Skip to main content

Location: Malawi

Conservation agriculture viable, say Ethiopian farmers, as curtain comes down on CASFESA pilot project

Only those of us bold enough to try conservation agriculture technologies like zero tillage and intercropping benefited a lot, while all others were left behind.” – Hunegnaw Wubie, farmer, South Achefer District, Amhara Region, North Ethiopia

As the curtain comes down on CIMMYT’s Conservation Agriculture and Smallholder Farmers in East and Southern Africa (CASFESA) pilot project, participating farmers in project demonstration sites have said that conservation agriculture (CA) practices have proven to be a viable means of improving their productivity and livelihoods, and need to be scaled up across the nation.

A farmer speaks: ‘farmer-researcher’, clergyman Enkuhanhone Alayu, said people laughed at him for expecting to cultivate crops without plowing. Now they call him even at night seeking advice.
A farmer speaks: ‘farmer-researcher’, clergyman Enkuhanhone Alayu, said people laughed at him for expecting to cultivate crops without plowing. Now they call him even at night seeking advice.

The farmers made these remarks at a one-day workshop on February 23, 2015, convened to take stock of the CASFESA experience after three years of implementation in South Achefer and Jebitehnan Districts of Amhara Region, Northern Ethiopia. The project began in June 2012 and will end in March 2015. Funded by the European Union through the International Fund for Agricultural Development, CASFESA aimed at increasing food security and incomes of poor smallholder farmers through sustainable intensification of mixed, cereal-based systems.

The project will leave a rich legacy, including:

  • adaptation and demonstration of CA-based technologies on selected farmer plots;
  • enhancing pro-poor and gender-sensitive targeting of CA-based interventions;
  • improving the delivery of information, including on technologies and market opportunities to smallholders, as well as developing policy options and recommendations that favor these technologies; and,
  • enhancing the capacity of research, and development interventions, for project stakeholders.

Attending the project closing workshop at the Amhara Region Agricultural Research Institute, Bahir Dar, in northwestern Ethiopia, were Regional Bureau of Agriculture officials; Directors of the Ministry of Agriculture Extension Process and the Ethiopian Agricultural Transformation Agency’s Climate and Environmental Sustainability Program; agronomists; representatives of relevant governmental and non-governmental and research organizations; and, above all, farmers. Keynote presentations included The Economic and Environmental Benefits of Sustainable Intensification Practices by Dr. Menale Kassie, while Dr. Mulugetta Mekuria and Mr. Yeshitla Merene presented the experience and research results from the Sustainable Intensification of Maize–Legume Cropping Systems for Food Security in Eastern and Southern Africa (SIMLESA).

Reaping where you do not harrow
Farmers spoke passionately on how CA technologies proved profitable for them and their families “in beating the odds”. Most reported harvests of six or more tonnes per hectare of maize from the CA plots – relatively better harvests than with conventional plowing methods, plus the added benefits of reduced use of oxen and labor, and attendant advantages. They also called upon officials responsible to undertake corresponding measures to ensure that CA technologies are sustainably implemented and adopted on a wider scale.

One of these ‘farmer-researchers’, clergyman Enkuhanhone Alayu, narrated how people at first ridiculed him when, three years ago, he volunteered to demonstrate CA practices on his meagre plot of land. They laughed at him “for expecting to cultivate crops without plowing” – a reference to minimum tillage practices that the project advocates as a central element of conservation agriculture.

“But when they later saw that we were cultivating more quantity of maize per unit of land, they were surprised and people who had called me a fool began calling me even at night seeking advice on how they can replicate CA practices on their plots and gain the benefits,” Alayu said. “Zero tillage practices, which require considerably less labor, are even more relevant at this time when oxen are increasingly becoming very expensive and most farmers are not able to afford them.”

Another farmer speaks at the meeting.
Another farmer speaks at the meeting.

Unto the next generation…
Another farmer, Ato Hunegnaw Wubie, said he was so pleased with CA technologies that he also taught his children how to do it on a portion of his land allotted to each of them. “One of my six children was so successful that this year he was able to reap 66 kilos of maize from a 10 by 10 meter plot. He sold his harvest at the market, and, with some additional money from me, bought a bicycle that he uses for transport to and from school. Only those steadfast enough and willing to learn new things will reap the benefits from such novel practices,” he added with pride.

And the farmers were not alone. Speaking at the workshop, the Deputy Head of Amhara Region Bureau of Agriculture, Dr. Demeke Atilaw, noted that maize production in the region stands at a meagre 3.2 tonnes per hectare, and that one reason for this is that “our agricultural practices didn’t include conservation agriculture. This needs to change both at the regional and national levels.” He further pledged that the bureau will work towards sustainably implementing these technologies with a view to increasing maize yields to eight tonnes per hectare.

Roadmap to national goals: “… projects alone cannot bring about significant change…”
In addition to CASFESA, CA technologies are being implemented in the region by SIMLESA, a CIMMYT project in Ethiopia, as well as in Kenya, Malawi, Mozambique and Tanzania. Presenting the experience of SIMLESA thus far, project leader, Dr. Mekuria told the participants that “the experience of both these CIMMYT projects, promising as they are, cannot alone bring about significant change unless they are scaled out using more new varieties of maize and sustained through meaningful institutional involvement – especially that of agencies at all levels of government.”

CIMMYT Agricultural Economist and CASFESA project coordinator, Dr. Moti Jaleta, also said that the experience of CASFESA has demonstrated that CA technologies are economically viable and thus worth pursuing on a wider scale and in a sustainable way. He particularly commended those farmers who volunteered to provide portions of their land as demonstration plots for CA technologies. “Their efforts and dedication have now paid off,” he noted, adding that project end does not mean that CASFESA will leave precipitously: there are still monitoring and evaluation and other wind-up tasks before project exit.

Participants of the CASFESA closure workshop in Ethiopia.
Participants of the CASFESA closure workshop in Ethiopia.

The Deputy Director General of the Amhara Regional Agricultural Research Institute, Dr. Tilaye Teklewold, summed up the mood of the day when he said that CASFESA’s experience in Amhara Region has shown that conservation agriculture is an ideal way of increasing the productivity of maize in the region, and that “concerted efforts are needed to raise the awareness and dedication of all actors involved in the region to implement these technologies and ensure lasting food security in the region and beyond.”

Links

Extension bulletins raise awareness of conservation agriculture in Malawi

 A sign indicates what conservation practices are being employed in a demonstration plot in Malawi. Photo : T. Samson/CIMMYT.
A sign indicates what conservation practices are being employed in a demonstration plot in Malawi. Photo : T. Samson/CIMMYT.

CIMMYT, Washington State University and Total Land Care (TLC) recently published a series of extension bulletins to spread awareness of the potential benefits of conservation agriculture (CA) techniques for farmers in Malawi.

The study, “Sustainable Intensification and Diversification on Maize-based Agroecosystems in Malawi,” took place over three years in the districts of Nkhotakota and Dowa, and was sponsored by the CGIAR Research Program on Maize through a Competitive Grants Initiative.

Over the study period, three different cropping systems — zero-tillage, conservation agriculture, and conventional tillage — were applied to smallholder farms. The three extension bulletins detail their respective impacts on crop yields and residue production, soil-water relations and the economic impacts for smallholder households.

The bulletins have been printed for distribution to Malawian extension agents and non-governmental organizations and, ultimately, to share with farmers.

 

The Findings

In the study, the zero-tilled maize plots incorporated only two of the three principles of CA – no tillage and residue retention – but not crop rotations, while conservation agriculture and conventional tillage incorporated diverse cropping systems.

It was found that crop rotations had the greatest impact on maize yields, leading to higher yields in conservation agriculture and conventional tillage than in continuous no-till maize.

Water infiltration was greatest in no-till maize and conservation agriculture, with 90 percent of applied water infiltrating into soils in the no-till plot and 60 percent under conservation agriculture, in Nkhotakota District. Sediment runoff was greatest in conventional tillage in both districts.

The study found that conservation agriculture used labor more efficiently than conventional tillage in smallholder plots, although variable costs were lowest in conventional tillage.

The authors of the bulletins are Dan TerAvest (Washington State University), John Reganold (Washington State University), and Christian Thierfelder (CIMMYT).

The bulletins are available in PDF format and can be downloaded here.

DTMA launches new project to improve seed scaling in Eastern Africa

Born out of the Drought Tolerant Maize for Africa (DTMA) Initiative and other CIMMYT-Africa maize projects, the Drought Tolerant Maize for Africa Seed Scaling (DTMASS) project will improve the demand for and availability of high-quality, affordable, certified seed of drought-tolerant maize varieties for small-scale farmers across eastern and southern Africa.

“DTMASS aims to produce close to 12,000 tons of certified seed of drought-tolerant maize varieties by the end of its fifth year,” said Tsedeke Abate, DTMA project leader who will also lead DTMASS, speaking at the Uganda launch of the project in Kampala on 4 February. “This will benefit approximately 2.5 million people through the increased production and productivity of maize and the adoption of improved certified seed.”

According to Abate, DTMASS will strengthen the formal seed system, thereby reducing counterfeit seed use, lowering the risk of seed-borne maize diseases and helping to maintain productivity as climates change.

Working in Ethiopia, Kenya, Malawi, Mozambique, Tanzania, Uganda and Zambia, DTMASS will encourage cross-country learning and collaboration, Abate explained: “We have the knowledge and technology – what remains is translating knowledge to action.”

DTMASS countries account for 41 percent of maize area and production, and over 252 million people in sub-Saharan Africa.

A pillar of the project will be its strong partnerships with private and public seed companies, community-based organizations, non-governmental organizations and national extension systems. Fifty-three seed companies have already agreed to produce seed of 71 drought-tolerant varieties.

These partnerships enable increased and improved certified seed to reach small-scale farmers, increase farm production and enhance productivity, according to Dr. Imelda Kashaija, deputy director at Uganda’s National Agricultural Research Organization (NARO). “This project is at the right place at the right time,” she said.

DTMASS launched officially on 17-18 November 2014 in Addis Ababa, Ethiopia. The goal for Uganda in 2015 is to produce 1,800 tons of improved maize seed.

DTMA
Photo: Ngila Kimotho/Dryland Seed Company

CIMMYT prepares to launch second phase of SIMLESA in Kenya and Tanzania

Dr. Fidelis Myaka, director of research and development with the Tanzanian Ministry of Agriculture, Food and Cooperatives, officially opens the meeting in Arusha, Tanzania.

Representatives from the Australian Center for International Agricultural Research (ACIAR), Queensland Alliance for Agricultural and Food Innovation (QAAFI), the International Center for Tropical Agriculture (CIAT), the national agricultural research systems (NARS) of Kenya and Tanzania, and CIMMYT scientists from Ethiopia, Kenya and Zimbabwe met between 14-17 October in Arusha, Tanzania, to finalize activities to meet the objectives of the second phase of CIMMYT’s Sustainable Intensification of Maize-Legume Cropping Systems for Food Security in Eastern and Southern Africa (SIMLESA) project.

The joint meeting for the Kenya and Tanzania country teams was the third and last launch and planning meeting. It was also a follow-up of two previous operational meetings held in Lilongwe, Malawi, and Hawassa, Ethiopia.

Continue reading

Hidden factors contribute to food insecurity in female-headed households

By Florence Sipalla/CIMMYT

Results of a survey conducted by the Adoption Pathways (AP) project indicate that even when male-headed and female-headed households have the same resources, the latter are still less food-secure. This difference could be attributed to unreported social exclusion, discrimination and access to credit facilities which the researchers will explore further through group discussions and using repeated observations (panel data) with the farmers.

ACIAR donor representatives at Egerton University.

“Equal access to inputs, human capital, resources and institutional services may not close the gender food security gap,” said Menale Kassie, CIMMYT socioeconomist and the AP project leader. “The quality of information extension workers are providing to female farmers could be different.” Kassie presented research results of a survey conducted in Ethiopia, Kenya, Malawi, Mozambique and Tanzania to donor representatives from the Australian Centre for International Agricultural Research (ACIAR) led by Nick Austin, the chief executive officer, and Mellissa Wood, director of the Australian International Food Security Research Centre (AIFSRC) at Egerton University in Njoro, Kenya.

Farmers who adopt a suite of conservation agriculture (CA) technologies get the best returns. “If farmers combine technologies, the income they generate is much higher,” Kassie said. “Farmers who adopted a combination of sustainable intensification practices (SIPs) such as crop rotation, minimum tillage and improved maize seed had the highest returns.” Survey results from Tanzania also show that adoption of improved varieties improves the food security status of food-insecure households.

The results also shed light on the spill-over effects of SIP adoption, risk of crop failure and the cost of risk reduction. The AP project is compiling detailed gender-disaggregated data to study causes of food insecurity and technology gaps. “This data set is cross-cutting and will be used by stakeholders beyond the project partners,” Kassie said. “We are bringing students on board to increase research productivity.”

From right: Donor representatives ACIAR CEO Nick Austin, AIFSRC director Mellissa Wood and Australian High Commission’s Paul Greener listen to Egerton University

Wilcyster Nyateko, a master’s student at Egerton University using AP data and working under the supervision of Professor Gideon Obare, presented her research proposal “Determinants of diffusion of agro-innovation amongst smallholder farmers in Eastern and Western Kenya” to the donor delegation. “The AP data helped to widen my perspectives,” said Nyateko, who is going to include variables such as plot characteristics, tenure and distance of the plot from the household and market in her analysis based on the feedback she received. Other stakeholders who will have access to the panel data include Egerton University’s policy thinktank, Tegemeo Institute. “This is a fascinating data set,” Austin said after the presentation.

The project has contributed to capacity building of partners and young economists who have participated in data collection. “The project also provided employment opportunities to the enumerators,” Kassie said. The project has produced 15 publications and seven policy briefs and presented research results in various international forums. “Some of the challenges encountered include attrition problems such as spouses working in distant places and who are not able to participate in the survey or families included in the original sample who had migrated to other villages.”

AP plans to produce more empirical outputs using the panel data, build the capacity of partners and share the research outputs with key stakeholders (e.g. policymakers, development partners, researchers and farmers). “The key challenge is taking research products to these stakeholders; doing so requires more resources and time, beyond the project period,” Kassie said. The donors also paid a courtesy call to the Egerton University leadership where they were hosted by Professor Rose Mwonya, the deputy vice chancellor of academic affairs, and Professor John Mwangi, who gave them an overview of the university and its involvement in the AP project.

Integrating gender in post-harvest management

By Wandera Ojanji/CIMMYT

The Effective Grain Storage for Sustainable Livelihoods of African Farmers Project (EGSP) Phase II is conducting a study to help understand gender dynamics in maize post-harvest management in Kenya, Malawi, Zambia and Zimbabwe. The results of the study, Gender Analysis for Maize Post Harvest Management, will guide the project implementation team to develop a strategy that will ensure equitable processes and outcomes for men and women farmers in target communities.

Maureen Shuma, a research assistant with the study leads a discussion with female participants in Shamva, Zimbabwe.
Photos: Wandera Ojanji

Vongai Kandiwa, CIMMYT gender specialist and the study team leader, spoke of the need to understand how cultural norms such as gender roles and rights influence patterns of access to and control of the metal silos, Super Grainbags and other resources. “The study will help the project team to develop a better understanding of the communities in which EGSP II is implemented. It will also help improve the team’s capacity to develop strategies to foster gender equality and anticipate unintended negative outcomes for particular groups in communities,” Vongai said.

Vongai said the study will help the project team in four ways: First, at the household level, a gender analysis will reveal the roles that men, women and youth play in post-harvest management, as well as technology preferences, aspirations and constraints.

Vongai Kandiwa (left), CIMMYT gender specialist, and Sunungurai Chingarande, the study team leader for Zimbabwe, lead a focus group discussion with men.

Second, a gender analysis at the technology design level will help the project team to understand metal silo artisans’ capacity to develop and implement strategies that ensure both business growth and equitable access across different social groups, including women.

Third, CIMMYT collaborates with many partners such as NGOs in disseminating and testing improved post-harvest technologies. A gender analysis will reveal evidence on the capacity of partners to carry out gender-responsive technology and information dissemination activities.

Lastly, the study will reveal existing knowledge and knowledge gaps on gender in post-harvest management and how they might be filled.

The gender analysis study draws on survey data as well as qualitative data. Part of the qualitative data is collected through sex-disaggregated focus group discussions. Vongai said those discussions open up possibilities and space for amplifying women’s voices because issues of post-harvest, especially grain management and control, are inherently influenced by household power relations. Moreover, technology preferences are seldom gender-neutral.

EGSP-II (2012-2016) builds on the previous phase (2008-2011) and aims to improve food security and reduce the vulnerability of resource-poor farmers – particularly women – in Eastern and Southern Africa through the dissemination of effective grain storage technology. The project is funded by the Swiss Agency for Development and Cooperation (SDC) and will help smallholder farmers in Kenya, Malawi, Zambia and Zimbabwe acquire more than 16,000 metal silos and 24,000 Super Grainbags, which will reduce grain losses from storage pests.

 

Adoption Pathways project strengthens partnership with Kenya’s Egerton University

By Florence Sipalla/CIMMYT

CIMMYT and Kenya’s Egerton University have agreed to strengthen their research collaboration, policy formulation and data sharing and to engage more graduate students in data analysis as part of the Adoption Pathways (AP) project. “This will accelerate the use of data sets to quickly produce products,” said Menale Kassie, CIMMYT socioeconomist, who is also the AP project leader.

Through AP, CIMMYT is partnering with universities in Ethiopia, Kenya, Malawi, Mozambique and Tanzania to identify the incentives and constraints to farmers’ adoption of new techniques in maize-legume systems. The project is funded by the Australian International Food Security Research Centre (AIFSRC) and managed by the Australian Centre for International Agricultural Research (ACIAR).

CIMMYT and Egerton University have pledged to strengthen their collaboration through capacity building, research, policy advocacy and data sharing, especially through the Adoption Pathways project. Photos: Florence Sipalla

The enhanced collaboration between CIMMYT and Egerton was discussed at a meeting held at the CIMMYT-Nairobi office on 24 April and attended by Professor James Tuitoek, vice chancellor at Egerton; Professor Gideon Obare, the AP national coordinator in Kenya and a lecturer at the university; and Mary Mathenge, director of the Tegemeo Institute of Public Policy and Development, a policy think tank of Egerton University based in Nairobi.

Senior staff from Tegemeo, which specializes in agricultural policy formulation backed by data, will supervise the graduate students in collaboration with CIMMYT, Tuitoek said. The two institutions train young economists pursuing postgraduate degrees, and research on maize is a major component of their socioeconomic studies. “Almost 50 percent of Tegemeo’s research has been on maize policy,” said Mathenge. “It is often difficult to showcase the value of economic research to policymakers because it is an intangible product – it is not like a new seed variety, for example,” said Kassie. Despite that challenge, Kassie is confident that the partnership with Tegemeo will be mutually beneficial. “If we work with Tegemeo, who already have established ways of packaging research outcomes from economics studies, then we can have a far greater impact from the work we do.”

Supporting sustainable intensification by tracking farmers’ adoption patterns

By Florence Sipalla/CIMMYT

Identifying the socioeconomic constraints farmers face in adopting a technology is central to ensuring they adopt it sustainably. This is the work that the Pathways to Sustainable Intensification in Eastern and Southern Africa (Adoption Pathways) project is doing in collaboration with partners from national universities and agriculture research systems in Africa and Europe.

Adoption Pathways partners met in Addis Ababa, Ethiopia, on 10-12 April to review activities to date and to plan for 2014. The four-year project is funded by the Australian International Food Security Research Centre (AIFSRC) and managed by the Australian Centre for International Agricultural Research (ACIAR). Project partners from seven institutions collaborating on the project in Ethiopia, Kenya, Malawi, Mozambique and Tanzania attended the meeting.

Participants included policymakers and vice-chancellors from universities as well as donor representatives – John Dixon, ACIAR principal adviser for research/cropping systems and economics and Liz Ogutu, ACIAR regional manager for Africa. Fentahun Mengistu, director general of the Ethiopian Institute of Agricultural Research (EIAR), officially opened the meeting and described the project as one that represents a unique cross-country research and development effort.

“Africa is at the tipping point,” said Dixon, adding that six of the world’s top 10 fastest growing countries are in Africa. Dixon identified food, economic growth and sustainable intensification as keys to tapping global opportunities. “Sustainable intensification of maize and legumes will increase resources productivity and reduce production risk,” he said.

Understanding what drives farmers to take up different sustainable intensification practices (SIPs) — such as zero/minimum tillage, maize-legume intercropping, maize-legume rotations, new maize and legume varieties and using chemical fertilizer — is important. The project has developed several policy briefs based on research to share its outputs with a wider audience. “Don’t just push policymakers but push them with evidence,” said Wilfred Mwangi, CIMMYT’s regional representative for Africa. Mwangi emphasized the need for policy dialogue and more capacity building.

The project has helped train 18 early-career economists in research design and implementation. An additional 120 people have gained practical experience in conducting surveys through their participation as enumerators or supervisors. Mengistu said the project has “planted seeds for impact” because different countries can benefit from the regional approach to tackling development challenges.

Photo: Semu Yemane/EIAR

Referencing a policy brief on the SIPs adopted by farmers in Ethiopia, he noted that farmers who implemented a suite of multiple agronomic practices were able to double or even triple their income from maize. Menale Kassie, the Adoption Pathways project leader, shared some of the project’s key achievements, which include establishing panel data, analysis to determine gaps in technology adoption through a gender lens, impact analysis and risk assessment. “We need policy dialogue, followed by policy advocacy,” Kassie said. “We would be happy if our products are used by our partners.”

Policymakers, including top university administrators, pledged their support for policy advocacy. “We will help support this project through linkages with policymakers and the Ministry of Agriculture,” said James Tuitoek, professor and vice-chancellor at Egerton University in Kenya. Angelo Macuacua, professor and vice-chancellor at Eduardo Mondlane University in Mozambique, thanked the project for inviting the vice-chancellors to participate in the meeting.

“It helps us understand, in detail, the work the researchers are doing,” he said. Other vice-chancellors at the meeting were Professor Phiri Kanyama and Professor Gerald Monela from Malawi’s Lilongwe University of Agriculture and Natural Resources (formerly known as Bunda College) and Sokoine University of Agriculture in Tanzania.

The importance of monitoring and evaluation in project implementation was emphasized by AIFSRC’s Ogutu. “Results from this project will not only help farmers, there is potential on a larger scale,” she said. The meeting provided partners an opportunity to closely interact, share their research results and plan for the next phase of activities.

Field days in Malawi and Zambia promote metal silos

By Wandera Ojanji/CIMMYT

The Effective Grain Storage for Sustainable Livelihoods of African Farmers Project (EGSP) Phase-II held a series of field days in Malawi and Zambia to raise awareness and demonstrate the efficacy of metal silos in protecting stored grains against weevils and larger grain borers – the two most destructive storage insect pests of maize. The project is funded by the Swiss Agency for Development and Cooperation (SDC).

Farmers feel properly stored grain from a metal silo during the field day at Banda Jessy’s farm in Chimtende Camp, Katete District, Zambia. Photos: Wandera Ojanji

During the events, farmers compared the good-quality grain stored in a silo to the damaged grain stored in traditional structures and gunny bags. Artisans and extension officers also demonstrated the proper use and handling of a metal silo. The first field day was held on 8 April at Banda Jessy’s farm in Chimtende Camp, Katete District, Eastern Province, Zambia. More than 160 farmers, metal silo artisans, agricultural officers and local leaders attended the event.

Metal silos have many benefits, said Dolan Mulumbu, Chimtende camp officer. They have the ability to store grain for many years without damage, don’t require insecticides, are portable and are insect- and rodent-proof. They also give farmers flexibility on when to sell their grain and allow them to store grain for their families. Greyson Phiri, Sambira Village headman, thanked CIMMYT for bringing the metal silo technology to farmers.

The second field day in Zambia was held on 9 April at Peter Mwanza’s homestead in the Kamlaza Agricultural Camp, Chipata District, Eastern Province. The field day was attended by more than 270 farmers from the camp. Most farmers in the area sell their grain immediately after harvest for fear of it being destroyed by post-harvest pests.

Moffat Khosa, of the Zambian Ministry of Agriculture’s Department of Mechanization, urged farmers to adopt the technology to help them avoid selling their grain immediately after harvest – when the prices average US$ 10 per 50 kilogram bag – and sell at a higher price later in the season. He challenged farmers to invest in post-harvest technologies as much as they are investing in other farm inputs, such as seed and fertilizer.

Chilese Mabengwa and Zidana Mbewe, district extension officers for Katete and Chipata, respectively, demonstrate proper use and handing of metal silos during the field day at Banda Jessy’s farm in Chimtende Camp, Katete District, Zambia.

More than 240 farmers attended the third field day on 11 April at Frank Renadi’s farm in Kapsala Village, Chigonti Extension Planning Area, Lilongwe District, Malawi. It was attended by Wilfred Lipita, controller of Agriculture Extension and Technical Services; Godfrey Ching’oma, director of Crop Development; his deputy, Bartholomew Ngauma; Penjani Theu, program manager, Lilongwe Agricultural Development Division; district development officers from Lilongwe and Mchinji; and local leaders from Chigothi. Lipita urged farmers to take advantage of the 50-50 cost-sharing offer from the project to acquire metal silos, adding that those who cannot afford to pay 50 percent can opt for cheaper super grain bags.

The project intends to distribute 7,500 super grain bags to smallholder farmers in the Lilongwe and Mchinji districts for demonstration. “The crop in the field needs to be protected from maize weevils and larger grain borers, rodents and ambient moisture fluctuations,” Lipita said. “Where the crop has done well, there is need for farmers to jealously guard the crop so that there are no post-harvest losses.”

Partners recognize achievements in insect-resistant maize delivery

By Wandera Ojanji/CIMMYT

The Insect Resistant Maize for Africa (IRMA) project received praise for significant progress on field and post-harvest insect pest research at its conclusion last month.

“Several new maize hybrids and open pollinated varieties with substantial insect resistance have been produced that will greatly benefit maize growers in eastern and southern Africa,” said Mike Robinson, program officer for the Syngenta Foundation for Sustainable Agriculture (SFSA) at the IRMA End-of-Project Conference in Nairobi, Kenya, from 24-26 February. Robinson congratulated CIMMYT and project partners and wished the participating organizations continued success. The purpose of the conference was to share experiences, achievements and lessons from IRMA III and discuss future prospects in the release, dissemination and use of insect-resistant maize in eastern and southern Africa.

It drew more than 80 participants from CIMMYT, national agricultural research systems, national universities, donors and the seed industry. The Developing Maize Resistant to Stem Borer and Storage Insect Pests for Eastern and Southern Africa project, known as IRMA III Conventional Project 2009-2013, was managed by CIMMYT and funded by SFSA. Building on progress and breakthroughs of IRMA I and II, IRMA III contributed to food security by developing and availing field and post-harvest insect-resistant maize varieties in Ethiopia, Kenya, Malawi, Mozambique, Tanzania, Uganda, Zambia and Zimbabwe.

(Photo: Wandera Ojanji)

Collectively, these countries produce about 26 million tons and consume 32 million tons of maize annually. Relatively low maize productivity in the countries – about 1.3 tons per hectare (t/ha) compared to 4.9 t/ha worldwide – can be attributed in part to stem borers, according to Stephen Mugo, CIMMYT principal scientist and IRMA project leader. Stem borers destroy as much as 15 percent of maize crops, while maize weevils and the larger grain borer destroy 20 to 30 percent of harvested maize. Hugo De Groote, CIMMYT economist, estimated the losses from stem borers at 13.5 percent, or 4 million tons, and those from storage pests at 11.2 percent, or 3.5 million tons, with the total value of these losses estimated at just over US$1 billion in the region. “Addressing the challenges that farmers face in producing and storing maize is vital to the future food security of the region,” Robinson said. “Minimizing such losses in an economically sustainable way will significantly contribute to nutrition and food security.”

IRMA III addressed these challenges through identification and commercial release of major insect-resistant maize cultivars; identification of new germplasm sources of resistance to stem borer and post-harvest insect pests among landraces, open pollinated varieties (OPVs) and CIMMYT lines (CMLs); and development of new insect-resistant germplasm. Kenya released 13 stem borer-resistant (SBR) conventional maize varieties (three OPVs and 10 hybrids) and four storage pest-resistant (SPR) hybrids. Kenya has also nominated nearly 10 stem borer- and four postharvest- resistant hybrids to national performance trials.

Three insect-resistant varieties two hybrids (KH 414-1 SBR and KH 414-4 SBR) and one OPV (Pamuka) were commercialized in Kenya by Monsanto, Wakala Seeds and the Kenya Agricultural Research Institute Seed Unit. De Groote estimated the annual value of project benefits at between US$ 19 million and US$ 388 million. He put the benefit-cost ratio at 94 in the optimistic scenario, meaning that for each dollar the project spent, farmers would gain 95, indicating very good returns.

“These results justify the important role that breeding for resistance could play in reducing maize losses, and the high potential returns to such programs in the future,” De Groote stated. Looking to the future, Mugo emphasized the need to ensure farmers have access to the insect-resistant varieties. “We must, from now on, engage in variety dissemination and commercialization of the new SBR and SPR varieties,” Mugo said. “We need a more targeted breeding program that incorporates drought, nitrogen use efficiency and maize lethal necrotic disease tolerance.”

Seed systems team strategizes and plans for Africa

By Florence Sipalla/CIMMYT

 

The CIMMYT-Africa seed systems team met in Nairobi, Kenya, on 7 February to take stock of progress in 2013, identify challenges and brainstorm on turning those challenges into opportunities. Global Maize Program (GMP) Director B.M. Prasanna and members of the breeding, communications and socioeconomics teams also attended.

Continue reading

Development officer promotes SIMLESA Project

By Isaiah Nyagumbo/CIMMYT

Starting a personal conservation agriculture plot and providing training via group theater are some of the tactics an extension development officer in Malawi is using to reach farmers.

Fredrerick Lukhere, the local extension development officer for the Mtuthama Extension Planning Area, has led by example as part of the Sustainable Intensification of Maize-Legume Systems in Eastern and Southern Africa (SIMLESA) project, which is funded by the Australian Centre for International Agricultural Research. A SIMLESA team visited fields in the Kasungu district on 12 February. The team was led by Isaiah Nyagumbo, SIMLESA Southern Africa objective 2 coordinator, and included Gift Mashango, program manager; Jefias Mataruse, research assistant; Cyprian Mwale, national coordinator; Donwell Kamalongo, national objective 2 coordinator; Keneth Chaula, assistant chief agricultural extension officer; and others from the local district office.

Fredrick Lukhere takes the time to explain maize-soybean rotations to farmers in Kasungu. Photo by Jefias Mataruse

More than 60 farmers, including 42 men and 20 women, participated in the tour. Initiated in 2010, SIMLESA activities in Malawi’s Kasungu District are in their fourth season. The project aims to improve the food security and incomes of 650,000 households in eastern and southern Africa within 10 years. Activities also aim to increase productivity by 30 percent and reduce downside risk by 30 percent through use of improved maize and legume varieties and conservation agriculture-based sustainable intensification technologies.

Lukhere has promoted SIMLESA activities using innovative techniques. He reinforces innovation platforms and partnerships founded on the Area Stakeholder Panel, a local community-based institution. He strengthens partnerships with local NGOs such as CADECOM and Total Land Care, subcontracted by SIMLESA to scale out sustainable intensification technologies. He has single-handedly trained NGO staff on how to set up and implement outscaling activities using SIMLESA’s outscaling model involving maizelegume (soybean) rotations.

Exploratory trials involving maize and soybeans are testimony to Fredrerick Lukhere’s efforts in Kasungu, Malawi. Photo by Isaiah Nyagumbo

Lukhere has also ensured the success of core exploratory trials, which were established in 2010 with six farmers in the area. The trials provide a learning platform and are also a source of research data. To increase farmer confidence in the technologies tested, Lukhere set up his own conservation agriculture plot planted with maize in 2012 and has increased the area to 0.5 hectares. The healthy and well-managed maize crop stands as a testimony to Luhkere’s efforts. He also runs a small drama group that trains farmers on SIMLESA technologies and performs to visitors and farmers during field days.

As a result of Luhkere’s efforts, at least 37 farmers are hosting outscaling trials; 84 follower or volunteer farmers are using these technologies without any support; and another 140 farmers are working through CADECOM in the surrounding extension planning areas. Total LandCare also supports farmers by providing herbicides and loans and hosts SIMLESA trials in neighboring extension planning areas.

Growing more: sustainable intensification in southern Africa

By Christian Thierfelder/CIMMYT

The “double-up legume system” improves food security in Malawi by increasing yield and farmers’ incomes. Photos: Christian Thierfelder

Gently undulating plains and green maize fields dominate the landscape of central Malawi as far as the eye can see. The ridges, furrows and bare soil in between, resulting from traditional land preparation, are common. Heavy rainfalls and accelerated soil erosion turn the Chia Lagoon, connected to Lake Malawi, brown and murky. The continued loss of soil fertility and the need to adapt to climate variability led CIMMYT and its partners to introduce conservation agriculture (CA) in Malawi in 2005.

The Nkhotakota district, where conservation agriculture systems have been widely adopted, shows changes in the landscape, such as residue-covered soil surfaces along the roadsides. Farmers are embracing the new CA concepts and are successfully growing maize directly planted with a pointed stick. CIMMYT and partner organizations including Total LandCare and the Ministry of Agriculture, funded by the International Fund for Agricultural Development, support these efforts. The impacts of CA in Malawi are obvious. More than 30,000 farmers in the central part of the country have been informed about the practices and now use them on their own fields, which is a direct result of CIMMYT science and the concerted efforts of private, governmental extension and national research organizations.

Farmer Christopher Helima shows a new drought-tolerant maize variety grown using conservation agriculture.

Farmer Belemoti Sikelo, from the Mwansambo Extension Planning Area, has participated in the program for more than eight years. “I used to be a farmer that always ran out of maize grain in February or March and had to work for other farmers in the area to enable my family and me to survive,” Sikelo said. “Since I started using conservation agriculture practices, we have always had enough food during the critical months. I have expanded the land area under conservation agriculture on my farm and I have also tried conservation agriculture without expensive herbicides; I believe it is possible to apply conservation agriculture techniques without chemical weed control, but it needs good management and residue cover to reduce the weed pressure. Farmers around me come and visit my demonstration plots and ask me about my secrets for a good-looking maize crop. They admire the fields where I have planted groundnuts and maize under conservation agriculture.”

Disease pressure on traditionally monocropped maize has forced farmers to rotate maize with cowpeas, groundnuts and pigeonpea. Through diversified crop rotations, they have managed to control the parasitic weed striga   (Striga asiatica L.), fungal diseases and damage from white grubs, the larvae of the black maize beetle (Phyllophaga ssp. and Heteronychus spp.). As an added advantage, they have improved family nutrition and have surplus produce to sell in local markets.

A team of researchers from Brazil, Malawi, Mexico and Zimbabwe visited longterm on-station and on-farm CA trials and demonstrations in central Malawi during 4-8 February to monitor progress and impact, in their quest to sustainably intensify smallholder farming systems.

The use of conservation agriculture multiplies these benefits. Legumes such as groundnuts, cowpeas and soybeans can be grown on flat soil with half the row spacing, which is not possible under the conventional ridge and furrow system. The increased plant population has more than doubled grain yield, provides better ground cover and reduces soil erosion. The need to grow more food on the same land area has spurred innovation. To increase legume production, farmers have started to adopt the “double-up legume system.” Growing legumes with different growth habits side-byside – for example pigeon pea with cowpea or groundnuts – increases farmers’ yields and incomes even more, while also improving food security.

Lastly, drought-tolerant maize varieties provided by the Bill & Melinda Gates Foundation-funded Drought Tolerant Maize for Africa (DTMA) project were recently introduced and are being tested under different crop management systems. With the new stress-tolerant maize cultivars, farmers can now overcome seasonal dry spells and to grow longer season varieties. The risk of crop failure is reduced under conservation agriculture due to better moisture retention on residue-covered fields. This important benefit will be key in the coming years, as temperatures will likely increase and rainfalls become more erratic.

Appeal to aggressively promote metal silos and super grain bags in Malawi

By Wandera Ojanji /CIMMYT

A government official in Malawi is urging extension officers and agro-dealers to promote metal silos and super grain bags to help reduce post-harvest grain losses, a serious problem and challenge for smallholder farmers.

Annual post-harvest losses of maize from insects and pests during storage in Malawi average 15.7 percent of the total maize harvests, an equivalent of 580,000 metric tons. It’s a quantity Godfrey Ching’oma, director of crop development for Malawi’s Ministry of Agriculture and Food Security (MAFS) feels is too high . He urged extension officers and agro-dealers to promote metal silos and super grain bags to help farmers lower these post-harvest losses. “It is our vision that at least half of the farmers in Malawi have access to either metal silos or super grain bags,” Ching’oma said. “Lowering post-harvest losses can only be realized if we work together toward a common goal.

Continue reading

Silo project celebrates successful first year, calls for policy reforms

By Wandera Ojanji/CIMMYT

Photos: Wandera Ojanji/CIMMYT
Photos: Wandera Ojanji/CIMMYT

The wide adoption of metal silos for grain storage by smallholder farmers in eastern and southern Africa requires the identification of policy gaps, incentives and disincentives and institutional partnerships, according to CIMMYT policy economist Jones Govereh.

Metal silos are effective long-term storage facilities, protecting grain from pests such as grain borers and maize weevils. While lauding the decision of some governments to reduce the corporate tax on farming from 30 percent to 25 percent in 2010, Govereh called on them to include galvanized metal sheets imported solely for grain storage silos under the tax exemptions in place for other agricultural imports. “Farmers are not going to realize the benefits of storage investments without proper policies in place,” Govereh said. “Governments in the region need marketing and storage policies that support a liberalized marketing environment and avoid a maize marketing monopoly, which distorts investments in storage technologies. We also need policies that facilitate better coordination of public-private operations to avoid overlaps and conflicts.”

Govereh spoke during the regional annual review and planning meeting of the Effective Grain Storage for Sustainable Livelihoods of African Farmers (EGSP) Phase-II Project held in Nairobi, Kenya, from 20-21 August. Building on the successes of the previous phase (2008-2011), EGSP-II (2012-2016) is improving food security and reducing the vulnerability of resourcepoor farmers – particularly women farmers – in eastern and southern Africa through the dissemination of metal silos. The project is funded by the Swiss Agency for Development and Cooperation (SDC). The annual review had three main objectives: to evaluate progress, achievements and challenges; to exchange ideas, information and research outputs among CIMMYT, SDC and other key partners; and to plan for the future.

The meeting was attended by implementing partners in Kenya, Malawi, Zambia and Zimbabwe, CIMMYT project staff and SDC representatives. The meeting allowed participants to share ideas and information on implementation, raise awareness on promotion and dissemination of effective grain storage technologies and consult stakeholders on effective post-harvest technologies, policy environment and market issues. The project also held exchange visits to Kenya and Malawi for key partners. Participants shared experiences on project implementation, learned about the project’s impact on smallholder farmers’ livelihoods and discussed challenges. Tadele Tefera, CIMMYT entomologist and project coordinator, praised national teams and partners for achieving research and dissemination targets for the year.

Jones Govereh speaks during a meeting.
Jones Govereh speaks during a meeting.

Hugo De Groote, CIMMYT economist, said metal silos have a major impact on farmers’ livelihoods. Those who have not adopted the technology sell most of their maize at harvest (when prices are at their lowest because the supply is at its peak) while adopters sell much of their grain in the fifth month at higher prices, he said. Adopters stored their maize for two months longer than non-adopters and were food secure for one month longer. Vongai Kandiwa, CIMMYT gender and development specialist, noted the importance of mainstreaming gender in the project to minimize the risk of creating, maintaining or exacerbating gender gaps.

Stakeholders also reported several challenges, including an inadequate number of skilled and competent artisans with entrepreneurship skills; lack of fabrication materials; expensive materials; low awareness and knowledge of the technology; and inadequate extension services.To overcome these challenges, stakeholders agreed to boost awareness through promotional events, engage in capacity building of collaborators and strengthen the artisan network. Olaf Erenstein, director of CIMMYT’s Socioeconomics Program, thanked the implementing partners and other stakeholders for their dedication and commitment and SDC for its continued support.