CIMMYT’s work in Africa helps farmers access new maize and wheat systems-based technologies, information and markets, raising incomes and enhancing crop resilience to drought and climate change. CIMMYT sets priorities in consultation with ministries of agriculture, seed companies, farming communities and other stakeholders in the maize and wheat value chains. Our activities in Africa are wide ranging and include: breeding maize for drought tolerance and low-fertility soils, and for resistance to insect pests, foliar diseases and parasitic weeds; sustainably intensifying production in maize- and wheat-based systems; and investigating opportunities to reduce micronutrient and protein malnutrition among women and young children.
Although the technologies exist, many farmers have little information on how to implement them.
Seed companies and senior officials from the Ministry of Agriculture could play a key role in disseminating information, as could mobile phone technology and emerging digital innovation platforms.
The Wheat Disease Early Warning Advisory System (Wheat DEWAS) project is bringing new analytic and knowledge systems capacity to one of the world’s largest and most advanced crop pathogen surveillance systems. With Wheat DEWAS, researchers are building an open and scalable system capable of preventing disease outbreaks from novel pathogen strains that threaten wheat productivity in food vulnerable areas of East Africa and South Asia.
The system builds from capabilities developed previously by multi-institutional research teams funded through long-term investments in rust pathogen surveillance, modelling, and diagnostics. Once fully operationalized, the project aims to provide near-real-time, model-based risk forecasts for governments. The result: accurate, timely and actionable advice for farmers to respond proactively to migrating wheat diseases.
The Challenge
Farmers growing wheat face pathogen pressures from a range of sources. Two of the most damaging are the fungal diseases known as rust and blast. Rust is a chronic issue for farmers in all parts of the world. A study in 2015 estimated that the three rust diseases — stem, stripe and leaf — destroyed more than 15 million tons of wheat at a cost of nearly $3 billion worldwide. Wheat blast is an increasing threat to wheat production and has been detected in both Bangladesh and Zambia. Each of these diseases can destroy entire harvests without warning, wiping out critical income and food security for resource-poor farmers in vulnerable areas.
The Response
Weather forecasts and early-warning alerts are modern technologies that people rely on for actionable information in the case of severe weather. Now imagine a system that lets farmers know in advance when dangerous conditions will threaten their crop in the field. Wheat DEWAS aims to do just that through a scalable, integrated, and sustainable global surveillance and monitoring system for wheat.
Wheat DEWAS brings together research expertise from 23 research and academic organizations from sub-Saharan Africa, South Asia, Europe, the United States and Mexico.
Together, the researchers are focused on six interlinked work packages:
Work package
Lead
Objectives
Data Management
Aarhus University; Global Rust Reference Center
Maintain, strengthen and expand the functionality of the existing Wheat Rust Toolbox data management system
Create new modules within the Toolbox to include wheat blast and relevant wheat host information
Consolidate and integrate datasets from all the participating wheat rust diagnostic labs
Develop an API for the two-way exchange of data between the Toolbox and the Delphi data stack
Develop an API for direct access to quality-controlled surveillance data as inputs for forecast models
Ensure fair access to data
Epidemiological Models
Cambridge University
Maintain operational deployment and extend geographical range
Productionalize code for long-term sustainability
Multiple input sources (expert, crowd, media)
Continue model validation
Ensure flexibility for management scenario testing
Extend framework for wheat blast
Surveillance (host + pathogen)
CIMMYT
Undertake near-real-time, standardized surveys and sampling in the target regions
Expand the coverage and frequency of field surveillance
Implement fully electronic field surveillance that permits near real-time data gathering
Target surveillance and diagnostic sampling to validate model predictions
Map vulnerability of the host landscape
Diagnostics
John Innes Centre
Strengthen existing diagnostic network in target regions & track changes & movement
Develop & integrate new diagnostic methodology for wheat rusts & blast
Align national diagnostic results to provide a regional & global context
Enhance national capacity for wheat rust & blast diagnostics
Information Dissemination and Visualization Tools
PlantVillage; Penn State
Create a suite of information layers and visualization products that are automatically derived from the quality-controlled data management system and delivered to end users in a timely manner
Deliver near real time for national partners to develop reliable and actionable advisory and alert information to extension workers, farmers and policy makers
National Partner Capacity Building
Cornell University
Strengthening National partner capacity on pathogen surveillance, diagnostics, modeling, data management, early warning assessment, and open science publishing
A section of key speakers at the Drylands Legumes and Cereals Network Meeting in Accra, Ghana in January 2023. (Photo: Eagle Eye Projects)
The formation of regional crop improvement networks took center stage at a meeting held in January 2023 in Accra, Ghana. The meeting convened more than 200 scientists and stakeholders in dryland crops value chains from 28 countries from Africa and across the globe to co-design a network approach.
The meeting followed a series of consultative visits and discussions between three CGIAR research centers — the International Maize and Wheat Improvement Center (CIMMYT), Alliance of Bioversity International and CIAT, and the International Institute of Tropical Agriculture (IITA) — African National Agricultural Research Institutes (NARIs), and other common-visioned partners during 2021 and 2022. These earlier discussions gathered insights, brainstormed, and co-designed approaches to empower national programs to deliver impact through their crop improvement programs.
“The idea is to add value to the existing capacities in National Agricultural Research and Extension Services, through networks where the partners agree on the goals and resources needed to achieve desired outcomes. So, it’s really a collaborative model,” said Harish Gandhi, breeding lead for dryland legumes and cereals at CIMMYT. He added that the teams have been learning from and aiming to add value to existing models such as the Pan-Africa Bean Research Alliance (PABRA), USAID Innovation Labs, and Innovation and plant breeding in West Africa (IAVAO).
Paradigm shift for African National Agricultural Research Institutes
Making the opening remarks, Ghana Council for Scientific and Industrial Research (CSIR) Director General, Paul Bosu said that at the very least, African countries should aim to feed themselves and transition from net importers to net exporters of food. “Dryland legumes and cereals, especially millet and sorghum, are very well adapted to the continent and offer great opportunity towards achieving food security”, said Bosu. He applauded the Bill & Melinda Gates Foundation and other partners for investing in research on these crops.
Representing West and Central African Council for Agricultural Research and Development (CORAF), Ousmane Ndoye noted that research in dryland legumes and cereals is a valid and needed action amidst the COVID-19 pandemic and civil unrest in different parts of the world. He added that the first and crucial step to increasing food production especially in sub-Saharan Africa is the availability of sufficient quantities of seed.
Director General of Uganda’s National Agriculture Research Organization (NARO), Ambrose Agona observed that a paradigm shift should occur for desired transformation in agriculture. He noted that African governments ought to commit adequate budgets to agriculture and that seed funding should serve to complement and amplify existing national budgets for sustainability.
He commended efforts to consult NARIs in Africa and noted that the quality of ideas exchanged at the meeting strengthen the work. “The NARIs feel happier when they are consulted from the very beginning and contribute to joint planning unlike in some cases where the NARIs in Africa are only called upon to make budgets and are excluded from co-designing projects”, said Agona.
Participants following the proceedings at the Drylands Legumes and Cereals Network Meeting in Accra, Ghana in January 2023. (Photo: Eagle Eye Projects)
Challenge to deliver effectively
During his remarks at the meeting, CIMMYT Director General Bram Govaerts noted that the focus legume and cereal crops are key to transforming and driving diversification of food systems in Africa. “It is therefore an honor and a privilege to work together with partners to improve cereal and legume systems. We will put forward our experience in breeding and commit to innovative systems approaches towards achieving impact and leverage what we are already good at, to become even better,” said Govaerts.
Referencing his visit with the United States Special Envoy for Global Food Security Cary Fowler to Southern Africa in January 2023, Govaerts narrated witnessing firsthand a food, energy and fertilizer crisis impacting Zambian and Malawian farmers. He challenged the meeting participants to envision the future impact they would like to see their breeding programs have as they design and strategize at the meeting. He pointed out that farmers are more interested in the qualities and characteristics of varieties released than the institutions responsible for the release.
CIMMYT Global Genetic Resources Director and Deputy Director General, Breeding and Genetics, Kevin Pixley also underscored the need to generate more impact through adoption of improved varieties in Africa. Pixley noted that on average, fewer than 30 percent of farmers are using improved varieties of sorghum, millet, and groundnut across the countries with ongoing work.
The meeting heard One CGIAR’s commitment to deliver resilient, nutritious and market preferred varieties as part of its Genetic Innovation Action Area, alongside improving systems and processes for sustainability from CGIAR Senior Director Plant Breeding and Pre-Breeding, John Derera. Speaking in the capacity of IITA’s Breeding Lead, Derera noted the progress made in IITA cowpea breeding program, including its modernization, owing to strong partnerships, cross learning and germplasm exchange between institutions.
PABRA Director & Leader of the Bean Programme at the Alliance of Bioversity International and CIAT, Jean-Claude Rubyogo, pointed out that despite remarkable achievements, such as those witnessed in the bean research, more effort is needed to tackle the challenges of climate change and also increase understanding of consumers traits.
Commenting on innovative pathways to improve adoption of improved varieties, the Director General of the Institute of Agricultural Research (IAR) in Zaria, Nigeria, Mohammad Ishiyaku observed the tendency for some seed companies to continue selling specific seed varieties for years, even when the productivity of the variety is low. He noted the seed companies always claimed consumer preferences concluding then that amidst investor demands, breeders ought to keenly investigate the expectations of consumers and famers to arrive at the best parameters for breeding choices.
A group photo of over 200 scientists and stakeholders in dryland crops value chains that participated at the Drylands Legumes and Cereals Network Meeting in Accra, Ghana in January 2023. (Photo: Eagle Eye Projects)
International Year of Millets, 2023
The gathering commemorated the International Year of Millets by listening to a keynote address on “Millets for food and nutritional security and mitigating climate change – #IYM2023” by Lake Chad Research Institute, Nigeria, Research Director, Zakari Turaki. The keynote was followed by statements on the importance of millets for various countries and wider Africa from: Sanogo Moussa Daouda, representing Director General of Mali’s Institut d’Économie Rurale (IER); Ibrahima Sarr, Director of Senegal’s Institut Sénégalais de Recherches Agricoles’s Centre National de Recherches Agronomiques; Hamidou Traore, Director of Burkina Faso’s Institut de L’Environnement et de Recherches Agricoles; and Ambrose Agona, Director General of NARO, Uganda.
High-level statements on approaches to gender integration in agricultural research and development were delivered by Scovia Adikini, NARO millet breeder, Geoffrey Mkamillo, Director General of Tanzania’s Agricultural Research Institute (TARI), Francis Kusi of Ghana’s Savanna Agricultural Research Institute (SARI), and Aliou Faye, Director of Senegal’s Regional Center of Excellence on Dry Cereals and Associated Crops (CERAAS).
AVISA Achievements
Finally, this meeting marked the transition from the recently ended Accelerated Varietal Improvement and Seed Systems in Africa (AVISA) project to align with One CGIAR initiatives under the Genetic Innovation Action Area, with specific focus on dryland crops.
Solomon Gyan Ansah, the Director of Crop Services at the Ministry of Food and Agriculture, Ghana, acknowledged the success of AVISA Project and commended the forum’s efforts to build on the gains made by the project in developing the new approach.
“By the end of 2022, AVISA project partners had reached 4.8 million farmers with 30,600 metric tons of seed of improved legume and cereal varieties, covering almost one million hectares of land”, revealed Chris Ojiewo, Strategic Partnerships and Seeds Systems Lead. Other achievements supported by the AVISA Project include upgrading of NARES facilities and building capacities of researchers through short- and long-term trainings.
The meeting was hosted by Ghana Council for Scientific and Industrial Research (CSIR) and Ghana’s Savannah Agricultural Research Institute (SARI), and was organized by CIMMYT, in partnership with IITA and the Alliance of Bioversity and CIAT (ABC).
Crop breeding has the potential to significantly contribute to addressingthe global challenges of poverty, malnutrition, hunger, gender inequality, environmental degradation and climate change.Rapid population growth, climate change and market crises in low-income and middle-income countries mean that crop breeding must be far more agile and professional than ever before. Data-driven, modernized breeding with tools and technologies such as genomic selection, quantitative genetics, high-throughput phenotyping and bioinformatics, are needed toaccelerate and advance improvement in varieties.
Across the CGIAR-NARES(National Agricultural Research and Extension Systems) crop breeding networks, there is huge opportunity to reach the full potential to improve the lives of farmers and consumers: to share innovations to their full potential; reduce costs associated with services such as bioinformatics; de-fragment disparate data and incompatible technologies; apply consistent standards; and improve access to tools, technologies and shared services.
This Initiative aims to improve the genetic, economic, social and environmental performance of breeding programs across the CGIAR-NARES breeding network.
This objective will be achieved through:
Undertaking strategic modernization so that breeding schemes are designed using the most up-to-date methods, namely: quantitative genetics and computer simulation, including modeling of adoption and benefits across the breeding network, and budget forecasting for management of the portfolio and operational improvements.
Delivering cost-effective shared services through coordinating services such as genotyping and data management, leading to efficiency and greater bargaining power in purchasing or contracting equipment, software and services, ultimately enabling the generation and analysis of high-quality and consistent data across the breeding network.
Implementing performance management of consistent, connected operations through a dedicated performance management team supporting breeding programs and data management teams in describing, harmonizing and adopting standard operating protocols, workflow charts and quality controls across the networks.
Making smarter use of data, enabling CGIAR-NARES networks to share standardized data, creating larger and more powerful datasets that can be readily analyzed and interpreted.
Promoting innovation and research exchange through developing and implementing change management plans, and supporting region-specific capacity building to increase global adoption of modernized breeding tools, technologies and shared services across the network.
This Initiative will work with breeding programs serving countries in Sub-Saharan Africa and South Asia, along with Asia and Latin America. High-priority countries for the Initiative include Ghana, Kenya, Nigeria, Senegal, Tanzania, Uganda, Zimbabwe and Zambia in Africa, and Bangladesh and India in South Asia.
Proposed 3-year outcomes include:
Varieties are developed 30% faster for 70% of targeted breeding programs.
Shared services reduce costs by 25% in a majority of target programs, making modernized breeding more accessible across the global CGIAR-NARES networks.
At least 70% of targeted breeding programs make data-driven decisions using genomic, phenotypic and environmental data at more than one major decision point.
At least a 70% improvement of Initiative’s targeted breeding programs in at least 50% of impact area tracking indicators as a result of CGIAR-NARES leadership.
Increased capacity in at least 15 NARES institutions, demonstrated by increased access to tools, technologies and shared services (of more than one type) more than once a year.
A least 70% of the Initiative’s targeted continuous breeding programs increase or add at least one target to their modernization plan.
Standardized protocols shared in a common system.
Harmonized operations enabling consistent data generation.
Adoption of quality management system within facilities.
Establishment of Breeding Pipeline Improvement Monitoring System to support informative performance monitoring that reduces the complexity of breeding activities to the core metrics material for decision-making, as aligned to shared goals.
Establishment of performance monitoring system to track implementation of standardized processes and quality of operations along with modernization progress and the impacts of the resulting breeding program.
Smallholder farmers and agricultural extension officers assessing Integrated Pest Management Packages (IPMs) treatments against fall armyworm at the Plant Health Innovation Platform at the KALRO Kiboko Research Station in Kenya. (Photo: Peter Kinyumu/CIMMYT)
CGIAR’s Plant Health Initiative (PHI) is testing integrated pest management (IPM) packages against fall armyworm (FAW) in partnership with smallholder farmers and agricultural extension officers at the Plant Health Innovation Platform at the Kenya Agricultural and Livestock Research Organization (KALRO) Kiboko Research Station in Kenya.
The IPM packages comprise 18 combinations of treatments, including maize varieties with native genetic resistance to FAW, biopesticides, biological control agents, push-pull system, and bean varieties.
“This is a unique opportunity to identify eco-friendly and cost-effective IPM packages against a major pest like FAW through participatory engagement of smallholder farmers and extension personnel,” said BM Prasanna, Global Maize Program Director at the International Maize and Wheat Improvement Center (CIMMYT) and CGIAR Plant Health Initiative Lead. “Also In our efforts against FAW, three FAW-tolerant maize hybrids have been recommended for release after national performance trials in Kenya.”
CIMMYT Global Maize Program Director and CGIAR Plant Health Initiative Lead, BM Prasanna explaining to smallholder farmers and agricultural extension officers; CGIAR’s Plant Health Initiative (PHI) testing of integrated pest management (IPM) packages against fall armyworm (FAW) at KALRO Kiboko, Kenya. (Photo: Susan Otieno/CIMMYT)
Participatory assessment
Participating farmers and extension personnel made their first assessment of the IPM combinations at the vegetative stage on November 8, 2022.
“With this second assessment on February 7, 2023, farmers and extension personnel are evaluating the same IPM combinations for their yield potential, which means the plants need to be not only healthy but also productive. The farmers are also looking at the quality of the maize ears, and the level of ear and kernel damage by the pest, if any. These assessments both at the vegetative and reproductive stages are critical for us to conclude this experiment and draw appropriate inferences,” Prasanna said.
Researchers will analyze the efficacy of the scoring of different IPM treatments by the farmers and from the vegetative/foliar and reproductive/harvest stages. In addition, scientists will conduct a cost-benefit analysis for each IPM treatment to identify relevant IPM packages that can be potentially scaled. Prasanna noted the initial scoring by the scientists and farmers were highly comparable.
The trials engaged farmers and extension workers from five different counties in Kenya. “The Plant Health Initiative is keen on co-creation and co-validation and taking an inclusive, participatory approach to innovations,” said Prasanna. He added that such an approach is vital for buy-in by the farmers, who need to be active partners in effectively scaling the selected IPM packages.
Farmers participating in the Field Day at the Innovation Platform applauded the initiative to involve them in validating solutions to manage FAW and expressed their eagerness to have the innovations in their hands. The farmers also had opportunities to ask questions, provide preliminary verbal feedback, and receive immediate clarification from the scientists to their queries.
”I know a farmer who has trained his two sons to go to every plant and kill the armyworm physically. You can imagine the time and energy that takes,” said Justice Kimeu, a farmer from Makueni County, Kenya. “Let the innovative methods we have seen here reach every farmer across the country.”
A participant giving his preliminary observations on the Integrated Pest Management Packages (IPMs) treatments against fall armyworm at the Plant Health Innovation Platform at the KALRO Kiboko Research Station in Kenya. (Photo by Peter Kinyumu/CIMMYT)
Plant Health Innovation Platform catalyzes collaboration
The Plant Health Innovation Platform at Kiboko brings together different innovations developed by the collaborating institutions: CIMMYT, KALRO, International Center for Insect Physiology and Ecology (icipe), AgBiTECH, Center for Agriculture and Bioscience International (CABI), and Farmfix Africa.
“Robust data is being generated on the efficacy and cost-benefit of various IPM combinations. After data analysis, 2-3 few specific IPM packages will be identified based on efficacy against FAW, cost effectiveness, affordability to smallholder farmers, and potential for rapid scale up,” Prasanna said.
Besides the FAW Innovation Platform at Kiboko, Kenya, the CGIAR Plant Health Initiative is operating eight other Innovation Platforms in Benin, Cameroon, Nigeria, Uganda, Lebanon, Philippines, Ecuador, and Colombia. Each of these platforms bring together diverse institutions engaged in developing game-changing solutions in managing key pests and diseases in the Initiative’s primary crops that include maize, banana, cassava, potato, sweet potato, rice, yam, sorghum, wheat, millets, legumes, and vegetables.
Inadequate seed supply and delivery systems, sometimes also misaligned with user and market demand, mean that smallholders often recycle seed or use older varieties, leaving them more vulnerable to pests and diseases. Small-scale farmers, especially women and other disadvantaged groups, are particularly vulnerable to climate-related challenges, such as more frequent and severe droughts and erratic rainfall. Additionally, farmers may not be well informed about varietal options available to them or may be reluctant to experiment with new varieties. These challenges threaten agricultural production and can compromise their ability to meet their own food, nutrition and income needs.
Improved varieties, innovations and approaches developed and promoted by CGIAR and partners could transform agrifood systems and reduce yield gaps, “hunger months” and other disparities. However, limited access to and use of affordable, quality seed of well-adapted varieties with desired traits, means these bottlenecks remain.
This Initiative aims to support the delivery of seed of improved, climate-resilient, market-preferred and nutritious varieties of priority crops, embodying a high rate of genetic gain to farmers, ensuring equitable access for women and other disadvantaged groups.
This objective will be achieved through:
Supporting demand-driven cereal seed systems for more effective delivery of genetic gains from One CGIAR cereal breeding, as well as improving government, private sector and farmer-based capacity to deliver productive, resilient and preferred varieties to smallholders.
Boosting legume seed through a demand-led approach that builds on growing demand for grain legumes. This multistakeholder approach will strengthen partnerships to provide efficient, more predictable and demand-led access to quality seed of new varieties.
Scaling and delivering vegetatively propagated crop seed through sustainable enhanced delivery pathways that efficiently target different market segments and farmer preferences.
Supporting partnerships (including with smallholders), capacity building and coordination to ensure uptake of public-bred varieties and other innovations by providing technical assistance for national agricultural research and extension systems (NARES) and foundation seed organizations in early-generation seed production and on-farm demonstrations.
Developing and implementing policies for varietal turnover, seed quality assurance and trade in seeds by leveraging global expertise and experience to generate both the evidence and engagement necessary to advance efficient, sustainable, and inclusive seed markets that promote varietal turnover and wider adoption.
Scaling equitable access to quality seed and traits in order to reach the unreached and provide inclusive accesswhile addressing gender and social constraints and the digital divide.
Engagement
This Initiative will work in Bangladesh, Ethiopia, India, Kenya, Mozambique, Nepal, Nigeria, Rwanda, Uganda and Tanzania as a priority,followed by other countries in Latin America, South and Southeast Asia and Sub-Saharan Africa.
Outcomes
Proposed 3-year outcomes include:
Robust tools developed and used by funders, developers, researchers and extension staff to sustainably measure and monitor key seed system metrics.
Increase of 10% in the quantity of quality seed of improved “best-fit” and farmer-preferred varieties available to farmers in representative crops and geographies due to increased capacity of seed companies and other seed multipliers (including farm-based seed actors).
Public and private seed enterprises adopting innovative and transformative models for accessing, disseminating and multiplying quality early-generation seed, reducing cost and increasing output.
Reduction of 5% in weighted average varietal age for priority crops in selected countries.
Government partners in policy design and implementation actively promote policy solutions to accelerate varietal turnover, adoption and quality seed use.
Resource-poor farmers in low-income and middle-income countries will hugely benefit from improved crop varieties that perform better in terms of nutritional quality, income generation, water and nutrient use, stability of yields under climate change, and the needs of both women and men as farmers and as consumers.
However, many smallholder farmers still grow old varieties, in part because they derive inadequate benefits from recent breeding efforts. To trigger timely adoption, new varieties must be widely available and affordable to farmers, and offer a step-change in performance through higher rates of genetic gain. A faster pace of varietal turnover is critical – to enable farmers to adapt and advance rapidly as climatic and market conditions change.
Breeding programs also need a greater focus on developing farmer- and consumer- preferred varieties adapted to distinct production environments, markets and end uses. This can be facilitated by smarter design of breeding programs; stronger partnerships between CGIAR, National Agricultural Research and Extension Systems (NARES) and small and medium enterprises (SMEs); and strengthened organizational capacity.
This Initiative aims to develop better-performing, farmer-preferred crop varieties and to decrease the average age of varieties in farmers’ fields, providing real-time adaptation to climate change, evolving markets and production systems.
The objective will be achieved through:
Re-focusing breeding teams and objectives on farmers’ needs, in particular the needs of women, through achievable product profiles and breeding pipelines targeting prioritized regions and market segments.
Reorganizingbreeding teams to drive efficiency gains through the coordinated engagement of specialists and processes using a common organizational framework, stage gates, key performance indicators and handover criteria.
Transforming towards inclusive, impactful CGIAR-NARES-SME breeding networks with empowered partners, along with customized capacity building, standardized key performance indicators, and by dividing labor and resources across partners according to comparative advantage and aligned with national priorities.
Discovering optimum traits and deployments through agile, demand-driven and effective trait discovery and deployment pipelines, and development of elite donor lines with novel and highly valuable traits.
Acceleratingpopulation improvement and variety identification through optimizing breeding pipelines (trailing, parent selection, cycle time, use of Breeding Resources tools and services, etc.), with the goal of assuring all programs deliver market-demanded varieties that deliver greater rates of genetic gain per dollar invested.
Engagement
This Initiative will work with breeding programs serving countries in Sub-Saharan Africa, and South Asia, along with Asia and Latin America.Priority countries for the Initiative includeGhana, Kenya, Nigeria, Senegal, Tanzania, Uganda, Zambia and Zimbabwe in Africa, and Bangladesh and India in South Asia.
Outcomes
Proposed 3-year outcomes include:
At least 75% of breeding pipelines are oriented towards specific market segments, enabling greater focus on farmers’ needs, drivers of adoption, distinct impact areas and the strategic allocation of resources.
At least 70% of breeding pipelines use a revised organizational framework that provides operational clarity and effectiveness for specialized teams pursuing breeding outputs.
At least 80% of the breeding networks have implemented documented steps toward stronger partnership models where NARES and SMEs have increased breeding capacity, and make greater scientific, operational and decision-making contributions to the breeding process.
At least 50% of breeding pipelines are supported by a dedicated trait discovery and deployment program that delivers high-impact traits in the form of elite parental lines.
At least 70% of breeding pipelines have increased the rate of genetic gain in the form of farmer-preferred varieties, with at least 50% providing significantly improved varieties delivered to seed system recipients.
CIMMYT Global Maize Program Director and CGIAR Plant Health Initiative Lead, BM Prasanna cutting a ribbon at the entrance of a new shed housing, marking the commissioning of five new seed drying machines courtesy of the of the Accelerating Genetic Gains (AGG) Project. (Photo: Susan Otieno/CIMMYT)
Kenya Agricultural and Livestock Research Organization (KALRO)’s research station at Kiboko, Kenya, where several partner institutions including the International Maize and Wheat Improvement Center (CIMMYT), conduct significant research activities on crop breeding and seed systems, is now equipped with five new seed drying machines along with a dedicated shed to house these units, a cold room for storing breeding materials, and an additional irrigation dam/reservoir. These infrastructural upgrades are worth approximately US $0.5 million.
During the commissioning of the new facilities on February 7, 2023, CIMMYT Global Maize Program Director, BM Prasanna thanked the donors, Crops to End Hunger (CtEH) Initiative and Accelerated Genetic Gains (AGG) project, that supported the upgrade of the research station, and recognized the strong partnership with KALRO.
“Today is a major milestone for CIMMYT, together with KALRO, hosting this center of excellence for crop breeding. This facility is one of the largest public sector crop breeding facilities in the world, with hundreds of hectares dedicated to crop breeding. These new facilities will enable CIMMYT and KALRO crop breeders to optimize their breeding and seed systems’ work and provide better varieties to the farming communities,” said Prasanna.
Kenya suffered one of its worst droughts ever in 2022, and the newly commissioned facilities will support expedited development of climate-resilient and nutritious crop varieties, including resistance to major diseases and pests.
Visitors at the KALRO research station in Kiboko, Kenya, looking at the newly commissioned cold room storage. (Photo: Susan Otieno/CIMMYT)
Improvements and enhancements
The efficiency of the seed driers capabilities to quickly reduce moisture content in seed from above 30% to 12% in two to three days, reducing the time taken for seed drying and allowing for more than two crop seasons per year in a crop like maize.
The additional water reservoir with a capacity of 16,500 cubic meters will eliminate irrigation emergencies and will also enhance the field research capacity at Kiboko. Reliable irrigation is essential for accelerating breeding cycles.
At the same time, the new cold room can preserve the seeds up to two years, preventing the loss of valuable genetic materials and saving costs associated with frequent regeneration of seeds.
KALRO Director General Eliud Kireger officiating the opening of the cold room storage facility at KALRO research station at Kiboko, Kenya. Looking on is CIMMYT Global Maize Program Director, BM Prasanna. (Photo: Susan Otieno/CIMMYT)
World-class research center
“The Kiboko Research Center is indeed growing into an elite research facility that can serve communities in entire sub-Saharan Africa through a pipeline of improved varieties, not only for maize but in other important crops. This will not only improve climate resilience and nutrition, but will contribute to enhanced food and income security for several million smallholder farmers,” said Prasanna.
KALRO Director General Eliud Kireger appreciated the establishment of the new facilities and thanked CIMMYT and its partners for their support.
“Today is a very important day for us because we are launching new and improved facilities for research to support breeding work and quality seed production. This research station is in Makueni County, a very dry area yet important place for research because there is adequate space, especially for breeding,” said Kireger. “We are significantly improving the infrastructure at Kiboko to produce and deliver better seed to our farmers.”
For more than three decades, CIMMYT has conducted research trials at the Kiboko Research Station, focusing on drought tolerance, nitrogen use efficiency, and resistance to pests and diseases, such as fall armyworm and stem borer. The maize Double Haploid (DH) facility established in 2013 at Kiboko, with the support of the Bill & Melinda Gates Foundation, offers DH line production service for organizations throughout Africa, and is key to increasing genetic gains in maize breeding.
Decisions on how to invest scarce resources in CGIAR-NARES genetic innovation systems have been predominantly supply-driven and therefore potentially out-of-sync with the demands of smallholders, consumers and agro-industry. The turnover of improved crop varieties developed by CGIAR and its NARES partners (National Agricultural Research and Extension Services) has been slow. Small-scale seed businesses lack incentives to actively promote new varieties given weak demand. Little is known about the drivers of varietal replacement and product substitution, and the role of downstream market actors such as traders, processors and consumers in this process.
There is a clear need for demand- and data-driven processes to guide genetic innovation systems, but efforts to advance this remain incomplete and fragmented within CGIAR. Current product profile design is strongly biased towards agronomic and stress-tolerance traits, with little systematic identification and integration of traits that contribute to wider social impact.
This Initiative aims to maximize CGIAR and partners’ returns on investment in breeding, seed systems and other Initiatives based on reliable and timely market intelligence that enables stronger demand orientation and strengthens co-ownership and co-implementation by CGIAR and partners.
This objective will be achieved through:
Gathering market intelligence by collecting data to map global and regional challenges across CGIAR’s five impact areas, translating them into regional market segments and priorities for genetic innovation by identifying drivers of demand as well as variation by gender, age and social group.
Designing new-generation, gender-intentional target product profiles for each market segment using market intelligence.
Generating behavioral intelligence based on what drives farmers, consumers and private-sector decisions to adopt new varieties and supporting other Initiatives in identifying cost-effective inclusive strategies for accelerating varietal uptake.
Developing pipeline investment cases by estimating the potential impact and return on investment across CGIAR’s five impact areas of the portfolio of breeding pipelines serving the market segments and developing recommendations for the portfolio optimization and prioritization.
Developing institutional scaling and monitoring, evaluation, learning and impact assessment (MELIA) by establishing a collaboration hub across Genetic Innovation Initiatives and partners to develop scaling mechanisms for the adoption of institutional standards and processes in market segmentation and gender-intentional product profile design, and to conduct rigorous MELIA of the portfolio.
Engagement
This Initiative has a global and regional focus, with countries being prioritized as a result of the Initiative’s work.
Outcomes
Proposed 3-year outcomes include:
At least three transdisciplinary teams across CGIAR and partners in prioritized regions are empowered in co-implementation of market and behavioral intelligence and co-design of product profiles.
At least 10 CGIAR partners in prioritized regions adopt institutional standards and processes for market segmentation and product profile design, sharing of market and behavioral intelligence and monitoring of outcomes.
At least five seed suppliers, food companies and NGOs in prioritized regions use market and behavioral intelligence from the Initiative in strategic decision-making.
At least three research leaders and investors make investment decisions using pipeline investment cases and the Initiative’s investor dashboard and the increased availability of information and transparent, holistic analyses of high-impact opportunities attract increased investments in underinvested and new-opportunity market segments.
Participants of the crop modeling simulation workshop in Harare, Zimbabwe. (Photo: Tawanda Hove/CIMMYT)
Anticipating appropriate and timely responses to climate variability and change from an agricultural perspective requires forecasting and predictive capabilities. In Africa, climate-related risks and hazards continue to threaten food and nutrition security.
Crop simulation models are tools developed to assist farmers, agronomists and agro-meteorologists with insights on impacts to possible management decisions. Such tools are enablers for taking an appropriate course of action where complexity exists relating to both crop and livestock production. For example, a new variety can be introduced to Zimbabwe, but its performance will differ depending on the agroecological zones of the country and the respective treatments a farmer may apply. Applying modeling tools to assess its performance can predict yield differences and facilitate the generation of recommendations for which region is most suited to the variety, water use efficiency, and crop combinations.
Earlier this month, the International Maize and Wheat Improvement Center (CIMMYT) hosted a crop modeling simulation workshop with delegates from various African countries in Harare, Zimbabwe.
“The CGIAR Initiatives of Excellence in Agronomy (EiA) and Sustainable Intensification of Mixed Farming Systems (SI-MFS) have recognized the need to enhance modeling capacity in Africa to allow African scientists to lead in solving challenges within agricultural systems,” said CIMMYT crop scientist and coordinator of the workshop, Vimbayi Grace Petrova Chimonyo.
The workshop was facilitated by renowned global crop modeling experts to provide critical coaching support to upcoming modelers. These experts included Sue Walker, a professor at the University of the Free State, Tafadzwa Mabhaudhi, a professor at the International Water Management Institute (IWMI), KPC Rao, a lead scientist at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Dirk Raes (KU Leuven), Diego Peqeuno (CIMMYT) and Siyabusa Mukuhlani from the International Institute of Tropical Agriculture (IITA).
Crop models are scientific presentations of statistical knowledge about how a crop will grow in interaction with its environment. They use mathematical equations representing processes within a predefined plant system and the interactions between crops and the environment. The discipline is based on the premise that agricultural system environments are complex and not homogenous. Crop models enable decision-makers to make data-driven decisions by simulating possible outcomes to changes in a system and the configuration of production systems.
“It is quite apparent that modeling skills are scarce on the African continent. This workshop is a step toward consolidating existing capacities on the continent. If we are going to be able to close the already existing food deficit gap on the continent and meet the food requirements needed by 2050, with an estimated global population of nine billion, then we need to take modeling seriously,” said Chimonyo in her opening address at the workshop.
Due to the lack of crop modeling expertise in African states, there is a gap in capacity to build relevant crop advisory tools for farmers at a local level. This leads to poor policy formulation as decisions are based on a high degree of generalizations.
“In this modern era, we need advisories that are context specific. For example, just because a maize variety achieved a certain yield in one context doesn’t mean the same variety will achieve the same yields even if the rainfall patterns are the same. Other factors come into play, such as the soil type, temperature and other related aspects affecting the yield. Crop modeling affords advisory managers some specifications necessary to achieve high yields in different environments,” said Walker.
Vimbayi Chimonyo from CIMMYT making opening remarks at the workshop. (Photo: Tawanda Hove/CIMMYT)
Speakers at the workshop focused on three models, APSIM, AquaCrop and DSSAT, and participants had the opportunity to take part in activities and ask questions face-to-face. The workshop also covered key modeling aspects such as the minimum data requirements needed to run a model, calibration and validation of models, confidence testing of results, the science involved in simulating phenological development and growth processes, water and nitrogen cycles, and the use of multi-modeling approaches.
The workshop was particularly useful for young scientists, according to Rao, allowing more experienced modelers to share their expertise. “With such an interactive platform, experienced modelers like me can demonstrate multi-modeling approaches.”
Rao presented on two main approaches. The first involved the application of different simulation models to simulate one component of a system such as crops. The second simulated the complete system by integrating various models, such as crops, livestock, and economic models, providing an opportunity to understand the synergies and trade-offs between different components of the whole farm.
Participants at the workshop expressed their satisfaction with the training provided and left with practical knowledge that they could apply in their work both in the field and in the lab.
“When I first arrived, I knew very little about modeling, but as the workshop progressed, my confidence in applying models increased. I intend to immediately apply this knowledge for the forthcoming season such that we can start making impactful contributions to the country’s food and nutrition security status,” said Birhan Abdulkadir Indris, a research officer at CIMMYT.
“I am leaving this workshop with the confidence that I will advise farmers in my circle of influence with services tailored to their needs. I have learned that crop modeling can be used for many purposes and that different models address different issues,” said Connie Madembo, a research technician at CIMMYT. “I intend to teach other fellow PhD students at the University of Zimbabwe the same things I have learnt here. As a country, we need to be at the forefront of using these models, considering Zimbabwe’s high weather variability.”
As a way forward, the trained scientists were encouraged to apply the modeling skills they had gained to address short-term problems such as yield gaps and water use efficiency and long-term challenges such as the local impacts of climate change.
“While more capacity training is required, starting somewhere is better than never starting,” said Mabhaudi.
Ethiopia is the second largest wheat grower in Africa and has high levels of demand for the crop. Shortages of grains, cereals and agricultural inputs such as fertilizer caused by the Russia-Ukraine conflict are leading the Ethiopian government to focus heavily on increasing the country’s productivity to rely less on imports.
Prime Minister Abiy Ahmed recently launched national exports of wheat/ “We have made Ethiopia’s wheat export dream a reality,” he said.
Yahaya highlighted the role of CIMMYT in improving Ethiopia’s wheat production; around 70 percent of varieties grown in the country come from the organization’s germplasm. He also praised Ethiopia’s tax free imports on agricultural machineries and strong extension system, saying that other countries could learn from the success of these initiatives.
The interview took place at a working group on mechanization organized by the Green Innovation Centers (GIC) and CIMMYT to promote the use of machinery in agriculture.
Isaiah Nyagumbo engages extension officers and host farmers on the water harvesting technologies under trial in Buhera district, Zimbabwe. (Photo: Tawanda Hove/CIMMYT)
As climate change effects intensify, new innovations that enable smallholder farmers to adapt are no longer an option but a necessity. Significant parts of Zimbabwe are semi-arid, receiving less than 600mm of rainfall per year. Smallholder farming communities in districts such as Buhera have embraced feed production and water conservation innovations deployed by the International Maize and Wheat Improvement Center (CIMMYT) as part of the Livestock Production Systems in Zimbabwe project (LIPS-Zim). The project, funded by the European Union and led by the International Livestock Research Institute (ILRI) and CIMMYT, champions the crop-related aspects of interventions and aims to increase livestock productivity in Zimbabwe’s semi-arid regions. The project specifically aims to promote increased adoption of climate-relevant innovations in livestock-based production systems and improved surveillance and control of livestock diseases. While focused on livestock, the project is based on the premise that the performance of the livestock sector depends heavily on crop husbandry. By the same token, the livestock sector has bi-products that directly impact the productivity of crops.
Zimbabwe is a country that is well suited to mixed farming systems. Most smallholder farmers have treated livestock and crop production as mutually exclusive, but the two enterprises can have a significant complementary effect on each other.
CIMMYT Cropping Systems Agronomist Isaiah Nyagumbo is leading the development of crop husbandry innovations aimed at increasing feed production that are poised to benefit smallholder farmers’ crop productivity and enhance the conditioning of livestock, especially cattle.
Despite extension recommendations for farmers not to grow maize in these regions, studies show that 60% of the arable land is still occupied by maize. This is due to maize’s popularity among farmers thanks to its diverse uses.
One solution is to support farmers with the most appropriate cultivars and most effective production technologies to help them be more resilient to climate change induced challenges. To contribute towards LIPS-Zim’s objective for increased feed production, CIMMYT scientists are testing and demonstrating the use of drought tolerant and nutritious maize varieties along with a wide range of leguminous species such as mucuna, dolichos lab-lab and cowpea, which are grown mostly as intercrops. Efforts are also being made to develop innovative water conservation options through reduced or no-till planting basins and tied ridging systems reinforced with different mulching options including conventional organic and synthetic artificial mulches. These are then being compared to traditional conventional mouldboard ploughing systems.
The Nyeketes, proud hosts of the CIMMYT water harvesting technology trial, in Buhera, Zimbabwe. (Photo: Tawanda Hove/CIMMYT)
So far, the results are exciting and helping farmers to see the productivity gains from applying different technologies. Mr. and Mrs. Nyekete, smallholder farmers who volunteered to work with CIMMYT on these innovations, are optimistic about widespread adoption once the trials are concluded as the technologies can suit different levels of investment by farmers.
“We have a lot of farmers visiting us as they observe a diversity of technologies on our plot. The artificial mulch concept is one which is very new, and farmers are curious as to how it works. They can observe for themselves that, especially when used with tied ridges, it is very effective in retaining moisture,” said Mr and Mrs Nyekete.
“The same applies to organic mulch. Government extension workers have, over the years, been encouraging us to plant our maize under the Pfumvudza conservation agriculture model, and in it is the use of organic materials as mulch. The level of compliance in areas such as Buhera has been low, where people practice Pfumvudza without fully applying all the principles, especially soil cover. The water conservation trials are providing evidence that when one dedicates themselves to mulching their crop, whether using organic or synthetic mulches, the maize productivity is comparatively higher. As you can see, the maize plots with these water harvesting technologies are showing high vegetative growth in comparison to conventionally planted maize.”
Over the years, there has been a slow adoption of new innovations emanating from scientific research usually conducted on research stations. The use of on-farm research trials and demonstrations helps smallholder farmers to participate in the research process and co-create technologies, which shortens the adoption period and stimulates adoption at scale. This approach enables more farmers, who are not hosts, to benefit from the technologies showcased in the trials and to observe and learn from the trials. As the saying goes, “seeing is believing” and farmers can choose the options most relevant to their own circumstances. As such, farmers can conclude for themselves which technologies bear results compelling enough for them to adopt.
Despite the artificial mulching technology demonstrating impressive results so far, Nyagumbo cautions that before the technology can be promoted at scale, more research, as well as proof of concept for these systems are needed.
“Firstly, we see that the quality of the material used has a big bearing on the ability to reduce evaporation from the soil. Secondly, some farmers have observed germination challenges due to the synthetic materials creating an attractive habitat for rodents that eat the maize seed before it germinates. Thirdly, the returns from such investments need to be justified by highly attractive economic returns arising from high yields that will also enable farmers to intensify their production systems by producing their food needs from much smaller areas. Further studies and analyses therefore need to be conducted,” said Nyagumbo.
“Furthermore, so far the idea of tied ridging combined with organic mulches also seems to offer a highly attractive option for farmers that will contribute to increased feed productivity from the enhanced grain and crop residues, since increased biomass output also means increased livestock feed availability.”
While breeding excellence is proving to be an effective method for responding to climate change through improved seed varieties and high-performance livestock breeds, new crop and livestock production technologies are required to complement the genetic gains from breeding. The crop production technologies being showcased in in Buhera along with drought tolerant and nutritious maize varieties and legumes, promise to be transformative for semi-arid regions for both crop and livestock systems.
Dr Dumisani Kutwayo (second left) receives state of art Maize Lethal Necrosis test kits from Dr Wegary Dagne (second from right). (Photo: Tawanda Hove/CIMMYT)
The best results in combating pests and diseases exacerbated by climate change and protecting agricultural food systems originate from strategic partnerships between national governments and international research organizations. Such a synergy between Zimbabwe’s Department of Research and Specialist Services (DRSS) and the International Maize and Wheat Improvement Center (CIMMYT) was recognized for its effectiveness at an event hosted by Zimbabwe Plant Quarantine Services on January 9, 2023.
“The mandate of ensuring that Zimbabwe is protected from plant diseases and invasive pests is one which cannot be attained by government alone, but together with partners such as CIMMYT,” said Dumisani Kutywayo, Chief Director of DRSS.
Dagne Wegary Gissa, CIMMYT senior scientist in maize breeding, presented Kutywayo with the latest advanced PCR testing kits for detecting maize lethal necrosis. “We are committed to ensuring that we support Zimbabwe with improved maize and wheat varieties but also with rapid disease detection,” said Gissa.
Kutywayo and senior directors were given a tour of the plant quarantine services station, where they observed where all introduced maize seed is quarantined and tested before being incorporated into the local seed systems. Tanyaradzwa Sengwe, a seed health and quality expert, summarized the quarantine procedures and explained how the day-to-day operations between the two institutes are being implemented. This involves the management of imported seed, protocols of seed management and biosafety measures for the quarantine facility.
Government officials take part in a field visit of the quarantine facility set up by CIMMYT in Mazowe, Zimbabwe. (Photo: Tawanda Hove/CIMMYT)
Expanding partnerships
Zimbabwe can now accelerate its crop improvement programs, Gissa indicated, because CIMMYT has provided the government access to doubled haploid (DH) technology. This technology significantly shortens the breeding cycle from seven years to approximately 3-4 years. DH technology has become an integral part of many commercial maize breeding programs, as DH lines offer several economic, logistic and genetic benefits over conventional inbred lines. Further, new advances in DH technology continue to improve the efficiency of DH line development and fuel its increased adoption in breeding programs worldwide.
CIMMYT-Zimbabwe has facilitated access for Zimbabwe’s maize breeding program to a CIMMYT DH facility in Kenya. Busiso Mavankeni, the head of the Crop Breeding Institute, related how it was very expensive for governments of developing countries to keep up with the latest breeding technology trends and so collaborating with CIMMYT is helping Zimbabwe. “Having access to the DH facility has been a great boon to our breeding program,” said Mavankeni.
CIMMYT and Zimbabwe are also engaged in capacity building exercises; involving training sessions across a variety of food system frameworks. Nhamo Mudada, Head of Plant Quarantine Services, acknowledged the multiple trainings ranging from disease identification and prevention systems to entomology related concepts. “Our technical capabilities have increased significantly, and we strongly attribute this to CIMMYT’s knowledge sharing mandate,” Mudada said.
“This sustainability is enabled by ensuring that our systems can screen genetic materials coming into the country and detect diseases which may be foreign to the agroecological region. CIMMYT has, over the years, supported the government not only from a financial perspective but also from a technical capacity perspective.
“Having reliable partners such as CIMMYT who generously invest in government priorities helps our country to be well positioned against threats to our food security,” said Kutywayo, “The key for creating and maintaining sustainable innovation is for development partners like CIMMYT to work within existing national frameworks,” said Kutywayo. “As the adverse effects of climate change intensify, such strategic partnerships are the only way to establish appropriate responses.”
“Our goal is to serve as critical partners for Zimbabwe’s agrifood programs. We have dedicated ourselves to be a long-term partners and will provide as much support as we can to ensure Zimbabwe’s food security,” Gissa said.
“The world is in the middle of a food crisis, driven by the supply chain disruptions during and post-Covid, climate change with increased storms, temperatures, and drought, and the Russia-Ukraine crisis, leading to a shortage of fertilizers for food crop production, which have all led to the high cost of food,” said Govaerts, highlighting that smallholders are dealing with multiple challenges at once.
He continued by describing how the aforementioned challenges to food security are worsening poverty for vulnerable people in Africa, especially smallholder farmers.
However, harnessing the continent’s potential for food production could help to alleviate poverty and food insecurity. Govaerts cited examples of where smallholder farmers have returned to producing nutritious indigenous crops such as millet, sorghum, guinea corn, groundnut, cowpeas and chickpeas, which are reaping tremendous results.
Through investments in crops, farming practices, and agricultural technologies, the potential for food production in Africa can have a huge impact on hunger and poverty.
Happy Makuru Daudi, Head of Groundnut Research Program at the Tanzania Agricultural Research Institute (TARI) based at Naliendele Research Center in Mtwara, is a plant breeder specializing in groundnut. For the United Nations International Day of Women and Girls in Science, she shares with us her passion for what she does and why more women should venture into plant breeding.
What inspired you to get into your career?
I was in love with science and my intention was to be a doctor but later I changed my mind. I loved biology a lot and that set my focus on my academic path. At university I had good mentors who influenced my career direction as well.
When I achieved my first degree, I was recruited by the Government of Tanzania as an agricultural officer. My then boss, Omar Mponda, inspired me to be a plant breeder. He encouraged me and I went ahead to study plant breeding for both my Masters and PhD. My first degree was in Agronomy, I then did a Masters in Crop Science, specializing in Plant Breeding, and eventually completed a PhD in Plant Breeding as well.
What did you love about plant breeding?
I realized breeders are very active people. Always trying to improve and change things. Always looking for ways to make a difference. This desire to make a change makes us active lifelong learners.
The other thing I learnt from breeders is that they can change the life of farmers. Most smallholder farmers are women. I love my crop (groundnut) because it is a ‘woman’s crop’. If the breeder develops a product such as groundnut with high impact, it means they have changed the life of women. I realized I work a lot with women in my field and even if I only change the smallest of things, it means I get to change their lives and boost them from one step to the next.
Please elaborate on why you refer to groundnut as a woman’s crop.
Groundnut is a nutritious crop and is used a lot in processing and preparing children’s food, hence most women value it and engage in farming the crop, even though in small plots of land, in order to have nutritious food for their families’ health.
Most women especially in Tanzania view groundnut as their ATM, in that when they need money for use at home, they only need to sell some of their harvested groundnut and get cash to meet their home’s needs, such as buying schoolbooks for their children.
Women are involved in the entire groundnut value chain, that is from farming the crop in the field up to the processing stages, unlike men who mostly only come in at the market stage to sell the produce. Therefore, groundnut is source of income for many women in Tanzania.
Happy Makuru Daudi presents at the Drylands Legumes and Cereals Crop Improvement Review and Planning meeting in Ghana in January 2023. (Photo: Susan Otieno/CIMMYT)
Has the International Maize and Wheat Center (CIMMYT) and the CGIAR at large contributed in any way to your career growth?
Yes! They have contributed a lot. First in building my capacity and, as I work with them in the Accelerated Varietal Improvement and Seed Systems in Africa (AVISA) project. My PhD was sponsored by the Tropical Legumes III Project. I remember when interacting with scientists from these organizations, I observed how they carried themselves with confidence, both the women and men; it motivated me and built my confidence.
What was the focus of your PhD?
My PhD was on breeding for groundnut resistance for rust and high yield in Tanzania.
What is your message for young women and girls interested in getting into science, technology, engineering, and mathematics (STEM) careers?
First, they need to trust themselves. They can do anything in this world. They should not be fearful. For instance, those interested in breeding might observe that most breeders are men, and they may tell themselves that it is a difficult career and run away from it. But I would like them to tell themselves they can be and do even better than men. They only need to trust themselves and build their confidence.
Tell me about the formation of your team – are you intentional in working with women in your team?
Yes, I’m usually intentional about this. I always give equal chance to both genders but when I get an opportunity to hire for my team, it makes me happier if a woman lands the job. I realized women are good workers and ready to learn. Most of my casual laborers on my team are also women. They work meticulously. The main work for breeders entails crossing. The best people for crossing are women! I have observed that the success rate of the crosses is higher with women! Crossing is intensive work, physically as well, and needs utmost concentration. So, I trust them in this.
Is there anything else you would like to add?
I want to encourage women not to run away from sciences, and especially agricultural sciences such as breeding. We want more women breeders. They can change this world and help more people put food on the table. The agricultural sector, especially the farms, are dominated by women, and it is easier for them when they interact with other women. When we go meet them in the fields, it is easier for us to understand their needs and change their lives. So, I call girls and women to come on board in this sector and change the lives of many.
Cover photo: Happy Makuru Daudi (center) discussing groundnut varieties with colleagues from TARI and CIMMYT in Mtwara, Tanzania, in 2022. (Photo: Susan Otieno/CIMMYT)