Skip to main content

Location: Africa

CIMMYT’s work in Africa helps farmers access new maize and wheat systems-based technologies, information and markets, raising incomes and enhancing crop resilience to drought and climate change. CIMMYT sets priorities in consultation with ministries of agriculture, seed companies, farming communities and other stakeholders in the maize and wheat value chains. Our activities in Africa are wide ranging and include: breeding maize for drought tolerance and low-fertility soils, and for resistance to insect pests, foliar diseases and parasitic weeds; sustainably intensifying production in maize- and wheat-based systems; and investigating opportunities to reduce micronutrient and protein malnutrition among women and young children.

Exploring the potential for scaling nutritious cereal-based foods

Agrifood systems contribute to at least 12 of the 17 Sustainable Development Goals (SDGs). To advance these goals, agrifood systems need to deliver more nutritious food to more people and simultaneously be environmentally sustainable and resilient. Changes are required at multiple levels to include more sustainable farming, reduce food losses in distribution and retail, and increase the intake of healthier foods by consumers.

Recent studies show that piecemeal interventions focusing on only one aspect or area are insufficient to make the required transformation. Issues related to food security and improved nutrition are complex, and their solutions must transcend traditional disciplinary and institutional boundaries.

Agrifood systems research looks to understand how systems work and actions by governments, non-governmental organizations (NGOs), and the private sector that can positively influence outcomes at scale. Researchers and development professionals use this approach to assess how different actors, practices and policies share the production, marketing, availability, and consumption of food. Agriculture, trade, policy, health, environment, transport, infrastructure, gender norms and education all have a role to play in achieving resilient agrifood systems that deliver greater benefits to farmers and consumers.

CIMMYT combines the expertise of economists, agronomists, crop breeders, nutritionists, and gender specialist to create more sustainable, nutritious, and profitable agrifood systems in multiple ways. It works to ensure that cereal crops are grown in the most sustainable way, that the public and private sectors are informed about consumer preferences, and that quality improved seed is available to farmers when they need it. CIMMYT also aims to better understand how cereal based foods are processed and sold to consumers and develop options for promoting the consumption of more nutritious cereal-based foods.

Pasta and other supplies on display in a supermarket, Mexico.

Consumer demand in Mexico

Recently, CIMMYT partnered with the National Institute of Public Health of Mexico (INSP), to compare access to healthy processed cereal-based food in supermarkets, convenience stores, and corner stores for consumers from low- and high-income neighborhoods in Mexico City. Discussions continue to rage about how policies can support more nutritious and healthier diets in Mexico, including the new requirement for food warning labels on the front of packaging.

The study showed that availability of healthy products was scarce in most stores, particularly in convenience stores. Compared to supermarkets in the low-income areas, those in high-income areas exhibited a greater variety of healthy products across all categories. A follow up study is underway that examines the outcomes of the new food label warnings on product availability and health claims.

Other CIMMYT studies have explored the demand by lower- and middle-income consumers in central Mexico for healthy cereal-based foods, including their demand for blue maize tortillas and whole grain bread. These studies help policy makers and non-governmental organizations (NGOs) design strategies on how to increase access and consumption of healthier processed wheat and maize products in fast-evolving food systems.

Farmer Gladys Kurgat prepare wheat chapatti with help from her nephew Emmanuel Kirui for her five sons at home near Belbur, Nakuru, Kenya. (Photo: Peter Lowe/CIMMYT)

Blending wheat products in Kenya

In many parts of the world, the Ukraine-Russia war has intensified the need to change how wheat-based products are formulated. For example, Kenya is a country where wheat consumption has been growing rapidly for a decade, yet imports have comprised 90% of its wheat supplies, which up until recently came from Ukraine and Russia. Wheat flour blending in Kenya is a promising option for reducing wheat imports, generating demand for other, lesser-utilized cereals, such as sorghum, and increasing the nutrient profile of bread products. But wheat blending, despite having been discussed for many years in Kenya, has yet to gain traction.

In response, CIMMYT and the Jomo Kenyatta University of Agriculture and Technology (JKUAT) are exploring the feasibility of reducing wheat imports in Kenya by replacing between 5-20% of wheat flour with flour derived from other cereals, including sorghum and millet. While existing evidence suggests that consumers may except up to 10% blending in cereal flours, the stakes are high for both the wheat industry and government. Robust and context specific evidence is needed on consumers’ willingness to accept blended products in urban Kenya and the economic feasibility of blending from the perspective of millers and processors.

Among the critical questions to be explored by CIMMYT and JKUAT: What flour blends will consumers most likely to accept? What are the potential health benefits from blending with sorghum and millet? Is there enough sorghum and millet readily available to replace the wheat removed from flour? And finally, what is the business case for wheat flour blending?

Cover photo: Wheat harvest near Iztaccíhuatl volcano in Juchitepec, Estado de México. (Photo: CIMMYT/ Peter Lowe)

CGIAR Initiative: Excellence in Agronomy

Smallholdings represent over 80% of the world’s farms, mostly located in the Global South, and supply 50% of global food. Enhanced agronomy management has a great potential to increase productivity, sustainability, efficiency and competitiveness of these smallholdings, which is characterized by low and variable yields and profitability, smallholder farming challenges include water scarcity, climate change, low resource use efficiencies and declining soil health. These result in negative impacts on food and nutrition security, equitable livelihoods and ecosystem health.  

Smallholder farmers seasonally make critical agronomic decisions regarding crop choice, planting dates and pest, disease, weed, soil fertility and water management, often based on suboptimal practices and information. Traditional agronomic research enhances our understanding of basic processes, but with limited connection to stakeholder demand and often based on outdated approaches. The development, deployment and uptake of interventions is hampered by social, economic and institutional constraints, further confounded by adherence to conventional supply-driven innovation strategies.

Objective

This Initiative aims to deliver an increase in productivity and quality per unit of input (agronomic gainfor millions of smallholder farming households in prioritized farming systems by 2030, with an emphasis on women and young farmers, showing a measurable impact on food and nutrition security, income, resource use, soil health, climate resilience and climate change mitigation.  

Activities

This objective will be achieved through:

  • Facilitating the delivery of agronomy-at-scale solutions, including development and technical/user-experience validation and the co-creation and deployment of gender- and youth-responsive solutions to smallholder farmers via scaling partners. 
  • Enabling the creation of value from big data and advanced analytics through the assembly and governance of data and tools; application of existing analytics and solutions for specific use cases; supply of information on climate impacts, inclusivity and sustainability of agronomic solutions; and national agricultural research system capacity strengthening. 
  • Driving the next generation of agronomy-at-scale innovations by addressing key knowledge gaps and facilitating innovation in agronomy research through engagement with partners. 
  • Nurturing internal efficiencies for an agile and demand-driven agronomy research and development community through internal organization and external partnerships for prioritization, demand mapping and foresight. 

CGIAR Initiative: Plant Health

Effective plant health management is critical for improving the productivity, profitability, sustainability and resilience of agrifood systems. Yet, farming communities, especially in low- and middle-income countries, struggle to contain existing and emerging plant pests and diseases. Each year, these threats cause on average 10–40% losses to major food crops, costing the global economy around US$220 billion. The highest losses are associated with food-deficit regions with fast-growing populations. 

Increasing international trade and travel, coupled with weak phytosanitary systems, are accelerating the global spread of pests and diseases. The situation is exacerbated by climate change, with agricultural intensification and diversification driving the emergence of new threats. These burdens fall disproportionately on poorly resourced communities, especially women and youth in rural areas. 

Diagnostic capacity, global-scale surveillance data, risk prediction/forecasting and rapid response and management systems for major pests and diseases are still lacking. Inadequate information and knowledge of and access to climate-smart control options leave smallholders and marginalized communities ill-equipped to respond to biotic threats. Environmental and health effects of toxic pesticides, exposure to mycotoxins and acute unintentional pesticide poisoning are major concerns.

Objective

This Initiative aims to protect agriculture-based economies of low- and middle-income countries in Africa, Asia and Latin America from devastating crop pest incursions and disease outbreaks by developing, validating and deploying inclusive innovations, and by leveraging and building viable networks across an array of national, regional and global institutions.

Activities

This objective will be achieved by:

  • Bridging knowledge gaps and networks for plant health threat identification and characterization, focusing on strengthening the diagnostic and surveillance capacity of national plant protection organizations and national agricultural research and extension systems, and facilitating knowledge exchange on pests and diseases. 
  • Building capability of relevant national stakeholders for risk assessment, and data management and guiding preparedness for rapid response, focusing on controlling the introduction and spread of pests and diseases by developing and enhancing tools, standards and policies. 
  • Improving integrated pest and disease management, focusing on designing and deploying approaches against prioritized plant health threats in targeted crops and cropping systems. 
  • Designing and deploying tools and processes for protecting food chains from contamination, specifically, through innovations for reducing mycotoxin contamination to protect health, increase food/feed safety, enhance trade, diversify end-use and boost income. 
  • Promoting gender-equitable and socially inclusive scaling of plant health innovations to achieve impacts through multistakeholder partnerships, inter-disciplinary research, effective communications and capacity development.

Is uptake of rust-resistant wheat linked to gender equality?

Sieg Snapp presents research on agroecological approaches to maize farming in Malawi and Zimbabwe at Tropentag 2022. (Photo: Ramiro Ortega Landa/CIMMYT)

Farmers, development practitioners and scientists gathered at Tropentag 2022 between September 14-16 to answer a question that will affect all our futures: can agroecological farming feed the world?

Tropentag is an annual interdisciplinary conference on research in tropical and subtropical agriculture, natural resource management and rural development, jointly organized by nine European universities and the Council for Tropical and Subtropical Agricultural Research (ATSAF e.V), in cooperation with the GIZ Fund International Agricultural Research (FIA).

This year’s event explored the potential of agroecology to contribute to improved nutrition, enhanced natural resource management and farm incomes.

Sieg Snapp, Director of the Sustainable Agrifood Systems (SAS) program at the International Maize and Wheat Improvement Center (CIMMYT) presented on agroecology approaches to enhance learning in a changing world based on experiences with maize-based cropping systems in southern Africa. Snapp suggested that accelerated learning and adaptative capacity are key to the local generation of suitable solutions to agricultural problems, and proposed agroecology as a foundational approach that emphasizes understanding principles, harnessing biological processes, and enhancing local capacity.

Snapp shared how an agroecology living laboratory in Malawi has supported farmer agency around soil health, crop diversification and sustainable intensification since 2013, while living labs are being established in “food territories” in Zimbabwe to support innovation and strategies for evaluating the benefits of farm-scale agroecology approaches. She also explored solutions for pest management, inclusive financing modalities and collaborative innovation generation between farmers and researchers.

Gender and disease-resistant varieties

Michael Euler, Agricultural Resource Economist at CIMMYT, presented in the conference session on technology adoption and dissemination for smallholder farms, which included contributions on the adoption and impact of improved forage production, use of biogas facilities, agroecological management practices, improved wheat seeds, and access to and use genetic diversity in gene banks.

Based on data from CIMMYT’s Accelerating Genetic Gains in Maize and Wheat (AGG) project in Ethiopia, Euler presented a study on how intra-household decision-making dynamics influence the adoption of rust-resistant wheat varieties.

By using questionnaires that were addressed separately to male and female spouses in the household, researchers obtained insights on perceived individual roles in decision-making and agreements. The study found that an increase in the role of the female spouse in household farming decisions is positively associated with the uptake of rust-resistant varieties.

Additional sessions from the event focused on crops and cropping systems, animal production systems, food security and nutrition, agroecology, and food processing and quality.

Technology addresses gender inequality in wheat farming

Despite the development of improved wheat varieties with increased productivity, farming systems in the Global South are still marred by inequitable access based on gender and other social characteristics.

At the International Maize and Wheat Improvement Center (CIMMYT), scientists present a case for wheat varietal improvement programs to include gender-sensitive technology development, dissemination and evaluation in order to remove barriers for women, poor and marginalized farmers.

Focusing on Ethiopia and India due to their large wheat economies and challenges with inequality, researchers assessed the barriers preventing male and female smallholders from using modern wheat varieties. Issues covered through evaluation could include wheat varietal trait preferences, adoption of technology, and decision-making and labor-use changes associated with new varieties.

Concluding the paper is the argument that institutional arrangements in research and development (R&D) programs must transform to address gender equity and inclusivity in wheat improvement.

Read the study: Gender, wheat trait preferences, and innovation uptake: Lessons from Ethiopia and India

Cover photo: Rural farmers associated with JEEViKa-Bihar attend a public wheat harvest activity organized by the Cereal Systems in South Asia (CSISA) project in Nagwa village, India, to encourage conservation agriculture practices in the region. (Photo: Nima Chodon/CIMMYT)

Partnerships crucial for protecting plant health

Prasanna Boddupalli presents at the International Plant Health Conference, September 2022. (Photo: International Plant Health Conference)

CGIAR research centers involved in the One CGIAR Plant Health Initiative joined forces at the International Plant Health Conference in London on September 21-23, 2022 to highlight the importance of global partnerships in effectively preventing and managing devastating pest and disease outbreaks in the Global South.

In an interactive side event on Plant Health Management in the Global South through Partnerships on September 21, the Plant Health Initiative team presented on and discussed: global diagnostic and surveillance systems against plant pests and diseases; risk assessment and preparedness for proactive response; integrated pest and disease management; mycotoxin mitigation strategy; and gender and social inclusion.

The CGIAR Plant Health Initiative, launched in January 2022, aims to protect agriculture-based economies of low and middle-income countries in Africa, Asia and Latin America from pest and disease outbreaks in major crops by leveraging and building viable networks across an array of national, regional, and international institutions.

Building on a track record of more than 50 years of impactful research, the Plant Health Initiative aims to develop and deploy solutions through partnerships, and to achieve impacts that contribute towards several Sustainable Development Goals (SDGs).

Healthy crops for a healthy planet

Showing the strength of partnerships in action, researchers from the International Maize and Wheat Improvement Center (CIMMYT), Alliance Bioversity-CIAT (ABC), the International Institute of Tropical Agriculture (IITA), the International Potato Center (CIP), and the International Food Policy Research Institute (IFPRI) highlighted the Initiative’s activities and sought feedback from the plant health experts participating in the session.

Martin Kropff, CGIAR Science Director of Resilient Agrifood Systems, welcomed the participants to the session. Prasanna Boddupalli, CGIAR Plant Health Initiative Lead & Director of CIMMYT’s Global Maize Program, introduced the Initiative and its scope, emphasizing the inclusive partnerships. This was followed by presentations from Monica Carvajal (ABC), Lava Kumar (IITA), Alejandro Ortega-Beltran (IITA), Nozomi Kawarazuka (CIP), and Yanyan Liu (IFPRI).

Time was dedicated to engaging participants through Mentimeter polling on specific questions related to plant health management. Participants also shared their views on plant health research coordination, capacity strengthening, and knowledge exchange between the Global North and Global South, with a focus on improving food security and livelihoods of smallholders.

The event was successful not only in generating greater understanding of the Initiative amongst the participants, but also in developing significant interest from the participants to contribute to the Initiative’s goals with collective actions, all for the benefit of smallholders in the low- and middle-income countries of Africa, Asia, and Latin America.

Establishing wider networks for plant health

The Plant Health Initiative team, together with Kropff, also had a productive discussion on September 22 with Osama El-Lissy, International Plant Protection Convention (IPPC) Secretary, on opportunities for joint actions on plant health management in the Global South by IPPC and the CGIAR Plant Health Initiative, together with national partners.

Boddupalli also participated in a workshop on September 20 organized by Euphresco, a network of organizations that fund research projects and coordinate national research in the phytosanitary area, at the Department of Environment, Food & Rural Affairs (DEFRA) in the United Kingdom, on shaping global plant health research coordination. The workshop participants discussed and endorsed several actions for advancing global plant health research coordination.

Participants of a workshop by Euphresco endorsed actions to advance research coordination for global plant health. (Photo: Euphresco)

Gender-informed policies fundamental for climate change adaptation

Scientists from the International Maize and Wheat Improvement Center (CIMMYT) are working to understand the gender gap in climate change adaptations and the causes behind this disparity.

Using data from 2,279 farm households in Ethiopia, the results show a significant gap due to the observable and unobservable different characteristics of households headed by men and women. For example, women are less likely to adopt climate change adaptation measures due to their workload in household chores. However, evidence suggests that when the gender gap shrinks, climate change adaptation can be improved in female-headed households by almost 19%.

The study determined that policies must tackle unobservable characteristics in order to address the gender gap. Short-term projects and long-term gender-informed policies are essential in creating equitable opportunities for all.

This crucial work will support developing countries to achieve targets set by the United Nations Sustainable Development Goals (SDGs) and farming households’ susceptibility to the risks of climate change.

Read the study: Gender and climate change adaptation: A case of Ethiopian farmers

Cover photo: Female farmer harvests green maize in Ethiopia. Women are essential to the agricultural sector, but the gender gap prevents them from embracing climate change adaptation measures. (Photo: Peter Lowe/CIMMYT)

AGG-Maize project registers impressive progress

Participants of the AGG Maize Mid-Term Review and Planning Meeting at CIMMYT’s Maize Lethal Necrosis Screening Facility in Naivasha, Kenya. (Photo: Dokta Jonte Photography)

The Accelerating Genetic Gains in Maize and Wheat (AGG) Project, which is halfway through its implementation, continues to register impressive achievements. At a meeting focusing on the project’s Maize component, held in Nairobi during July 25-28, B.M. Prasanna, Director of the Global Maize Program at the International Maize and Wheat Improvement Center (CIMMYT), highlighted the project’s major achievements in the opening session.

“One of the most important achievements of this project is increasing use of powerful tools and technologies to increase genetic gains in maize breeding pipelines in Africa,” said Prasanna. He noted that the AGG partners are showing keen interest in doubled haploid-based maize breeding. Prasanna pointed out that currently work is ongoing to produce third-generation tropicalized haploid inducers which, in combination with molecular markers, will support accelerated development of improved maize germplasm, a key objective of the AGG Project.

Prasanna also pointed out a significant increase in adoption of stress-tolerant maize in Africa – from less than half a million hectares cultivated under stress tolerant maize varieties in 2010, to 7.2 million hectares currently in 13 African countries, benefitting 44.5 million people. He explained that drought-tolerant maize is not only a productivity enhancing tool but also an innovation for improving the welfare of farmers. “It reduces the probability of crop failure by 30 percent and provides an extra income to farmers at a rate of approximately $240 USD per hectare, equivalent to about nine months of food for a family at no additional cost,” he said, adding that the essence of research is taking improved genetics to farmers and impacting their lives.

He noted there is remarkable progress in maize varietal turnover in sub-Saharan Africa, pointing out particularly efforts in Ethiopia, Uganda, Zambia and Zimbabwe, where old maize varieties, some dating as far back as 1988, have been replaced with newer climate-resilient varieties. Prasanna highlighted the need to engage with policy makers to put in place appropriate legislation that can accelerate replacement of old or obsolete varieties with improved genetics.

Prasanna stressed on the importance of rapid response to transboundary diseases and insect-pests. CIMMYT has established fall armyworm (FAW) screening facility at Kiboko, Kenya, and that more than 10,000 maize germplasm entries have been screened over the last three years. He applauded South Sudan for being the first country in sub-Saharan Africa to recently release three CIMMYT-developed FAW-tolerant hybrids. He said CIMMYT’s FAW-tolerant inbred lines have been shared with 92 institutions, both public and private, in 34 countries globally since 2018.

Kevin Pixley, CIMMYT Global Genetic Resources Director and Deputy Director General, Breeding and Genetics, encouraged the participants to continuously reflect on making innovative contributions through the AGG project, to serve smallholder farmers and other stakeholders, and to offer sustainable solutions to  the food crisis that plagues the world.

B.M. Prasanna addresses partners at the KALRO Kiboko Research station in Kenya during an AGG field visit. (Photo: Dokta Jonte Photography)

Synergies across crops and teams

Pixley pointed out that though the meeting’s focus was on maize, the AGG Project has both maize and wheat components, and the potential for learning between the maize and wheat teams would benefit many, especially with the innovative strides in research from both teams.

Pixley referenced a recent meeting in Ethiopia with colleagues from the International Institute of Tropical Agriculture (IITA), the International Center for Tropical Agriculture (CIAT) and CIMMYT, where discussions explored collaboration among CGIAR centers and other stakeholders in strengthening work on cowpea, chickpea, beans, sorghum, millet and groundnut crops. He noted that maize, wheat and the aforementioned crops are all critical in achieving the mission of CGIAR.

“CIMMYT has been requested, since August of last year, by CGIAR to initiate research projects on sorghum, millet and groundnut because these crops are critical to the success of achieving the mission of CGIAR,” said Pixley. “So, we have recently initiated work on the Accelerated Varietal Improvement and Seed Systems in Africa (AVISA) project together with partners. This is the first step towards OneCGIAR. It’s about synergies across crops and teams.”

Collaborative research commended

The meeting’s Chief Guest, Felister Makini, Deputy Director General – Crops of the Kenya Agricultural and Livestock Research Organisation (KALRO), commended the collaborative research undertaken by CIMMYT and other CGIAR partners. She noted that the partnerships continue to build on synergies that strengthen institutional financial, physical and human resources. She attested that collaboration between KALRO and CGIAR dates back to the 1980s, beginning with training in maize breeding, and then subsequent collaboration on developing climate-adaptive improved maize varieties and training of KALRO technicians in maize lethal necrosis (MLN) screening and management among other areas.

Maize and wheat are staple food sources in Kenya and sub-Saharan Africa and as the population increases, new methods and approaches must be found to accelerate development and deployment of improved maize and wheat varieties. She challenged the partners to intensify research and come out with high-yielding varieties that are resistant or tolerant to a wide range of biotic and abiotic stresses.

The Inaugural Session also featured remarks from the representatives of the AGG funders – Gary Atlin from the Bill & Melinda Gates Foundation, Jonna Davis from the Foundation for Food and Agriculture Research (FFAR), and John Derera from IITA, an AGG project partner.

A total of 116 participants, including representatives from National Agricultural Research Systems (NARS) in 13 AGG-Maize partner countries in Africa and seed companies, participated in the meeting. Participants also visited the KALRO-CIMMYT MLN Screening Facility at Naivasha, and KALRO-CIMMYT maize experiments at Kiboko, Kenya, including the work being done at the maize doubled haploid and FAW facilities.

In Burkina Faso, a business model for mechanization is providing hope

Ouattara Ali grows rice and maize on a small parcel of land in a village on the outskirts of Bobo Dioulasso, Burkina Faso’s second-largest city.

In the eight years since he began farming, he has faced significant challenges because he depends on traditional practices. Other smallholders in the community are in a similar situation, which limits their ability to realize greater prosperity.

A steady trickle of young adults is leaving the area to find work in the city as an alternative to the difficulty of trying to make ends meet on limited hectarage, coping with erratic harvests and with no guarantee of long-term financial stability.

This story is not unique to Ali and his community – it is familiar across Burkina Faso and other nations where the problems of food security, reliable employment, and dependable income limit economic development in rural areas.

Mechanization as a business

To help communities tackle these challenges, in 2014 Germany’s Federal Ministry for Economic Cooperation and Development (BMZ) created the special initiative One World No Hunger, which launched Green Innovation Centers for the Agriculture and Food Sector (GIC) in 14 countries in Africa and two in Asia. In Burkina Faso, the GIC focuses primarily on the sesame and rice value chains in the Hauts-Bassins, Cascades, Boucle du Mouhoun, and Sud-Ouest regions.

These initiatives include the introduction of mechanized agricultural practices that can increase yields of maize, rice, and other crops. In connection with GIC, farmers like Ali have used machines across the full agricultural value chain – from seed development to post-harvest – to improve their own crop yields. Mechanization has also enabled them to offer their services for hire to other farmers in the area.

Mechanization is a significant economic driver for boosting development of farm areas, but to achieve sustainable success and maximize the ability to bring transformative change to communities, business model development must be a critical focus area.

One of Ouattra Ali’s two-wheel tractors that he uses to provide machinery hire services to nearby farmers. (Credit: Rabe Yahaya/GIZ)

In August, the International Maize and Wheat Improvement Center (CIMMYT) and Deutsche Gesellschaft fuer Internationale Zusammenarbeit (GIZ) GmbH, collaborated with the United Nations Food and Agriculture Organization (FAO) and Germany’s University of Hohenheim to host a webinar on business models for agricultural mechanization projects. Joining the conversation were 48 participants from countries including Burkina Faso, Nigeria, Benin, and Vietnam.

During the webinar, FAO Senior Consultant Karim Houmy presented research on business models from two case studies of agricultural mechanization hire services in sub-Saharan Africa. Houmy found five basic types of business model, each with its own structure, complexity, and requirements, but he also outlined common features that characterize all successful models.

Many models, a few key principles

The basic business model for agricultural mechanization involves a farmer who uses machinery on their own crops, and then subsequently provides the same services to neighboring farmers. This model is probably the simplest and least expensive. Any smallholder who can procure the necessary machinery, parts, and training can launch this small business, generate additional income, and help neighbors increase their yield. This model also has limits, however, as it restricts farmers to a relatively small footprint of clients whose farms are located near the service provider.

At the other end of the scale is an enterprise model where an entrepreneur does not own any farm machinery but uses mobile phones and geographic information system (GIS) technology to connect farmers with service providers. This model provides a much greater geographical scope as well as greater opportunities for growth and innovation. It also adds layers of complexity that require a network of intermediaries – from machinery dealers and mechanics to booking agents – and bank financing.

The more diverse in operational offerings a business model is, the more promise it holds for generating economic growth and food security. This occurs by spreading activity across a wider geographic region, providing yield-increasing services for more farmers, employing more workers, and generating increased demand up and down the supply chain.

In addition to laying out the range of business models in operation today, Houmy identified success factors important for all, including long-term access to financing and local infrastructure, both of which are structural issues that entrepreneurs have less immediate control over. GIC works to address this shortcoming by involving a broad range of stakeholders, including government actors, in addressing issues of sustainability.

Houmy encouraged entrepreneurs to focus on areas like cultivating a skilled staff, building close links with processors and aggregators, and diversifying the services they offer. This sort of business model training can translate into significant improvements on the ground.

Building a business

Life began to change dramatically for Ali when his local agricultural bureau connected him to the GIC in his area.

Through his relationship with GIC, Ali gained access to some basic mechanized farming equipment, including disc plows, harrows, and planters, which revolutionized his work. He now prepares his rice and maize fields more quickly and evenly. He plants them more efficiently and spends less time harvesting while producing equal and sometimes higher yields. To support this transition, GIC provided training in agricultural mechanization, seed production, and financial management.

Initially, Ali sustained an injury while using a harrow and trailer. Thankfully, this did not slow him down for long, he said. He learned how to regularly tighten components of the machine to avoid further injuries and other safety problems.

Soon, Ali began using his machines to provide services to his neighboring farmers as well, helping them with land preparation, transportation, and planting.

Today, 22 local farmers use Ali’s services, and his community is experiencing the benefits. Less time is spent on planting and harvesting while agricultural yields are increasing. Mechanization marked a sharp decline in the drudgery associated with farming tasks, especially for the area’s youth and women.

Ali is thinking about the future by expanding and diversifying. He plans to buy a seeder and a thresher if he can get financing, and he is interested in additional training. He is developing a business plan for a larger enterprise that would be “the farmers’ one-stop shop” for mechanization services in his area. With the profits so far, he has built a house for his wife and two children and bought a small car.

GIC has supported 26 service providers like Ali in Burkina Faso as well as others in Benin, Mali, and Kenya. Over time, the proliferation of sustainable agricultural operations like Ali’s, as well as their growth into more complex and more profitable business networks, holds enormous promise for rural areas where food security, sustainable employment and a baseline of prosperity have been elusive for far too long.

Cover photo: Workers on Ouattra Ali’s farm outside of Bobo Dioulasso, Burkina Faso. (Credit: Rabe Yahaya/GIZ)

Special issue on gender research in agriculture highlights CIMMYT’s work on gender inclusivity

A new special issue on gender research in agriculture highlights nine influential papers published in the past three years on gender research on crop systems including maize.

The virtual special issue, published earlier this month in Outlook on Agriculture, features work by International Maize and Wheat Improvement Center (CIMMYT) scientists on gender inclusivity in maize systems in Africa and South Asia.

In the Global South, women contribute substantial labor to agriculture but continue to face barriers in accessing agricultural resources, tools and technologies and making decisions on farms.

Combatting gender inequality is crucial for increasing agricultural productivity and reducing global hunger and poverty and should be a goal in and of itself. Evidence suggests that if women in the Global South had access to the same productive resources as men, farm yields could rise by up to 30 percent, increasing total agricultural output by up to 4 percent and decreasing the number of hungry people around the world by up to 17 percent.

The latest virtual special issue includes a review of existing research by CIMMYT gender experts, exploring issues and options in supporting gender inclusivity through maize breeding and the current evidence of differences in male and female farmers’ preferences for maize traits and varieties. The team also identified key research priorities to encourage more gender-intentional maize breeding, including innovative methods to assess farmer preferences and increased focus in intrahousehold decision-making dynamics.

The issue also features a study by CIMMYT and Rothamsted Research researchers on differences in preferred maize traits and farming practices among female and male farmers in southern Africa. The team found that female plot managers and household heads were more likely to use different maize varieties and several different farming practices to male plot managers and household heads. Incorporating farming practices used by female farmers into selection by maize breeding teams would provide an immediate entry point for gender-intentionality.

Also included is a recent paper by CIMMYT gender researchers which outlines the evidence base for wheat trait preferences and uptake of new farming technologies among male and female smallholder farmers in Ethiopia and India. The team highlight the need for wheat improvement programs in Ethiopia and India to include more gender-sensitive technology development, evaluation and dissemination, covering gender differences in wheat trait preferences, technology adoption and associated decision-making and land-use changes, as well as economic and nutritional benefits.

In a study carried out in the Eastern Gangetic Plains of South Asia, CIMMYT scientists investigated how changes in weed management practices to zero tillage – a method which minimizes soil disturbance – affect gender roles. The team found that switching to zero tillage did not increase the burden of roles and responsibilities to women and saved households valuable time on the farm. The scientists also found that both women and men’s knowledge of weed management practices were balanced, showing that zero tillage has potential as a gender inclusive farming practice for agricultural development.

Also featured in the special issue is a study by CIMMYT experts investigating gender relations across the maize value chain in rural Mozambique. The team found that men were mostly responsible for marketing maize and making decisions at both the farm level and higher levels of the value chain. The researchers also found that cultural restrictions and gender differences in accessing transport excluded women from participating in markets.

Finally, the collection features a study authored by researchers from Tribhuvan University, Nepal and CIMMYT exploring the interaction between labour outmigration, changing gender roles and their effects on maize systems in rural Nepal. The scientists found that the remittance incomes sent home by migrants and raising farm animals increased maize yields. They further found that when women spent more time doing household chores, rearing farm animals and engaging in community activities, maize yields suffered, although any losses were offset by remittance incomes.

Read the study: Virtual Special Issue: Importance of a gender focus in agricultural research for development

Cover photo: Women make up a substantial part of the global agriculture workforce, but their role is often limited. (Credit: Apollo Habtamu/ILRI)

Connect rural areas with digital innovations to unlock climate resilience for hundreds of millions of farmers

A female farmer using digital agricultural tools. (Credit: C. De Bode/CGIAR)

Research shows that digital innovations can increase small-scale farmers’ incomes, boost the adoption of better practices, and increase resilience to climate shocks while reducing the gender gap and managing food system risks. However, these benefits are not universal. More than 600 million people and 40 percent of small farms are still not covered by mobile internet, especially in those countries most dependent on agricultural production. Across low- and middle-income countries, women are 7 percent less likely than men to own a mobile phone and 15 percent less likely to use mobile internet.

A new CGIAR Research Initiative, Digital Innovation, has been launched to research pathways to bridge this digital divide, improve the quality of information systems, and strengthen local capacities to realize the potential of digital technologies.

Read the original article: Connect rural areas with digital innovations to unlock climate resilience for hundreds of millions of farmers

CGIAR Initiative: Digital Innovation

Digital innovations can enable an unprecedented transformation of food, land and water systems for greater climate resilience and sustainability. To realize this potential, multidisciplinary expertise across the CGIAR must find solutions to three challenges affecting the Global South: 

  1. The digital divide: digital technologies and infrastructure do not meet people’s needs, especially women and rural populations. More than 600 million people live outside the reach of mobile networks, two-thirds of them in sub-Saharan Africa. 
  2. Weak information systems: available information is inadequate or does not reach those who need it most. More than 300 million small-scale producers lack access to digital climate services. Weak information systems prevent evidence-based policy responses and lead to missed opportunities to reduce poverty and increase economic growth. 
  3. Limited digital capabilities: digital literacy and skill levels across the Global South remain low, particularly for marginalized and food-insecure individuals and groups such as women.

Objective

The Digital Innovation Initiative aims to develop and support digital innovations to stimulate the inclusive, sustainable transformation of food, land and water systems in the areas of investments that policymakers could make to close the digital divide, information delivery systems that allow more people to take action against predicted risks, and ways for partner organizations and marginalized communities to enhance digital capabilities, access resources and opportunities. 

This objective will be achieved through:

  • Generating evidence on impacts of digital innovations and collaborative partnerships to create an enabling environment for digital ecosystems, unlocking local innovators’ access to investments and advanced technologies. 
  • Developing a suite of tools and guidelines to bridge the digital divide, ensuring that gender equality and social inclusion underly the development of digital innovations, research programs and their implementation. 
  • System dynamics modeling to understand complex dynamics in agrifood systems and support natural resource management authorities in equitably allocating water and land resources and managing risks. 
  • Real-time food system monitoring to provide timely and reliable information to stakeholders by applying AI-driven analytics of satellite remote sensing, internet-connected sensors, and other ground-truthed data from multidisciplinary sources. 
  • Strengthening partners’ capacity to collect real-time data, conduct data analytics and make data-driven decisions to enable equitable digital platforms and services.

MasAgro is “a gift for Africa”

Francisco Mayorga joins the CIMMYT Board of Trustees to reflect on MasAgro. (Credit: Francisco Alarcón/CIMMYT)

Between June 20-23, the International Maize and Wheat Improvement Center (CIMMYT) hosted its Board of Trustees meeting, with presentations spanning the breadth of its global projects.

One particular project captured the imagination of attendees: MasAgro, which promotes the sustainable intensification of maize- and wheat-based production systems in Mexico. Through implementing collaborative research initiatives, developing improved varieties, and introducing sustainable technologies and farming practices, the program aims to improve livelihoods and production systems for farmers by enhancing their connections with local value chain actors.

Francisco Mayorga, businessman and former Secretary of Agriculture for Mexico, and Lindiwe Sibanda, CIMMYT board member and member of the CGIAR System Board, presented on the creation of CIMMYT’s MasAgro program and its results. Sibanda interviewed Mayorga to learn where the project’s achievements can be scaled and replicated, describing the project as a “gift for Africa” from Mexico.

Farmers load hybrid maize cobs in sacks for horse transportation over the mountains in Chiapas, Mexico. (Credit: P. Lowe/CIMMYT)

What’s in it for farmers?

Built on the premise of ‘take it to the farmers’, MasAgro helps farmers understand the broader context of agrifood systems in order to facilitate their successful transition to sustainable farming practices. This is accomplished through innovation hubs: core spaces defined by similar agroecological conditions that promote participatory innovation processes and co-implement functional structures for the validation, adaptation, and scaling of sustainable solutions.

Innovation hubs facilitate mentorship by providing closeness between farmers and value chain actors. A physical and virtual network of research platforms, demonstration modules and extension areas support actors to gain skills and knowledge to achieve common objectives. For example, farmers can learn how about agricultural tools and practices and where best to use them on their land, and they now consider the impact of fertilizers on the soil and ecosystem and seek alternatives.

Useful information is provided via multiple communication tools, including mobile messaging, to enable effective knowledge sharing and innovation between actors. The network has led to farmers independently adapting and adopting new practices after learning from others.

The selling point for farmers is understanding why sustainable agriculture creates opportunities for their livelihoods and lives – with improved practices, they can establish a successful long-term setup to increase their yield and income. These opportunities will appeal to smallholders worldwide.

Silvia Suarez Moreno harvests maize in Chiapas, Mexico. (Credit: P. Lowe/CIMMYT)

Benefits for the public and private sector

What also differentiates MasAgro is the emphasis on public and private sector partnerships. CIMMYT collaborated with partners to develop the MasAgro mindset and build their capacity to deliver seed to small- and medium-sized farms. Sibanda praised the use of CIMMYT’s presence in Mexico for developing these connections.

Mayorga highlighted the importance of securing funding and support from the Ministry of Agriculture in the project’s success. He said he initially persuaded colleagues to invest by emphasizing MasAgro’s holistic approach, which considers all elements of farming, rather than dealing with them as individual elements.

Using the different government instruments to support the theory of change towards the impact of MasAgro is part of the success. For example, for businesses, the Mexican government provided funding for laboratory equipment and training needs after identifying seed company partners to support through their research programs and regional markets. Mayorga also celebrated partnerships with small and medium enterprises (SMEs), who were supported by CIMMYT engineers to design more effective machinery and think around scale-appropriate business models. This created additional businesses in the agricultural sector.

Through these partnerships, private sector organizations have invested in agricultural research and development that will benefit smallholders, prevent food insecurity, and support a shift to sustainable farming. Countries in Africa can benefit from similar investment, which could be achieved through exporting and recreating the MasAgro model.

Tzeltal farmer harvests beans in her maize field. (Credit: P. Lowe/CIMMYT)

Flexible government support

Practical support and policy change from the Mexican government further encouraged farmers to adopt sustainable practices. Mayorga explained how a subsidy for farmers’ fuel was replaced with alternative financial support for equipment. Sibanda described this initiative as “visionary” and “a triple win” – farmers could purchase a machine at a subsidized rate, use less labor, and cause less damage to the environment.

To incentivize large companies in Mexico that buy a lot of wheat, Mayorga tapped into their desire “to encourage an economic behavior in the farmer” and introduce a more entrepreneurial approach to agriculture. They encouraged businesses to buy grains from farmers at a better price and learn more about the MasAgro approach.

“You don’t stay with an idea as a policy advisor and politician – you popularize it, look for new champions, walk the talk and put money into it,” summarized Sibanda. “I think that’s a legacy.”

Drought-tolerant maize and use of forecasting in agriculture praised by the Bill & Melinda Gates Foundation

The work of maize and wheat scientists at CGIAR and the International Maize and Wheat Improvement Center (CIMMYT) has been featured in the latest Goalkeepers report from the Bill & Melinda Gates Foundation, which launches with the Global Goals Awards on September 20 and an open-to-all live-streamed event on September 21. 

In analysis of why the Ukraine crisis is heavily impacting Africa, the report’s introduction from Bill Gates delves into reasons behind reliance on crop imports. Most farmers in Africa are smallholders with small plots of land and have limited capacity to use fertilizers or have access to irrigation. This means that any shock to the food system, such as the disruption to the global supply chain caused by the Ukraine conflict, hugely impacts the yield levels, threatening food and nutritional security.

Conflict is not the only risk to food systems in Africa. Climate change is the most prominent challenge that the continent’s smallholder farmers continue to face.

Developed through support from the Bill & Melinda Gates Foundation, DroughtTego, a CIMMYT-derived hybrid maize with increased resistance to hotter, drier climates, produces an average of 66% more grain per acre in Kenya. Scaled through public-private partnerships, DroughtTego seeds can increase farmer income by providing more than enough to feed a family of six for an entire year, enabling them to invest the additional money in sending their children to school or building new homes.

CIMMYT and CGIAR scientists have also been using predictive modeling to speed up plant breeding and develop new varieties that can perform well even in drought stress-prone environments of Africa. Artificial intelligence helps in processing the genomic information of crops alongside the environmental data, such as soil samples and satellite imagery. The results create a vision of what farms will need to look like in the future, enabling scientists to determine which type of crop varieties can better succeed in specific locations.

Predictive epidemiological modeling can highlight where plant diseases, such as wheat rust, may possibly spread. An early warning system, developed by a partnership between CIMMYT, the University of Cambridge, the UK Met Office, the Ethiopian Agricultural Research Institute (EIAR), the Agricultural Transformation Institute (ATI) and the Ethiopian Ministry of Agriculture, successfully alerted farmers in Ethiopia to an outbreak of the disease so that they could take preventive measures. The resulting outcome was the country’s largest wheat harvest ever recorded, instead of a devastating rust epidemic.

A LinkedIn post from Bill Gates also emphasized CIMMYT’s research, asking which crop accounts for around 30% of calorie intake for people in sub-Saharan Africa — the answer being “maize”.

Inclusion in this report highlights the global impact of CIMMYT’s work on farmers and world food systems, which is only possible through successful partnerships with organizations like the Bill & Melinda Gates Foundation.

Cover photo: A farmer in Zaka District, Zimbabwe, experiences a drought that could affect crop yields. (Photo: Johnson Siamachira/CIMMYT) 

CGIAR Initiative: Sustainable Intensification of Mixed Farming Systems (SI-MFS)

Most agricultural production in the Global South takes place in mixed farming systems, which allow farmers to diversify risk from single crop production, use labor efficiently, access cash and add value to products. Key drivers — climate change, population pressure, urbanization, water scarcity, changing diets, volatile food prices — mean that flexible and accelerated changes in mixed farming systems will be needed to achieve global targets such as the Sustainable Development Goals. Sustainable intensification, or the production of more food on the same piece of land while reducing the negative environmental impact, is a viable avenue.

Two types of hurdles must be overcome to adequately meet the challenge at farming systems level. One hurdle is to ensure efficient coordination, integration and transfer of innovations, information, tools and standardized methodologies. A second hurdle is to integrate multiple biophysical and socio-economic thematic-level outputs and identify strategies that minimize trade-offs and maximize synergies, resulting in multiple impacts at scale.

Objective

This Initiative aims to provide equitable, transformative pathways for improved livelihoods of actors in mixed farming systems through sustainable intensification within target agro-ecologies and socio-economic settings.

Activities

This objective will be achieved through:

  • Analyzing status, trends and future dynamics of mixed farming systems to identify entry points for equitable sustainable intensification, to mitigate negative impacts of change and seize emerging opportunities for livelihoods.
  • Building methods and tools for sustainable intensification of mixed farming systems to support decisions on what kind of sustainable intensification might work where, and for whom, in specific contexts.
  • Participatory co-design of mixed farming systems with evidence-based, validated sustainable intensification innovation packages that are responsive to improving efficiency, equity and resilience, in regions where mixed farming systems dominate the landscape.
  • Advancing and supporting scaling of innovations, through strategic partnerships and building the capacity of relevant actors in scaling approaches — a gender-transformative approach will be central to all innovation and scaling design to enhance equity.
  • Capacity-building for mixed farming system design and analyses, to support long-term impact on university and college students, scientists, extension agents, farmers, private sector, policy makers and development actors.

Outcomes

Proposed 3-year outcomes include:

  1. Smallholder farmers use resource-efficient and climate-smart technologies and practices to enhance their livelihoods, environmental health and biodiversity.
  2. Research and scaling organizations enhance their capabilities to develop and disseminate innovations.
  3. Smallholder farmers implement new practices that mitigate risks associated with extreme climate change and environmental conditions and achieve more resilient livelihoods.
  4. Women are youth are empowered to be more active in decision-making in food, land and water systems.
  5. National and local governments utilize enhanced capacity to assess and apply research evidence and data in policymaking processes.