Skip to main content

Location: Africa

CIMMYT’s work in Africa helps farmers access new maize and wheat systems-based technologies, information and markets, raising incomes and enhancing crop resilience to drought and climate change. CIMMYT sets priorities in consultation with ministries of agriculture, seed companies, farming communities and other stakeholders in the maize and wheat value chains. Our activities in Africa are wide ranging and include: breeding maize for drought tolerance and low-fertility soils, and for resistance to insect pests, foliar diseases and parasitic weeds; sustainably intensifying production in maize- and wheat-based systems; and investigating opportunities to reduce micronutrient and protein malnutrition among women and young children.

Seven new CIMMYT maize hybrids available from Southern Africa Breeding Program

How does CIMMYT’s improved maize get to the farmer?
How does CIMMYT’s improved maize get to the farmer?

CIMMYT is happy to announce seven new, improved tropical maize hybrids that are now available for uptake by public and private sector partners, especially those interested in marketing or disseminating hybrid maize seed across southern Africa and similar agro-ecologies in other regions. NARES and seed companies are hereby invited to apply for licenses to pursue national release, scale-up seed production, and deliver these maize hybrids to farming communities.

Newly available CIMMYT hybrids Key traits
CIM21SAPP1-14 Intermediate-maturing, white grain, high-yielding, drought-tolerant, NUE, resistant to GLS, MSV, TLB, and ear rots
CIM21SAPP1-10
CIM21SAPP1-01 Late-maturing, white grain, high-yielding, drought-tolerant, NUE, resistant to MSV, TLB, and ear rots
CIM21SAPP1-08
CIM21SAPP2-12 Early-maturing, white grain, high-yielding, drought-tolerant, NUE, resistant to GLS, MSV, TLB
CZH1815A Early-maturing, PVA biofortified, orange grain, high yielding, drought-tolerant, NUE, resistant to GLS, TLB, ear rots, MSV
CZH1805A
Performance data Download the CIMMYT Southern Africa Maize Regional On-Station (Stage 4) and On-Farm (Stage 5) Trials: Results of the 2019, 2021, and 2022 Seasons and Product Announcement from Dataverse.
How to apply Visit CIMMYT’s maize product allocation page for details
Application deadline The deadline to submit applications to be considered during the first round of allocations is 10 January 2023. Applications received after that deadline will be considered during subsequent rounds of product allocations.

 

The newly available CIMMYT maize hybrids were identified through rigorous, years-long trialing and a stage-gate advancement process which culminated in the 2021/22 Southern Africa Stage 5 Regional On-Farm Trials. The products were found to meet the stringent performance and farmer acceptance criteria for CIMMYT’s breeding pipelines that are designed to generate products tailored in particular for smallholder farmers in stress-prone agroecologies of southern Africa.

Applications must be accompanied by a proposed commercialization plan for each product being requested. Applications may be submitted online via the CIMMYT Maize Licensing Portal and will be reviewed in accordance with CIMMYT’s Principles and Procedures for Acquisition and use of CIMMYT maize hybrids and OPVs for commercialization. Specific questions or issues faced with regard to the application process may be addressed to GMP-CIMMYT@cgiar.org with attention to Nicholas Davis, Program Manager, Global Maize Program, CIMMYT.

APPLY FOR A LICENSE

Rear fish in a rice paddy? Old ways can future-proof food production

In an op-ed for the South China Morning Post, Bram Govaerts, Director General at the International Maize and Wheat Improvement Center (CIMMYT), and Essam Yassin Mohammed, Interim Director General of WorldFish and acting Senior Director of Aquatic Food Systems of CGIAR, explore the role of the research community in developing future-proof strategies to address challenges to the global agrifood system.

Through examples from Egypt, Malaysia and Mexico, the authors explain the benefits of “co-culture”, such as when different crop species are grown together.

This innovation centers on co-design, combining farmer-centric models and new measurement tools that allow scientific advances to benefit a variety of smallholder production systems.

Read the original article: Rear fish in a rice paddy? Old ways can future-proof food production

Combining improved seed varieties and index insurance to address drought losses

This VoxDevTalk features Paswel Marenya, Adoption and Impact Assessment Economist at the International Maize and Wheat Improvement Center (CIMMYT), being interviewed about a recent study, “Bundling Genetic and Financial Technologies for More Resilient and Productive Small-scale Agriculture”.

To test solutions that could mitigate the impacts of drought, the study used randomized control trials to test the impact of combining drought-resistant seeds and index insurance in Mozambique and Tanzania.

Results show that combining these two technologies expands their benefits: using the improved seeds reduces insurance costs, and having insurance to begin with counteracts the risk of adopting the seeds. Farmers who use both technologies have greater resilience to drought in the short- and long-term.

Demonstrating the benefits to farmers and informing the scaling-up of the solution-bundling approach was also found to be important.

Listen to the podcast: Combining improved seed varieties and index insurance to address drought losses

Smallholder farmers embrace climate-smart seed and mechanization fairs

Farmers pose with the drought-tolerant seed of their choice at a seed fair in Masvingo district, Zimbabwe. (Photo: Tawanda Hove/CIMMYT)

The long-term climate outlook for sub-Saharan Africa predicts more erratic rainfalls and higher temperatures. For this reason, the rapid uptake of measures to adapt to climate change within seed systems is of paramount importance. In Zimbabwe, the adoption of “climate-smart seed varieties”, environmentally-sustainable and scale-appropriate mechanization is critical to reaching zero hunger in the face of climate change. Farmers in Zimbabwe’s Masvingo district appear to have embraced this goal. More than 1,000 farmers participated in recent R4/Zambuko climate smart seed and mechanization fairs held in the region on October 11 and 12, respectively.

The fairs were organized by the International Maize and Wheat Improvement Center (CIMMYT) in partnership with Zimbabwe’s Ministry of Lands, Agriculture, Fisheries, Water and Rural Development. Financial support was provided by the United States Agency of International Development (USAID), the Swiss Agency for Development and Cooperation (SDC) and the World Food Programme (WFP). With the onset of the 2022/2023 cropping season, the new OneCGIAR Ukama Ustawi initiative will build upon this work to reach thousands more farmers in the area.

One highlight of the fairs was a strong focus on smallholder mechanization, which saw Zimbabwean and international mechanization companies displaying their products. Each demonstrated two-wheel tractors and a range of attachments, from trailers to crop production and harvesting implements. In the words of the District Development Coordinator (DDC) Kenneth Madziva, “It’s important that farmers own machinery that is appropriate to their context as we now need to move into an era of high productivity and efficient post-harvest processing. We also see some of the machinery on display quite relevant for conservation agriculture practices which aligns with the government’s Pfumvudza program.” Mechanizing the manual basin planting system in Pfumvudza to ripline seeding will dramatically reduce the farm labor usually needed to dig the basins while maintaining the key principles of conservation agriculture: no-tillage, crop residue retention and crop diversification.

According to Madziva, “Such initiatives from partners are very welcome, as rural livelihoods are predominantly agriculturally based. There is need to rapidly transition our farmers from a donor dependence to self-sufficiency, hence I am impressed with the number of farmers I have seen buy seed with their own hard-earned money.” The fairs generally strive to achieve two goals: first, ensuring that farmers are well-informed about climate adapted varieties able to withstand climate challenges such as in-season dry-spells and/or heat stress, and, second, that they buy the improved seed directly from private sector partners.

Farmers observe a two-wheel tractor engine being used to power a maize sheller. (Photo: Tawanda Hove/CIMMYT)

It is hoped that increasing famers’ exposure to scale-appropriate mechanization will translate into increased purchases of the equipment and a move away from the drudgery of both draft or manual production and processing systems. Robin Vikström, the donor representative from WFP also stated that it is high time for smallholder farmer systems be intensified, and mechanization is one of the essential triggers of intensification.

Vikström, speaking on the significance of the events said, “Such initiatives are part of a broader national resilience building strategy where our intention is to enable smallholder farmers to deal with climate shocks and stresses through capacity development trainings, diversified crop production systems, effective and well-governed Income Savings and Lending groups (ISALS) and improved livestock. This is a step forward from our tradition of distributing food, which is still necessary in certain contexts, but has to be progressed to self-reliance. The seed and mechanization fairs facilitate stronger interactions between the farmers and the private sector and furthermore the procurement of the right seed and mechanization for their ecological region. More interaction translates to better product development and increased sales which is a win-win for all stakeholders concerned. This is a major step towards sustainable achievement of food and nutrition security.”

Concerning the long-term plan of the intervention, Vikström added, “The initiative is currently set to run until 2025 with plans already underway to expand to more wards and districts as the development strategy is proving to be yielding significant results.” The seed fairs resulted in the sale of approximately 1.9 metric tons of improved white and orange maize seed, generating over $6,000 in revenue for participating private sector vendors.

Christian Thierfelder, Principal Cropping Systems Agronomist at CIMMYT and Principal Investigator for the program said, “As we expanded this year to different wards, our objective was to first create an educational platform for farmers where farmers could learn more about the various stress-tolerant seed varieties with improved genetics available from the private sector. Secondly, we wanted to create a selling platform for the private sector where various companies could have their products made much more easily accessible to the smallholder farmers. I am happy that the private sector talked about conservation agriculture, which is an important new narrative. Farmers need to grow the right seed in a good agronomic environment for the crop to succeed.”

Although this crop season’s outlook is yet to be officially communicated to farmers, there is high anticipation for a bumper harvest through improved varieties and efficient, mechanized operations and farmers were eager to buy the right seed to reap the benefits of science in their own homestead.

CIMMYT leads innovation sprint to deliver results to farmers rapidly

Smallholder farmers, the backbone of food systems around the world, are already facing negative impacts because of climate change. Time to adapt climate mitigation strategies is not a luxury they have. With that in mind, the Agriculture Innovation Mission for Climate (AIM4C) facilitates innovation sprints designed to leverage existing development activities to create a series of innovations in an expedited timeframe.

At the UN COP27 in Egypt, AIM4C announced its newest round of innovation sprints, including one led by the International Center for Maize and Wheat Improvement (CIMMYT) to enable smallholder farmers to achieve efficient and effective nitrogen fertilizer management. From 2022 to 2025, this sprint will steer US $90 million towards empowering small-scale producers in Africa (Kenya, Malawi, Morocco, Tanzania, and Zimbabwe), Asia (China, India, Laos and Pakistan), and Latin America (Guatemala and Mexico).

“When we talk to farmers, they tell us they want validated farming practices tailored to their specific conditions to achieve greater productivity and increase their climate resilience,” said Sieg Snapp, CIMMYT Sustainable Agrifood Systems (SAS) program director who is coordinating the sprint. “This sprint will help deliver those things rapidly by focusing on bolstering organic carbon in soil and lowering nitrous oxide emissions.”

Nitrogen in China

Working with the Chinese Academy of Agricultural Sciences (CAAS), the sprint will facilitate the development of improved versions of green manure crops, which are grown specifically for building and maintaining soil fertility and structures which are incorporated back into the soil, either directly, or after removal and composting. Green manure can significantly reduce the use of nitrogen-based fertilizers, which prime climate culprits.

“There are already green manure systems in place in China,” said Weidong Cao from CAAS, “but our efforts will integrate all the work being done to establish a framework for developing new green manure crops aid in their deployment across China.”

Triple wins in Kenya

The Kenya Climate Smart Climate Project, active since 2017, is increasing agricultural productivity and building resilience to climate change risks in the targeted smallholder farming and pastoral communities. The innovation sprint will help rapidly achieve three wins in technology development and dissemination, cutting-edge innovations, and developing sets of management practices all designed to increase productive, adaption of climate smart tech and methods, and reduce greenhouse gas (GHG) emissions.

Agricultural innovations in Pakistan

The Agricultural Innovation Program (AIP), a multi-disciplinary and multi-sectoral project funded by USAID, led by CIMMYT, and active in Pakistan since 2015, fosters the emergence of a dynamic, responsive, and competitive system of science and innovation that is ‘owned’ by Pakistan and catalyzes equitable growth in agricultural production, productivity, and value.

“From its beginning, AIP has been dedicated to building partnerships with local organizations and, smallholder farmers throughout Pakistan, which is very much in line with the objectives and goal as envisioned by Pakistan Vision 2025 and the Vision for Agriculture 2030, as Pakistan is a priority country for CIMMYT. However, a concerted effort is required from various players representing public and private sectors,” said Thakur Prasad Tiwari, senior scientist at CIMMYT. “Using that existing framework to deliver rapid climate smart innovations, the innovation sprint is well-situated to react to the needs of Pakistani farmers. “

Policies and partnerships for innovations in soil fertility management in Nepal

The Nepal Seed and Fertilizer (NSAF) project, funded by USAID and implemented by CIMMYT, facilitates sustainable increases in Nepal’s national crop productivity, farmer income, and household-level food and nutrition security. NSAF promotes the use of improved seeds and integrated soil fertility management technologies along with effective extension, including the use of digital and information and communications technologies. The project facilitated the National Soil Science Research Centre (NSSRC) to develop new domain specific fertilizer recommendations for rice, maize, and wheat to replace the 40 years old blanket recommendations.

Under NSAFs leadership, the Ministry of Agriculture and Livestock Development (MOALD) launched Asia’s first digital soil map and has coordinated governmental efforts to collect and analyze soil data to update the soil map and provide soil health cards to Nepal’s farmers. The project provides training to over 2000 farmers per year to apply ISFM principles and provides evidence to the MOALD to initiate a balanced soil fertility management program in Nepal and to revise the national fertilizer subsidy policy to promote balanced fertilizers. The project will also build efficient soil fertility management systems that significantly increase crop productivity and the marketing and distribution of climate smart and alternative fertilizer products and application methods.

Public-private partnerships accelerate access to innovations in South Asia

The Cereal Systems Initiative for South Asia (CSISA), established in 2009, has reached more than 8 million farmers by conducting applied research and bridging public and private sector divides in the context of rural ‘innovation hubs’ in Bangladesh, India, and Nepal. CSISA’s work has enabled farmers to adopt resource-conserving and climate-resilient technologies and improve their access to market information and enterprise development.

“Farmers in South Asia have become familiar with the value addition that participating in applied research can bring to innovations in their production systems,” said Timothy Krupnik, CIMMYT systems agronomist and senior scientist. “Moreover, CSISA’s work to address gaps between national and extension policies and practices as they pertain to integrated soil fertility management in the context of intensive cropping systems in South Asia has helped to accelerate farmers’ access to productivity-enhancing innovations.”

CSISA also emphasizes support for women farmers by improving their access and exposure to improved technological innovations, knowledge, and entrepreneurial skills.

Sustainable agriculture in Zambia

The Sustainable Intensification of Smallholder Farming systems in Zambia (SIFAZ) is a research project jointly implemented by the UN Food and Agriculture Organization (FAO), Zambia’s Ministry of Agriculture and CIMMYT designed to facilitate scaling-up of sustainable and climate smart crop production and land management practices within the three agro-ecological zones of Zambia. “The Innovation Sprint can take advantage of existing SIFAZ partnerships, especially with Zambia’s Ministry of Agriculture,” said Christian Thierfelder, CIMMYT scientist. “Already having governmental buy-in will enable quick development and dissemination of new sustainable intensification practices to increase productivity and profitability, enhance human and social benefits while reducing negative impacts on the environment.”

Cover photo: Paul Musembi Katiku, a field worker based in Kiboko, Kenya, weighs maize cobs harvested from a low nitrogen trial. (Florence Sipalla/CIMMYT)

Groundnut ESA crop improvement network sets regional and country level priorities

Members of Umoja, Tuaminiane, Upendo and Ukombozi groundnut farming groups in Naliendele, Tanzania showing their groundnut harvests in May 2022. (Photo: Susan Otieno/CIMMYT)

The Accelerated Varietal Improvement and Seed Delivery of Legumes and Cereals in Africa (AVISA) project has developed draft national groundnut target product profiles in Malawi, Mozambique, Sudan, Tanzania, Uganda and Zambia.

Groundnut is grown in eastern and southern Africa, where it remains an important food and oil crop from small holder farmers.

The new findings from the project are a result of work from groundnut crop breeding and improvement teams from the National Agricultural Research and Extension Systems (NARES) representatives from the six largest groundnut producing countries in the eastern and southern Africa region.

Their important research was carried out with the support of representatives from the Centre for Coordination of Agricultural Research and Development for Southern Africa (CCARDESA) and CGIAR.

Developing target product profiles for groundnut

For the first time, through the International Maize and Wheat Improvement Center (CIMMYT)-led AVISA program, funded by the Bill & Melinda Gates Foundation, groundnut breeding teams discussed and documented country level priorities at a meeting in Dar es Salaam, Tanzania.

Their findings were developed using a standard target product profile template recently developed by CGIAR Excellence in Breeding (EiB) in conjunction with CGIAR’s Market Intelligence Initiative. The template serves as a tool to capture market segments and develop targeted product profiles.

The groundnut breeding teams also shared information on current groundnut production metrics and trends in the six national programs. This also helped to establish a common understanding of countries’ level research priorities.

Futhi Magagula from CCARDESA and Elailani Abdalla, Mohamed Ahmed and Abdelrazeg Badadi from ARC-Sudan deliberate on groundnut market segments for Sudan. (Photo: Biswanath Das/CIMMYT)

Agnes Gitonga, market strategist at CGIAR Genetic Innovations Action Area, who led the team in understanding and applying the template, explained that the quality of a target product profile (TPP) is dependent on how well market segments are defined. “To ensure target product profiles are an accurate reflection of customer needs, who include farmers, consumers, and processors,” she said.

“National groundnut teams nominated Country Product Design Teams that will meet nationally before the end of 2022 to review and update country TPPs. These multi-stakeholder teams will ensure that the needs of diverse groups are captured and that breeding efforts are accurately focused.”.

Harish Gandhi, Breeding Lead, Dryland Legumes and Cereals (DLC) at CIMMYT, further explained that a bottom-up approach for defining country and regional priorities was used, where each country defined market segments and target product profile based on the use of the produce and growing conditions of farmers. This strategy involved each country defining its market segments and TPP, which was based on the use of the produce and growing conditions of farmers.

Building on the draft national target product profiles that were defined at the meeting, participants went on to prioritize traits such as diseases, nutrition and stress tolerance. These factors can be critical at regional level and important in identifying potential locations for conducting phenotyping. The phenotyping locations are distributed based on capacity of stations in different countries to screen for traits, such as late leaf spot disease screening in Msekera in Zambia, which is a known hotspot for the disease.

“We had a good opportunity to consider grower needs as well as consumer needs in each country for purposes of defining the relevant groundnuts market segments. I believe this will have a positive impact on future work in groundnuts in the East and Southern Africa region,” reflected Gitonga.

The collaboration of the teams involved was a key factor for the project’s success so far and will be crucial in working towards its goals in the future.

“Involving different stakeholders in designing target product profile was an effective way of enabling transformation of individual preferences (area of interest) to collective preferences (targeted product) with consumer needs and markets in mind,” said Happy Daudi, Groundnut Breeding lead at the Tanzania Agricultural Research Institute (TARI).

Tanzania Agricultural Research Institute (TARI) Naliendele Station Groundnut Research Team ((L-R) Bakari Kidunda, Gerald Lukurugu, Anthony Bujiku and Dr. Happy Daudi) deliberate on national groundnut breeding priorities. (Photo: Biswanath Das/CIMMYT)

Strengthening groundnut breeding programs in east and southern Africa

The project’s first meeting will provide an important foundation for future research, which will use the new findings as a blueprint.

Biswanath Das, Plant Breeder, Groundnut for East and Southern Africa region and NARES Coordinator and Programming lead for EiB said, “Defining national TPPs, identifying regionally important traits and mapping a testing network are fundamental building blocks of a modern breeding program.”

At the meeting, a schedule was laid out for peer-to-peer assessments of breeding programs within the regional network to take stock of current efforts and gaps. This step helps to develop customized capacity development plans for each network partner.

“Through targeted and demand led capacity development, the East and Southern Africa groundnut crop improvement network aspires to strengthen the role of each network member in collaborative, regional breeding efforts,” Das said.

The meeting laid the ground for coordinated regional groundnut breeding and took steps towards formalizing a regional NARES-CGIAR-SME groundnut crop improvement network. By building on excellent connections that already exist among national groundnut breeding teams. Das underscored that the move will strengthen alignment of NARES, CGIAR and regional research efforts around a common vision of success.

In addition, David Okello who leads groundnut research at National Agriculture Research Organization (NARO) Uganda, noted that the meeting provided a good opportunity for consolidating the existing network. He also looked forward to welcoming more groundnut improvement programs in the region on board.

CIMMYT at COP27

COP27, the UN Climate Change Conference for 2022, took place this year in Sharm El-Sheikh, Egypt, between November 6-18. Scientists and researchers from the International Maize and Wheat Improvement Center (CIMMYT) represented the organization at a wide range of events, covering gender, genebanks, soil health, and digital innovations.

Gender and food security

In an ICC panel discussion on Addressing Food Security through a Gender-Sensitive Lens on November 7, Director General Bram Govaerts presented on CIMMYT’s systems approach to address gender gaps in agriculture. This event formed part of the ICC Make Climate Action Everyone’s Business Forum, which aimed to bring together experts to determine solutions to the planet’s biggest environmental challenges.

Govaerts highlighted the importance of extension and training services targeting female farmers, particularly those delivered by women communicators. This can be achieved through training female leaders in communities, which encourages other women to adopt agricultural innovations. He also emphasized the obstacles to global food security caused by conflict, climate change, COVID-19, and the cost-of-living crisis, which will in turn create more challenges for women in agriculture.

The role of CGIAR genebanks in a climate crisis

Govaerts and Sarah Hearne, principal scientist, introduced the Agriculture Innovation Mission for Climate (AIM4C) innovation sprint on Fast Tracking Climate Solution from Genebank Collections, at a virtual side event organized by the Foundation for Food & Agriculture Research (FFAR).

Hearne explained that the development of current and future varieties is dependent upon breeders sourcing and repackaging native genetic variation in high value combinations. The CGIAR network of germplasm banks holds vast collections of crops that are important for global food and feed supplies. Among the diversity in these collections is currently unexplored and unused native variation for climate adaptation.

Through strong partnerships, multi-disciplinary activities, and the harnessing of diverse skillsets in different areas of applied research and development work, the sprint will help to identify genetic variations of potential value for climate change adaptation and move that variation into products that breeders globally can adopt in their variety development work. Through these efforts, the sprint improves access to specific genetic variation currently sat in the vaults of germplasm banks and facilitates crop improvement programs to develop the varieties that farmers demand.

The sprint is a clear example of the shift in paradigms we are looking for, so that people in the year 2100 know we took the right decisions in 2022 for them to live in a better world, said Govaerts. He continued by emphasizing the need for the initiative to be integrated within the systems it aims to transform, and the importance of accelerating farmers’ access to seeds.

The initiative is only possible because of the existence of the genebank collections that have been conserved for humanity, and due to cross-collaboration across disciplines and sharing of data and resources.

Addressing soil fertility management

Tek Sapkota, senior scientist, presented at Taking Agricultural Innovation to the Next Level to Tackle the Climate Crisis, the AIM4C partner reception on November 11, which gathered critical actors committed to making agriculture one of the most impactful climate solutions. Hosted on the one-year anniversary of the AIM4C launch at COP26 and on the eve of the COP27 day on adaptation and agriculture, the event was a celebration of progress made to date to address the climate crisis by 2025.

Along with 20 partners, CIMMYT submitted an AIM4C innovation sprint on climate-resilient soil fertility management by smallholders in Africa, Asia, and Latin America, which was announced at COP27 alongside other sprints.

Sapkota, who leads a project that is part of CIMMYT’s AIM4C innovation sprint submission, presented alongside the Minister of Climate Change and Environment from the United Arab Emirates, the Secretary of Agriculture for the United States, and the Regional Director for Central Asia, West Asia and North Africa at CGIAR.

Digital solutions for sustainable systems

Tharayil Shereef Amjath Babu, agricultural economist in modeling and targeting, hosted an event on Accelerating Digital Climate Services for resilient food systems in the Global South, exploring the work of two CGIAR Initiatives: Securing the Food Systems of Asian Mega-Deltas (AMD) for Climate and Livelihood Resilience and Transforming Agrifood Systems in South Asia (TAFSSA) on November 17.

In the Global South, farmers are being affected by unreliable weather patterns caused by climate change, which means they can no longer rely on their traditional knowledge. However, demand climate services can fill this vacuum, enabling meteorological agencies to produce accurate climate information, co-create digital climate services for agricultural systems, and support sustainable and inclusive business models.

Cover photo: A CIMMYT staff member at work in the maize active collection in the Wellhausen-Anderson Plant Genetic Resources Center, as featured in a session on Fast Tracking Climate Solution from Genebank Collections at COP27. (Photo: Xochiquetzal Fonseca/CIMMYT)

Partnership approach to maize development praised in new study

Using data from 1995-2015, an empirical study from the International Maize and Wheat Improvement Center (CIMMYT) and the International Institute of Tropical Agriculture (IITA), led by Vijesh Krishna, CIMMYT Lead Adoption – Impact Economist, has estimated the economic benefits of new varieties in 18 major maize-producing countries in sub-Saharan Africa.

Kevin Pixley, Deputy Director General for Research (Breeding and Genetics), a.i., and Director of the Genetic Resources Program, said, “This was not easy due to the challenges of gathering and analyzing complex data, but it’s a very important milestone for CIMMYT. Peer review in a highly respected journal is a gold standard that gives external critique and endorsement to the impact assessment methods used and estimates reported for CIMMYT and IITA’s work with partners in Africa.”

Around 60 percent of the 1,345 maize varieties released in this twenty-year period had a known CGIAR parentage.

Approximately 34 percent of the total maize area in 2015 was cultivated with CGIAR-related maize varieties from 1995 onwards, equivalent to 9.5 million hectares (ha); 13 percent of the maize area was under CGIAR-related varieties released before 1995.

The new maize varieties hold an economic benefit for the region, with an estimated value of US $1.1-1.6 billion in 2015 equally attributed to CGIAR, public-sector national research and extension programs, and private sector partners. With maximum annual investment in CGIAR maize breeding sitting at US $30 million, the estimated benefit-cost ratio for investment was between 12:1-17:1, depending on the underlying assumptions.

“This paper is a valuable contribution to literature on impact assessment, highlighting the real challenges and approaches to quantify impact of work that is a collaboration among many,” continued Pixley. “Both the methodologies and impact estimates will be valuable to researchers and funders of plant breeding programs.”

Read the study: Impact of CGIAR maize germplasm in Sub-Saharan Africa

Cover photo: Farmer Chana Filimoni harvesting maize in his field in Chakwawa village, Salima District, Malawi. (Photo: Peter Lowe/CIMMYT)

Shared priorities and plans for partnership

CIMMYT Director General Bram Govaerts with representatives from ATI and EIAR. (Photo: Enawgaw Shibeshi/CIMMYT)

In early September 2022, the International Maize and Wheat Improvement Center (CIMMYT) Director General Bram Govaerts made a brief visit to Ethiopia — his first since taking on the role in 2021. Over two days in Addis Ababa he met with a number of government representatives, donors and partners, including the Agricultural Transformation Institute (ATI), the Ethiopian Institute for Agricultural Research (EIAR), Deutsche Gesellschaft fuer Internationale Zusammenarbeit (GIZ) GmbH, and The Development Fund.

Discussions centered around South-South cooperation and how CIMMYT’s strategic priority to transform agrifood systems can support efforts to improve the livelihoods of resource poor farmers in Ethiopia and national food security. Through longstanding collaboration with local partners, CIMMYT has continued to support the country through maize and wheat germplasm supply, joint technology generation and demonstrations at scale, but the visit provided an opportunity to identify shared priorities and key areas for partnership.

Supporting a plan for self-sufficiency

In a meeting with representatives from the ATI and EIAR, the CIMMYT delegation were briefed on the elements of the Government of Ethiopia’s ten-year development plan and its targets to achieve food self-sufficiency by 2030, with commercialization, advocacy on land ownership, and financial sector reform emerging as key areas of focus.

In terms of policy change, explained ATI Director General Mandefro Nigussie, there are ten core agendas that the government has set and plans to implement in the coming years. These include land governance and advisory; public-private partnership; marketing and infrastructure; and digital agriculture. The continued need for capacity building emerged as a key concern, as high staff turnover has meant many of those trained by CIMMYT previously had now left their posts.

Govaerts thanked ATI and EIAR for their collaboration so far, noting that this would surely continue as CIMMYT planned to double engagement, collaboration, production and partnerships in the coming years. Addressing the concerns raised around capacity building, particularly the training of experts, he explained that training opportunities had been limited in the last two years because of the COVID-19 pandemic and budget constraints, but capacity building for research and extension was included in the list of future action points, including a ministerial visit to CIMMYT offices in either Mexico or India.

The discussions were productive, and participants reached agreement on several other points, including collaboration on the establishment of a One Stop Shop by ATI; supporting EIAR’s data warehouse development that will provide farmers with access to an agronomy advisory services hotline; and supporting the breading of wheat for heat tolerance and Ethiopia’s irrigated wheat initiative.

Representatives from The Development Fund, a non-government organization (NGO) from Norway, meet with Govaerts. (Photo: Enawgaw Shibeshi/CIMMYT)

Strengthening collaboration

Govaerts later met with several representatives from The Development Fund, including Country Director for Ethiopia Ulf Flink, to discuss opportunities for strengthening partnerships for greater impact. The Development Fund’s Ethiopian portfolio has evolved over four decades from supporting relief work by one Tigrayan organization to supporting multiple projects with several organizations in Tigray and Afar, with a focus on socio-economic development to alleviate poverty, and improve food security and natural resource management in dryland areas.

While the organization has recently encountered challenges in Tigray, with several programs disrupted by instability, Flink noted that the implementation of The Development Fund’s collaborative projects with CIMMYT are progressing well and pointed out opportunities to scale-up joint operations in the region, where more than 5,000 farmers have been supported so far.

Govaerts thanked The Development Fund for the strong collaboration so far and emphasized CIMMYT’s need for continued strategic partnership in South-South collaboration that can make a difference to smallholders in the country. He also pointed to CIMMYT’s aim of doubling impact and coverage, highlighting that changes in partners’ thinking and ways of intervening could be opportunities to strengthen collaboration with The Development Fund.

Cognizant of the limitations imposed by major challenges such as funding modalities — which are shifting towards humanitarian rather than development assistance — and the increasing price of mechanization, meeting participants were able to agree on a number of action points to support future collaborative work. These include continued support to project implementation in Tigray when the security situation allows; exploring opportunities to strengthen collaborations in other countries such as Malawi; and supporting research-based advocacy at both regional and zonal levels.

Additionally, CIMMYT will share its methodology for Integrated Development and research-based humanitarian development support, and work with The Development Fund to provide improved crop varieties and grain with smallholder famers in drought- and conflict-affected areas where projects are being implemented.

Govaerts delivers keynote speech to Cereals and Grains 22

Bram Govaerts presents at Cereals and Grains 22. (Photo: María Itria Ibba/CIMMYT)

One of the biggest challenges facing the world today is how to balance a healthy diet for humans with agricultural production that is good for the environment. At the International Maize and Wheat Improvement Center (CIMMYT), scientists work closely with farmers to achieve these aims and contribute towards food security, as well as improving their livelihoods and nutrition.

In an opening keynote at Cereal & Grains 22 titled Risk Mitigation in the Food Chain, Bram Govaerts, Director General a. i. of CIMMYT, focused on the organization’s work towards a world with resilient agrifood systems that protect biodiversity.

Govaerts explored the sensitivity of agricultural systems to the impacts of climate change, which in turn affects farmers’ ability to successfully produce crops and their capacity to meet rising global demand for food. However, agriculture itself is not immune from contributing towards climate change, currently accounting for 24% of greenhouse gas (GHG) emissions.

The effects of climate change are not the only pressure on agrifood systems, with other system shocks such as COVID-19 and conflict causing disruption to production and yields, prices, and supply chains, said Govaerts. For example, the current Ukraine crisis, which has heavily affected wheat imports and exports, underscores the need for long-term solutions to stabilize global food security. The encroaching cost of living crisis is adding further challenges to an already delicate situation, and hunger is predicted to increase across the Global South.

Investing in solutions

Research and development (R&D) has an essential role to play in addressing this crisis. Evidence shows that for every $1 USD invested in anticipatory action to safeguard lives and livelihoods, up to $7 USD can be saved by avoiding losses in disaster-affected communities. Simply put, proactive investment in agricultural science will save money in the long run by solving problems before they reach critical point.

CIMMYT’s R&D projects focus on extensive research on climate change adaptation and mitigation in maize and wheat-based production systems, helping smallholder farmers adapt to climate shocks and to raise and maintain yields in profitable and sustainable ways, and on capacity building for stakeholders in the development and application of new technologies.

Scientists are also harnessing the power of genebanks and breeding, focusing on safeguarding, characterization, and use of biodiversity to identify characteristics of seeds for genetic gain, adaptation to climate change, and better nutritional quality. This means farmers can access more and better seeds that respond to agrifood needs.

These innovations are only as effective as their level of adoption, which is why CIMMYT works closely with actors at all levels of agrifood systems.

Climate science at work in Africa

Govaerts shared examples of CIMMYT’s climate change adaptation and mitigation work include the introduction of drought-tolerant maize in Zimbabwe, which yielded more than 0.6 t/ha more than previous varieties. This equates to $240 USD more income per hectare, which provides nine months’ worth of additional food security at no extra cost.

In Malawi, drought-tolerant maize varieties planted under conservation agriculture yielded 66% more than non-tolerant varieties planted under conventional tillage. Farmers harvested more maize while spending on average 35-45 fewer days working in the field.

There is also an increase in popularity for stress-tolerant wheat varieties in Ethiopia, such as Danda’a, Kakaba, Kingbird and Pavon 76.

Scientists have also combined tropical fall armyworm (FAW)-resistant maize germplasm, from Mexico, with elite stress resilient germplasm developed in sub-Saharan Africa to successfully breed three FAW-tolerant elite maize hybrids. This is addressing the serious threat of FAW to maize production in eastern and southern Africa.

Transformation through partnership working

Following an Integrated Agrifood Systems Approach (IASA) has given CIMMYT significant edge by building effective partnerships with the public and private sector. Collaboration on responsible sourcing with Kellogg’s and Grupo Bimbo, as well as a new three-year partnership with Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) and Grupo Modelo to encourage water-conserving farming practices, will contribute to a one-system approach.

More than 18 million farmers worldwide benefit through CIMMYT’s improved maize and wheat system farming practices. With so much at stake for the entire world, CIMMYT has no plans to stop now.

Opening the door to commercial fodder production

The paired challenges of population growth and climate change have put smallholder farmers in Zambia in a squeeze. In the Southern Province, the center of agricultural production for the nation, smallholder dairy farmers struggle to increase their production of fodder to commercially viable levels in the face of a long dry season that climate change is intensifying.

Smallholder farmers looking to support their families, enhance the local food supply, and sustain economic growth in their areas are at a distinct disadvantage because agriculture in Zambia is dominated by massive commercial operations with plentiful capital, large tracts of land, and expensive machinery, with most of their output marked for export.

The International Maize and Wheat Improvement Center (CIMMYT) is partnering with the German development agency Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) and the University of Hohenheim to identify key barriers and sustainable pathways to smallholder farmer success through a mechanization working group. This work is being carried out through the global initiative One World No Hunger, which launched Green Innovation Centers for the Agriculture and Food Sector (GIC) in 15 member countries in 2014.

“Mechanization is a critical aspect of responding to these problems and the core business of the GIC is to develop knowledge,” said Chimuka Mulowa, a GIC cooperative development advisor based in Choma, Zambia. “Our efforts provide training to smallholder farmers with a focus on adaptive mechanization as a critical ingredient in a holistic approach. Projects in the past have purchased equipment, but we integrate knowledge with existing infrastructure.”

Smallholder homestead with irrigation and fencing to protect developed pasture, Namwala, Southern Province, Zambia. (Photo: Vuyo Maphango)

In Zambia, the GIC works with 22 cooperatives to reach 10,000 small-scale farmers with training sessions on fencing land to grow grass, climate smart breeding, irrigation, and more. The GIC has reached their training goal, but implementation of new practices has been more difficult, with only about half the farmers adopting what they have learned so far.

To better understand the challenges smallholder farmers face in Zambia, Mulowa and the GIC partnered with researcher Vuyo Maphango, who was completing his master’s degree in agricultural economics at the University of Hohenheim under the supervision of Lennart Woltering, a senior scientist at CIMMYT. Woltering developed a tool called Scaling Scan which analyzes barriers to growth for successful innovations in the pilot stage and brings focus to key ingredients for expansion.

Mulowa and Maphango used Scaling Scan to assess the progress of the GIC efforts in Zambia. As they expected, for smallholder farmers trying to get into commercial fodder production, financing was a challenge. At $35,000 USD for a machinery like hay balers used once per year, it can take a farmer up to a decade to recoup such an investment. But Scaling Scan also identified surprising challenges, such as a lack of collaboration and uneven dissemination of knowledge and skills.

Tractor carrying hay bales, Choma, Southern Province, Zambia. (Photo: Vuyo Maphango)

“There was a lot of progress coming out of the Scaling Scan process,” Maphango said. “Growing the cooperatives of farmers is a critical GIC focus now, and this helps with the finance issues as well. Where farmers can’t afford to buy or develop high-quality seed, they can come together, share which seeds are working best for them, and help each other adopt best practices. Staying close as a cooperative also gives farmers stronger bargaining power with the ability to pool together finances.”

More affordable equipment will also help. Smaller, less expensive choppers and chuff cutters ($1500-2000 USD) are already available for silage production, but there is not a well-established tradition of employing silage production in Zambia, and farmers there have struggled to adopt it. Similar machines are making their way onto the market for fodder production and will require farmers to develop a new set of technical skills.

Mulowa and Maphango are also rethinking approaches to training. As an incentive, non-government organizations (NGOs) often pay participants for their time when they attend training sessions, but government ministries can’t sustain this practice beyond the end of a project due to lack of funding. For a deeper level of skill and knowledge development, GIC wants to help farmers see the benefit of training as providing its own incentive–continuing professional education will pay off, both in terms of better agricultural and business practices, and better financial outcomes. The key to this transition is results. When farmers see their yield improving because of skills and practices they developed in training, they will be hungry for more.

Success, for Zambian smallholders, is a door that is opening slowly but surely. “Early adopters are making progress,” Maphango said. “Some are growing their own grass, others are fencing their land and developing irrigation.” As these practices take root, and farmers share victories with cooperative members; the value of ongoing training becomes clear, and the door may open further for others to walk through.

Cover photo: Hay bales on a commercial farm, Chisamba, Central Province, Zambia. (Photo: Vuyo Maphango)

Two-wheel tractors transform smallholder farming communities in Masvingo

Women’s representative test drives a two-wheel tractor at a seed fair, Zimbabwe. (Photo: Tawanda Hove/CIMMYT)

The two-wheel tractor has been a life changer for Ranganai Muzorori.

At a recent seed and mechanization fair in Zimbabwe, the maize farmer, who purchased the tractor on a lease-to-own basis, said he now enjoys bigger earnings.

Not only has he realized a significant change in his income due to the tractor, he no longer has to struggle to shell maize because he now has access to a machine that strips the corn off the cob.

In a day I can shell about 10 tons, which is helpful for saving precious time, Muzorori said.

Land preparation is also less arduous. “We no longer rely on animal draft power or our own manual labor, but the tractor,” he added.

Due to the versatility of the tractor, which has multiple attachments depending on the task that needs to be done, he has also secured a formal annual contract with Great Zimbabwe Hotel in the southeastern city of Masvingo. He attaches a trailer to the tractor to collect garbage and transport it to the dump, diversifying his income beyond conventional on-farm earnings.

Before the International Maize and Wheat Improvement Center (CIMMYT), in partnership with Zimbabwe’s government extension arm Agritex (Department of Agricultural, Technical and Extension Services), introduced low-cost tractors and small engine-operated farm machinery, such innovations were just a dream for many farmers in Zimbabwe who could not afford to pay $30,000 USD.

“We need to move with the times, the days of relying on either draft power or manual labor should be a thing of the past,” said Caleb Mnkandla, an Agritex supervisor. “With more exposure forums for farmers like this, we can accelerate the adoption of mechanized agriculture even at a smallholder farmer level.”

Improved mechanized tools are also now available to smallholder farmers.

Increased efficiency lightens load

A recent surge of January and tickborne diseases, which affect livestock, added to difficulties faced by many communal farmers due to draft-power shortages during land preparation and planting seasons.

This has translated to reduced yields for many farmers as the timing and efficiency of land preparation and planting has a direct impact on crop yields.

Other farmers in Masvingo are also seeing the transformative capabilities of such mechanization, as reflected in testimonials during the R4 Rural Resilience and ZAMBUKO seed and mechanization fair held in October.

The project – funded by the United States Agency for International Development (USAID), the Swiss Agency for Development and Cooperation (SDC), and the World Food Programme (WFP) – is intended to reduce the arduous manual labor associated with the use of hand operated ploughs and tools.

“Smallholder production systems in Africa have been heavily comprised of intense drudgery which makes farming less attractive for youth and difficult for women,” said Abdul Matin, a lead scientist with CIMMYT.  “The new mechanization technologies we are bringing in are meant to reduce drudgery and cost, and add increased efficiencies to smallholder farmer operations.”

Private sector partners demonstrate the multi-functionality of two-wheel tractors. (Photo: Tawanda Hove/CIMMYT)

Greater accessibility through financing

In a joint collaboration, Agritex and CIMMYT provide an innovative financial scheme under which service providers pay a commitment fee of $500 USD to access the machinery. They then receive a grace period of four months and pay instalments of $100 USD a month for 20 months. The project covers half of the machinery cost as risk sharing.

So far, there are 34 service providers participating in Masvingo, offering mechanization services to smallholder farming communities for a fee. The project is a scalable pilot for the rest of the country.

The service provider model puts the focus on the asset owners, who not only enjoy the benefits of the mechanization, but also offer services to surrounding farming communities which causes exponential impact, Matin said.

The package of services farmers have been accessing include tillage, transportation, shelling and threshing services.

Tractors can be used for transportation year round, providing steady income for service providers.

The fair provides a platform to demonstrate and showcase the impact of the new technology to farmers, said Pamela Chirwa, project coordinator for CIMMYT’s Global Maize Program in the Southern Africa Regional Office located in Zimbabwe, who coordinated the event.

“We need to continuously expose farmers to other farmers who have moved on to mechanized production,” she said. “Such farmer-to-farmer extension makes it easier for others to adopt technology as they relate to each other better.”

“Adopting improved maize seed varieties alongside two-wheel tractors and other machinery will also improve capacity and potential earnings,” said Christian Thierfelder, a principal scientist with CIMMYT, addressing farmers in Masvingo, emphasizing that for conservation agriculture, mechanized equipment is a labor-saving technology.

Kenya: Scientists team up to control fall army worms

The Government of Kenya is working with the International Maize and Wheat Improvement Center (CIMMYT), Kenya Agricultural and Livestock Research Organization (KALRO) and the International Centre of Insect Physiology and Ecology (ICIPE) to develop eco-friendly pest management technology and contain the fall armyworm (FAW) pest.

Since the outbreak of FAW was reported in 2016, maize yields have dropped by between 30-50 percent, increasing the country’s challenges for food security.

Prasanna Boddupalli, Director of the Global Maize Program at CIMMYT, said, ″We want farmers to dissociate from application of synthetic toxic pesticides and chemicals but revert to use of combined approaches like use of resistant varieties, bio-pesticides and related biological control methods that are environmentally friendly.”

Preliminary assessment of the viability of naturally tolerant maize varieties from Mexico suggests that at least two or three resistant varieties may be approved after certification from the regulator.

Read the original article: Kenya: Scientists team up to control fall army worms

Plant health data is critical for effective policy change

Learning to evaluate wheat stem rust, a significant cause of crop loss, in the field in Kenya. (Photo: Petr Kosina/CIMMYT)

With rising demand for food, it is more critical than ever to address the challenge of crop losses due to pests and diseases. Current limited understanding of the extent of the problem prevents the advancement and implementation of plant health solutions. Global scientific collaboration is integral to ensure policy recommendations are well-informed by robust evidence and therefore more likely to succeed in the long-term.

The issue of global burden of crop loss closely correlates with the objectives of the One CGIAR Plant Health Initiative, which aims to prevent and manage major pest and disease outbreaks through the development and deployment of inclusive innovations and by building effective national, regional, and global networks. The Initiative, which is being led by the International Maize and Wheat Improvement Center (CIMMYT), will support low- and middle-income countries in Africa, Asia, and Latin America to reduce crop losses due to pests and diseases, and improve food security and livelihoods for smallholder farmers.

Data-driven approaches

The Global Burden of Crop Loss project, which is run by the Centre for Agriculture and Bioscience International (CABI), is working to ensure that there is accurate data on the challenges posed by plant pests and diseases. Questions to understand include where crop losses are the highest, the causes behind these losses, and how best these they can be addressed.

Cambria Finegold, Global Director, Digital Development, CABI said, “If you are not measuring crop loss well, then you don’t know if the extraordinary $25.8 billion spent annually on agricultural research and development is working, or if we are spending it in the right ways.”

Research by the Plant Health Initiative will play a significant role in collecting and disseminating data on some major pests and diseases, which can guide scientists on which areas to prioritize, thereby contributing to an impactful research agenda.

Once data is gathered, CABI aims to inform decision-making for actors at the top levels of the plant health system and ensure that appropriate action is taken to safeguard global food security with the limited resources available.

Integrated pest management strategies have been key in dealing with fall armyworm in Africa and Asia. (Photo: B.M. Prasanna/CIMMYT)
Integrated pest management strategies have been key in dealing with fall armyworm in Africa and Asia. (Photo: B.M. Prasanna/CIMMYT)

Establishing global networks

The value of a data-driven approach was emphasized at a session organized by the Global Burden of Crop Loss on October 14 exploring evidence-based systems to tackle food security. This session was a side event of the UN Food and Agriculture Organization (FAO) Science and Innovation Forum, which this year focused on highlighting the centrality of science, technology and innovations for agrifood systems transformation.

Prasanna Boddupalli, One CGIAR Plant Health Initiative Lead and Director of CIMMYT’s Global Maize Program, explained how the Initiative will bridge knowledge gaps, build risk assessment and rapid response capability, improve integrated pest and disease management, design and deploy tools to prevent contamination of food chains, and promote gender-equitable and socially inclusive innovations for plant health.

With six devastating plant epidemics in Africa alone during the last decade and an increased number of climate change-induced droughts and floods, Boddupalli proposed a revitalized strategy using the objectives of the Plant Health Initiative.

Built on a foundation of partnerships, there are more than 80 national, regional, and international organizations involved in the Initiative across 40 countries in the Global South, in addition to the CGIAR research centers. Through this rapidly expanding collaboration, the focus will be on establishing regional diagnostic and surveillance networks and implementing Integrated Pest Management (IPM) and integrated mycotoxin management.

To address the need for evidence-based policy recommendations, Boddupalli explained the purpose of the Plant Health Innovation Platforms in Africa, Asia and Latin America, leveraging the partners’ research sites. Combining innovations from the CGIAR system, national partners and the private sector, these platforms will enable the co-creation and validation of pest and disease management packages, with the aim of significantly improving adoption of effective and affordable plant health innovations by smallholder farmers.

Removing the barriers for data sharing

The Plant Health Initiative team has recently collected and collated information from national partners and the private sector on actions needed to remove constraints on sharing pest and disease surveillance data. Potential solutions include improved training of national partners, joint research projects, pre-defined processes for data sharing, and focusing on work that meets national and regional priorities.

These approaches will inform the sharing of data collected through the Initiative. For example, researchers are gathering surveillance data on 15 crop pests affecting seven different plants in 25 countries, with the expectation of collecting more than 44,000 samples from 2,100 sites in 2022 alone, with plans for sharing the results with partner institutions.

Boddupalli also emphasized the importance of ramping up remote sensing and drone usage, wherever feasible, for diagnostics and surveillance. However, the current gaps in accessing data and computing facilities in the Global South need to be addressed to make this a reality.

“The OneCGIAR Plant Health Initiative and the Global Burden of Crop Loss project have excellent complementarity,” said Boddupalli. Both have an opportunity to generate and share robust data on crop loss due to existing and emerging crop pests and diseases and use this data to drive effective policy change on plant health management.”

About the Global Burden of Crop Loss:

The Global Burden of Crop Loss initiative is modelled after the Global Burden of Disease initiative in human health, which has transformed health policy and research, over the last 25 years through better use of data. 

The initiative aims to have a similar impact in agriculture, providing evidence to enable the global plant health community to generate actionable information and lead to a dramatic reduction in crop loss, resulting in increased food security and trade.

About the Centre for Agriculture and Bioscience International (CABI):

CABI is an international, inter-governmental, not-for-profit organization that improves people’s lives worldwide by providing information and applying scientific expertise to solve problems in agriculture and the environment.

Their approach involves putting information, skills and tools into people’s hands. CABI’s 49 Member Countries guide and influence their work which is delivered by scientific staff based in their global network of centers.

Southern Africa Accelerated Innovation Delivery Initiative (AID-I) Rapid Delivery Hub

The Southern Africa Accelerated Innovation Delivery Initiative (AID-I) Rapid Delivery Hub is one of the ways in which Feed the Future, the U.S. government’s global food security and hunger initiative led by USAID, is taking immediate action to help cushion the blow of high fuel and fertilizer prices on farmers. It’s a two-year rapid response effort that connects farmers to innovative tools and information they need to manage the high costs and input supply disruptions over the next several cropping seasons.

AID-I provides targeted assistance to up to three million African smallholder farmers by improving soil health and fertilizer management; strengthening local seed systems; connecting farmers to financial products and services; and delivering extension and advisory services. AID-I Delivery Hubs focus on areas where the need and potential is greatest: Malawi, Tanzania, and Zambia.

The Southern Africa Accelerated Innovation Delivery Initiative (AID-I) Rapid Delivery Hub is establishing agile, networked rural innovation hubs to enhance the adaptation of technology, co-ownership, and sustainable inputs and outputs for value chains development. The project is fostering diversification through the scaling of productive and resilient agronomic practices and seed systems for cereals, legumes, vegetables and feed/fodder products, and strengthens rural-urban linkages to enable national capacity for cross-network management.

It is being implemented in close consultation with One CGIAR programs and integrates both CGIAR and non-CGIAR innovation partners to support scaling by last-mile delivery partners.

This work contributes to six of the United Nations Sustainable Development Goals (SDGs):

  1. Zero Hunger
  2. Good Health and Well-Being for People
  3. Gender Equality
  4. Decent Work and Economic Growth
  5. Responsible Consumption and Production
  6. Climate Action.

What are the project’s primary objectives?

  • Improve soil health and fertilizer management to grow more, more profitably and with less waste.
  • Strengthen local seed systems so agribusinesses can reach smallholder farmer customers with a diversity of crop seeds, including climate-resilient and more nutritious varieties.
  • Connect to financial products and services designed to overcome the unique needs smallholder farmers and small and medium agribusinesses face; and,
  • Deliver extension and advisory services on good agricultural practices, soil and water management practices, and post-harvest storage solutions so smallholder farmers and small and medium agribusiness owners are more productive and keep more of what they grow.

Video 

Deputy Assistant Administrator, USAID Resilience Environment and Food Security Bureau, Ann Vaughan, visits an AID-I demonstration plot of drought-tolerant maize varieties in Zambia.

Reports

Buffering the effects of extreme drought in Zambia: New crops and Advisories are helping farmers