fertility soils, and for resistance to insect pests, foliar diseases and parasitic weeds; sustainably intensifying production in maize- and wheat-based systems; and investigating opportunities to reduce micronutrient and protein malnutrition among women and young children.
Written by Bea Ciordia on . Posted in Uncategorized.
The Legume-based Agroecological Intensification of Maize and Cassava Cropping Systems in Sub-Saharan Africa (LEG4DEV) project aims to promote scaling of legume-based agroecological intensification of smallholder maize and cassava cropping systems in sub-Saharan Africa for water-food-energy nexus sustainability that enables food security and livelihood resilience.
Written by Bea Ciordia on . Posted in Uncategorized.
The Accelerating Impacts of CGIAR Climate Research for Africa (AICCRA) project is an initiative that will enhance access to climate information services and validated climate-smart agriculture technologies in Africa.
AICCRA aims to support farmers and livestock keepers to better anticipate climate-related events and take preventative actions, with better access to climate advisories linked to information about effective response measures.
Stripe rust, also known as yellow rust, on wheat with droplets of rain. (Photo: A. Yaqup/CIMMYT)
Robust and resilient agrifood systems begin with healthy crops. Without healthy crops the food security and livelihoods of millions of resource-constrained smallholder famers in low- and middle-income countries would be in jeopardy. Yet, climate change and globalization are exacerbating the occurrence and spread of devastating insect-pests and pathogens.
Each year, plant diseases cost the global economy an estimated $220 billion â and invasive insect-pests at least $70 billion more. In addition, mycotoxins such as aflatoxins pose serious threats to the health and wellbeing of consumers. Consumption of mycotoxin-contaminated food can cause acute illness, and has been associated with increased risk of certain cancers and immune deficiency syndromes.
Effective plant health management requires holistic approaches that strengthen global and local surveillance and monitoring capacities, and mitigate negative impacts through rapid, robust responses to outbreaks with ecologically friendly, socially-inclusive and sustainable management approaches.
Over the decades, CGIAR has built a strong foundation for fostering holistic plant health protection efforts through its global network of Germplasm Health Units, as well as pathbreaking rapid-response efforts to novel transboundary threats to several important crops, including maize, wheat, rice, bananas, cassava, potatoes and grain legumes.
On May 12, 2022, CGIAR is launching the Plant Health and Rapid Response to Protect Food Security and Livelihoods Initiative (Plant Health Initiative). It presents a unified and transdisciplinary strategy to protect key crops â including cereals, legumes, roots, tubers, bananas and vegetables â from devastating pests and diseases, as well as mycotoxin contamination. CGIAR Centers will pursue this critical work together with national, regional and international partner institutions engaged in plant health management.
A comprehensive strategy
Prevention. When and where possible, prevention is always preferable to racing to find a cure. Reactive approaches, followed by most institutions and countries, generally focus on containment and management actions after a pest outbreak, especially pesticide use. These approaches may have paid off in the short- and medium-term, but they are not sustainable long-term. It has become imperative to take proactive actions on transboundary pest management through globally coordinated surveillance, diagnostics and deployment of plant health solutions, as well as dynamic communications and data sharing.
To this end, under this Initiative CGIAR will produce a diagnostics and surveillance toolbox. It will include low-cost and robust assays, genomics- and bioinformatics-based tools for pathogen diagnosis and diversity assessment, as well as information and communications technologies for real-time data collection and crowdsourcing. This will be complemented by the development of interoperable databases, epidemiological and risk assessment models, and evidence-based guidance frameworks for prioritizing biosecurity measures and rapid response efforts to high-risk insect-pests and diseases.
Integrated pest management strategies have been key in dealing with fall armyworm in Africa and Asia. (Photo: B.M. Prasanna/CIMMYT)
Adoption of integrated approaches. The goal of integrated pest and disease management is to economically suppress pest populations using techniques that support healthy crops. An effective management strategy will judiciously use an array of appropriate approaches, including clean seed systems, host-plant resistance, biological control, cultural control and the use of environmentally safer pesticides to protect crops from economic injury without adversely impacting the environment.
Through the Plant Health Initiative, CGIAR will promote system-based solutions using ecofriendly integrated pest and disease management innovation packages to effectively mitigate the impact of major insect-pests and diseases affecting crop plants. It will also implement innovative pre- and post-harvest mycotoxin management tools and processes.
Integrating peopleâs mindsets. The lack of gender and social perspectives in plant health surveillance, technology development, access to extension services and impact evaluation is a major challenge in plant health management. To address this, CGIAR will prioritize interdisciplinary data collection and impact evaluation methods to identify context-specific social and gender related constraints, opportunities and needs, as well as generate evidence-based recommendations for policy makers and stakeholders.
Interface with global and regional Initiatives. The Plant Health Initiative will build on the critical, often pioneering work of CGIAR. It will also work closely with other CGIAR global initiatives â including Accelerated Breeding, Seed Equal, Excellence in Agronomy and Harnessing Equality for Resilience in Agrifood Systems â and Regional Integrated Initiatives. Together, this network will help support CGIARâs work towards developing and deploying improved varieties with insect-pest and disease resistance, coupled with context-sensitive, sustainable agronomic practices, in a gender- and socially-inclusive manner.
Targeting localized priorities with strategic partnerships
Effective plant health monitoring and rapid response efforts rely on the quality of cooperation and communication among relevant partner institutions. In this Initiative, CGIAR places special emphasis on developing and strengthening regional and international networks, and building the capacity of local institutions. It will enable globally and regionally coordinated responses by low- and middle-income countries to existing and emerging biotic threats.
To this end, CGIAR will work closely with an array of stakeholders, including national plant protection organizations, national agricultural research and extension systems, advanced research institutions, academia, private sector, and phytosanitary coordination networks.
The geographic focus of interventions under this Initiative will be primarily low- and middle-income countries in Latin America, South and Southeast Asia, and sub-Saharan Africa.
Coupled with CGIARâs commitment to engaging, mobilizing and empowering stakeholders at various scales across the globe, the Plant Health Initiative represents an enormous step towards integrating peopleâs mindsets, capacities and needs towards holistic and sustainable plant health management. It will ultimately protect the food and nutritional security and livelihoods of millions of smallholders and their families.
Participants of the kick-off meeting for the Ukama Ustawi Initiative stand for a group photo in Nairobi, Kenya. (Photo: Mwihaki Mundia/ILRI)
Partners of CGIARâs new regional integrated Initiative in eastern and southern Africa held a kick-off meeting in Nairobi on March 2â3, 2022. Eighty-five people participated, including national agricultural research extension programs, government representatives, private sector actors, funders and national and regional agricultural research and development organizations.
Entitled Ukama Ustawi, the Initiative aims to support climate-smart agriculture and livelihoods in 12 countries in eastern and southern Africa: Kenya, Zambia, Ethiopia and Zimbabwe (in Phase 1); Malawi, Rwanda, Tanzania and Uganda (in Phase 2); and Eswatini, Madagascar, Mozambique and South Africa (in Phase 3).
The Initiative aims to help millions of smallholders intensify, diversify and de-risk maize-mixed farming through improved extension services, institutional capacity strengthening, targeted farm management bundles, policy support, enterprise development and private investment.
Ukama Ustawi is a bilingual word derived from the Shona and Swahili languages. In Shona, Ukama refers to partnerships, and in Swahili, Ustawi means well-being and development. Together, they resemble the vision for the Initiative to achieve system-level development through innovative partnerships.
The meeting brought together partners to get to know each other, understand roles and responsibilities, identify priorities for 2022, and review the cross-cutting programmatic underpinnings of Ukama Ustawi â including gender and social inclusion, capacity strengthening and learning.
Baitsi Podisi, representing the Centre for Coordination of Agricultural Research and Development for Southern Africa (CCARDESA), said he is excited to be part of the Initiative: “CCARDESA, in its cooperation and coordination mandate, can learn a lot from CGIAR in restructuring to respond to the changing times.â Podisi supported the partnership with CGIAR in the Initiativeâs embedded approach to policy dialogue, working with partners such as CCARDESA, the Association for Strengthening Agricultural Research in Eastern and Central Africa (ASARECA) and the Food, Agriculture and Natural Resources Policy Analysis Network (FANRPAN).
Similarly, FANRPANâs Francis Hale emphasized the need not to re-invent the wheel but to work with partners who already have a convening power, to advance the policy agenda for diversification and sustainable intensification.
What were key issues discussed?
One of the features of Ukama Ustawi is the use of four interconnected platforms: a scaling hub, a policy hub, an accelerator program and a learning platform. These will provide spaces for exchange and learning with partners across all CGIAR Initiatives in the region. Partners conducted a series of âfishbowlâ interactions across work packages to review the planned activities and provide a clearer understanding of deliverables, identify synergies, potential overlaps, common partners and countries, and set timelines.
The Initiative will work with innovative multimedia platforms to change knowledge, attitudes and practices of millions of farmers in eastern and southern Africa. One key partner in this area is the Shamba Shape Up TV show and the iShamba digital platform. Sophie Rottman, Producer of Shamba Shape Up, said she is looking forward to the work with Initiative partners, that will help expand the show to Uganda and Zambia.
Jean Claude Rubyogo, representing the Pan-Africa Bean Research Alliance (PABRA) said: âIt is time we move away from CGIAR-initiated to country-initiated development activities. This is what Ukama Ustawi is all aboutâ.
Martin Kropff, Global Director of Resilient Agrifood Systems at CGIAR, explained CGIARâs regional integrated initiatives are designed to respond to national/regional demands. âThe initiatives will start by working with partners to assess the food and nutritional challenges in the region, and tackle them by bringing in innovative solutions.â
The event was concluded by agreeing on the implementation of the inception phase of the Ukama Ustawi Initiative, and follow-on discussions to finalize key activities in 2022.
Sorghum field in Kiboko, Kenya. (Photo: E Manyasa/ICRISAT)
As part of the One CGIAR reform, the Global Science Group on Genetic Innovation will implement a crop breeding and seed systems project for key crops including groundnut, sorghum and millet, across western and eastern African countries.
The International Maize and Wheat Improvement Center (CIMMYT), a leader in innovative partnerships, breeding and agronomic science for sustainable agri-food systems, will lead the project.
The Accelerated Varietal Improvement and Seed Delivery of Legumes and Cereals in Africa (AVISA) project aims to improve the health and livelihoods of millions by increasing the productivity, profitability, resilience and marketability of nutritious grain, legumes and cereal crops. The project focuses on strengthening networks to modernize crop breeding by CGIAR and national program partners, and public-private partnerships to strengthen seed systems. The project currently works in Burkina Faso, Ethiopia, Ghana, Mali, Nigeria, Uganda and Tanzania.
âSorghum, groundnut and millets are essential staples of nutritious diets for millions of farmers and consumers and are crucial for climate-change-resilient farming systems,â explained CIMMYT Deputy Director General and Head of Genetic Resources, Kevin Pixley. âThe oversight of this project by CGIARâs Genetic Innovation Science Group will ensure continued support for the improvement of these crops in partnership with the national agricultural research and extension systems (NARES) that work with and for farmers,â he said.
âCIMMYT is delighted to lead this project on behalf of the Genetic Innovations Science Group and CGIAR,â confirms CIMMYT Director General, Bram Govaerts.
âWe look forward to contributing to co-design and co-implement with partners and stakeholders the next generation of programs that leverage and build the strengths of NARES, CGIAR and others along with the research to farmers and consumers continuum to improve nutrition, livelihoods, and resilience to climate change through these crops and their cropping systems.â
The Harnessing Appropriate-Scale Farm Mechanization in Zimbabwe (HAFIZ) project aims to support investments by the government and by the private sector in appropriate-scale farm mechanization in Zimbabwe, particularly around Pfumvudza (a system of manual conservation agriculture), and transfer learnings to South Africa.
Overall, the project has the goal to improve access to mechanization and reduce labor drudgery whilst stimulating the adoption of climate-smart/sustainable intensification technologies. The project will improve the understanding of private sector companies involved in appropriate-scale farm mechanisation towards the local markets in which they operate.
Manufacturing knowledge of two-wheel and small four-wheel tractor operated implements for mechanized Pfumvudza will also increase and private sector companies will have increased access to information through the development and strengthening of regional and national communities of practitioners on appropriate-scale farm mechanization. Finally, the project will strengthen the capacity of the existing knowledge networks around appropriate-scale mechanisation in Zimbabwe, through the results that will be generated and through the regular multi-stakeholder roundtables that will be organised.
Objectives
Increasing and more spatially-targeted Government spending in appropriate-scale farm mechanisation in Zimbabwe (and South Africa)
Increasing sales of appropriate-scale farm mechanization equipment in Zimbabwe (and South Africa) thanks to more targeted marketing by private sector (both in terms of geographies and clients)
Local manufacturing and commercialization of two-wheel tractor operated basin diggers and bed planters in Zimbabwe.
Farmers learn about two-wheel tractors. (Photo: CIMMYT)
A new project aims to climate-proof Zimbabwean farms through improved access to small-scale mechanization to reduce labor bottlenecks. Harnessing Appropriate-scale Farm mechanization In Zimbabwe (HAFIZ) is funded by the Australian Department of Foreign Affairs and Trade (DFAT) through ACIAR and led by the International Maize and Wheat Improvement Center (CIMMYT).
The project aligns with the Zimbabwean nationwide governmental program Pfumvudza, which promotes agricultural practices based on the principles of conservation agriculture. The initiative aims to increase agricultural productivity through minimum soil disturbance, a permanent soil cover, mulching and crop diversification.
Over 18 months, the project will work with selected service providers to support mechanized solutions that are technically, environmentally and economically appropriate for use in smallholder settings.
Speaking during the project launch, the Permanent Secretary of the Ministry of Lands, Agriculture, Fisheries, Water and Rural Development in Zimbabwe, John Basera, explained the tenets of Pfumvudza which translates as âa new season.â A new season of adopting climate-smart technologies, conservation agriculture practices and increasing productivity. Simply put, Pfumvudza means a sustainable agricultural productivity scheme.
âPfumvudza was a big game-changer in Zimbabwe. We tripled productivity from 0.45 to 1.4 [metric tons] per hectare. Now the big challenge for all of us is to sustain and consolidate the growth, and this is where mechanization comes into place,â Basera said. âThis project is an opportunity for the smallholder farmer in Zimbabwe, who contributes to over 60% of the food in the country, to be able to produce more with less.â
Building on the  findings of the completed ACIAR-funded project Farm Mechanization and Conservation Agriculture for Sustainable Intensification (FACASI), the new initiative will work with selected farmers and service providers to identify farming systems most suitable for mechanization. It will also assist companies in targeting their investments as they test a range of technologies powered by small-engine machinery adapted to the Zimbabwe context and transfer the resultant learnings to South Africa.
Conservation agriculture adoption offers multidimensional benefits to the farmers with significant yields and sustainability of their systems. The introduction of mechanization in systems using animals for draught reduces the livestock energy demand â energy that will contribute to increasing meat and milk production.
While conservation agriculture and research alone cannot solve all the issues affecting agricultural productivity, awareness-raising is integral to help address these issues, and this is where small-scale mechanization comes in, says ACIAR Crops Research Program Manager, Eric Huttner.
âWe learnt a lot from FACASI and a similar project in Bangladesh on the opportunities of appropriate small-scale mechanization as a tool towards sustainable intensification when adopted by farmers,â he explained. âIf we avoid the mistakes of the past, where large-scale mechanization efforts were invested in the wrong place and resulted in ineffective machines unusable for farmers, we can make a huge difference in increasing yields and reducing farm drudgery,â Huttner said.
Agriculture is one of the five main greenhouse gas-emitting sectors where innovations can be found to reach net zero emissions, according to the new documentary and ten-part miniseries âSolving for Zero: The Search for Climate Innovation.â The documentary tells the stories of scientists and innovators racing to develop solutions such as low-carbon cement, wind-powered global transportation, fusion electricity generation and sand that dissolves carbon in the oceans.
Three CGIAR scientists are featured in the documentary, speaking about the contributions being made by agricultural research.
Whereas all sectors of the global economy must contribute to achieve net zero emissions by 2050 to prevent the worse effects of climate change, agricultural innovations are needed by farmers at the front line of climate change today.
CIMMYT breeder Yoseph Beyene spoke to filmmakers about the use of molecular breeding to predict yield potential. (Image: Wondrium.com)
Breeding climate-smart crops
âClimate change has been a great disaster to us. Day by day itâs getting worse,â said Veronica Dungey, a maize farmer in Kenya interviewed for the documentary.
Around the world, 200 million people depend on maize for their livelihood, while 90% of farmers in Africa are smallholder farmers dependent on rainfall, and facing drought, heatwaves, floods, pests and disease related to climate change. According to CGIAR, agriculture must deliver 60% more food by 2050, but without new technologies, each 1°C of warming will reduce production by 5%.
âSeed is basic to everything. The whole family is dependent on the produce from the farm,â explained Yoseph Beyene, Regional Maize Breeding Coordinator for Africa and Maize Breeder for Eastern Africa at the International Maize and Wheat Improvement Center (CIMMYT). As a child in a smallholder farming family with no access to improved seeds, Beyene learned the importance of selecting the right seed from year to year. It was at high school that Beyene was shown the difference between improved varieties and the locally-grown seed, and decided to pursue a career as a crop breeder.
Today, the CIMMYT maize program has released 200 hybrid maize varieties adapted for drought conditions in sub-Saharan Africa, called hybrids because they combine maize lines selected to express important traits over several generations. Alongside other CGIAR Research Centers, CIMMYT continues to innovate with accelerated breeding approaches to benefit smallholder farmers.
âCurrently we use two kinds of breeding. One is conventional breeding, and another one is molecular breeding to accelerate variety development. In conventional breeding you have to evaluate the hybrid in the field,â Beyene said. âUsing molecular markers, instead of phenotypic evaluation in the field, we are evaluating the genetic material of a particular line. We can predict based on marker data which new material is potentially good for yield.â
Such innovations are necessary considering the speed and the complexity of challenges faced by smallholder farmers due climate change, which now includes fall armyworm. âFall armyworm is a recent pest in the tropics and has affected a lot of countries,â said Moses Siambi, CIMMYT Regional Representative for Africa. âIncreased temperatures have a direct impact on maize production because of the combination of temperature of humidity, and then you have these high insect populations that lead to low yield.â
Resistance to fall armyworm is now included in new CIMMYT maize hybrids alongside many other traits such as yield, nutrition, and multiple environmental and disease resistances.
Ana MarĂa Loboguerrero, Research Director for Climate Action at the Alliance of Bioversity and CIAT, spoke about CGIARâs community-focused climate work. (Image: Wondrium.com)
Building on CGIARâs climate legacy
Ana MarĂa Loboguerrero, Research Director for Climate Action at the Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), told the filmmakers about CGIARâs community-focused climate work, which includes Climate-Smart Villages and Valleys. Launched in 2009, these ongoing projects span the global South and effectively bridge the gap between innovation, research and farmers living with the climate crisis at their doorsteps.
âTechnological innovations are critical to food system transformation,â said Loboguerrero, who was a principal researcher for the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). âBut if local contexts are not considered, even the best innovations may fail because they do not respond to beneficiaries needs.â
CCAFSâs impressive legacy â in research, influencing policy and informing $3.5 billion of climate-smart investments, among many achievements â is now being built upon by a new CGIAR portfolio of initiatives. Several initiatives focus on building systemic resilience against climate and scaling up climate action started by CCAFS that will contribute to a net-zero carbon future.
Loboguerrero pointed to other innovations that were adopted because they addressed local needs and were culturally appropriate. These include the uptake of new varieties of wheat, maize, rice and beans developed by CGIAR Research Centers. Taste, color, texture, cooking time and market demand are critical to the success of new varieties. Being drought-resistant or flood-tolerant is not enough.
Local Technical Agroclimatic Committees, another CCAFS innovation that is currently implemented in 11 countries across Latin America, effectively delivers weather information in agrarian communities across the tropics. Local farmers lead these committees to receive and disseminate weather information to better plan when they sow their seeds. âThis success would not have been possible if scientists hadnât gotten out of their labs to collaborate with producers in the field,â Loboguerrero said.
Climate adaptation solutions
Across CGIAR, which represents 13 Research Centers and Alliances, and a network of national and private sector partners, the goal is to provide climate adaptation solutions to 500 million small-scale farmers around the world by 2030. This work also covers reducing agricultural emissions, environmental impacts and even the possibility of capturing carbon while improving soil health.
Interested in learning more? The documentary âSolving for Zero: The Search for Climate Innovationâ is available at Wondrium.com alongside a 10-part miniseries exploring the ongoing effort to address climate change.
For a decade, scientists at the International Maize and Wheat Improvement Center (CIMMYT) have been at the forefront of a multidisciplinary and multi-institutional effort to contain and effectively manage maize lethal necrosis (MLN) disease in Africa.
The manual is relevant to stakeholders in countries where MLN is already present, and also aims to offer technical tips to ââhigh-riskâ countries globally for proactive implementation of practices that can possibly prevent the incursion and spread of the disease,â writes B.M. Prasanna, director of CIMMYTâs Global Maize Program and MAIZE, in the foreword.
âWhile intensive multi-disciplinary and multi-institutional efforts over the past decade have helped in containing the spread and impact of MLN in sub-Saharan Africa, we cannot afford to be complacent. We need to continue our efforts to safeguard crops like maize from devastating diseases and insect-pests, and to protect the food security and livelihoods of millions of smallholders,â says Prasanna, who is presently leading the OneCGIAR Plant Health Initiative Design Team.
The war in Ukraine and the sanctions against Russia will disrupt wheat supply chains, fertilizer exports and other components of food systems. Their combined effect, along with other factors, could unchain a major food security crisis as well as increased inequality.
Explore our analysis and coverage on major media outlets and journals. To get in touch with our experts, please contact the media team.
CIMMYT scientists have also made available a summary of key facts and figures about the impact of the Russia-Ukraine war on wheat supply (PowerPoint, 32MB): changing patterns of consumption and effect on food prices, geographic export supply concentration, global wheat imports, and specific vulnerabilities particularly in the Global South.
The Russia-Ukraine conflict will cause massive disruptions to global wheat supply and food security. Agricultural research investments are the basis of resilient agri-food systems and a food-secure future.
War highlights the fragility of the global food supply â sustained investment is needed to feed the world in a changing climate, Alison Bentley explains on Nature.
A new Bloomberg op-ed urges nations to steer more money to organizations like CIMMYT that are advancing crucial research on how to grow more resilient wheat and maize crops in regions that are becoming steadily less arable.
The war in Ukraine, coupled with weather-related disruptions in the worldâs major grain-producing regions, could unleash unbearable humanitarian consequences, civil unrest, and major financial losses worldwide, say Sharon E. Burke (Ecospherics) and Bram Govaerts (CIMMYT) on The Boston Globe.
The war in Ukraine, coupled with weather-related disruptions in the worldâs major grain-producing regions, could unleash unbearable waves of displacement, humanitarian consequences, civil unrest, major financial losses worldwide, and geopolitical fragility, says Bram Govaerts, DG of CIMMYT, in a Boston Globe op-ed.
How does CIMMYTâs improved maize get to the farmer?
CIMMYT is proud to announce a new, improved highland maize hybrid that is now available for uptake by public- and private-sector partners, especially those interested in marketing or disseminating hybrid maize seed across upper altitudes of Eastern Africa and similar agro-ecologies. National agricultural research system (NARS) and seed companies are hereby invited to apply for licenses to pursue national release, scale-up seed production, and deliver these maize hybrids to farming communities.
The deadline to submit applications to be considered during the first round of allocations is 8 April 2022. Applications received after that deadline will be considered during subsequent rounds of product allocations.
The newly available CIMMYT maize hybrid, CIM20EAPP3-01-47, was identified through rigorous trialing and a stage-gate advancement process that culminated in the 2021 Eastern Africa Regional On-Farm Trials for CIMMYTâs eastern Africa highland maize breeding pipeline (EA-PP3). While individual products will vary, the EA-PP3 pipeline aims to develop maize hybrids fitting the product profile described in the following table:
Product profile
Basic traits
Nice-to-have / Emerging traits
Eastern Africa Product Profile 3 (EA-PP3)
Late -maturing, white, high yielding, drought tolerant, NUE, and resistant to GLS, TLB, Ear rots, and rust
MLN, fall armyworm, cold tolerance
Application instructions, and other relevant material is available via the CIMMYT Maize Product Catalog and in the links provided below.
Womenâs involvement in maize production is often shrouded in assumptions. One might assume that women have minimal say in management decisions, especially regarding jointly managed plots, due to rigid gender norms that prioritize menâs decisions on farming-related matters. However, operating under such assumptions about womenâs role in the management of maize farms risks confining women to specific roles and not meeting their needs in the maize seed system.
To break these assumptions, Rachel Voss, Gender Specialist at the International Maize and Wheat Improvement Center (CIMMYT), and a team of fellow researchers are conducting a study, “Unpacking maize plot management roles of women and men in smallholder households in Kenya.” The study, part of the Accelerating Genetic Gains in Maize and Wheat (AGG) project, aims to asses the gender dynamics of maize management in Kenya in order to categorize plots and households, analyzing intrahousehold decision-making and evaluating which women have the power and agency to apply their preferences for seed on their farms â and which ones do not.
Challenging perceptions
Take, for example, Sofa Eshiali, a 60-year-old farmer from Ikolomani, western Kenya, who participated in the study. She defies the stereotype of women having a limited role in maize farming, as she is deeply involved in decision-making on maize production in her household and represents an important client for new breeding efforts and more inclusive seed distribution programs. Together with her husband, she has grown maize primarily for family consumption since getting married, getting involved in all matters concerning their half acre farm. âFor us, when we want to plant [our maize seeds], we sit together and discuss the cash we have at hand and decide if we can get two hands to help us work our half acre of land,â she says.
Eshiali and her husband make a joint decision on the maize seed variety they plant every season based on performance of the previous planting season. âWe previously used the H614D [maize seed variety] and it did well in our farm â except when it gets very windy, as our crops fall and our bean crop gets destroyed before it is ready for harvest. Last season, we decided to use the H624 because it remains there even when it is windy,â she said, demonstrating her knowledge of maize seed variety.
In addition to seed choice and farm labour, Eshiali and her husband also discuss what fertilizer to use and when they need to shift to a new choice, and they make decisions together concerning their farm and farm produce. This includes deciding what amount of harvest they can sell and what to do with the sale proceeds. For a household like Eshiali’s, new maize varieties need to appeal to â and be marketed to â both spouses.
Sofa Eshiali, a 60-year-old maize farmer from Ikolomani, Western Kenya, who participated in the study. (Photo: Susan Umazi Otieno/CIMMYT)
Farming roles
Eshiali’s reality of equitable engagement in the farm may not be the case for other households in her community and across Kenya, meaning that reaching women with new varieties is not always simple.
As Voss points out, women are often less involved in major household decisions than men, frequently due to longstanding social norms. However, there is little understanding of how decisions are negotiated at the household level, particularly when crops are jointly produced. Furthermore, in many places, men are perceived to be the ârealâ farmers, while women are viewed to only play a supportive role within household farming. This can lead to the exclusion of women from extension activities, trainings and input marketing efforts.
Against this background, Voss notes that the ongoing study aims to identify in which types of households women have control over seed choice and in which households other constraints might be more important.
âTo get new maize varieties into menâs and womenâs fields, we need to identify the bottlenecks to reaching women. This means understanding, among other things, how decisions about seed are made within households and how households source their seed,â she explains.
Vignettes showing five different decision-making scenarios based on fictitious husband and wife characters. (Photo: Susan Umazi Otieno/CIMMYT)
Best-case scenario
To overcome the challenge of discussing the sensitive topic of decision-making roles between spouses and to encourage more culturally unbiased, candid responses, the study uses vignettes, or short stories, to describe various scenarios. This enables farmers to relate with different farm management decision making scenarios without pointing fingers at their spouses.
The studyâs coauthor and research team leader, Zachary Gitonga, explains that the use of vignettes is still a relatively new method, especially in agricultural research, but enables digging deeper into sensitive topics.
Data collection involved a joint survey with both men and women household heads about maize plot management before breaking into separate discussions using the vignettes. These presented five possible decision-making scenarios with fictitious husband and wife characters. The five scenarios were then used to discuss strategic seed choices, operational decisions related to issues such as planting date and hiring farm labor, and financial decisions such as the use of the income from the maize sales.
âBy presenting a set of short stories, a farmer can determine what scenario they relate with. In the study, farmers can talk about sensitive interaction without having to assign responsibility to their spouse, especially negatively, in the way decisions are made,â Gitonga said.
The vignettes also made it easier for both the enumerators to explain the scenarios and the farmers to understand and freely give their feedback. Sometimes, he pointed out, what men and women perceive as joint decision-making might not be the same. For instance, some men may think informing their wives that they are going to buy a particular seed means involving them. Here, the vignette activity aims to unpack the reality of joint decision-making in households.
From East Africa to Asia
During a recent field visit to the study area in Kakamega, Kenya, Hom Gartaula, Gender and Social Inclusion Research Lead at CIMMYT, noted the studyâs importance to the inclusion of women in the farming cycle. âWe urgently need to better understand the reality of womenâs and menâs situation in terms of access to maize seed and other needed inputs and services. Otherwise, we risk designing breeding and seed systems that do not address the needs of the most vulnerable farmers, including women,â he said, adding that data from the study will enable insights into and comparison with the gender dynamics of wheat production in South Asia through cross-regional learning.
Gartaula also noted that, even though men predominantly manage South Asiaâs wheat agriculture, women significantly contribute to it, especially in smallholder farming systems. In recent years, womenâs contribution to providing labor and decision-making in wheat agriculture has increased due to the feminization of agriculture and livelihood diversification among smallholders.
Since womenâs contributions to wheat farming are often vital to pre- and post-harvest processes, Gartaula notes they ought to be part of the entire maize and wheat value chain. That includes building more equitable seed delivery systems. âIt is therefore important to have seed products that address the needs of different users and include home consumption and commercial sales,â he says.
The study will inform future efforts to ensure equitable seed access for both men and women farmers. Ultimately, if both men and women farmers access the best seed based on their needs and priorities, incomes will rise, households will be better sustained, and communities will become more food secure.
Md Abdul Matin is a Mechanization Specialist at the International Maize and Wheat Improvement Center (CIMMYT), SARO, Zimbabwe.
He has over 20 years of R&D experience in design, development, assessment and commercialization of farm machinery for smallholder farmers. He completed his BSc Agri. Engg and MS in Farm Power & Machinery degrees from the Bangladesh Agricultural University and a PhD from the Agricultural Machinery Research & Design Centre, University of South Australia, Adelaide, Australia. Matin has intensive experience working with national agricultural research institutes, other government and private sector partners (including manufacturers) in the mechanization value and supply chains.
Emerging in the last 120 years, science-based plant breeding begins by creating novel diversity from which useful new varieties can be identified or formed. The most common approach is making targeted crosses between parents with complementary, desirable traits. This is followed by selection among the resulting plants to obtain improved types that combine desired traits and performance. A less common approach is to expose plant tissues to chemicals or radiation that stimulate random mutations of the type that occur in nature, creating diversity and driving natural selection and evolution.
Determined by farmers and consumer markets, the target traits for plant breeding can include improved grain and fruit yield, resistance to major diseases and pests, better nutritional quality, ease of processing, and tolerance to environmental stresses such as drought, heat, acid soils, flooded fields and infertile soils. Most traits are genetically complex â that is, they are controlled by many genes and gene interactions â so breeders must intercross and select among hundreds of thousands of plants over generations to develop and choose the best.
Plant breeding over the last 100 years has fostered food and nutritional security for expanding populations, adapted crops to changing climates, and helped to alleviate poverty. Together with better farming practices, improved crop varieties can help to reduce environmental degradation and to mitigate climate change from agriculture.
Is plant breeding a modern technique?
Plant breeding began around 10,000 years ago, when humans undertook the domestication of ancestral food crop species. Over the ensuing millennia, farmers selected and re-sowed seed from the best grains, fruits or plants they harvested, genetically modifying the species for human use.
Modern, science-based plant breeding is a focused, systematic and swifter version of that process. It has been applied to all crops, among them maize, wheat, rice, potatoes, beans, cassava and horticulture crops, as well as to fruit trees, sugarcane, oil palm, cotton, farm animals and other species.
With modern breeding, specialists began collecting and preserving crop diversity, including farmer-selected heirloom varieties, improved varieties and the cropsâ undomesticated relatives. Today hundreds of thousands of unique samples of diverse crop types, in the form of seeds and cuttings, are meticulously preserved as living catalogs in dozens of publicly-administered âbanks.â
The International Maize and Wheat Improvement Center (CIMMYT) manages a germplasm bank containing more than 180,000 unique maize- and wheat-related seed samples, and the Svalbard Global Seed Vault on the Norwegian island of Spitsbergen preserves back-up copies of nearly a million collections from CIMMYT and other banks.
Through genetic analyses or growing seed samples, scientists comb such collections to find useful traits. Data and seed samples from publicly-funded initiatives of this type are shared among breeders and other researchers worldwide. The complete DNA sequences of several food crops, including rice, maize, and wheat, are now available and greatly assist scientists to identify novel, useful diversity.
Much crop breeding is international. From its own breeding programs, CIMMYT sends half a million seed packages each year to some 800 partners, including public research institutions and private companies in 100 countries, for breeding, genetic analyses and other research.
Early in the 20th century, plant breeders began to apply the discoveries of Gregor Mendel, a 19th-century mathematician and biologist, regarding genetic variation and heredity. They also began to take advantage of heterosis, commonly known as hybrid vigor, whereby progeny of crosses between genetically different lines will turn out stronger or more productive than their parents.
Modern statistical methods to analyze experimental data have helped breeders to understand differences in the performance of breeding offspring; particularly, how to distinguish genetic variation, which is heritable, from environmental influences on how parental traits are expressed in successive generations of plants.
Since the 1990s, geneticists and breeders have used molecular (DNA-based) markers. These are specific regions of the plantâs genome that are linked to a gene influencing a desired trait. Markers can also be used to obtain a DNA âfingerprintâ of a variety, to develop detailed genetic maps and to sequence crop plant genomes. Many applications of molecular markers are used in plant breeding to select progenies of breeding crosses featuring the greatest number of desired traits from their parents.
Plant breeders normally prefer to work with âeliteâ populations that have already undergone breeding and thus feature high concentrations of useful genes and fewer undesirable ones, but scientists also introduce non-elite diversity into breeding populations to boost their resilience and address threats such as new fungi or viruses that attack crops.
Transgenics are products of one genetic engineering technology, in which a gene from one species is inserted in another. A great advantage of the technology for crop breeding is that it introduces the desired gene alone, in contrast to conventional breeding crosses, where many undesired genes accompany the target gene and can reduce yield or other valuable traits. Transgenics have been used since the 1990s to implant traits such as pest resistance, herbicide tolerance, or improved nutritional value. Transgenic crop varieties are grown on more than 190 million hectares worldwide and have increased harvests, raised farmersâ income and reduced the use of pesticides. Complex regulatory requirements to manage their potential health or environmental risks, as well as consumer concerns about such risks and the fair sharing of benefits, make transgenic crop varieties difficult and expensive to deploy.
Genome editing or gene editing techniques allow precise modification of specific DNA sequences, making it possible to enhance, diminish or turn off the expression of genes and to convert them to more favorable versions. Gene editing is used primarily to produce non-transgenic plants like those that arise through natural mutations. The approach can be used to improve plant traits that are controlled by single or small numbers of genes, such as resistance to diseases and better grain quality or nutrition. Whether and how to regulate gene edited crops is still being defined in many countries.
The mobile seed shop of Victoria Seeds Company provides access to improved maize varieties for farmers in remote villages of Uganda. (Photo: Kipenz Films for CIMMYT)
Selected impacts of maize and wheat breeding
In the early 1990s, a CIMMYT methodology led to improved maize varieties that tolerate moderate drought conditions around flowering time in tropical, rainfed environments, besides featuring other valuable agronomic and resilience traits. By 2015, almost half the maize-producing area in 18 countries of sub-Saharan Africa â a region where the crop provides almost a third of human calories but where 65% of maize lands face at least occasional drought â was sown to varieties from this breeding research, in partnership with the International Institute of Tropical Agriculture (IITA). The estimated yearly benefits are as high as $1 billion.
Intensive breeding for resistance to Maize Lethal Necrosis (MLN), a viral disease that appeared in eastern Africa in 2011 and quickly spread to attack maize crops across the continent, allowed the release by 2017 of 18 MLN-resistant maize hybrids.
Improved wheat varieties developed using breeding lines from CIMMYT or the International Centre for Agricultural Research in the Dry Areas (ICARDA) cover more than 100 million hectares, nearly two-thirds of the area sown to improved wheat worldwide, with benefits in added grain that range from $2.8 to 3.8 billion each year.
Breeding for resistance to devastating crop diseases and pests has saved billions of dollars in crop losses and reduced the use of costly and potentially harmful pesticides. A 2004 study showed that investments since the early 1970s in breeding for resistance in wheat to the fungal disease leaf rust had provided benefits in added grain worth 5.36 billion 1990 US dollars. Global research to control wheat stem rust disease saves wheat farmers the equivalent of at least $1.12 billion each year.
Crosses of wheat with related crops (rye) or even wild grasses â the latter known as wide crosses â have greatly improved the hardiness and productivity of wheat. For example, an estimated one-fifth of the elite wheat breeding lines in CIMMYT international yield trials features genes from Aegilops tauschii, commonly known as âgoat grass,â that boost their resilience and provide other valuable traits to protect yield.
Biofortification â breeding to develop nutritionally enriched crops â has resulted in more than 60 maize and wheat varieties whose grain offers improved protein quality or enhanced levels of micro-nutrients such as zinc and provitamin A. Biofortified maize and wheat varieties have benefited smallholder farm families and consumers in more than 20 countries across sub-Saharan Africa, Asia, and Latin America. Consumption of provitamin-A-enhanced maize or sweet potato has been shown to reduce chronic vitamin A deficiencies in children in eastern and southern Africa. In India, farmers have grown a high-yielding sorghum variety with enhanced grain levels of iron and zinc since 2018 and use of iron-biofortified pearl millet has improved nutrition among vulnerable communities.
Innovations in measuring plant responses include remote sensing systems, such as multispectral and thermal cameras flown over breeding fields. In this image of the CIMMYT experimental station in ObregĂłn, Mexico, water-stressed plots are shown in green and red. (Photo: CIMMYT and the Instituto de Agricultura Sostenible)
Thefuture
Crop breeders have been laying the groundwork to pursue genomic selection. This approach takes advantage of low-cost, genome-wide molecular markers to analyze large populations and allow scientists to predict the value of particular breeding lines and crosses to speed gains, especially for improving genetically complex traits.
Speed breeding uses artificially-extended daylength, controlled temperatures, genomic selection, data science, artificial intelligence tools and advanced technology for recording plant information â also called phenotyping â to make breeding faster and more efficient. A CIMMYT speed breeding facility for wheat features a screenhouse with specialized lighting, controlled temperatures and other special fixings that will allow four crop cycles â or generations â to be grown per year, in place of only two cycles with normal field trials. Speed breeding facilities will accelerate the development of productive and robust varieties by crop research programs worldwide.
Data analysis and management. Growing and evaluating hundreds of thousands of plants in diverse trials across multiple sites each season generates enormous volumes of data that breeders must examine, integrate, and co-analyze to inform decisions, especially about which lines to cross and which populations to discard or move forward. New informatics tools such as the Enterprise Breeding System will help scientists to manage, analyze and apply big data from genomics, field and lab studies.
Following the leaders. Driven by competition and the quest for profits, private companies that market seed and other farm products are generally on the cutting edge of breeding innovations. The CGIARâs Excellence in Breeding (EiB) initiative is helping crop breeding programs that serve farmers in low- and middle-income countries to adopt appropriate best practices from private companies, including molecular marker-based approaches, strategic mechanization, digitization and use of big data to drive decision making. Modern plant breeding begins by ensuring that the new varieties produced are in line with what farmers and consumers want and need.