Skip to main content

Location: Africa

CIMMYT’s work in Africa helps farmers access new maize and wheat systems-based technologies, information and markets, raising incomes and enhancing crop resilience to drought and climate change. CIMMYT sets priorities in consultation with ministries of agriculture, seed companies, farming communities and other stakeholders in the maize and wheat value chains. Our activities in Africa are wide ranging and include: breeding maize for drought tolerance and low-fertility soils, and for resistance to insect pests, foliar diseases and parasitic weeds; sustainably intensifying production in maize- and wheat-based systems; and investigating opportunities to reduce micronutrient and protein malnutrition among women and young children.

CIMMYT and WorldVeg strengthen collaboration in the midst of the climate crisis to increase their impact

On December 9, 2023, CIMMYT and the World Vegetable Center (WorldVeg) signed a memorandum of understanding (MoU) to further promote research and development, capacity strengthening activities and facilitate joint learning and the exchange of information and technology between the two organizations.

Sustainable diversification of food systems, good agricultural practices and safe and sustainable development of cereal and vegetable production systems and agrifood value chains sits at the core of this partnership.

The ultimate objective of the MoU is to further contribute to the achievement of the Sustainable Development Goals (SDGs), in particular SDG1 and SDG2, enhancing food and nutrition security, reducing rural and urban poverty and increasing employment opportunities in particular for women and youth.

CIMMYT and the World Vegetable Center are already partners in the Southern Africa Accelerated Innovation Delivery Initiative Rapid Delivery Hub (AID-I).  Through this program, it is distributing seed kits directly to vulnerable populations such as pregnant and lactating mothers and children under five, as well as improving soil health, promoting the production of traditional African vegetables, and increasing employment opportunities through building vegetable businesses. Recent impacts in Zanzibar are a good example.

Bram Govaerts, director general of CIMMYT, and Marco Wopereis, director general of the World Vegetable Center, sign the MoU. (Photo: CIMMYT and WorldVeg)

“This collaboration between CIMMYT and WorldVeg is a testament to the potential of collective action, highlighting sustainable solutions and community empowerment as essential elements in combating malnutrition and enhancing overall well-being. We are building on the foundation already established by our collaborations within the Accelerated Innovation Delivery (AID-I) project in southern and eastern Africa,” said CIMMYT Director General, Bram Govaerts. “CIMMYT is excited to expand our connection with WorldVeg to bring innovations to even more people as crop diversification encourages improved nutrition.”

“The World Vegetable Center is proud to deepen our work with CIMMYT. Reaching the Sustainable Development Goals will require not only advanced technologies but also systems to deliver those innovations to the people that need them most and this partnership will enable both priorities,” said Director General of the World Vegetable Center, Marco Wopereis. “Promoting and enhancing the availability of nutritious vegetables and cereals are vital to achieving these aims.”

By providing farmers with more options, CIMMYT and WorldVeg will promote the cultivation of diverse crops that are essential for a balanced and nutritious diet particularly among vulnerable communities around the world. By raising awareness about the significant benefits of incorporating different vegetables and cereals into daily diets, the partnership will inspire and encourage millions of people to fully embrace diversification and improved nutrition.

About CIMMYT

CIMMYT is a cutting edge, non-profit, international organization dedicated to solving tomorrow’s problems today. It is entrusted with fostering improved quantity, quality, and dependability of production systems and basic cereals such as maize, wheat, triticale, sorghum, millets, and associated crops through applied agricultural science, particularly in the Global South, through building strong partnerships. This combination enhances the livelihood trajectories and resilience of millions of resource-poor farmers, while working towards a more productive, inclusive, and resilient agrifood system within planetary boundaries.

CIMMYT is a core CGIAR Research Center, a global research partnership for a food-secure future, dedicated to reducing poverty, enhancing food and nutrition security and improving natural resources. For more information, visit cimmyt.org.

About the World Vegetable Center

The World Vegetable Center (WorldVeg) is an international non-profit institute for vegetable research and development. It mobilizes resources from the public and private sectors to realize the potential of vegetables for healthier lives and more resilient livelihoods.

WorldVeg’s globally important genebank, improved varieties, production and postharvest methods help farmers to increase their vegetable harvests, raise incomes in poor rural and urban households, create jobs, and provide healthier, more nutritious diets for families and communities. With headquarters in Taiwan, field operations are led from regional centers in Benin, India, Mali, Tanzania and Thailand, and through offices in other key countries.

I cannot do it alone

On October 4, 2023, CIMMYT continued its online seminar series — Catalysts of Change: Women Leaders in Science. The event featured a talk by Esther Ngumbi, an entomologist and academic at the University of Illinois Urbana-Champaign.

A riverside farm

Born into a small, rural community on the Kenyan coast, Esther Ngumbi grew up farming alongside her family. “I enjoyed the process of growing crops because I knew at the end of the season, we would have extra food for ourselves,” she explained. By the age of seven she decided she wanted to go it alone, and her father provided a small strip of land by the river, where she took to growing vegetables.

“Every morning I would sit there and just enjoy looking at this thriving cabbage patch I had,” she says. “And then one day the rains came. It rained for three days, the field flooded, and by the time the water receded I had lost my cabbages. The joy that had built was gone.”

“But this heartbreak continued,” she added. “Halfway through the season I would watch all our hard work go to waste.” Along came insects, drought, or flooding—all the stresses associated with climate change—and for her family it would mean no food. Ngumbi soon realized that this was not limited to her family’s farm: her neighbors, community, county, and country were all impacted by these challenges, leading to widespread food insecurity.

Feeding curiosity

“As a girl I was very curious,” said Ngumbi. “How do these insect pests find our crops? And when they find them, why aren’t our crops resilient enough to overcome these stresses? Little did I know that this curiosity would lead me into what my career is today: an entomologist.”

“But growing up in a rural village there were no role models; there were no scientists. There were no people I could look up to and be inspired to know that you could make a career out of entomology or that you could be a woman in science.”

Despite initially considering a career in accountancy, Ngumbi ended up studying for a BSc in biochemistry and zoology at Kenyatta University, where she immediately fell in love with practical research. “Stepping into the lab was such an exciting day for me,” she recalled. “I had so many questions, and I remember not wanting to leave because I wanted to answer all the questions I had grown up with.”

Later, extra-curricular experience at a local research center would feed her interest in entomology. The scientists she ended up working with ran a biological control program to assess how maize is impacted by lepidoptera pests, and the natural biological control agents that could be used to combat these. “How do plants communicate and call for help? Through releasing a chemical. I discovered that there is a wave of communication happening between our food crops and the community of organisms that associate with plants.”

Eager to learn more, Ngumbi went on to pursue an MSc before joining a Ph.D. program at Auburn University in Alabama, USA. “My parents had always told me that education is the gateway out of poverty, and they consistently encouraged me to go to the highest level. I knew I had to go to the top.”

At Auburn she had the opportunity to delve deeper into how plants defend themselves, and her successful research into beneficial soil microbes led to at least three U.S. patents. Following a few post-doctoral positions, she landed a role at the University of Illinois Urbana-Champaign, where she currently works as an assistant professor in the Departments of Entomology and African American Studies.

Bringing others along

Ngumbi credits mentorship with getting her to where she is today. “At Kenyatta University my teachers saw a spark in me; I was curious and wanted to find answers. Mentors introduced me to scientists the International Centre of Insect Physiology and Ecology (ICIPE), so I could carry out experiments beyond what we were doing as part of my course.”

She recalled walking across the stage during her Ph.D. graduation ceremony, a key moment of reflection. “It was real that there were very few women like me in science. That I was only one of the many women I had grown up with that was privileged to have a PhD. And I wanted not to be the only person,” she said. “I wanted to make sure that I would leave open the same door I had walked through. That I would do my best to bring other women along.”

“I would step up to be a mentor. Step up to encourage other women. Step up to encourage other children from rural communities to say: you can do it, you can dream, you can follow your passions, you can be a scientist.”

With this in mind, Ngumbi ensures she collaborates with others in all areas of her research, incorporating young researchers into her labs and working directly with farmers. “I’m committed to ensuring that farmers who work so hard — especially smallholders — can grow crops and see all their hard work pay off.”

“I will continue to follow this journey of finding solutions to feed our growing planet, but I know that I cannot do it alone. We need all of us,” she added. “We still have very few women scientists — UNESCO estimates around 30% — and I hope that by the time I’m done with my career that number changes. But it’s going to depend on all of us.”

Ngumbi’s talk was followed by a Question and Answer led by Olivia Odiyo, a CIMMYT research associate based in Nairobi. The full discussion can be viewed online here. Spanish and French-language audio is also available.

Early maturity products popular among farmers in Kenya

Across all production environments in Kenya, early-maturity products demonstrate strong sales. This was revealed in a recent study by the CGIAR Initiative on Market Intelligence. During the long-rains season, farmers in higher rainfall production environments—wet, mid and high altitudes—purchased early-maturity seed products despite potentially lower yields. Also, the short-rains season, which represents almost one-fourth of total maize seed sales, was dominated by early-maturity products.

These insights were obtained through a panel of maize-seed sales data from 722 agrodealers in Kenya during two short-rains seasons and three long-rains seasons in 2020–2022. The study also offers insights into the extent the maturity level of seed products, purchased by farmers in Kenya, aligns with the production environment where they were sold. Market Intelligence applies eight criteria to identify seed product market segments (SPMSs) for CGIAR crop breeding. In the application of these criteria to maize in East Africa, two conditions distinguish the segments: production environment and maturity level. The other criteria do not vary. A key indicator for prioritizing breeding investments across segments is the relative size of SPMSs. In the case of maize, and other crops, teams generally use geospatial data to identify the area of production environments, with the assumption that farmers in each production environment would use the seed product with the maturity level designed for that environment.

The paper contends that a stronger focus on using sales data to inform breeding decisions in maize, and potentially other crops where retailers play an important role in seed distribution, should become a priority for market intelligence. Future work will engage stakeholders in maize seed systems in other countries of East Africa about the changes in demand for earlier-maturing products and the implications for segmentation.

This article is adapted from Market Intelligence Brief 5: Maize Farmers Acquire Early-Maturity Seed Across Production Environments – the fifth paper in the ongoing peer-reviewed series published inMarket Intelligence Briefs.

*About Market Intelligence Briefs

The CGIAR Initiative on Market Intelligence (‘Market Intelligence’ for brevity) represents a new effort to engage social scientists, crop-breeding teams, and others to work together toward the design and implementation of a demand-led breeding approach. In 2022, the Market Intelligence Brief (MIB) series was created as a valuable communication tool to support informed decision making by crop breeders, seed-system specialists, and donors on future priorities and investments by CGIAR, NARS, the private sector, and non-governmental organizations (NGOs).

The author would like to thank all funders who supported this research through their contributions to the CGIAR Trust Fund. This project received funding from the Accelerating Genetic Gains in Maize and Wheat project (AGG) [INV-003439], funded by Bill & Melinda Gates Foundation; Foundation for Food & Agriculture Research (FFAR); United States Agency for International Development (USAID); and United Kingdom’s Foreign, Commonwealth & Development Office (FCDO).

Evaluating Agro-ecological Management Options for Fall Armyworm in Zimbabwe

Fall armyworm (Spodoptera frugiperda J.E. Smith) has emerged as a major threat to farming communities across Africa, including Zimbabwe. This destructive pest feeds on a wide range of crops, including maize, posing a significant challenge to food security. To combat this pest, the project “Evaluating Agro-ecological Management Options for Fall Armyworm in Zimbabwe” was initiated in October 2018 with support from USAID. It aims to address research gaps on fall armyworm management and cultural control in sustainable agriculture systems.

The project has implemented research trials in ten (10) districts across Zimbabwe, with work reaching close to 9,000 beneficiaries in target areas being exposed and applying new control practices that reduce the damage of FAW without heavily relying on chemical pesticides. This has been supported by a strong focus on agronomy trainings, field days, documentation, education through technical videos, knowledge sharing, and developing farmer manuals. In addition, the project supports Farmer Field Schools involving all relevant players in the farming communities to mainstream cultural practices in fall armyworm management.

Key objectives

The overall objective is to explore climate-adapted push pull systems and low-cost cultural control options for smallholder farmers in Zimbabwe. This project focused on research trials in Murehwa (Mashonaland East) and Mhondoro Ngezi (Mashonaland West), where the proof of concept was developed. After the inception phase it expanded to establishing demonstration sites and Farmer Field Schools in the Manicaland province, conducting trainings with farmers, and promoting knowledge sharing with Agritex officers and engaging with all relevant players in the target localities. Through continuous research and collaborative efforts, this project aims to develop sustainable and eco-friendly strategies to manage all armyworm infestations.

Millers in Nigeria laud the release to farmers of co-developed, CIMMYT-derived wheat varieties

Nigerian wheat scientists and millers recently recognized and thanked CIMMYT for its contributions to four new wheat varieties released to farmers, citing the varieties’ exceptional performance in field trials and farmers’ fields across national wheat-growing regions.

“The release of these four wheat varieties, uniquely tailored to suit our local conditions, has marked a significant milestone in enhancing food security and farmer livelihoods,” said Ahamed T. Abdullahi, agronomist for wheat value chains at the Flour Milling Association of Nigeria (FMAN), in a recent message to CIMMYT’s Global Wheat program. “The improved characteristics, such as higher yield potential, enhanced disease resistance, and adaptability to local climatic conditions, have significantly boosted wheat productivity. Moreover, the quality profiles of these varieties, as expressed in Nigeria, comply fully with the standards required by the local industry.”

Two of the varieties are bread wheat and yield up to 7 tons of grain per hectare, according to a recent Nigeria Tribune article. The other two are durum wheat, a species grown to make pasta and foods such as couscous and tabbouleh. One of those, given the name LACRIWHIT 14D in Nigeria, was from a CIMMYT wheat line selected for its novel genetic resistance to leaf rust and high-yield potential under irrigated conditions. It was also released in Mexico under the name CIRNO C2008 and is the country’s number-one durum wheat variety, according to Karim Ammar, a wheat breeder at CIMMYT.

Four new bread and durum wheat varieties based on CIMMYT breeding lines are well adapted to local conditions and offer excellent yields and grain quality. (Photo: FMAN)

“Aside from its high yield potential, it has considerable grain size and an aggressive grain fill that is expressed even under extreme heat,” explained Ammar. “These characteristics have certainly helped its identification as outstanding for Nigerian conditions.”

Writing on behalf of FMAN and the Lake Chad Research Institute (LCRI) of Nigeria’s Federal Ministry of Agriculture and Rural Development, Abdullahi said, “We deeply appreciate the expertise and support provided by CIMMYT throughout the development and release process. Your team’s technical guidance on the access to germplasm has played a crucial role in equipping our farmers and extension agents with the necessary skills and resources for successful wheat cultivation.”

Nigeria has a fast-growing population which, coupled with increasing per capita demand for wheat, has made increasing wheat production a national priority, according to Kevin Pixley, director of the Dryland Crops and Global Wheat programs at CIMMYT.

“Until recently, Nigeria produced only 2% of the wheat it consumes, but potential exists to double the current average yield and expand wheat production by perhaps 10-times its current area,” said Pixley. “New wheat varieties will be essential and must be grown using sustainable production practices that improve farmers’ livelihoods while safeguarding long-term food security and natural resources.”

Abdullahi said the release of the varieties demonstrated the power of collaborative research and highlighted the potential for future collaborations. “We look forward to continued collaborations and success in the pursuit of sustainable food systems.”

Sequestering carbon in soils: what agriculture can do

In Zimbabwe, CIMMYT is studying the long-term effectiveness of integrated farming practices, including tillage, no-tillage, mulching with maize residues, and cowpea rotation. This experiment in a distinct agricultural context provides insights into sustainable strategies and soil carbon stocks.

Read the full story.

Ten years later: CIMMYT facilities in East Africa continue to make a difference

CIMMYT and partners in Kenya recently marked the 10th anniversary of two major facilities that have been crucial for maize breeding in sub-Saharan Africa. The Maize Doubled-Haploid (DH) facility and the Maize Lethal Necrosis (MLN) screening facility at the Kenya Agriculture and Livestock Research Organization (KALRO) centers in Naivasha and Kiboko, respectively, have made immense contributions to the rapid development of higher-yielding, climate-resilient and disease-resistant maize varieties for smallholder farmers across the continent.

An aerial photo of the Naivasha Research Center. (Photo: CIMMYT)

“These two facilities have been instrumental in furthering KALRO’s mission to utilize technology in the service of Kenya’s smallholder farmers,” said KALRO Director General/CEO, Eliud Kireger. “They also exhibit the spirit of cooperation and collaboration that is necessary for us to meet all the challenges to our food systems.”

“Deploying a higher yielding maize variety may not be impactful in eastern Africa if that variety does not have resistance to a devastating disease like MLN,” said CIMMYT’s Director General Bram Govaerts. “These two facilities demonstrate the holistic methods which are key to working towards a more productive, inclusive and resilient agrifood system.”

Maize DH facility

Hybrid maize varieties have much higher yields than open-pollinated varieties and are key to unlocking the agricultural potential of maize producing countries. The doubled haploid process is an innovative technology producing within a year genetically true-to-type maize lines that serve as building blocks for improved maize hybrids.

Unlike conventional breeding, which takes at least 7 to 8 generations or crop seasons to develop parental lines, DH lines are generated within two seasons, saving significant time, labor and other resources. DH maize lines are highly uniform, genetically stable, and are more amenable to the application of modern molecular tools, making them perfect resources for breeding elite maize hybrids.

Workers in the Kiboko Double Haploid facility. (Photo: CIMMYT)

The aim of CIMMYT’s maize DH facility is to empower the breeding programs throughout the low-and middle-income countries in Africa by offering a competitive, accessible, not-for-profit DH production service that will accelerate their rate of genetic gain and fast-track development of improved maize varieties for farming communities.

Since 2017, the DH facility has delivered 280,000 DH lines from 1,840 populations of which 20% were delivered to public and private sector partners. CIMMYT maize breeding programs and partner organizations have embraced the use of DH technology, with many of the newest maize hybrids released in Africa being derived from DH lines. The facility has also served as a training ground so far for over 60 scientists and hundreds of undergraduate students in modern breeding technologies.

“Before 2013, DH technology was mainly employed by private, multinational corporations in North America, Europe, Asia and Latin America,” said CIMMYT’s DH Facility Manager, Vijay Chaikam. “But the DH facility operated by CIMMYT at the KALRO Kiboko research station is specifically targeted at strengthening the maize breeding programs by the public sector institutions as well as small-and medium-size enterprise seed companies in Africa.”

The maize DH facility at Kiboko, Kenya, was established with funding support from the Bill & Melinda Gates Foundation and inaugurated in September 2013. The facility includes an administrative building, seed quality laboratory, training resources, artificial seed dyer, a cold-storage seed room, a chromosome doubling laboratory, greenhouse and a state-of-the-art irrigation system to support year-round DH production in the 17-hectare nursery.

MLN screening facility

MLN is a devastating viral disease that can decimate farmers’ fields, causing premature plant death and unfilled, poorly formed maize ears, and can lead to up to 100 percent yield loss in farmers’ fields. Though known in other parts of the world for decades, the disease was first identified in eastern Africa in 2011. By 2015, MLN had rapidly spread across eastern Africa, including Kenya, Uganda, Tanzania, South Sudan, Rwanda, Democratic Republic of Congo and Ethiopia. CIMMYT scientists quickly discovered that almost all the commercial maize cultivars in eastern Africa were highly susceptible to the disease.

Against this backdrop, CIMMYT and KALRO recognized the urgent need for establishing a screening facility to provide MLN phenotyping service and effectively manage the risk of MLN on maize production through screening of germplasm and identifying MLN-resistant sources. The facility was built with funding support from the Bill & Melinda Gates Foundation and the Syngenta Foundation for Sustainable Agriculture, and inaugurated in September 2013.

Resistant and susceptible line at the Maize Lethal Necrosis facility. (Photo: CIMMYT)

“The MLN screening facility is a key regional resource in breeding for resistance to a devastating viral disease. The facility is indeed one of the key factors behind successful management of MLN and helping stem the tide of losses in eastern Africa,” said Director of the Global Maize Program at CIMMYT and One CGIAR Plant Health Initiative, B.M. Prasanna. “Fighting diseases like MLN, which do not respect political boundaries, requires strong regional and local collaboration. The successes achieved through the MLN Screening facility in the past 10 years embody that spirit of collaboration.” Indeed, farmers in the region now have access to over twenty genetically diverse, MLN-tolerant/resistant maize hybrids released in eastern and southern Africa.

The facility is the largest dedicated MLN screening facility in Africa and has evaluated over 230,000 accessions (over 330,000 rows of maize) from CIMMYT and partners, including over 15 national research programs, national and multinational seed companies. The facility covers 20 hectares, of which 17 hectares are used for field screening of germplasm. Dedicated laboratories and screen houses cover the remaining 3 hectares.

“MLN phenotyping service is conducted under stringent quarantine standards and the high-quality data is shared with all the CGIAR and public and private partners. The MLN screening service has helped breeding programs across the continent, aided in undertaking epidemiological research activities, and supported capacity building of students from diverse institutions, and regional stakeholders regarding MLN diagnosis and best management practices,” said CIMMYT’s Maize Pathologist in Africa, L.M. Suresh.

“The output of MLN resistant lines and hybrids has been remarkable,” said Director of Phytosanitary and Biosecurity at the Kenya Plant Health Inspectorate Service (KEPHIS), Isaac Macharia. “And the facility has strictly adhered to quarantine regulations.”

In Uganda, the MLN facility was crucial in the “release of the first-generation MLN tolerant hybrids and dissemination of MLN knowledge products that minimized the economic impact of MLN,” said the Director of Research of the National Crops Resources Research Institute, Godfrey Asea.

Peter Mbogo, maize breeder with Seed Co Group, said, “This is the only quarantine facility in the world where you can screen against MLN under artificial inoculation. It has been an excellent return on investment.”

Scaling up health diet seed kits in Zanzibar

Many people on the islands of Zanzibar face food insecurity and nutritional challenges. The Southern Africa Accelerated Innovation Delivery Initiative (AID-I) MasAgro Africa Rapid Delivery Hub, implemented by CIMMYT, has partnered with the World Vegetable Center (WorldVeg) to directly distribute health diet seed kits to vulnerable households, while prioritizing vulnerable groups such as pregnant and lactating mothers and children under five.

The kits contain a diverse selection of nutrient-rich vegetables specifically chosen for their high nutritional value, ensuring optimal health and development.

The kits contain traditional African vegetables. (Photo: CIMMYT)

To date, the partnership has reached an impressive number of households in Zanzibar. Over 1,350 health diet seed kits have been distributed, or one seed kit per household, benefiting approximately 4,050 individuals (considering at least three people per household). These numbers showcase the tangible impact AID-I has made in addressing the root causes of malnutrition and hidden hunger, providing a sustainable pathway towards improved health and a brighter future for Zanzibar.

The World Vegetable Center (WorldVeg) conducts research, builds networks, and carries out training and promotion activities to raise awareness of the role of vegetables for improved health and global poverty alleviation.

“This initiative holds tremendous promise in fostering long-term improvements in food security, nutrition, and overall well-being for the communities in Zanzibar and shows the power of collaboration,” said Kevin Kabunda, CIMMYT lead for the AID-I project.

Seed variety encourages improved nutrition

A key strength of the seed kits lies in their diversity. Each kit comprises a range of seeds for various crops, including legumes and nutrient-rich vegetables. This includes amaranth consumed as leafy and grain, African eggplant, Ethiopian mustard, African nightshade, and cowpea. The combination of these diverse crops ensures a more resilient and nutritious food supply, essential to combating malnutrition and fostering agricultural sustainability in the islands.

The seed kits are tailored to suit the local agroecological conditions, considering the specific needs and preferences of farmers in Zanzibar. This localization approach enhances the adoption of the kits and maximizes their potential impact on food security and dietary diversity.

“The partnership between WorldVeg and CIMMYT has been invaluable in driving the success of this activity in Zanzibar,” said Jeremiah Sigalla, WorldVeg technical lead for the AID-I project in Zanzibar. “By providing farmers with these healthy diet seed kits, we aim to promote the cultivation of diverse crops that are essential for a balanced and nutritious diet and its attendant benefits, particularly among vulnerable communities.”

By raising awareness about the significant benefits of incorporating diverse vegetables into daily diets, the partnership has inspired and encouraged the community to fully embrace the intervention. This collaboration between CIMMYT and WorldVeg is a testament to the potential of collective action, highlighting sustainable solutions and community empowerment as essential elements in combating malnutrition and enhancing overall well-being in Zanzibar.

The Ministry of Agriculture, Irrigation, Natural Resources and Livestock delivers a health diet seed kit. (Photo: CIMMYT)

The Honorable Shamata Shame Khamis, the minister of Agriculture, Irrigation, Natural Resources and Livestock in Zanzibar joined a health diet seed kit distribution event at Michiweni district in Pemba, on June 30, 2023, where he commented that the consumption of nutritious vegetables in Zanzibar is very low, and malnutrition-related cases are increasing because of poor daily diets. He also extended his appreciation to the AID-I project, recognizing that this initiative is not only important but also timely, as it serves to meet the urgent need for promoting and enhancing the availability of nutritious vegetables in Zanzibar.

CGIAR Initiative on Diversification in East and Southern Africa

East and Southern Africa is a climate hotspot, with more than US$45 billion in agricultural production at risk from higher temperatures, shorter growing seasons and more extreme droughts and floods. Maize, a staple crop covering up to 75% of cropland in parts of the region, is particularly vulnerable and is projected to face yield declines of 15%, among other climate impacts if no adaptation measures are taken. Many of the affected areas already have serious levels of hunger and malnutrition, with the highest burden experienced by women and youth from marginalized and vulnerable communities. If these systems are sustainably diversified, they can contribute to stabilizing regional and global agrifood systems.

The next decade will be critical for strengthening food, land and water systems in East and Southern Africa. The agribusiness ecosystem for both regions has been identified as a critical engine for agricultural and economic development, climate change adaptation and gender and youth empowerment. Investment in innovation, capabilities and supportive environments will be essential for driving sustainable growth.

Objective

This Initiative aims to support climate-resilient agriculture and livelihoods in 12 countries in East and Southern Africa by helping millions of smallholders intensify, diversify and reduce the risks in maize-based farming through improved extension services, small and medium enterprise development, supporting governance frameworks and increased investment with a gender and social inclusion lens.

Activities

This objective will be achieved through:

  • Diversifying and sustainably intensifying production by assessing needs and options for the introduction of crops, livestock, mechanization and irrigation, applying innovations in value chains and building capacity while scaling to larger farming communities.
  • Reducing risk and digitalizing value chains by co-designing and delivering “Innovation Package” bundles of digital agro-advisory systems and research management products — including mobile apps, TV programs and social media — to build resilience and improve productivity.
  • Supporting and accelerating value chain business enablers in maize mixed systems by using CGIAR’s expertise and partner network to unlock access to funding, investment and tailored technical assistance.
  • Promoting the governing and enabling of multifunctional landscapes for sustainable diversification and intensification with a focus on strengthening the evidence base for decision-makers.
  • Empowering and engaging women and youth in agribusiness ecosystems by mapping challenges and opportunities to address gender and social inequality and applying inclusive and coordinated interventions for transformative change.
  • Scaling innovations and coordinating CGIAR and partner activities in the region through a scaling hub that uses the “scaling readiness” approach to inform, activate and bring to scale innovations that respond to regional or country demand.

LIPS-Zimbabwe empowers farmers through innovative intercropping trials

Since 2021, CIMMYT, in partnership with the International Livestock Research Institute (ILRI), the French Agricultural Research Centre for International Development (CIRAD), and the University of Zimbabwe’s Department of Veterinary, has been working in rural communities of Zimbabwe, as part of the Livestock Production Systems in Zimbabwe (LIPS-Zim) project. The activity is led by Zimbabwe’s Department of Research and Specialist Services and is at the forefront of introducing new agricultural innovations to local farmers.

One of their most impactful initiatives has been the intercropping trials involving maize and various legumes including jack bean, mucuna, lablab, and pigeon pea. This groundbreaking approach has not only transformed the lives of farmers but has also had a positive impact on the overall health of livestock.

Various leguminous fodder crops have been promoted widely as sources of high-quality protein feed in mixed crop-livestock systems of Zimbabwe. However, to diversify and increase the options for the drier regions, the LIPS-Zim project is testing new leguminous crops such as jack bean and pigeon pea, which are well-adapted to dry conditions.

Intercropping trials with jack bean and maize (Photo: CIMMYT)

Netsai Musekiwa, a farmer in the town of Mutoko, has been part of the LIPS-Zim project for the past two seasons, and is currently conducting intercrop trials with jack bean. “Since I started intercropping maize with jack bean, I have been amazed by the results and will continue on this path. The jack bean plants have shown strong tolerance to prolonged dry spells and heat stress,” she said. “Next season, I plan to extend my plot to harvest more jack bean.” These words of encouragement on intercropping maize with jack bean have also been largely echoed by many other farmers in Mutoko and Buhera during the feedback meetings held in October 2023.

What is intercropping and how beneficial is it to farmers?

Intercropping is an agricultural practice of growing two or more crops together on the same field simultaneously to maximize land use and enhance productivity. As different crops have different growth patterns and nutrient requirements, intercropping can help optimize resource utilization and boost overall crop output.

In addition, intercropping reduces the risk of climate induced crop failure as well as minimizing pest damage, enhances soil fertility by diversifying the root system, and can provide additional income streams to farmers.

The science behind jack bean and pigeon pea

Jack bean (canavalia ensiformis) and pigeon pea (cajanus cajan) are leguminous crops valued for their nitrogen-fixing abilities which aides in improving soil fertility. Both jack bean and pigeon pea have deep root systems, making them ideal candidates for the dry semi-arid conditions in Zimbabwe.

Pigeon pea is known for its drought-tolerance and produces edible seeds used in various culinary dishes and is a source of both food and feed. Jack bean is used as a forage crop for livestock, providing nutritious feed.

“Jack bean seeds contain a toxic compound called canavanine, which can be harmful when consumed in large quantities or not properly processed. To make jack beans safe for consumption, it must be boiled, soaked, or fermented,” said Isaiah Nyagumbo, cropping systems agronomist at CIMMYT. “We have introduced many farmers to the best practices for handling jack beans and have opened up new possibilities for its utilization in sustainable farming practices.”

While some farmers were intercropping with jack bean, others explored pigeon pea as an alternative. “I liked the intercropping of maize and pigeon pea on my plot. I am assured of getting nutritious food both for my family and livestock. After harvesting, I usually take the branches, then put them in the shade and dry them to retain the nutritional value. I occasionally give some to my goats during the dry season when feed from natural pastures is scarce, and my goat herd has risen to 12 goats,” said Fungai Kativu, a farmer in Mutoko.

Building capacity of local farmers

To narrow the knowledge gap and highlight the potential of such feed options, LIPS-Zim has also been spearheading the establishment of community level learning centers. These centers are a knowledge hub to local farmers, providing practical knowledge, facilitating the sharing of different perspectives while nurturing working as groups with a common vision. This “farmer learns by seeing” approach has been a success in the community.

Through this initiative, farmers have not only witnessed increased productivity but have also gained the necessary skills and knowledge to adapt to the changing agricultural landscape. “Intercropping leguminous crops with maize has shown great potential in improving food security and livestock feed production in Zimbabwe’s farming communities, especially in areas prone to heat and drought,” said Nyagumbo.

Resilience Building through agroecological intensification in Zimbabwe (RAIZ)

Zimbabwe’s agricultural sector is predominantly subsistence-oriented, with maize as the main staple crop and limited use of external inputs. To promote sustainable and climate-smart agriculture, Zimbabwe has developed a 10-year framework (2018-2028) that emphasizes the adoption of climate-smart agriculture (CSA). However, the adoption of CSA practices remains limited in the country. Agroecological practices (AE) and the systemic perspective embedded in agroecological approaches hold great potential to address climate change and enhance agricultural sustainable intensification in Zimbabwe. RAIZ was conceived as the research component of the “Team Europe Initiative” (TEI) on “Climate-Smart Agriculture for Resilience Building”, formulated by the European Union (EU) delegation in Zimbabwe together with its member states.

Led by the French Agricultural Research Centre for International Development (CIRAD), in partnership with CIMMYT and the University of Zimbabwe, with funding from the European Union, RAIZ operates along a gradient of declining rainfall from Murewa in Natural Region II to Mutoko in Natural Region IV. Both districts are in the Mashonaland East province. Under RAIZ, CIMMYT leads Work Package 3 which involves ‘developing the capacity of extension and advisory services on agroecological approaches’ is actively involved in research and development activities, including the creation of training materials and the establishment of on-farm trials. In efforts to address challenges associated with low soil fertility on Zimbabwe’s granitic sandy soils. CIMMYT scientists working on RAIZ are testing the contribution of organic fertilizers and conservation agriculture in building up soil organic carbon and bringing back soil life to these mostly dead soils. These efforts aim to support farmers in adopting sustainable and climate-smart agricultural practices, ultimately contributing to the long-term resilience and prosperity of Zimbabwe’s agricultural sector.

Key objectives 

The overall objective is to support government in the development and implementation of scientifically tested agroecological approaches which will enhance agricultural production and resilience to climate change in Zimbabwe.

In addition, the project focuses on protecting the environment and reducing greenhouse gas (GHG) emissions. It will provide scientific evidence and experience for the design of climate-smart agriculture (CSA) at the plot, farm, and landscape levels, contextualized for mixed crop–livestock farms under sub-humid to semi-arid environments.

Response of African sorghum genotypes for drought tolerance under variable environments

New drought-resistant sorghum varieties bring hope for farmers in Africa

Scientists have identified drought-resistant, high-yielding sorghum genotypes that have the potential to revolutionize agriculture in dry regions of Africa. Sorghum, a staple food for millions in sub-Saharan Africa, has long been threatened by devastation from drought.

But now, researchers from the African Centre for Crop Improvement, the Institute of Agricultural Research (IAR), the International Maize and Wheat Improvement Center (CIMMYT), and the University of Life Sciences have discovered genetic resources that thrive under adverse conditions, yielding promising results and providing hope for a future that is more sustainable.

The study looked at 225 sorghum genotypes in various conditions, including non-stressed conditions and pre- and post-anthesis drought stress. The researchers used advanced statistical analysis, such as the additive main effects and multiplicative interaction (AMMI) method, to identify the most resilient and high-yielding genotypes.

The results revealed a vast diversity in the genetic resources of sorghum and provided a pathway for selecting promising genotypes for regions prone to drought. In addition, the study highlighted the significant impact of environmental conditions on grain yield, with genotypes showing variable responses to different growing environments.

A farmer inspecting sorghum on his farm in Tanzania. (Photo: CBCC)

For example, genotypes G144 (Kaura Short Panicle-1) and G157 (Kaura Mai Baki Kona) displayed higher grain yield in drought-stressed environments and were among the top performers. Not only do these genotypes outperform registered cultivars, but they also possess traits valued by farmers, making them ideal candidates for future breeding programs. In addition to drought tolerance, genotypes G119 and G127 displayed remarkable stability and high yield under non-stressed conditions, showing their potential as all-around performers in a variety of environments.

Farmers in dry areas of sub-Saharan Africa that are characterized by pre- and post-anthesis drought stress stand to gain a great deal from these newly identified sorghum strains. Adoption of these high-yielding and drought-resistant genotypes could increase food production and strengthen farmers’ resilience against the effects of climate change.

The findings of these super sorghum genotypes offer farmers facing the challenges of climate change a glimmer of hope. By adopting these new drought-resistant strains, African farmers can improve their food security and strengthen their communities, paving the way for a more resilient and sustainable future.