Skip to main content

Location: Malawi

Climate-smart agriculture: A winning strategy for farming families in El Niño seasons

Approaching the homestead of Joseph Maravire and his wife, Reason, on a warm late August afternoon in Bvukururu, Zaka district, Zimbabwe, heaps of dry straw in their farmyard are prominent. ‘’This is for mulching for the forthcoming cropping season,’’ explains Reason. Maize stalk residues from last harvest are also stored to feed their livestock and to mix into the manure or for bedding the herd of cattle. These practices have become the norm for the Maravire family as they prepare for the next maize planting season in Zaka, one of the hottest areas of southern Zimbabwe.

“We never knew of mulching until we interacted with CIMMYT scientists in 2009. Now I cannot imagine working in my field without applying mulch,” says Reason. As one of five families selected in their village to participate in the scaling out of climate-smart agricultural technologies since 2009, the Maravire family demonstrates the evident transformative power of climate-smart agriculture.

Joseph and Reason by their heap of dry straw which is collected in preparation for mulching in the forthcoming 2019-20 season. In this drought-prone region, the Maravire learned the benefits of mulching to protect crops from recurrent dry spells. (Photo: Shiela Chikulo/CIMMYT)

Climate-smart agriculture involves farming practices that improve farm productivity and profitability, help farmers adapt to the negative effects of climate change and mitigate climate change effects, e.g. by soil carbon sequestration or reductions in greenhouse gas emissions. Climate-smart practices, such as the locally practiced conservation agriculture, aim at conserving soil moisture, retaining crop residues for soil fertility, disturbing the soil as minimally as possible and diversifying through rotation or intercropping.

As CIMMYT research shows, these practices can boost production and make farmers more food secure.  This is good news for Zimbabwean farmers such as the Maravires. During an episode of El Niño in the 2015-16 and 2018-19 cropping seasons, large parts of southern Africa experienced prolonged dry spells, erratic rainfall and high temperatures initially with floods towards the end of the cropping season. A recent humanitarian appeal indicated that at least 2.9 million people in Zimbabwe were severely food insecure due to poor or no harvests that year.

Under the “Out-scaling climate-smart technologies to smallholder farmers in Malawi, Zambia & Zimbabwe’’ project — funded by the German development agency GIZ and the Centre for Coordination of Agricultural Research and Development for Southern Africa (CCARDESA), and implemented under the leadership of the Zambian Agriculture Research Institute (ZARI) with technical oversight by CIMMYT and other collaborating partners from Malawi and Zimbabwe —  farmers from 19 rural communities in the three target countries received training and guidance on climate-smart agriculture practices and technologies, such as mulching, rotation and the use of direct seeders and ripper tines to practice no tillage.

Mastering climate-smart techniques, season by season

On their 0.4-hectare plot dedicated to the project activities, Joseph and Reason practiced four different planting techniques: direct seeding (sowing directly into crop residue), ripline seeding (sowing in lines created by animal draft-powered rippers), basin planting (sowing manually into planting basins created by hand hoes), and the traditional ox drawn plowing and seeding. They then planted one traditional and three drought-tolerant maize varieties.

“It soon became clear to us that using a direct seeder or ripper tine, combined with mulching, was the best option, as these sections of the field retained more moisture and produced more maize than the conventional system,” explained Joseph Maravire. Beginning in 2013, the family also started rotating maize and cowpeas and observed a significant increase in their yields. They decided to apply climate-smart agriculture practices on the rest of their 2.5-hectare farm.

“We learned that cowpeas leave nitrogen in the soil and by the time of harvesting, the leaves from the cowpeas also fall to the ground as residue and add to the mulch for the soil. The shade of cowpea also reduces weed pressure and manual weeding,” said Maravire.

Yields and food security

With these practices, the family has harvested remarkably, even during the dry seasons. In 2015-16, the worst El Niño on record, they harvested 2 tons of maize, despite the severe drought, while other households barely got anything from their fields. In good years, like the last cropping season, the family harvests 3.5 to 4 tons of maize from their entire field, three times more than their annual family food needs of approximately 1.3 tons. The additional cowpea yields of both grain and leaves provide protein-rich complementary food, which improves the family’s nutrition. To share some of these benefits with their community, the Maravire family donates up to 10% of their produce to poor elderly households in their village.

Overcoming challenges and building resilience

However, the new farming practices did not come without challenges.

“In the early days of the project, the ripper tine was not simple to use because we could not get the right depth to put manure and the maize seeds,” said Joseph Maravire.

They found a solution by making rip lines around October or November, applying manure at the onset of the rains, ripping again and placing the seed to mix with the manure.

Fall armyworm was another devastating challenge for their plot, as was the case around Zimbabwe. Like other farmers in Zimbabwe, the Maravires had access to pesticides, but the caterpillar showed some resistance to one type of pesticide. Maravire expressed interest in learning biological control options to reduce the pest’s spread.

Scaling climate smart technologies beyond the Maravire homestead

After several years of consistently good harvests with climate-smart agriculture options, the Maravire family has become a model within their community. Working closely with their agricultural extension officer, they formed a CSA farmer support group of 20 families. Joseph Maravire provides services for direct seeding and ripping to the CSA group and ensures that all of their land is prepared using no-tillage planting techniques. The couple regularly demonstrates climate-smart practices to peers during field days, where an average of 300 villagers attend. They also share their knowledge about green manure cover crops — crops such as lablab, jackbean, sunhemp, and velvet bean which, retained on the soil surface, serve as organic fertilizer — a practice they learned from project activities.

For Reason and Joseph Maravire, the rewards for adopting climate-smart agriculture benefit the family beyond food security. The income earned from maize grain sales and cowpea marketing has helped them acquire assets and rebuild one of their homes that was destroyed by Cyclone Idai in March 2019.

Joseph is confident that his family will always produce well on the replenished soil and the technologies they have learned through the project will continue to define their farming practices.

The house of Maravire homestead was damaged by Cyclone Idai in March. Joseph is nearing completion of rebuilding the house using proceeds from recent cowpea sales. (Photo: Shiela Chikulo/CIMMYT)

More photos of the Maravire family can be seen here.

Seeds of progress

 

The maize seed sector in east and southern Africa is male-dominated. However, there are women working in this sector who are breaking social barriers and helping to improve household food security, nutrition and livelihoods by providing jobs and improved seed varieties to farmers.

Researchers from the International Maize and Wheat Improvement Center (CIMMYT) conducted interviews with women owners of seed companies in eastern and southern Africa. They shared information on their background, their motivation to start their businesses, what sets their companies apart from the competition, the innovative approaches they use to ensure smallholder farmers adopt improved seed varieties, the unique challenges they face as women in the seed sector and the potential for growth of their companies.

Millions at lower risk of vitamin A deficiency after six-year campaign to promote orange-fleshed sweet potato

A community health worker in Rwanda talks to people on hygiene and the importance of a balanced diet, as part of the SUSTAIN project. (Photo: CIP)
A community health worker in Rwanda talks to people on hygiene and the importance of a balanced diet, as part of the SUSTAIN project. (Photo: CIP)

STOCKHOLM, Sweden — Millions of families in Africa and South Asia have improved their diet with a special variety of sweet potato designed to tackle vitamin A deficiency, according to a report published today.

A six-year project, launched in 2013, used a double-edged approach of providing farming families with sweet potato cuttings as well as nutritional education on the benefits of orange-fleshed sweet potato.

The Scaling Up Sweetpotato through Agriculture and Nutrition (SUSTAIN) project, led by the International Potato Center (CIP) and more than 20 partners, reached more than 2.3 million households with children under five with planting material.

The project, which was rolled out in Kenya, Malawi, Mozambique and Rwanda as well as Bangladesh and Tanzania, resulted in 1.3 million women and children regularly eating orange-fleshed sweet potato when available.

“Vitamin A deficiency (VAD) is one of the most pernicious forms of undernourishment and can limit growth, weaken immunity, lead to blindness, and increase mortality in children,” said Barbara Wells, director general of CIP. “Globally, 165 million children under five suffer from VAD, mostly in Africa and Asia.”

“The results of the SUSTAIN project show that agriculture and nutrition interventions can reinforce each other to inspire behavior change towards healthier diets in smallholder households.”

Over the past decade, CIP and partners have developed dozens of biofortified varieties of orange-fleshed sweet potato in Africa and Asia. These varieties contain high levels of beta-carotene, which the body converts into vitamin A.

Just 125g of fresh orange-fleshed sweet potato provides the daily vitamin A needs of a pre-school child, as well as providing high levels of vitamins B6 and C, manganese and potassium.

Under the SUSTAIN project, families in target communities received nutritional education at rural health centers as well as cuttings that they could then plant and grow.

For every household directly reached with planting material, an additional 4.2 households were reached on average through farmer-to-farmer interactions or partner activities using technologies or materials developed by SUSTAIN.

The project also promoted commercial opportunities for smallholder farmers with annual sales of orange-fleshed sweet potato puree-based products estimated at more than $890,000 as a result of the project.

Two women sort orange-fleshed sweet potato in Faridpur district, Bangladesh. (Photo: Sara Quinn/CIP)
Two women sort orange-fleshed sweet potato in Faridpur district, Bangladesh. (Photo: Sara Quinn/CIP)

Perspectives from the Global South

The results of the initiative were published during the EAT Forum in Stockholm, where CGIAR scientists discussed the recommendations of the EAT-Lancet report from the perspective of developing countries.

“The SUSTAIN project showed the enormous potential for achieving both healthy and sustainable diets in developing countries using improved varieties of crops that are already widely grown,” said Simon Heck, program leader, CIP.

“Sweet potato should be included as the basis for a sustainable diet in many developing countries because it provides more calories per hectare and per growing month than all the major grain crops, while tackling a major nutrition-related health issue.”

At an EAT Forum side event, scientists highlighted that most food is grown by small-scale producers in low- and middle-income countries, where hunger and undernutrition are prevalent and where some of the largest opportunities exist for food system and dietary transformation.

“There are almost 500 million small farms that comprise close to half the world’s farmland and are home to many of the world’s most vulnerable populations,” said Martin Kropff, director general of the International Maize and Wheat Improvement Center (CIMMYT).

“Without access to appropriate technologies and support to sustainably intensify production, small farmers — the backbone of our global food system — will not be able to actively contribute a global food transformation.”

Matthew Morell, director general of the International Rice Research Institute (IRRI), added: “If the EAT-Lancet planetary health diet guidelines are to be truly global, they will need to be adapted to developing-world realities — such as addressing Vitamin A deficiency through bio-fortification of a range of staple crops.

“This creative approach is a strong example of how to address a devastating and persistent nutrition gap in South Asia and Africa.”


This story is part of our coverage of the EAT Stockholm Food Forum 2019.
See other stories and the details of the side event in which CIMMYT is participating.


For more information or interview requests, please contact:

Donna Bowater
Marchmont Communications
donna@marchmontcomms.com
+44 7929 212 434

The International Potato Center (CIP) was founded in 1971 as a research-for-development organization with a focus on potato, sweet potato and Andean roots and tubers. It delivers innovative science-based solutions to enhance access to affordable nutritious food, foster inclusive sustainable business and employment growth, and drive the climate resilience of root and tuber agri-food systems. Headquartered in Lima, Peru, CIP has a research presence in more than 20 countries in Africa, Asia and Latin America. CIP is a CGIAR research center. www.cipotato.org

CGIAR is a global research partnership for a food-secure future. CGIAR science is dedicated to reducing poverty, enhancing food and nutrition security, and improving natural resources and ecosystem services. Its research is carried out by 15 CGIAR centers in close collaboration with hundreds of partners, including national and regional research institutes, civil society organizations, academia, development organizations and the private sector. www.cgiar.org

 

Paswel Marenya

Paswel Marenya is a Senior Scientist at the International Maize and Wheat Improvement Center (CIMMYT). He is the global coordinator of the SIMLESA project, based in Nairobi.

Marenya holds an MSc in Applied Economics and a PhD in Natural Resources Policy and Management, both from Cornell University. His research focuses on maize-based smallholder systems in eastern and southern Africa, and on the analysis of pathways and impacts of technology adoption within the framework of sustainable intensification.

He has published research on farmer policy, farmer preferences for supporting technology adoption among maize farmers in Malawi, soil quality mediated returns to fertilizer, and the macro impacts of disease tolerant varieties. He is currently working on understanding the most effective investment priorities for strengthening climate-smart agriculture in eastern and southern Africa.

Conservation agriculture works for farmers and for sustainable intensification

The International Maize and Wheat Improvement Centre (CIMMYT) and the Association for Strengthening Agricultural Research in Eastern and Southern Africa (ASARECA) gathered agriculture leaders, experts,  ministers and permanent secretaries from 14 countries in the region May 2-4, 2019 in Kampala, Uganda. These experts reflected on the lessons learned from the eight year-long Sustainable Intensification of Maize and Legumes farming systems in Eastern and Southern Africa (SIMLESA) project, funded by the Australian Centre for International Agricultural Research (ACIAR).

During this regional SIMLESA policy forum, ministers of agriculture signed a joint communiqué calling for mainstreaming conservation agriculture practices and enabling sustainable intensification of African agriculture, in response to the ongoing agroecological crisis and fast-growing population.

The minister of agriculture, animal industry and fisheries of Uganda, Vincent Ssempijja, reminded that “Africa is paying a high price from widespread land degradation, and climate change is worsening the challenges smallholder farmers are facing.” Staple crop yields are lagging despite a wealth of climate-smart technologies like drought-tolerant maize varieties or conservation agriculture.

“It is time for business unusual,” urged guest speaker Kirunda Kivejinja, Uganda’s Second Deputy Prime Minister and Minister of East African Affairs.

Research conducted by CIMMYT and national partners in Ethiopia, Kenya, Malawi, Mozambique, Rwanda, Tanzania and Uganda under the SIMLESA project provided good evidence that sustainable intensification based on conservation agriculture works — it significantly increased food crop yields, up to 38%, as well as incomes, while sustainably preserving soil health.

In Malawi, where conservation agriculture adoption rose from 2% in 2011 to 35% in the 2017/18 season, research showed increases in water infiltration compared to the conventional ridge-and-furrow system of up to 90%, while soil organic carbon content increased by 30%. This means that soil moisture is better retained after rainfall, soil is more fertile, and plants grow well and cope much better during dry spells.

The SIMLESA project revealed that many farmers involved in CIMMYT research work, like Joseph Ntirivamunda in Rwanda, were interested in shifting towards more sustainable intensification practices. However, large-scale adoption still faces many hurdles.

“You cannot eat potential,” pointed out CIMMYT scientists and SIMLESA project leader Paswel Marenya. “The promise of conservation agriculture for sustainable intensification needs to be translated into more food and incomes, for farmers to adopt it widely.”

CIMMYT's director general Martin Kropff (left) greets Uganda's second deputy prime minister, Kirunda Kivejninja. (Photo: Jerome Bossuet)
CIMMYT’s director general Martin Kropff (left) greets Uganda’s second deputy prime minister, Kirunda Kivejninja. (Photo: Jerome Bossuet)

The scale conundrum

Farmers’ linkages to markets and services are often weak, and a cautious analysis of trade-offs is necessary. For instance, more research is needed about the competing uses of crop residues for animal feed or soil cover.

Peter Horne, General Manager for ACIAR’s global country programs, explained that science has an important role in informing policy to drive this sustainable transformation. There are still important knowledge gaps to better understand what drives key sustainable farming practices. Horne advised to be more innovative than the traditional research-for-development and extension approaches, involving for instance the private sector.

Planting using a hoe requires 160 hours of labor per hectare. A two-wheel tractor equipped with a planter will do the same work in only 3 hours.

One driver of change that was stressed during the Kampala forum was the access to appropriate machinery, like the two-wheel tractor equipped with a direct planter. While hoe planting requires 160 hours of labor per hectare, the planter needs only 3 hours per hectare, enabling timely planting, a crucial factor to respond effectively to the increased vagaries of the weather and produce successful harvests. While some appropriate mechanization options are available at the pilot stage in several African countries like Ethiopia or Zimbabwe, finding the right business models for service provision for each country is key to improve access to appropriate tools and technologies for smallholder farmers. CIMMYT and ACIAR seek to provide some answers through the complementary investments in the Farm Mechanization and Conservation Agriculture for Sustainable Intensification (FACASI) project.

CASI can be scaled but requires tailoring sustainable intensification agronomic advices adapted to local environment and farming systems. Agricultural innovation platforms like the Mwanga mechanization youth group in Zimbabwe are one way to co-create solutions and opportunities between specific value chain actors, addressing some of the constraints farmers may face while implementing conservation agriculture practices.

Providing market incentives for farmers has been one challenging aspect, which may be overcome through public-private partnerships. Kilimo Trust presented a new consortium model to drive sustainable intensification through a market pull, linking smallholder farmers with food processors or aggregators.

“SIMLESA, as a long-term ambitious research program, has delivered remarkable results in diverse farming contexts, and conservation agriculture for sustainable intensification now has a more compelling case,” said Eric Huttner, ACIAR research program manager. “We should not ignore the complexity of conservation agriculture adoption, as shifting to new farming practices brings practical changes and potential risks for farmers, alongside benefits,” he added. As an immediate step, Huttner suggested research to define who in the public and private sectors is investing and for what purpose — for example, access to seed or machinery. Governments will also need further technical support to determine exactly how to mainstream conservation agriculture in  future agricultural policy conversations, plans and budgets.

“Looking at SIMLESA’s evidence, we can say that conservation agriculture works for our farmers,” concluded Josefa Leonel Correia Sacko, Commissioner for Rural Economy and Agriculture of the African Union. During the next African Union Specialized Technical Committee in October 2019, she will propose a new initiative, scaling conservation agriculture for sustainable intensification across Africa “to protect our soils and feed our people sustainably.”

Josefa Leonel Correia Sacko, Commissioner for Rural Economy and Agriculture of the African Union, speaks at the SIMLESA regional forum. (Photo: Jerome Bossuet)
Josefa Leonel Correia Sacko, Commissioner for Rural Economy and Agriculture of the African Union, speaks at the SIMLESA regional forum. (Photo: Jerome Bossuet)

Winners of 2019 MAIZE Youth Innovators Awards – Africa announced

Winners of the 2019 MAIZE Youth Innovators Awards – Africa receive their awards at the STMA meeting in Lusaka, Zambia. From left to right: Admire Shayanowako, Blessings Likagwa, Ismael Mayanja and Hildegarde Dukunde. Fifth awardee Mila Lokwa Giresse not pictured. (Photo: J.Bossuet/CIMMYT)
Winners of the 2019 MAIZE Youth Innovators Awards – Africa receive their awards at the STMA meeting in Lusaka, Zambia. From left to right: Admire Shayanowako, Blessings Likagwa, Ismael Mayanja and Hildegarde Dukunde. Fifth awardee Mila Lokwa Giresse not pictured. (Photo: J.Bossuet/CIMMYT)

LUSAKA, Zambia (CIMMYT) – The CGIAR Research Program on Maize (MAIZE) officially announced the winners of the 2019 MAIZE Youth Innovators Awards – Africa at an awards ceremony held on May 9, 2019, in Lusaka, Zambia. These awards recognize the contributions of young women and men under 35 to innovation in African maize-based agri-food systems, including research for development, seed systems, agribusiness, and sustainable intensification. The awards, an initiative of MAIZE in collaboration with Young Professionals for Agricultural Research and Development (YPARD), were offered in three categories: farmer, change agent, and researcher.

The MAIZE Youth Innovators Awards aim to identify young innovators who can serve to inspire other young people to get involved in maize-based agri-food systems. This is the second year of the award, which was launched in 2018 with a first cohort of winners from Asia. Part of the vision is to create a global network of young innovators in maize based systems from around the world.

2019 award recipients were invited to attend the Stress Tolerant Maize for Africa (STMA) project meeting in Lusaka, May 7-9, where they had the opportunity to present their work. The project meeting and award ceremony also allowed these young innovators to network and exchange experiences with MAIZE researchers and partners. Looking forward, award recipients may also get the opportunity to collaborate with MAIZE and its partner scientists in Africa on implementing or furthering their innovations.

This year’s five awardees are:

Hildegarde Dukunde (Rwanda) – Category: Change Agent

Dukunde is a graduate in Human Nutrition and serves as a Sales Associate for Agrifood Business Consulting Ltd. She has been at the forefront of preventing aflatoxin contamination in Rwanda by helping smallholder farmers to access low-cost post-harvest equipment, namely DryCardℱ and Purdue Improved Crop Storage (PICS) bags. The DryCardℱ is an inexpensive device developed by University of California Davis researchers for determining if dried food is dry enough to prevent mold growth and aflatoxin contamination during storage and reducing post-harvest losses.

Mila Lokwa Giresse (Democratic Republic of the Congo) – Category: Change Agent

Giresse is the CEO of Mobile Agribiz. This company develops the Mobile Agribiz App, an innovative tool to enhance the pest and disease diagnostics of fall armyworm in maize. It uses artificial intelligence and machine learning to easily detect the pest across maize crops at any stage of the production cycle. The app aims to assist farmers, extension workers, and agribusinesses in democratic republic of Congo with early detection and accurate diagnosis. Through SMS and smart alert notifications, the Mobile Agribiz App provides farmers with constant reminders and real-time information on how to detect, manage, and address fall armyworm on maize.

Blessings Likagwa (Malawi) – Category: Farmer

Likagwa lives in Mtunthama, Malawi, where he works on his family’s farm. From a young age he has had an interest in farming and for the past eight years he has been involved in growing a variety of crops, especially maize and cassava. In the future he hopes to use his bachelor’s degree in Community Development and his interest in technology to help smallholder farmers in Malawi and Eastern Africa adapt to the challenges of climate change and rapid population growth. Since 2018, in collaboration with UNICEF and Kyoto University, he has investigated how drone technology can improve agricultural performance and benefit Malawi’s smallholders.

Ismael Mayanja (Uganda) – Category: Researcher

Mayanja is a 2019 graduate of Makerere University with a Bachelor of Science degree in Agricultural Engineering. He is currently assisting research at Makerere University to ascertain and quantify post-harvest losses associated with transportation of agricultural produce in the markets of Kampala district, Uganda. His primary research interest lies in post-harvest handling and technology, motivated by the reported 40% post-harvest loss of agricultural produce by farmers in sub-Saharan Africa. He developed a bicycle-powered maize cleaning machine to increase efficiency and reduce time dedicated to cleaning maize at several primary schools in Uganda.

Admire Shayanowako (Republic of South Africa) – Category: Researcher

Shayanowako is a researcher at the African Centre for Crop Improvement (ACCI) – University KwaZulu-Natal. His research focuses on the parasitic weed Striga, also known as witch weed, which causes severe crop losses to millions of small-scale African maize farmers. The goal of the project is to combine breeding for Striga resistance in maize with a soil fungus, Fusarium oxysporum f.sp. strigae (FOS) that is highly specific in its pathogenicity to Striga and acts as a biological control agent. The breeding approach aims to develop at least partial host resistance in open pollinated maize germplasms that are adapted to the semi-arid regions. When partial host resistance is augmented with biological control agent FOS, parasitic effects of Striga decline overwhelmingly. Currently, the breeding component of the research has embarked on identification of quantitative trait locus (QTL) controlling Striga resistance in maize through genomic based approaches.


For further information, contact:

Jennifer Johnson
Communications Officer, CGIAR Research Program on Maize (MAIZE)
Telephone: +52 (55) 5804 2004 ext. 1036
Email: j.a.johnson@cgiar.org

Book launch: Lead farmers in eastern and southern Africa

Tackling the challenges of climate change and increasing scarcity of resources like arable land and water requires that farming and food systems around the world undergo fundamental shifts in thinking and practices. A new book draws on experiences of men and women farmers across eastern and southern Africa who have been associated with the Sustainable Intensification of Maize-Legume Systems for Food Security in Eastern and Southern Africa (SIMLESA) project. The inspiring and moving accounts tell the story of how these farmers have bravely embraced change to improve their farming methods and consequently the lives and livelihoods of their families.

The maize-growing regions of southern and eastern Africa face many challenges, including lower than average yields, crop susceptibility to pests and diseases, and abiotic stresses such as droughts that can be frequent and severe. There is also widespread lack of access to high-yielding stress resilient improved seed and other farming innovations, presenting a need for scalable technologies, adapted to farmers’ growing conditions.

Maize is the most important staple crop in the region, feeding more than 200-300 million people across Africa and providing food and income security to millions of smallholder farmers. Prioritization of cost reducing, yield enhancing and resource conserving farming methods is vital to catalyze a shift towards sustainable and resilient maize agri-food systems. Conservation agriculture (CA) is one promising approach.

Launched in 2010, SIMLESA is led by the International Maize and Wheat Improvement Center (CIMMYT) and funded by the Australian Center for International Agricultural Research (ACIAR). The project supports farmers and partner organizations to achieve increased food production while minimizing pressure on the environment by using smallholder farmers’ resources more efficiently through CA approaches. SIMLESA is implemented by national agricultural research systems, agribusinesses and farmers in partner countries including, Ethiopia, Kenya, Malawi, Mozambique, Rwanda, Tanzania and Uganda.

The farmers’ words in this book drive home the core philosophy of SIMLESA: that critical paradigm shifts in smallholder farming are possible and can lead to positive and potentially lasting impacts.

The candid accounts of the benefits yielded from adopting new practices like CA are a testimony to this idea:  “Now we have seen with our own eyes these new methods are beneficial, and we want to continue what we are doing
.my field is a school where others can learn,” said Maria Gorete, a farmer in Mozambique.

Policy makers and scientists from eastern and southern Africa met in Uganda at a regional forum convened by the Association for Strengthening Agricultural Research in Eastern and Central Africa (ASARECA), on 3-4 May 2019. The forum discussed ways to scale up the learnings of SIMLESA and a joint communique recommending policy actions was signed by the Ministers of Agriculture of the Republic of Burundi, the Republic of the Congo, the Democratic Republic of Congo, the State of Eritrea, the Federal Democratic Republic of Ethiopia, the Republic of Kenya, the Republic of Madagascar,  the Republic of Rwanda, the Republic of South Sudan, the Republic of the Sudan, the United Republic of Tanzania, the Republic of Uganda, the Republic of Malawi and the Republic of Mozambique of the high level Ministerial Panel on Sustainable Intensification of Maize-Legume Cropping Systems for Food Security in Eastern and Southern Africa (SIMLESA).

CIMMYT and Clinton Foundation launch partnership to improve access to climate-resilient maize seed in eastern and southern Africa

A farmer's field in Malawi under conservation agriculture, showing rotation of maize and groundnut, and the retention of crop residues. (Photo: T. Samson/CIMMYT)
A farmer’s field in Malawi under conservation agriculture, showing rotation of maize and groundnut, and the retention of crop residues. (Photo: T. Samson/CIMMYT)

NEW YORK and TEXCOCO, Mexico — Working together to improve access to and availability of climate-resilient maize varieties in eastern Africa, the Clinton Foundation and the International Maize and Wheat Improvement Centre (CIMMYT) are launching a partnership that will not only improve access by smallholder farmers to modern maize varieties but also aim to bolster food security in Malawi, Rwanda and Tanzania. The Clinton Foundation is launching this partnership through the Clinton Development Initiative, which works in the region to improve economic opportunity for farmers through better access to markets, technology, and inputs like seeds and fertilizer.

Farmers in eastern and southern Africa face obstacles in agricultural production with little to no access to formal markets. Improvement in yields are often made more difficult as a result of erratic weather patterns from climate change and limited access to improved seed varieties and quality inputs. Farmers also lack access to information about prices and market opportunities for their crops, making it harder for them to produce and sell.

“Farmers in eastern and southern Africa face increasing threats to their livelihoods, including drought, insect-pests, and diseases. This partnership will improve farmers’ access to modern crop varieties, the quality of their crops, opportunities to market the produce, and food security for their families,” explained Ariana Constant, Director of the Clinton Development Initiative. “We are working together to provide farmers with heat- and drought-tolerant maize seeds to grow stronger, healthier crops and to help reduce the negative impacts of climate shocks.”

Collaboration between the Clinton Foundation and CIMMYT is a natural fit. CIMMYT’s history of creating improved planting materials combined with the Clinton Foundation’s extensive network of trained farmers will support increases in both crop yield and quality. The partnership will also boost production and offset the negative impact of climate-induced stresses. The seed varieties are all non-GMO, in keeping with regulations across Malawi, Rwanda, and Tanzania.

“We are thrilled to join the Clinton Foundation in supporting smallholder farmers in eastern Africa. Our commitment is to effectively deploy improved maize varieties, including drought- and heat-tolerant and disease-resistant varieties available to the Clinton Foundation’s network of farmers,” said Prasanna Boddupalli, director of CIMMYT’s Global Maize Program and the CGIAR Research Program on Maize.  “Beyond providing improved maize seeds, we will also collaboratively undertake varietal trials in farmers’ fields, track genetic gains in farmers’ fields over time, and share the findings with the broader agricultural community in eastern and southern Africa”, Prasanna said.

The Clinton Foundation has a strong track record of generating steady returns for farmers in the region. In Tanzania, farmers working with the Clinton Development Initiative for every $1 spent on operations has generated $3.80 in additional income for smallholder farmers in Rwanda.

“Today, thanks to our partnership with CIMMYT, we hope to increase yields and quality of maize crop production for our farmers even further. This means helping farmers to take a sustainable, scalable and transformative approach to production,” said Ariana Constant.

To learn more about the Clinton Development Initiative, please visit https://www.clintonfoundation.org/our-work/clinton-development-initiative. For more information about CIMMYT, please visit https://staging.cimmyt.org/.


About CIMMYT

CIMMYT – the International Maize and Wheat Improvement Center – is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty.

CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat, and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies.

About the Clinton Development Initiative

At the inaugural meeting of the Clinton Global Initiative in 2005, President Clinton made a commitment to improve economic growth in Africa. From this commitment, President Clinton began the Clinton Development Initiative (CDI), to help support smallholder farmers and families in Africa to meet their own food needs and improve their livelihoods.

When families are empowered to secure their own food and support themselves financially, communities become more resilient – economies grow, jobs are created, and together, we build a strong foundation for the future.

Media contacts:

CIMMYT: Genevieve Renard, Head of Communications. g.renard@cgiar.org

Clinton Development Initiative: press@clintonfoundation.org

Isaiah Nyagumbo

Isaiah Nyagumbo is a cropping systems agronomist working with CIMMYT’s Sustainable Agrifood Systems (SAS) program. He is passionate about soil and water conservation technologies, and participatory technology development for farmers.

Prior to joining CIMMYT in 2010, he completed a DPhil on seasonal water balance in conservation tillage systems and spent several years working as a lecturer at the University of Zimbabwe.

As part of the SIMLESA team, he has mainly works on developing sustainable and resilient conservation agriculture-based production systems in southern Africa, where he is regional coordinator of agronomy activities.

Improved Maize for African Soils (IMAS)

African maize farmers must deal with drought, weeds, and pests, but their problems start with degraded, nutrient-starved soils and their inability to purchase enough nitrogen fertilizer. Maize yields of smallholder farmers in sub-Saharan Africa are a fraction of those in the developed world, due mainly to the region’s poor soils and farmers’ limited access to fertilizer or improved maize seed. On average, such farmers apply only 9 kilograms of fertilizer per hectare of cropland. Of that small amount, often less than half is captured by the crop; the rest is leached deep into the soil where plants cannot recover it or otherwise lost.

The Improved Maize for African Soils Project (IMAS) develops maize varieties that are better at capturing the small amount of fertilizer that African farmers can afford, and that use the nitrogen they take up more efficiently to produce grain. Project participants will use cutting-edge biotechnology tools such as molecular markers—DNA “signposts” for traits of interest—and transgenic approaches to develop varieties that ultimately yield 30 to 50 percent more than currently available varieties, with the same amount of nitrogen fertilizer applied or when grown on poorer soils.

The varieties developed will be made available royalty-free to seed companies that sell to the region’s smallholder farmers, meaning that the seed will become available to farmers at the same cost as other types of improved maize seed.

In four years or less, African farmers should have access to IMAS varieties developed using conventional breeding that offer a 20 percent yield advantage over current varieties. Improved varieties developed using DNA marker techniques are expected to be introduced within seven to nine years, and those containing transgenic traits are expected to be available in approximately 10 years, pending product performance and regulatory approvals by national regulatory and scientific authorities, according to the established laws and regulatory procedures in each country.

IMAS is being led by CIMMYT and funded with $19.5 million in grants from the Bill & Melinda Gates Foundation and the U.S. Agency for International Development. The project’s other partners — DuPont-Pioneer, Kenya Agricultural Livestock and Research Organization and the Agricultural Research Council of South Africa — are also providing significant in-kind contributions including staff, infrastructure, seed, traits, technology, training, and know-how.

The second phase of IMAS continues to be implemented through the Seed Production Technology for Africa (SPTA) project.

OBJECTIVES

  • Conventional and marker assisted breeding to develop hybrids and OPVs with improved nitrogen use efficiency (NUE) adapted to southern and eastern Africa
  • Identification and deployment of native trait alleles to enhance yield under low nitrogen conditions through association mapping and Quantitative Trait Loci mapping
  • Development of transgenic maize varieties adapted to southern and eastern Africa with increased yield under severe nitrogen limitation
  • Managing NUE varieties for sustainability in African maize cropping systems
  • Project stewardship, public awareness and capacity building
  • NUE variety registration, release and dissemination in southern and eastern Africa

Maize Lethal Necrosis Diagnostics and Prevention of Seed Transmission

This four-year Maize Lethal Necrosis Diagnostics and Prevention of Seed Transmission project will coordinate regional efforts to strengthen response to the rapid emergence and spread of Maize Lethal Necrosis (MLN).

Coordinated by CIMMYT, it will establish a community of practice among national plant protection organizations in eastern Africa for implementing harmonized MLN diagnostic protocols for detecting MLN-causing viruses and enable commercial seed companies to implement necessary standard operational procedures to produce MLN-free clean seed at various points along the maize seed value chain. It will also step-up MLN surveillance and monitoring in Malawi, Zambia and Zimbabwe, three of the major commercial maize seed exporting countries in sub-Saharan Africa.

The MLN project will be implemented in close partnership with the Alliance for a Green Revolution in Africa, the African Agricultural Technology Foundation, national plant protection organizations and commercial seed companies in eastern Africa. It will also pool expertise from relevant public- and private-sector partners, regional organizations, and seed trade organizations operating in the region.

Partners:  The Alliance for a Green Revolution in Africa, the African Agricultural Technology Foundation, national plant protection organizations and commercial seed companies in eastern Africa

Sustainable Intensification of Maize-Legume Systems for Food Security in Eastern and Southern Africa (SIMLESA)

The Sustainable Intensification of Maize-Legume Systems for Food Security in Eastern and Southern Africa (SIMLESA) program aims to improve maize and legume productivity by 30 percent and to reduce the expected downside yield risk by 30 percent on approximately on approximately 650,000 farm households by 2023. Launched in 2010, the focal countries of program research are Australia, Botswana, Burundi, Ethiopia, Kenya, Malawi, Mozambique, Tanzania, South Sudan, Uganda, Rwanda, Zambia and Zimbabwe.

The main thrust of the SIMLESA program is increasing farm-level food security, productivity and incomes through promotion of maize-legume intercropping systems in the context of reduced climate risk and change.

The program has also laid the foundation for developing conservation agriculture based sustainable intensification options, including integration of improved maize and legume varieties identified for their compatibility with CA-based practices; promoting technology adoption by both female and male farmers; capacity building for national agricultural research systems of partner countries; creating enhanced partnerships and collaboration with established innovation platforms for coordinated scaling-out of SIMLESA-generated options and practices.

Funding Institutions: Australian Centre for International Agricultural Research (ACIAR)

Partners: National agricultural systems of Ethiopia, Kenya, Malawi, Mozambique and Tanzania, as well as international and local research centers, extension agencies, non-governmental organizations, universities and agribusinesses along the value chain.

Read the final report of the SIMLESA project

Stress Tolerant Maize for Africa (STMA)

The Stress Tolerant Maize for Africa (STMA) project aims to diminish devastating constraints in maize production across sub-Saharan Africa. The project develops improved maize varieties with resistance and tolerance to drought, low soil fertility, heat, diseases such as Maize Lethal Necrosis and pests affecting maize production areas in the region.

STMA operates in eastern (Ethiopia, Kenya, Tanzania, Uganda), southern (Malawi, South Africa, Zambia, Zimbabwe) and West Africa (Benin, Ghana, Mali, Nigeria). These countries account for nearly 72 percent of all maize area in sub-Saharan Africa and include more than 176 million people who depend on maize-based agriculture for their food security and economic well-being. Climate change effects like drought, a lack of access to resources like fertilizer and other stresses increase the risk of crop failure that negatively affects income, food security and nutrition of millions of smallholder farmers and their families.

The project will develop 70 new stress-tolerant varieties using innovative modern breeding technologies, and promote improved stress-tolerant varieties expected to increase maize productivity up to 50 percent. The project aims to produce estimated 54,000 tons of certified seed to put into the hands of more than 5.4 million smallholder farmer households by the end of 2019.

Objectives

  • Use innovative breeding tools and techniques applied for increasing the rate of genetic gain in the maize breeding pipeline.
  • Increase commercialization of improved multiple-stress-tolerant maize varieties with gender-preferred traits by the sub-Saharan African seed sector.
  • Increase seed availability and farmer uptake of stress-tolerant maize varieties in target countries.
  • Optimize investment impact through effective project oversight, monitoring, evaluation and communication.

Drought Tolerant Maize for Africa (DTMA)

The Drought Tolerant Maize for Africa project aims to mitigate drought and other constraints to maize production in sub-Saharan Africa, increasing maize yields by at least one ton per hectare under moderate drought and with a 20 to 30 percent increase over farmers’ current yields, benefiting up to 40 million people in 13 African countries. The project brings together farmers, research institutions, extension specialists, seed producers, farmer community organizations and non-governmental organizations. It is jointly implemented by CIMMYT and the International Institute for Tropical Agriculture, in close collaboration with national agricultural research systems in participating nations. Millions of farmers in the region are already benefiting from the outputs of this partnership, which includes support and training for African seed producers and promoting vibrant, competitive seed markets.

Achievements:

  • Between 2007 and 12, participants marketed or otherwise made available 60 drought tolerant hybrids and 57 open-pollinated varieties to smallholder farmers
  • In addition to drought tolerance, the new varieties and hybrids also possess such desirable traits as resistance to major diseases
  • Engage government officials in policy dialogue to help fast-track varietal releases and fosters competitive seed markets and more
    widespread access to quality seed at affordable prices
  • Help ensure farmers’ access to the best possible products and services, coordinate various capacity-building events and
    activities for maize breeders, technicians, seed producers, extension workers, non-government organizations and farmer groups
  • Provide technical and advisory support to 50 African undergraduate and 28 African graduate students
  • Expand smallholder farmers’ use of drought and other stress tolerant maize seed to benefit 30 to 40 million people and provide added grain worth $160-200 million each year in drought-affected areas of sub-Saharan Africa

Principal coordinator

Tsedeke Abate