Skip to main content

Location: Africa

CIMMYT’s work in Africa helps farmers access new maize and wheat systems-based technologies, information and markets, raising incomes and enhancing crop resilience to drought and climate change. CIMMYT sets priorities in consultation with ministries of agriculture, seed companies, farming communities and other stakeholders in the maize and wheat value chains. Our activities in Africa are wide ranging and include: breeding maize for drought tolerance and low-fertility soils, and for resistance to insect pests, foliar diseases and parasitic weeds; sustainably intensifying production in maize- and wheat-based systems; and investigating opportunities to reduce micronutrient and protein malnutrition among women and young children.

Agricultural Transformation in Africa

Reiterating the commitment to leading agriculture innovation across Africa, Bram Govaerts, director general of the International Maize and Wheat Improvement Center (CIMMYT), took part in the 8th Africa Agribusiness and Science Week (AASW8), June 5-8, 2023, in Durban, South Africa.

Partners discuss how to generate greater impact for farmers through regional partnerships between One CGIAR and African stakeholders (Photo: Liesbet Vannyvel/CIMMYT)

The theme of the AASW8 was linking science, innovation, and agribusiness for resilient food systems.

CGIAR System Board Chair Lindiwe Sibanda called for increased research and innovation to achieve an impact at scale and benefit African farmers at the opening ceremony.

Govaerts moderated a partner panel discussion regarding opportunities to strengthen the collaboration between One CGIAR and African research stakeholders.

Organizations represented on the panel included leaders from Technologies for African Agricultural Transformation, Total Landcare, Lupiya, Chitetezo Farmer Federation, and Green Sahel.

The African Development Bank, the African Union Commission, the Forum for Agricultural Research in Africa, and CGIAR also launched the Action Plan for the Abidjan II CommuniquĂ© that aims to build Africa’s resilience to future shocks by bolstering agricultural research and innovation systems to give farmers access to the science and technologies that they need to thrive.

“African countries must systematically review what is needed for the transformation of agrifood systems taking into consideration the present and future needs, and significantly increase investment in agricultural research and development,” said Govaerts.

Local and regional agribusiness is an essential industry playing a significant role in Africa’s prospects for economic growth and ensuring food security of its citizens. Still, challenges include regional harmonization of crop variety releases, surveillance of transboundary pests, and the growing threats of climate change.

“CIMMYT is dedicated to collaborating with local stakeholders to facilitate policies at the national, regional, and continental levels to promote proactive and eco-friendly management of transboundary plant health threats,” said Govaerts.

Climate change to reduce Africa, South Asia wheat output

Several factors, including temperature, water deficit, and water access, have been identified as major causes in recent wheat yield variability worldwide. DSSAT wheat models showcase the impact of temperature, heat stress, water balance and drought stress in large wheat yield reductions due to climate change for Africa and South Asia, where food security is already a problem.

Read the full story here

 

 

 

CIMMYT Director General reaffirms commitment to Zambia

Honoring a legacy of innovative development in Zambia and looking forward to meeting the nation’s goals for food security, Bram Govaerts, director general of the International Maize and Wheat Improvement Center (CIMMYT), along with CGIAR Board Chair Lindiwe Sibanda, visited facilities and met with southern Africa collaborators of the Southern Africa AID-I Rapid Delivery Hub on June 2 and 3, 2023.

Bram Govaerts visited field experiments with the head of science at Zamseed (Photo: Katebe Mapipo/CIMMYT)

“CIMMYT’s work in Zambia and the region is geared to help national governments build resilience to climate change, diversify maize-based farming systems and improve productivity and production to address reduce hunger and poverty,” said Govaerts.
Southern Africa AID-I Rapid Delivery Hub aims to provide critical support to over 3 million farming households in Malawi, Tanzania and Zambia via targeted interventions for demand driven seed scaling, improved soil health and fertilizer use efficiency, and rapid delivery of critical agricultural advisory services deep into rural communities.

CIMMYT research and innovation supports Zambia’s medium-term goal of “Socio-Economic Transformation for Improved Livelihoods” and its 2030 Vision of becoming “A Prosperous Middle-Income Nation by 2030.”

Govaerts and Sibanda toured Afriseed’s factory in Lusaka and its wheat field trials in Ngwerere. They also attended a field demonstration of Purdue Improved Crop Storage bags in the nearby district of Chongwe organized by the Catholic Relief Services, a local partner promoting low-cost post-harvest technologies for small-scale farmers in Zambia.
The delegation visited private partner Zamseed, a company commercializing and releasing CIMMYT-bred, Fall Armyworm tolerant maize seeds.

Southern Africa AID-I Rapid Delivery Hub has enabled the release of nearly 10,000 metric tons of certified maize and legume seed, which have been harvested by Zambian seed companies and community-based seed organizations, directly benefiting a million semi-subsistence farmers.

Govaerts also hailed Zambia’s commitment to creating a transparent seed system. “Thanks to this conducive policy environment, Zambia is a major hub in sub-Saharan Africa for hybrid maize seed production and export in Africa.”

Kevin Kabunda opened a partner meeting in which Bram Govaerts met AID-I farmers and partners from seed companies, educational institutions, CGIAR centers, and micro-finance and tech companies. (Photo: Katebe Mapipo/CIMMYT)

Besides Southern Africa AID-I Rapid Delivery Hub, CIMMYT and the Zambia Agricultural Research Institute have been collaborating for over two decades along with public and private partners in Zambia through different investments designed to create sustainable interventions that strengthen food systems and directly reach small-scale farmers.

Wheat output in Africa and South Asia will suffer severely from climate change by 2050, modelling study shows

Leading crop simulation models used by a global team of agricultural scientists to simulate wheat production up to 2050 showed large wheat yield reductions due to climate change for Africa and South Asia, where food security is already a problem.

The model predicted average declines in wheat yields of 15% in African countries and 16% in South Asian countries by mid-century, as described in the 2021 paper “Climate impact and adaptation to heat and drought stress of regional and global wheat production,” published in the science journal Environmental Research Letters. Climate change will lower global wheat production by 1.9% by mid-century, with the most negative impacts occurring in Africa and South Asia, according to the research.

“Studies have already shown that wheat yields fell by 5.5% during 1980-2010, due to rising global temperatures,” said Diego N.L. Pequeno, wheat crop modeler at the International Maize and Wheat Improvement Center (CIMMYT) and lead author of the paper. “We chose several models to simulate climate change impacts and also simulated wheat varieties that featured increased heat tolerance, early vigor against late season drought, and late flowering to ensure normal biomass accumulation. Finally, we simulated use of additional nitrogen fertilizer to maximize the expression of these adaptive traits.”

Wheat fields in Ankara, Turkey, where data was used for crop model simulation (Photo: Marta Lopes/CIMMYT)

The wheat simulation models employed — CROPSIM-CERES, CROPSIM, and Nwheat within the Decision Support System for Agrotechnology Transfer, DSSAT v.4.6 — have been widely used to study diverse cropping systems around the world, according to Pequeno.

“The DSSAT models simulated the elevated CO2 stimulus on wheat growth, when N is not limiting,” he said. “Our study is the first to include combined genetic traits for early vigor, heat tolerance, and late flowering in the wheat simulation.”

Several factors, including temperature, water deficit, and water access, have been identified as major causes in recent wheat yield variability worldwide. The DSSAT wheat models simulate the impact of temperature, including heat stress, water balance, drought stress, or nitrogen leaching from heavy rainfall.

“Generally, small and low-volume wheat producers suffered large negative impacts due to future climate changes, indicating that less developed countries may be the most affected,” Pequeno added.

Climate change at high latitudes (France, Germany, and northern China, all large wheat-producing countries/region) positively impacted wheat grain yield, as warming temperatures benefit wheat growth through an extended early spring growing season. But warmer temperatures and insufficient rainfall by mid-century, as projected at the same latitude in Russia and the northwestern United States, will reduce rainfed wheat yields — a finding that contradicts outcomes of some previous studies.

At lower latitudes that are close to the tropics, already warm, and experiencing insufficient rainfall for food crops and therefore depending on irrigation (North India, Pakistan, Bangladesh), rising heat will damage wheat crops and seriously reduce yields. China, the largest wheat producer in the world, is projected to have mixed impacts from climate change but, at a nation-wide scale, the study showed a 1.2% increase in wheat yields.

“Our results showed that the adaptive traits could help alleviate climate change impacts on wheat, but responses would vary widely, depending on the growing environment and management practices used,” according to Pequeno. This implies that wheat breeding for traits associated with climate resilience is a promising climate change adaptation option, but its effect will vary among regions. Its positive impact could be limited by agronomical aspects, particularly under rainfed and low soil N conditions, where water and nitrogen stress limit the benefits from improved cultivars.

Extreme weather events could also become more frequent. Those were possibly underestimated in this study, as projections of heat damage effects considered only changes in daily absolute temperatures but not possible changes in the frequency of occurrence. Another limitation is that most crop models lack functions for simulating excess water (e.g., flooding), an important cause of global wheat yield variability.

This study was supported by the CGIAR Research Program on Wheat agri-food systems (CRP WHEAT; 2012-2021), the CGIAR Platform for Big Data in Agriculture, the International Wheat Yield Partnership (IWYP115 Project), the Bill & Melinda Gates Foundation, the World Bank, the Mexican government through the Sustainable Modernization of Traditional Agriculture (MasAgro) project, and the International Treaty of Plant Genetic Resources for Food and Agriculture and its Benefit-sharing Fund for co-funding the project, with financial support from the European Union.

Building capacities for advanced modern breeding programs in Africa

In December 2022, more than 40 scientists from African National Agricultural Research Institutes (NARI) and Small and Medium Enterprise (SME) seed companies received training on the design and implementation of modern maize breeding programs.

The training, explains Yoseph Beyene, project leader in the Accelerating Genetic Gains (AGG) – Maize project, was designed to improve maize breeders’ knowledge of the most advanced technologies and methodologies in order to increase genetic gains in their respective breeding programs. It was supported by AGG-Maize and the CGIAR Accelerated Breeding Initiative (ABI) and formed part of ongoing efforts to modernize NARI breeding programs under AGG-Maize.

Yoseph Beyene, Accelerating Genetic Gains-Maize Project leader, makes introductory remarks at the start of the Senior Breeders Training in Nairobi, Kenya. (Photo: Susan Otieno/CIMMYT)

Over the course of five days in Nairobi, Kenya, participants from 13 countries where AGG-Maize is implemented worked to develop their skills in the use of new technologies and approaches to improving genetic gains and breeding efficiencies. Topics covered included the prioritization of market segmentation and product profile development, application of quantitative genetics principles in maize breeding, seed production research, improved designs for regional on-farm trials, and much more.

“The training was an eye opener supported by detailed explanations on applications of diverse research methodologies in maize breeding,” said Isiah Aleri, a research assistant for the International Maize and Wheat Improvement Center’s (CIMMYT) Maize Program in Kenya. “I met teams who had different views on some breeding techniques, but later received guided explanations from trainers on why certain standards and requirements are set for effective decision making.”

Veronica Ogugo, a research associate in the same CIMMYT program, agreed saying: “It was very educative and in-depth in all the areas that were covered by the different specialists. The best part was that each of the components complimented one another.” She added that the training also offered a good opportunity for interaction with other experts.

B.M. Prasanna, CIMMYT Global Maize Program director, speaks at the Senior Breeders Training in Nairobi, Kenya. (Photo: Susan Otieno/CIMMYT)

What and whom to breed for

In his opening remarks at the training, B.M. Prasanna, Global Maize Program director at CIMMYT, noted the need for efficient use of limited resources, and encouraged scientists to work smartly, for instance, by leveraging available germplasm across phenotyping networks from other regions to diversify germplasm base for increased genetic gains. He emphasized the importance of clearly determining market segments and developing product profiles that have clear objectives, as well as the key traits to be considered, such as tolerance to drought, heat, and pests and diseases like fall armyworm.

Prasanna highlighted zinc as an example of an important feature to focus on, pointing out the micronutrient’s vital role in mental well-being and its immune boosting properties, especially in children. “Different geographies have different ways of using maize,” he explained. “In general, maize provides 15-56% of total calorie intake in the rain-fed tropics, hence its importance for improving not only smallholder farmer incomes but also food and nutrition security.”

He also outlined how important partnerships with national programs and seed companies are for achieving the fullest impact of CIMMYT’s work. “The strong regional collaborative maize breeding and seed systems is fundamental for impact,” he said. “It is also the reason for arguably the largest public sector maize germplasm testing network in the Global South, in rain-fed stress-prone tropical environments.”

Accelerating delivery of stress-tolerant, nutritious seed in Eastern and Southern Africa

AID-I staff inspect germination in Malawi (Photo: CIMMYT)

Accelerated delivery with a difference is underway in Malawi, Tanzania, and Zambia to ensure access to stress-tolerant seeds for underserved farmers in remote areas. Supported by USAID, the Accelerated Innovation Delivery Initiative (AID-I) project brings public-private and civil society together to address the impacts of climate change, pests and diseases, and food shocks on maize and legume systems.

One simple and cost-effective solution to tackle these threats is last mile delivery of stress-tolerant and nutritious seeds. Ensuring that farmers have access to a diverse range of seeds means they can choose the best varieties to suit their needs and their local environment.

Through AID-I, scientists at the International Maize and Wheat Improvement Center (CIMMYT) are working with over 20 global, regional, national, and local partners to strengthen maize and legume seed systems in Malawi, Tanzania, and Zambia.

So far, in 2023, the team has set up over a hundred mega-demonstrations across Malawi and Zambia, to raise awareness and increase seed production by exposing communities to improved, climate-adapted and nutritious crop varieties. As learning centers, the mega-demonstrations give farmers a chance to see for themselves the advantages of improved maize and legume varieties and better farming practices including conservation agriculture and doubled up legumes systems.

Farmers plant mega-demonstration plots in Malawi (Photo: CIMMYT)

Spotlighted were drought-tolerant and nutritious varieties, expected to play a crucial role in the recovery of regional maize production. The Zambian and Malawian governments have also just released maize hybrids tolerant to fall armyworms, which will be scaled through the AID-I. The fall armyworm is an invasive pest that attacks more than 80 different crops but has a particular preference for maize. Without proper control measures, the pest can decimate crops, threatening food security, incomes, and livelihoods.

Alongside maize, the AID-I team is making seed of improved legume varieties, including beans, soybean, pigeon peas, cowpea, and groundnuts available at the last mile. Legumes are nutritious and good for the soil, providing valuable nutrients like nitrogen (N) so farmers can use less fertilizer, save money, and protect soil health.

AID-I supports strengthening of strategically located seed stockists of improved legume varieties and linking seed growers and buyers. These stockists, called agricultural development agents will also receive training in community seed production. Through connection with hundreds of agricultural development agents in the first farming season with seed suppliers, hundreds of thousands of farmers will be able to access a wide variety of improved seed.

Members of the CIMMYT leadership team with representatives from the U.S. Department of State and the U.S. Agency of International Development (USAID) visit AfriSeed in Zambia (Photo: CIMMYT)

Building strong relationships between public and private sector organizations is an integral part of the project. On January 16, 2023, long-term CIMMYT collaborator and AID-I key partner, AfriSeed hosted senior government officials from the United States Department of State (DOS) and U.S. Agency for International Development (USAID). The visitors gained valuable insight into how private seed companies involved in the marketing and distribution of maize and legume seeds operate in Zambia and showed their crucial role in the country’s seed sector.

A promising partnership

In August 2022, the arrival of a container ship at the port in Cotonou, Benin signaled a major milestone in a developing South-South business relationship that holds the potential to produce a massive change in agricultural practices and output in Benin and across West Africa.

The delivery of six-row seeder planters from India marks the initial fruit of a collaboration between Indian manufacturer Rohitkrishi Industries and Beninese machinery fabricator and distributor Techno Agro Industrie (TAI) that has been two years in the making.

Connecting partners in the Global South

A major area of focus for the Green Innovation Centers for the Agriculture and Food Sector (GIC) projects launched in 15 countries by Germany’s Federal Ministry for Economic Cooperation and Development’s special initiative One World No Hunger is fostering cooperation between nations in the Global South.

Krishna Chandra Yadav laser levels land for rice planting in Sirkohiya, Bardiya, Nepal (Photo: Peter Lowe/CIMMYT)

This story began through the partnership between the Green Innovation Centers for the Agriculture and Food Sector and The International Maize and Wheat Improvement Center (CIMMYT) to increase agricultural mechanization in 14 countries in Africa and 2 in Asia.

GIC in India has been working with Rohitkrishi to develop appropriate mechanization solutions for smallholding farmers in India since 2017.

Under this new cross-border goal, GIC India discussed with Rohitkrishi the opportunity to adapt machines to the agroecological and socio-economic systems of African countries where continued use of traditional farming methods was drastically limiting efficiency, productivity, and yield. Rohitkrishi assessed the need and pursued this opportunity for long-term business expansion.

Small machines for smallholders

Before connecting with farmers and manufacturers in Benin, Rohitkrishi was busy solving problems for smallholding farmers in India, where large manufacturers focus on agricultural machinery designed and produced to meet the needs of the bigger, commercial farms. Sameer Valdiya of GIC India and Sachin Kawade of Rohitkrishi put their heads together to develop a plan for producing machines that could make a difference—and then convince smallholding farmers to try them.

A farmer pulls a row seeder, Maharashtra, India. (Photo: Green Innovation Center-India)

By adapting an existing machine and incorporating continuous feedback from farmers, they created a semi-automatic planter. This unique, co-creative process was accompanied by an equally important change in farmer mindset and behavior—from skepticism to the demonstrated impact and cost-benefit of the planter that was clear to each farmer.

These farmers were the first to adopt the technology and promoted it to their peers. Their feedback also drove continued improvements—a fertilizer applicator, new shaft and drive, safety features, night-lights and (perhaps most importantly) a multi-crop feature to make it useful for planting potatoes, ginger, and turmeric.

Today, Rohitkrishi has distributed 52 semi-automatic planters across India, and these machines are being used by up to 100 farmers each. Users are seeing a 17-20 percent increase in productivity, with an accompanying increase in income, and 30 percent of users are women.

The seeders are a roaring success, but Rohitkrishi is focused on continued improvement and expansion. As they continue to respond to adjustments needed by farmers, the company plans to sell 1000 semi-automatic planters per year by 2025. Reaching that goal will require both domestic and foreign sales.

Market opportunity meets technological need

Thanks to the active partnership of CIMMYT and Programme Centres d’Innovations Vertes pour le secteur agro-alimentaire (ProCIVA), TAI in Benin emerged as a promising early adopter of Rohitkrishi’s planters outside India. Seeing a remarkable opportunity to establish a foothold that could open the entire West African market to their products, Rohitkrishi began the painstaking process of redesigning their machine for a new context.

This ambitious project faced numerous challenges–from language barriers, to the definition of roles amongst major players, to major COVID-19 and supply chain delays. The arrival of the seeders, however, is a major accomplishment. Now Rohitkrishi and TAI will begin working with government representatives and farmer-based organizations to ensure the equipment performs well on the ground and meets Benin’s agroecological requirements.

Once final testing is completed in the coming months, Rohitkrishi’s seeders will have the chance to demonstrate what a difference they can make for soy and rice production in Benin.

“When developing countries with similar contexts and challenges forge alliances and business connections to share their knowledge, expertise, and problem-solving skills with each other, this kind of direct South-South collaboration produces the most sustainable advances in agricultural production, food security, and job creation,” said Rabe Yahaya, agricultural mechanization specialist at CIMMYT.

Scale mechanization through a starter pack that comprises a two-wheel tractor – a double row planter as well as a trailer and sheller (Photo: CIMMYT)

Meanwhile, CIMMYT is studying this pilot project to identify opportunities for reproducing and expanding its success. Through the Scaling Scan–a web-based, user-friendly tool to assess ten core ingredients necessary to scale-up any innovation–CIMMYT is helping Rohitkrishi and TAI set ambitious and reachable goals for scalability.

Most importantly, the Scaling Scan results will identify areas for course correction and help Rohitkrishi and its partners continue to be sensitive to farmer feedback and produce equipment better suited to needs on the ground.

Startups, nonprofits race to unlock Africa’s agricultural potential as millions face food crisis and droughts

In sub-Saharan Africa, 85% of the population couldn’t afford an energy- and nutrient-sufficient diet. In the 12 most afflicted countries, World Bank data shows 9 out of 10 people struggle to afford a nutritious meal.

Climate change aggravates risk to make food even more unaffordable and crops more susceptible to crop pests and diseases.

CIMMYT maize research guides startups and nonprofits across Africa to act and put pressure on public and private actors to avert food insecurity and regional instability.

CIMMYT at the AIM for Climate Summit

Sieg Snapp, Tek Sapkota, and partners photographed during AIM for Climate (Photo: CIMMYT)

As climate change threats accelerate, new technologies, products, and approaches are required for smallholder farmers to mitigate and adapt to current and future threats. Targeting smallholder farmers will benefit not only the farmers but the entire agri-food system through enhanced locally relevant knowledge that harnesses handheld sensors and advisories on management options, soil status, weather, and market information.

The Agriculture Innovation Mission for Climate (AIM for Climate / AIM4C) seeks to address climate change and global hunger by uniting participants to significantly increase investment in, and other support for, climate-smart agriculture and food systems innovation over five years (2021–2025).

The International Maize and Wheat Improvement Center (CIMMYT), as a partner of AIM for Climate, organized a breakout session titled “Smart Smallholder Fertilizer Management to Address Food Security, Climate Change, and Planetary Boundaries” during the AIM for Climate Summit in Washington DC, May 8-10, 2023.

Fertilizers are essential for increasing crop yields and ensuring food security, yet fertilizer use for food and fodder is severely skewed at the global level, leading to over-fertilization in some regions and under-fertilization in others.

Farmers in low-income countries are highly vulnerable to fertilizer supply shortages and price spikes, which have direct consequences for food prices and hunger. Improving fertilizer efficiency and integrated organic and inorganic sources is important globally as nutrient loss to the environment from inappropriate input use drives greenhouse gas emissions and pollution.

Innovation Sprint

Because smallholder farmers are the primary managers of land and water, the CIMMYT-led AIM4C Innovation Sprint, Climate-Resilient soil fertility management by smallholders in Africa, Asia, and Latin America is designed to implement and scale-up a range of climate robust nutrient management strategies in 12 countries, and to reach tens of millions of smallholder farmers in close collaboration with nearly 100 public-private partners organizations.

Sieg Snapp called for more investments in data synthesis (Photo: CIMMYT)

Strategies include innovations in extension where digital tools enable farmer-centered private and public advisories to increase the uptake of locally adapted nutrient management practices. Connecting farmers to investors and markets provides financial support for improved nutrient management.

By tailoring validated fertility management practices to their specific conditions, and integrated use of legumes and manure, smallholders will optimize productivity, enhance climate resilience, and mitigate greenhouse gas emissions. Research from other organizations has determined that improved fertilizer management can increase global crop yield by 30% while reducing greenhouse gas emissions.

Right place, right time

“We need locally adapted fertilizer management approaches that work for smallholder farmers. By tailoring validated fertility management practices to their specific conditions, smallholders will optimize productivity, enhance climate resilience, and mitigate greenhouse gas emissions,” said Sieg Snapp, CIMMYT’s Sustainable Agricultural Systems Program Director. She continued, “What is needed now is major investment in data synthesis. Through this SPRINT we are exploring options to enable taking sensors to scale, to reach tens of millions of farmers with hyper-local soils information.”

Inequality is the core of the problem in fertilizer management: some regions apply more than the required amount, where in other regions fertilizer application is insufficient for plant needs, leading to low yields and soil degradation.

Tek Sapkota spoke on fertilizer management (Photo: CIMMYT)

“Fertilizer efficiency can be improved through application of the right amount of fertilizer using the right source employing the right methods of application at the right time of plant demand,” said Tek Sapkota, CIMMYT Senior Scientist, Agricultural System/Climate Change.

The session included presentations by the Foundation for Food & Agriculture Research (FFAR), UN Foundation, Pakistan Agricultural Research Council (PARC), Stockholm International Water Institute (SIWI), USDA, and Alliance of CIAT-Bioversity. Highlights sustainable and climate-smart practices in Pakistan, novel plant genetics for improved nitrogen cycling, and soil water and nutrient management in the Zambezi to tackle food security and climate change challenges.

2023: The International Year of the Millet

The United Nations declared 2023 as the International Year of the Millet.

Millet, with other resilient cereal crops, provides a nutritious and affordable option to families worldwide. CIMMYT and ICRISAT are scaling-up millet cultivation when climate change has placed pressure to protect the food systems that safeguard food security in Africa.

Six New CIMMYT maize hybrids available from eastern Africa Breeding Program

How does CIMMYT’s improved maize get to the farmer?

CIMMYT is happy to announce six new, improved tropical maize hybrids that are now available for uptake by public and private sector partners, especially those interested in marketing or disseminating hybrid maize seed across eastern Africa and similar agro-ecologies in other regions. NARES and seed companies are hereby invited to apply for licenses to pursue national release, scale-up seed production, and deliver these maize hybrids to farming communities.

 

Newly available CIMMYT hybrids Key traits
CIM21EAPP1-01-23 Intermediate maturing, white, high yielding, drought tolerant, NUE, and resistant to GLS, TLB, Ear rots, and MSV
CIM21EAPP1-01-22
CIM21EAPP1-02-13 Early maturing, white, high yielding, drought tolerant, NUE, and resistant to GLS, TLB, Ear rots, and MLN
CIM21EAPP1-02-11
CIM21EAPP2-01 Late maturing, white, high yielding, drought tolerant, NUE, and resistant to GLS, TLB, Ear rots, and Striga
CIM21EAPP2-05

 

Performance data Download the CIMMYT Eastern Africa Maize Regional On-Station (Stage 4) and On-Farm (Stage 5) Trials: Results of the 2021 to 2022 Seasons and Product Announcement from Dataverse.
How to apply Visit CIMMYT’s maize product allocation page for details
Application deadline The deadline to submit applications to be considered during the first round of allocations is 21 May 2023. Applications received after that deadline will be considered during subsequent rounds of product allocations.

 

The newly available CIMMYT maize hybrids were identified through rigorous, years-long trialing and a stage-gate advancement process which culminated in the 2022 Eastern Africa On-Farm (Stage 5) Trials. The products were found to meet the stringent performance and farmer acceptance criteria for CIMMYT’s breeding pipelines that are designed to generate products tailored in particular for smallholder farmers in stress-prone agroecologies of eastern Africa .

Applications must be accompanied by a proposed commercialization plan for each product being requested. Applications may be submitted online via the CIMMYT Maize Licensing Portal and will be reviewed in accordance with CIMMYT’s Principles and Procedures for Acquisition and use of CIMMYT maize hybrids and OPVs for commercialization. Specific questions or issues faced with regard to the application process may be addressed to GMP-CIMMYT@cgiar.org with attention to Nicholas Davis, Program Manager, Global Maize Program, CIMMYT.

APPLY FOR A LICENSE

Increasing smallholder inclusion in markets boosts rural livelihoods

Sieglinde Snapp (right), director, Sustainable Agrifood Systems Program, CIMMYT, poses with Mr, and Mrs. Banda, who are part of seed producers who sell seed to fellow farmers. (Photo: CIMMYT)

Smallholder farmers have long been considered purely subsistence producers without the capacity to participate in commercial value chains. This has led to their exclusion from many agribusiness enterprises which typically focus on medium- to large-scale growers.

Through the Accelerated Innovation Delivery Initiative (AID-I), the International Maize and Wheat Improvement Center (CIMMYT) and partners are supporting smallholder farmers to enter viable legume value chains. Soybean is one crop experiencing a rapidly expanding market. This is a unique opportunity for small-scale farmers to access a legume value chain, one that drives sustainable intensified farming for improved income and livelihoods.

In the Kasenengwa District, in eastern Zambia, Josephine Mbewe produces soybean for local oil production and grain traders who export the commodity to neighboring countries like Zimbabwe and Malawi. She is one of many farmers who are benefitting from the Agriculture Development Agent model, a concept that has been developed by CIMMYT’s implementation partner Catholic Relief Services (CRS) and scaled up in the AID-I project.

“For years we always wanted to produce for the market, but the costs were just too high. In addition, we didn’t exactly know who to sell to so this model really helps us as we sell our products locally but knowing that our aggregated produce will go to distant consumers. This model is helping us to have access to high quality inputs such as improved seed, crop chemicals, fertilizers, and other related products,” Mbewe said.

The Agriculture Development Agent model aims to create a consortium of village based agrodealers who double as seed producers multiplying seed and selling it to surrounding farmers. The same dealers buy back the grain and sell it to oil pressing companies and export commodity trading companies.

The AID-I project scales promising innovations with proven ability to address some of the systemic constraints that have discouraged agribusinesses from engaging with smallholder farmers.

“This is a model that is leveraged on community social capital where trust exists between the ADA and the local farmer,” said James Nguluwe from CRS. “Issues related to seed diversion or side marketing of the harvested crop are kept at a bare minimum as farmers don’t want to spoil their relationship with the Agriculture Development Agent and their general reputation within the community.”

“The model is also catalytic to the use of improved seed as farmers have to produce using a particular seed type. The interactions with ADA over soya seed, production and reverse purchase set up has seen the farmers extending to procure improved maize varieties as well, as opposed to times past where they would recycle seed and reap poor harvests,” he said.

Paitana Mwanza, an ADA agreed and spoke of his positive experiences of the model.

“I have had no contractual breach with the farmers. When they buy the seed, we agree on a separate grain buy back arrangement – the farmers have always delivered as per agreement.”

For years, farmers have been growing recycled seed and use of improved seed has been very uncommon among smallholder farmers. Having a financial incentive where ADAs provide an assured market is proving to be a good enough incentive to facilitate behavioral change.

Agribusiness agents face high costs associated with aggregation of produce, which the Agriculture Development Agent model overcomes. Farmers are organized and supported by ADAs, who are registered market players that have been extensively trained in business practices, seed handling and seed and grain production. As such, both grain traders and processors can make a realistic profit through this innovative system that facilitates small-scale farmers accessing new markets.

One of the key objectives of the AID-I project is to ensure that participating in market systems is a choice for smallholder farmers and exclusion from viable value chains is a thing of the past. The Agriculture Development Agent model promises to transform not only eastern Zambia but the whole country at large.