Skip to main content

Location: Kenya

For more information, contact CIMMYT’s Kenya office.

How a disease without borders was contained

It’s been eight years since maize lethal necrosis (MLN) was first reported on the African continent. When it appeared in Kenya’s Bomet County in 2011, a sense of panic swept across the maize sector. Experts quickly realized that all maize varieties on the market were susceptible to this viral disease, which could wipe out entire maize fields.

Spearheaded by the International Maize and Wheat Improvement Center (CIMMYT), a rapid regional response involving national agriculture research systems (NARS), national plant protection organizations and seed sector partners was set up. The response involved multiple approaches: rigorous surveillance, epidemiology research, disease management across the seed value chain, and screening and fast-tracking of the MLN-tolerant maize breeding program.

Now, CIMMYT and its partners are reflecting on the tremendous impact of transboundary coalition to contain the devastating disease.

“Country reports show there are now much less incidents of MLN in the region. We have effectively contained this disease as no new country in sub-Saharan Africa reported MLN since Ethiopia in 2014. This is a great achievement of an effective public private partnership,” noted B.M. Prasanna, Director of CIMMYT’s Global Maize Program and the CGIAR Research Program on Maize.

He was speaking at the closure workshop for the MLN Diagnostics and Management project and the MLN Epidemiology project on October 15-17, 2019, in Nairobi, Kenya. Experts from research, plant health and seed sector organizations from eastern and southern Africa reflected on the tremendous impact of the transboundary coalition to contain MLN across the region.

“The outbreak of the disease in Uganda in 2012 was a huge challenge as all the maize varieties and hybrids on the market were susceptible. With the support of CIMMYT and other partners in the national agriculture research systems, we got access to Bazooka, a high-yielding, drought- and MLN-tolerant maize variety that has helped in containing the disease,” said Godfrey Katwere, marketing manager for NASECO.

Until now, 19 MLN-tolerant and -resistant hybrids have been released, helping to keep the disease away from farmers’ fields and to stop its spillover to non-endemic countries in sub-Saharan Africa.

CIMMYT team members check for traces of the maize chlorotic mottle virus (MCMV) in maize plants during a visit to the MLN screening facility in Naivasha, Kenya. (Photo: Joshua Masinde/CIMMYT)
CIMMYT team members check for traces of the maize chlorotic mottle virus (MCMV) in maize plants during a visit to the MLN screening facility in Naivasha, Kenya. (Photo: Joshua Masinde/CIMMYT)

Science in action

The MLN screening facility, established in Naivasha in 2013, has been key to a better understanding of the disease and to setting up MLN hybrid tolerance and resistance breeding efforts. The facility, funded by the Bill & Melinda Gates Foundation and the Syngenta Foundation for Sustainable Agriculture, has supported public and private partners to screen over 200,000 germplasm with around 300,000 rows of maize.

State-of-the-art epidemiology research has been carried out to identify how the disease could be transmitted and the best diagnostics methods along the seed value chain.

MLN is caused by the combination of the maize chlorotic mottle virus (MCMV) and any of the viruses belonging to the Potyviridae family.

As part of the project, studies showed that moist soil had higher MCMV virus loads than dry soil. The studies — conducted by Benham Lockhart of University of Minnesota and Peg Redinbaugh, a professor at Ohio State University and Research Leader and Research Plant Molecular Geneticist at USDA — indicated that MCMV can stay active in runoff water, and helped in understanding how the disease is transmitted and how to define management protocols.

“Crop debris may also act as source of MCMV inoculum but for a limited period of up to two months,” said L.M. Suresh, CIMMYT Maize Pathologist, in reference to soil transmission studies conducted by CIMMYT. “A host-free period of two months is, therefore, recommended for effective management of MLN,” he noted.

Rapid and low-cost MLN-causing virus detection methods such as immunostrips and ELISA-based tests were adopted at scale.

“After optimizing the protocols for MLN viruses’ diagnosis suitable for African systems, we transferred these technologies to [national plant protection organizations] and seed companies, not just within the endemic countries but also to the non-endemic countries in southern and west Africa, through intensive trainings,” Prasanna explained. “We created a digital MLN surveillance tool under the Open Data Kit (ODK) app for NPPOs and other stakeholders to effectively carry out MLN surveillance on the ground. The survey information is captured in real time in farmers’ and seed production fields coupled with rapid immunostrips MLN tests,” he remarked.

According to Francis Mwatuni, Project Manager of the MLN Diagnostics and Management project, this proactive and collaborative surveillance network has been an important outcome that helped curb MLN from spreading to non-endemic regions. “In 2016, we only had 625 surveillance points. By 2019, the surveillance points in all the target countries stood at 2,442, which intensified the alertness on MLN presence and how to effectively deal with it,” Mwatuni said. In total, 7,800 surveillance points were covered during the project implementation period.

Over 100 commercial seed firms have also been trained on how to produce MLN-free seed to facilitate trade within the endemic nations and to ensure the disease is not transferred to the non-endemic countries via contaminated seeds.

Participants at the MLN projects closure workshop stand for a group photo. (Photo: Joshua Masinde/CIMMYT)
Participants at the MLN projects closure workshop stand for a group photo. (Photo: Joshua Masinde/CIMMYT)

Sustaining the fight

Researchers continue to work to lessen MLN’s resurgence or new outbreaks. In 2018, incidents in all endemic countries, except Ethiopia, declined sharply. One suggested explanation for the upsurge in Ethiopia, especially in the northwestern region, was reduced use of pesticide for fall armyworm control, as compared to previous years where heavy application of these pesticides also wiped out MLN insect vectors, such as maize thrips and aphids.

At the end of the projects, partners urged for the scale-up of second-generation MLN-tolerant and -resistant varieties. They explained farmers would fully benefit from recent genetic gains of the new improved varieties and its protection against MLN.

“Despite the success registered, MLN is still a major disease requiring constant attention. We cannot rest as we redirect our energies at sustaining and building on the gains made,” said Beatrice Pallangyo, principal agricultural officer in Tanzania’s Ministry of Agriculture, Food Security and Cooperatives.

After the success containing MLN, stakeholders suggested the need to stay alert on other transboundary pests and diseases such as the tar spot complex, which could be a major threat to Africa’s food security in case of an outbreak.

Breaking Ground: Pieter Rutsaert looks to better marketing for faster adoption of climate-smart maize in Africa

Ever wondered why farmers prefer a certain maize variety over another? What crop traits different farmers value? How they make their seed selections at the market? Pieter Rutsaert, an expert in markets and value chains with the International Maize and Wheat Improvement Center (CIMMYT), analyzes the important factors that African farmers consider when purchasing maize varieties at agro-dealers and the implications for how the seed industry can better meet farmers’ needs.

Maize is the most important cereal crop in Africa, grown on over 29 million hectares of rainfed farmland and consumed daily by around 50% of the population. However, increasingly erratic weather patterns threaten the performance the maize varieties grown, putting household food security at risk.

“African smallholders typically plant maize seeds they are familiar with, but these varieties often lack the attributes to tolerate harsher weather including droughts, extreme heat or disease stress,” Rutsaert explains.

“Despite the existence of maize varieties bred to stand up to harsher weather, their intrinsic attributes alone are not enough to convince farmers to leave their preferred varieties. These stress-tolerant varieties need to be properly marketed to be competitive and increase their market share.”

With previous experience as a marketing consultant in the food industry, Rutsaert brings unique skills and approaches to CIMMYT’s Stress Tolerant Maize for Africa (STMA) project, to help businesses develop new seed distribution and marketing strategies to get climate-resilient varieties into farmers’ fields.

Pieter Rutsaert (right) discusses a research study questionnaire with consultant enumerator Victor Kitoto. (Photo: Jerome Bossuet/CIMMYT)
Pieter Rutsaert (right) discusses a research study questionnaire with consultant enumerator Victor Kitoto. (Photo: Jerome Bossuet/CIMMYT)

Market intelligence on climate-smart seed

Rutsaert sees local agro-dealers as a strategic entry point for researchers to gather information on the varying farmer interests and conditions as information about seed demand is revealed at the point of purchase.

Despite large investments to support seed systems in sub-Saharan Africa, including investments to upgrade agro-dealer capacity, there is limited evidence into how women and men take decisions on maize seed purchases to support development initiatives.

“The agro-dealer space is where farmers decide what inputs to buy. In addition to providing farmers access to inputs at competitive prices, front-line agro-dealers offer technical assistance, such as advice on input use and production practices, and short-term credit for input purchases.”

Thus, agro-dealers offer the chance to learn about farmers’ unique conditions and ensure they adopt the right variety. Gathering these insights has the potential to support locally owned small and medium enterprises that produce stress-tolerant varieties, suited for local conditions, says the marketing expert.

An agent from a seed company (right) promotes sales at an agro-dealer shop. (Photo: Pieter Rutsaert/CIMMYT)
An agent from a seed company (right) promotes sales at an agro-dealer shop. (Photo: Pieter Rutsaert/CIMMYT)

Marketing strategies for agro-dealers

Compared to multinational seed companies, local seed businesses are expected to show greater willingness to seek out traditionally underserved segments of the seed market, such as poorer farmers or those located in less-favored production regions. However, local seed producers and retailers generally lack marketing capabilities and have a limited understanding of the costs and benefits of different approaches to market their seed, Rutsaert says.

“Without effective marketing strategies responding to the needs of different clients, farmers will stick to the seeds that they know, even when this might not be the best for their situation,” he continues.

Based on the market information gathered, Rutsaert works with agro-dealers to develop retail strategies, such as targeted marketing materials, provision of in-store seed decision support, and price incentives, to help women and men farmers get the inputs that work best.

Rutsaert says he is committed to use his private sector experience to improve CIMMYT’s understanding of the seed sector and build the capacity of local agro-dealers to distribute climate-resilient maize varieties throughout the African region.

The Stress Tolerant Maize for Africa (STMA) project seeks to develop maize cultivars with tolerance and resistance to multiple stresses for farmers, and support local seed companies to produce seed of these cultivars on a large scale. STMA aims to develop a new generation of over 70 improved stress tolerant maize varieties, and facilitate the production and use of over 54,000 metric tons of certified seed. The STMA project is funded by the Bill & Melinda Gates Foundation and USAID.

What it takes to bring the best seed to farmers

Partnerships and how to increase impact were two of the key issues discussed by the Board of Trustees of the International Maize and Wheat Improvement Center (CIMMYT) during their meeting in Kenya in October 6-10, 2019. Management and strategy discussions were combined with field trips and interactions with CIMMYT researchers and partners. Board members visited the research stations in Kiboko and Naivasha, as well as two partner seed companies in Machakos and Nairobi.

“To ensure CIMMYT’s crop breeding research benefits smallholder farmers, it is important for us to better understand how partnerships between CIMMYT and seed companies work on the ground, to know how seeds move from our research stations to the farmers,” said Marianne Bänziger, CIMMYT’s deputy director general for research and partnership.

CIMMYT board members and staff stand for a group photo outside the offices of East African Seed. (Photo: Jerome Bossuet/CIMMYT)
CIMMYT board members and staff stand for a group photo outside the offices of East African Seed. (Photo: Jerome Bossuet/CIMMYT)

East African Seed, a family-owned seed business established in Nairobi in the 1970s, sells over 300 products, from maize and vegetable seeds to phytosanitary solutions. The company works through a large network of stockists and distributors across Burundi, the Democratic Republic of Congo, Kenya, Rwanda, South Sudan, Tanzania and Uganda.

Rogers Mugambi, chief business manager of East African Seed, underlined the successful partnership with CIMMYT, getting access to high-yielding disease-resistant germplasm and receiving technical support for the company’s breeding team. Mugambi highlighted CIMMYT’s contribution to contain the devastating maize lethal necrosis (MLN) outbreak since 2011. Most commercial varieties on the market fared badly against this new viral disease, but in 2020 East African Seed will launch two new MLN-tolerant varieties on the market thanks to CIMMYT’s breeding work.

Dryland Seed, another partner seed company, was established in 2005 in Kenya’s Machakos County. It commercializes the drought-tolerant SAWA maize hybrid, based on CIMMYT lines. Featured recently on Bill Gates’s blog, this hybrid is a success among farmers, thanks to earliness, nitrogen use efficiency and good yield potential in water-stressed regions. Dryland Seed’s production grew from 25 to 500 tons of seed per year, reaching out 42,000 farmers a year.

General view of the East African Seed warehouse. (Photo: Jerome Bossuet/CIMMYT)
General view of the East African Seed warehouse. (Photo: Jerome Bossuet/CIMMYT)

Keeping seeds in business

When asked about the uniqueness of East African Seed, Mugambi highlighted trust and consistency in quality. They nurture their agrodealer network by investing in extension services and organizing evening meetings with stockists to discuss how to farm and be profitable. “Knowing and supporting the agrodealers selling your products is crucial, to make sure the stockists sell the right seeds and inputs, and store them well,” Mugambi explained.

Marianne Banziger (right), CIMMYT's deputy director for research and partnership, listens to a Dryland Seed sales manager during a visit to a farm supplies shop in Machakos, Kenya. (Photo: Jerome Bossuet/CIMMYT)
Marianne Banziger (right), CIMMYT’s deputy director for research and partnership, listens to a Dryland Seed sales manager during a visit to a farm supplies shop in Machakos, Kenya. (Photo: Jerome Bossuet/CIMMYT)

“Many seed companies could learn from you. Quality control is crucial for any seed business as you sell genetics and any crop failure at farm level will jeopardize farmers’ trust in the company’ seeds,” said Bill Angus, CIMMYT Board member.

Ngila Kimotho, managing director of Dryland Seed, pointed out the financial challenges for a small local seed company to grow in this risky but important agribusiness. The company has to pay out-growers, sometimes face default payment by some agrodealers, while low-interest credit offers are scarce as “banks and microfinance institutions target short-term reliable businesses, not climate-risky rainfed farming,” Kimotho explained. Combining drought-tolerant crops with insurance products could lower business risks for banks.

Bringing top-notch research to farmers

“I am worried about the mutating stem rust which seems to break down the resistance of some popular wheat varieties,” stressed Joseph Nalang’u, a farmer in Narok with 600 acres dedicated to wheat and 100 to maize. “The unpredictable weather is another major concern. When I started farming, we knew exactly when the planting season would start, and this helped us in our planning. That is no longer the case.”

African farmers need agricultural research. A research that is responsive to develop rapidly scalable and affordable solutions against numerous emerging pests and diseases like wheat rusts, MLN or fall armyworm. They need advice on how to adapt to unpredictable climate.

While visiting the MLN Quarantine and Screening Facility in Naivasha, CIMMYT’s Board members discussed research priorities and delivery pathways with farmers, seed and input companies, and representatives of Kenya Agricultural and Livestock Research Organization (KALRO), Kenya Plant Health Inspectorate Service (KEPHIS) and the Ministry of Agriculture.

CIMMYT board members, staff, partners and farmers listen to a researcher at the MLN Screening Facility in Naivasha, Kenya. (Photo: Joshua Masinde/CIMMYT)
CIMMYT board members, staff, partners and farmers listen to a researcher at the MLN Screening Facility in Naivasha, Kenya. (Photo: Joshua Masinde/CIMMYT)

“When you visit Naivasha MLN research facility or Njoro wheat rust phenotyping platform, both co-managed by CIMMYT and KALRO, you see a partnership that works very well,” said Zachary Kinyua, the assistant director for crop health research at KALRO. “These facilities are open to public-private collaboration, they generate important public goods for farmers, large and small.”

“If we develop or co-develop wonderful technologies but they don’t reach the farmers, that would be a fun and wonderful experience but with no impact,” said Kevin Pixley, CIMMYT’s director of the Genetic Resources program. “We depend on partners in the national agricultural research systems, seed companies and other private and public partners to realize the desired impact.”

“It is always so inspiring to see on the ground the results of years of research, to hear some of our partners talking about the real impact this research makes. The multiplier effect of what we do never ceases to amaze me,” expressed Nicole Birell, chair of CIMMYT’s Board of Trustees.

Cover image: CIMMYT board members and staff visited Riziki Farm Supplies, one of the agrodealers in Machakos which sells SAWA hybrid maize. (Photo: Jerome Bossuet/CIMMYT)

Rural women of eastern and southern Africa gain ground

Join us on this visual journey across Ethiopia, Kenya, Malawi and Zimbabwe, where you will meet farmers who demonstrate every day what it means to be RURAL: Resilient, United, Reaping benefits, Adopter and Learner.

These women have adopted climate-smart practices in their production systems to ensure optimal yields while learning about drought-tolerant varieties of maize to counter the harsh effects of dry spells, heat stress, pests and diseases. These rural women are exemplary leaders in their communities, as evidenced by their successful farming practices and the food and income they secure for their families.

R is for Resilient

Lughano Mwangonde (center) holds her granddaughter and stands for a portrait with her daughters. (Photo: Shiela Chikulo/CIMMYT)
Lughano Mwangonde (center) holds her granddaughter and stands for a portrait with her daughters. (Photo: Shiela Chikulo/CIMMYT)

Farming families in southern Africa are confronted with the adverse effects of climate change, particularly in Malawi, Mozambique and Zimbabwe. A report by FEWS NET indicates negative impacts like declining yields, increase in grain prices during peak lean seasons and widespread food insecurity. However, Lughano Mwangonde from Malula, southern Malawi, has been practicing climate-smart agriculture since 2004 through a CIMMYT project, which has improved the food security of her family. In the midst of increasing climate variability, Lughano is cushioned against the harsh effects of droughts and heavy downpours through the practices she adopted. For example, she uses crop rotation of maize and legumes, like cowpea and pigeon pea.

Sequare Regassa sorts maize grain. (Photo: Simret Yasabu/CIMMYT)
Sequare Regassa sorts maize grain. (Photo: Simret Yasabu/CIMMYT)

Climate change affects men and women differently. Rural women farmers tend to be more susceptible to drought and the additional labor associated with household tasks. As such, building resilience against climate change is critical. For Sequare Regassa, in Ethiopia’s Oromia region, this means shifting to drought-tolerant maize varieties such as BH661, which have better performance and increased yield, even under heat and other stress conditions.

U is for United

Sequare Regassa (wearing green) and her family stand for a group photo at their farm. (Photo: Simret Yasabu/CIMMYT)
Sequare Regassa (wearing green) and her family stand for a group photo at their farm. (Photo: Simret Yasabu/CIMMYT)

Sequare Regassa is the family’s breadwinner, looking after her four children and working closely with her extended family on their 8-hectare farm in Ethiopia’s Oromia region. “Getting a good maize harvest every year, even when it does not rain much, is important for my family’s welfare,” she says. Although her children are now grown and living with their own families, the family farm unites them all in producing adequate grain to feed themselves. Read more about how Regassa and other farmers are weatherproofing their livelihoods.

R is for Reaping benefits

Tabitha Kamau examines drought-tolerant KDV4 maize in her plot in the village of Kavilinguni, Machakos County, Kenya. (Photo: Joshua Masinde/CIMMYT)
Tabitha Kamau examines drought-tolerant KDV4 maize in her plot in the village of Kavilinguni, Machakos County, Kenya. (Photo: Joshua Masinde/CIMMYT)

Rural women farmers are taking up improved drought-tolerant and high yielding varieties with early maturity thanks to participatory maize varietal selection. “If I am able to harvest in three and a half months or less, compared to four months or more for other varieties, I can sell some grain to neighbors still awaiting their harvest who want to feed their families,” says Tabitha Kamau. She is a smallholder farmer in Machakos County, Kenya, who plants drought-tolerant maize on her plot. Read about how farmers in her area are choosing the varieties that work best for them.

Rose Aufi shows some of her maize grain reserves. (Photo: Shiela Chikulo/CIMMYT)
Rose Aufi shows some of her maize grain reserves. (Photo: Shiela Chikulo/CIMMYT)

Rose Aufi explains how her family of seven children and three grandchildren are food-secure thanks to the climate-smart agriculture techniques she practices on her farm in Matandika, southern Malawi. She and her husband have obtained a good harvest since they started participating in a CIMMYT project and adopted climate-smart agricultural practices. Aufi says technologies such as mulching and crop rotation are there to simplify the workload in the field.

A is for Adopter

Alice Nasiyimu holds four large cobs of maize harvested at her family farm in Bungoma County, in western Kenya. (Photo: Joshua Masinde/CIMMYT)
Alice Nasiyimu holds four large cobs of maize harvested at her family farm in Bungoma County, in western Kenya. (Photo: Joshua Masinde/CIMMYT)
Dolly Muatha shows maize from her farm in Makueni County, eastern Kenya. (Photo: Joshua Masinde/CIMMYT)
Dolly Muatha shows maize from her farm in Makueni County, eastern Kenya. (Photo: Joshua Masinde/CIMMYT)

Dolly Muatha, a 49-year-old farmer with four children in Kenya’s Makueni County, has been growing SAWA drought-tolerant maize for three years. She has witnessed the performance of this variety in her demo plot. “It matures early and yields two to three beautiful cobs per plant” she says.

L is for Learner

Ruth Kanini Somba (left) stands for a portrait with her husband Alex and their 8-year-old son. (Photo: Jerome Bossuet/CIMMYT)
Ruth Kanini Somba (left) stands for a portrait with her husband Alex and their 8-year-old son. (Photo: Jerome Bossuet/CIMMYT)

Ruth Kanini Somba adopted SAWA maize in 2017 after seeing a demonstration plot at Dolly Muatha’s farm. She points out that SAWA performs better than other varieties because of its early maturity and resistance to grey leaf spot and weevils. The drought-tolerant attribute of the SAWA maize also makes the maize crop cope well when rainfall is erratic.

Agnes Nthambi (left) and other farmers evaluate maize varieties developed through CIMMYT’s Stress Tolerant Maize for Africa (STMA) project. (Photo: Joshua Masinde/CIMMYT)
Agnes Nthambi (left) and other farmers evaluate maize varieties developed through CIMMYT’s Stress Tolerant Maize for Africa (STMA) project. (Photo: Joshua Masinde/CIMMYT)

Improved agricultural techniques, such as optimum spacing, enables farmers such as Agnes Nthambi to get better crops. This farmer from Kenya’s Machakos County hosted a demonstration plot she and other farmers in her area were able to learn new growing techniques. “On this trial, I learned that spacing was about two times shorter than we are generally used to. Even with the more constricted spacing, the maize has performed much better than what we are used to seeing,” Nthambi explained.

Collaborative product profiling captures farmers’ demand for greater impact

The International Maize and Wheat Improvement Center (CIMMYT) organized its first ever Maize Product Profile-based Breeding and Varietal Turnover workshop for eastern Africa in Nairobi, on August  29 and 30, 2019. The workshop, funded by USAID, was attended by maize breeders from national research institutes in Kenya, Uganda, Tanzania, Rwanda, Ethiopia and South Sudan, and by several partner seed companies including Seedco, Kenya Seeds, Western Seeds, Naseco and Meru Agro.

Participants from CIMMYT, EiB, NARs and seed companies attending the Product Profile workshop held in Nairobi on August 29-30, 2019. (Photo: CIMMYT/Joshua Masinde)

A product profile is defined as a list of “must-have” maize characteristics or traits that are the unique selling points for the target beneficiaries who are looking for these qualities. The breeders also consider additional traits in their breeding strategy, “value-added” or desirable traits that could be future unique selling points.

“A product profile is not a secret sauce” nor a checkbox to tick, explained Georges Kotch, a renowned expert in the seed industry and lead for Module 1 of the Excellence in Breeding (EiB) platform on product profiling. A product profile is a blueprint to help maize breeding programs ensure their new varieties released respond to a true need with a clear comparative advantage for seed companies and ultimately for maize farmers. This demand-driven process “starts with the end in mind” by understanding what the customers want. The end goal is to replace leading old varieties on the market with better ones that will improve farmers’ livelihoods, for example, with greater climate resilience and productivity.

Steering the breeding program through “healthy tensions”

Breeders may have had the tendency to focus on optimum yield for a certain agroecology, yet their priority traits may not reflect exactly the market or what farmers want. In addition to good yield, drought or disease resistance, grain color, taste, nutritional value, and appearance of plants and cobs are important in farmers’ choice of seed. Socio-economic research tools like participatory varietal selection (PVS) or willingness-to-pay experiments help us weigh the importance of each trait to trigger adoption.

Boiled and roasted maize tasting during a farmer participatory varietal selection exercise in Embu, Kenya in August 2019. Flavors of varieties are very distinct and could explain why some old varieties are still preferably grown by farmers. (Photo: CIMMYT/S. PALMAS)

There may be tensions between farmers’ needs, what suits seed companies like the seed reproducibility ratio, and what is possible and cost-effective from a breeder’s perspective. CIMMYT does not only look through the lens of economic return. The social impact new varieties could have is also considered, for example developing provitamin A or quality protein maize (QPM) as a solution to combat malnutrition even if there is not a major demand from private seed companies in Africa for nutritious maize.

Qualities valued by some actors may be overlooked by others. For example, some maize varieties have leafy ears with deceptively small cobs, which may protect the grain against pests but could be rejected by farmers.

It is important to have a wide array of expertise from breeding, market research and socio-economic analysis so that the different trait choices are weighed according to different lenses and a clear strategy for varietal turnover is defined.

High performing hybrids may not be enough for large-scale adoption

In southern Africa, climate experts warn that farmers could face drought every three years. CIMMYT has rightly prioritized drought tolerance (DT) over the last decade under the Stress Tolerant Maize for Africa initiative. Recently developed DT maize hybrids often outperform the popular varieties on the market, yet the varietal turnover has been slow in some regions. Farmers’ perceptions of what is a good maize may influence the success or rejection of a new variety. The risk for farmers and seed companies to try out a new variety is an important factor in adoption as well.

An appropriate seed marketing strategy is key, often seen only as the responsibility of private seed companies, but should be considered by public research as well.

CIMMYT has been selecting maize that can withstand drought during the critical phase just before and during the flowering stage, when the silks of the future cobs form. Even if rains stop at this stage, farmers growing DT maize will harvest some decent grain. If a long dry spell occurs just after planting, the crop will fail regardless of drought-tolerant breeding efforts. Farmers may then reject DT maize after such failure if the messaging is not clear.

Product profiling is a collaborative process, not an imposing one

Redefining the breeding strategy through product profiling is not set in stone. Kotch recommends annual review as a vehicle for constant improvement. B.M. Prasanna, director of CIMMYT’s Global Maize Program and the CGIAR Research Program on Maize (MAIZE) explained that the product profiles could vary among various partners, as each partner looks at their own comparative advantage to reach success.

It is important to have everyone from the maize seed value chain on board to succeed. Regina Tende, maize breeder and entomologist at the Kenya Agricultural & Livestock Research Organization (KALRO), warned that regulatory bodies who review and authorize new varieties to reach the market must be integrated in the discussion “as their interest, primarily yield, may not be the final requirement for the target market.”

Seed systems specialists are also crucial to operationalize a successful breeding and delivery strategy, to address the different scaling bottlenecks and identify “the market changer.”

According to Kotch, CGIAR and national research organizations should avoid developing products too similar to the popular varieties on the market. Adoption occurs when something very different, for example new resistance to the devastating maize lethal necrosis, gives an innovation edge to seed companies. In Ethiopia, the replacement of an old popular variety BH660 by climate resilient BH661 was successful for various reasons including superior hybrid seed production with grey leaf spot resistance built in the seed parent population.

This demand-driven, multi-lens approach of product profiling including breeding, gender, socio-economic and policy dimensions will help to ensure that new varieties are more likely to be picked by farmers and partner seed companies, and increase the impact of CIMMYT’s Global Maize Program.

Kenyan maize farmers set to benefit from development of improved varieties

Anne Wambui has been growing maize in her farm located in the upper eastern Kenyan county of Embu for three decades to cater for domestic consumption and sale in the nearby market.

During this period, she has relied on buying varieties from seed stockists that are either recommended by the agricultural extension officials or not necessarily varieties that she prefers to plant.

However, scientists at the International Maize and Wheat Improvement Center (CIMMYT) emphasized that farmers should be availed varieties that meet their varied needs.

Read more here.

Seed production innovations, conservation agriculture and partnerships are key for Africa’s food security

Members of the International Maize Improvement Consortium Africa (IMIC – Africa) and other maize and wheat research partners discovered the latest innovations in seed and agronomy at Embu and Naivasha research stations in Kenya on August 27 and 28, 2019. The International Maize and Wheat Improvement Center (CIMMYT) and the Kenya Agriculture & Livestock Research Organization (KALRO) held their annual partner field days to present sustainable solutions for farmers to cope with poor soils, a changing climate and emerging diseases and pests, such as wheat rust, maize lethal necrosis or fall armyworm.

Versatile seeds and conservation agriculture offer farmers yield stability

“Maize is food in Kenya. Wheat is also gaining importance for our countries in eastern Africa,” KALRO Embu Center Director, Patrick Gicheru, remarked. “We have been collaborating for many years with CIMMYT on maize and wheat research to develop and disseminate improved technologies that help our farmers cope against many challenges,” he said.

Farmers in Embu, like in most parts of Kenya, faced a month delay in the onset of rains last planting season. Such climate variability presents a challenge for farmers in choosing the right maize varieties. During the field days, CIMMYT and KALRO maize breeders presented high-yielding maize germplasm adapted to diverse agro-ecological conditions, ranging from early to late maturity and from lowlands to highlands.

João Saraiva, from the Angolan seed company Jardins d’Ayoba, said having access to the most recent improved maize germplasm is helpful for his young seed company to develop quality seeds adapted to farmers’ needs. He is looking for solutions against fall armyworm, as the invasive species is thriving in the Angolan tropical environment. He was interested to hear about CIMMYT’s progress to identify promising maize lines resistant to the caterpillar. Since fall armyworm was first observed in Africa in 2016, CIMMYT has screened almost 1,200 inbred lines and 2,900 hybrids for tolerance to fall armyworm.

“Hopefully, we will be developing and releasing the first fall armyworm-tolerant hybrids by the first quarter of 2020,” announced B.M. Prasanna, director of CIMMYT’s Global Maize Programme and the CGIAR Research Program on Maize (MAIZE).

“Through continuous innovations to build varieties that perform well despite dry spells, heat waves or disease outbreak, maize scientists have been able to deliver significant yield increases each year across various environments,” explained Prasanna. “This genetic gain race is important to respond to growing grain demands despite growing climate risks and declining soil health.”

Berhanu Tadesse, maize breeder at the Ethiopian Institute for Agricultural Research (EIAR), was highly impressed by the disease-free, impeccable green maize plants at Embu station, remembering the spotted and crippled foliage during a visit more than a decade ago. This was “visual proof of constant progress,” he said.

For best results, smallholder farmers should use good agronomic practices to conserve water and soil health. KALRO agronomist Alfred Micheni demonstrated different tillage techniques during the field tour including the furrow ridge, which is adapted to semi-arid environments because it retains soil moisture.

Late maturity hybrid demonstration plot at Embu station. (Photo: Jérôme Bossuet/CIMMYT)

Innovations for a dynamic African seed sector

A vibrant local seed industry is needed for farmers to access improved varieties. Seed growers must be able to produce pure, high-quality seeds at competitive costs so they can flourish in business and reach many smallholder farmers.

Double haploid technology enables breeders to cut selection cycles from six to two, ultimately reducing costs by one third while ensuring a higher level of purity. Sixty percent of CIMMYT maize lines are now developed using double haploid technology, an approach also available to partners such as the Kenyan seed company Western Seeds.

The Seed Production Technology for Africa (SPTA) project, a collaboration between CIMMYT, KALRO, Corteva Agriscience and the Agricultural Research Council, is another innovation for seed companies enabling cheaper and higher quality maize hybrid production. Maize plants have both female and male pollen-producing flowers called tassels. To produce maize hybrids, breeders cross two distinct female and male parents. Seed growers usually break the tassels of female lines manually to avoid self-pollination. SPTA tested a male sterility gene in Kenya and South Africa, so that female parents did not produce pollen, avoiding a detasseling operation that damages the plant. It also saves labor and boosts seed yields. Initial trial data showed a 5 to 15% yield increase, improving the seed purity as well.

World-class research facilities to fight new and rapidly evolving diseases

The KALRO Naivasha research station has hosted the maize lethal necrosis (MLN) quarantine and screening facility since 2013. Implementing rigorous phytosanitary protocols in this confined site enables researchers to study the viral disease first observed in Africa 2011 in Bomet country, Kenya. Working with national research and plant health organizations across the region and the private sector, MLN has since been contained.

A bird’s eye view of the demonstration plots is the best testimony of the impact of MLN research. Green patches of MLN-resistant maize alternate with yellow, shrivelled plots. Commercial varieties are susceptible to the disease that can totally wipe out the crop, while new MLN-resistant hybrids yield five to six tons per hectare. Since the MLN outbreak in 2011, CIMMYT has released 19 MLN-tolerant hybrids with drought-tolerance and high-yielding traits as well.

Maize Lethal Necrosis (MLN) sensitive and resistant hybrid demo plots in Naivasha’s quarantine & screening facility (Photo: KIPENZ/CIMMYT)

A major challenge to achieving food security is to accelerate the varietal replacement on the market. CIMMYT scientists and partners have identified the lengthy and costly seed certification process as a major hurdle, especially in Kenya. The Principal Secretary of the State Department for Research in the Ministry of Agriculture, Livestock, and Fisheries, Hamadi Boga, pledged to take up this issue with the Kenya Plant and Health Inspectorate Service (KEPHIS).

“Such rapid impact is remarkable, but we cannot rest. We need more seed companies to pick up these new improved seeds, so that our research reaches the maximum number of smallholders,’’ concluded Prasanna.

Scientists set to release stem rust resistant wheat varieties in Kenya

Two hybrid wheat varieties that are resistant to stem rust disease are set to be released to Kenyan farmers later this year. Mandeep Randham, wheat breeder and geneticist at International Maize and Wheat Improvement Center said that the two varieties, ‘Kenya Jacana’ and ‘Kenya Kasuku’ have high yields and resistant to stem rust disease known as U99. Read more here.

Breaking Ground: Anani Bruce guards Africa’s maize harvest from insect pests

Anani Bruce, maize entomologist at the International Maize and Wheat Improvement Center (CIMMYT) since 2013, is intensively engaged in an expert partnership supporting African maize farmers’ stand against deadly insect pests, especially fall armyworm and stem borers.

A moth species native to the Americas, fall armyworm was detected in Nigeria in 2016 and in less than three years has overrun sub-Saharan Africa’s maize growing regions. At its larval stage, it feeds on leaves and ears, causing annual harvest losses whose value can exceed $6 billion.

Bruce and his colleagues are rushing to develop maize varieties that feature native genetic resistance to fall armyworm and to arm farmers with locally suited control measures. Finding and strengthening native resistance in maize against the pest is a key pillar of integrated pest management.

“The fall armyworm is so challenging that there’s no single, easy fix,” said Bruce, who earned a PhD in Entomology at the International Centre of Insect Physiology and Ecology (ICIPE) and Kenyatta University, Kenya, in 2008. “We are testing and promoting an integrated management approach which, along with host plant resistance, includes biological control, habitat management, good agronomic practices, safe chemicals, bio-pesticides, and botanical controls.”

“The costs and complexities of such practices are daunting, but farmers can learn if you help them and there is little alternative right now, given that maize is sub-Saharan Africa’s number-one staple food,” Bruce explained.

According to the scientist, breeding is also laborious, because potentially resistant maize plants must be tested under controlled, heavy infestations of insects and this is allowed only in net houses.

“Net houses don’t provide enough room to grow the large number of maize lines needed for rapid and effective breeding progress,” Bruce said. “Even so, we have promising leads on sources of moderate resistance from maize populations developed by CIMMYT in Mexico in the 1980s-90s.”

A case of switching environments and specialties

A native of Togo, a small West African country between Benin and Ghana, Bruce said he was first interested in studying mechanical engineering but did not get the opportunity at the University of Lomé, Togo, where he did his master’s studies in agronomy. A mentor instead suggested he pursue entomology, and he followed this up at the International Institute of Tropical Agriculture (IITA) in Cotonou, Benin, where he undertook research on stem borers as a part of his master’s thesis.

“Surprisingly, I found many parallels with mechanical engineering,” said Bruce, who is based at CIMMYT’s office in Kenya. “There is a vast number and diversity of insect species and their roles and interactions in natural systems are incredibly complex, just as occurs between components in mechanical systems.”

When Bruce moved to ICIPE under the African Regional Postgraduate Program in Insect Science (ARPPIS), he needed to add English to his native French and local languages, but said his first major cultural shock was actually dietary.

“In West Africa we usually eat our maize paste with a sauce,” he explained,” but when I sat down to eat in Kenya, I found that the maize paste called ugali was eaten only with milk or meat, a combination known as nyama choma.”

Despite that and other cultural differences, Bruce said he quickly acclimatized to his new work and study setting in eastern Africa.

Nursing maize’s enemies

At CIMMYT, Bruce provides technical backstopping for national research partners to rear maize stem borers and the fall armyworm, as part of breeding improved maize varieties with insect-pest resistance and other relevant traits.

“Special expertise and conditions are required to raise, transport, and apply the eggs or young larvae properly on experimental maize plants, so that infestation levels are as uniform as possible and breeders can identify genetically resistant plants,” Bruce said.

He has also worked with gene constructs from the bacteria known as Bacillus thurigiensis (Bt). When inserted into maize, the constructs bestow the crop with resistance against stem borer species.

“We have plans to deploy Bt maize in selected countries in eastern and southern Africa, but we are awaiting the resolution of regulatory hurdles,” he explained.

Bruce credits Fritz Schulthess, former IITA and ICIPE entomologist, with providing special inspiration and support for his studies and professional development.

“Fritz believes in sharing his scientific experience with upcoming scientists and in speaking his thoughts in black and white,” Bruce said. “He is a workaholic scientist who will review your paper even past midnight and expects your response before 6 am.”

What farmers want

Tabitha Kamau, 29, is scrutinizing a maize demonstration plot on which 12 different varieties were planted in November 2018. “What I am looking for is a maize variety that produces a lot, even when there is scarce rainfall,” says the single mother of three, who lives in Katheini, in Kenya’s Machakos County, on a quarter of an acre of land.

Together with 350 other smallholder farmers from Katheini and neighboring villages, Kamau is assessing the maize crops and ranking them based on her preferred traits.

Like her peers when asked what makes a good maize variety, she gives high scores to drought-tolerant varieties and those that can yield large and nicely filled cobs despite the dry spell that has affected the area over the last two months.

For five years, Kamau has been planting KDV4, a drought-tolerant open pollinated variety on the family land and another piece of leased plot. This early variety matures in 100 to 110 days and is adapted to dry mid-altitude conditions.

Tabitha Kamau examines drought-tolerant KDV4 maize in her plot in the village of Kavilinguni, Machakos County, Kenya. (Photo: Joshua Masinde/CIMMYT)

KDV4 was released by the Kenya Agricultural & Livestock Research Organization (KALRO) using the International Maize and Wheat Improvement Center (CIMMYT)’s germplasm. It is currently marketed by Dryland Seed Limited and Freshco Seeds, targeting farmers in the water-stressed counties of Kitui, Machakos and Makueni, in the lower eastern regions of Kenya.

The early maturing of varieties like KDV4 presents a good opportunity for its adopters, says Kamau. “If I am able to harvest in three and a half months or less, compared to four months or more for other varieties, I can sell some grain to neighbors still awaiting their harvest who want to feed their families.”

“I heard of new varieties that can germinate well and produce lots of leaves,” explains Catherine Musembi. This farmer from Kivaani looks for maize that performs well even under heat and drought. She likes maize plants with high biomass, as the foliage is used to feed the family’s three cows and two goats.

An enumerator (left) collects a farmer’s details and socioeconomic data before she participates in the evaluation of maize varieties. (Photo: Joshua Masinde/CIMMYT)
An enumerator (left) collects a farmer’s details and socioeconomic data before she participates in the evaluation of maize varieties. (Photo: Joshua Masinde/CIMMYT)

Farmers’ picks

The International Maize and Wheat Improvement Center (CIMMYT) has been undertaking participatory maize variety evaluations since 2016 in Kenya, Rwanda, Tanzania and Uganda. Every year, during the main maize growing season, researchers plant on-farm trials that can be evaluated by farmers.

Kamau and Musembi attended a selection trial in Machakos County, facilitated by a team from KALRO on February 18-19, 2019. This exercise was part of the 2018 mid-season evaluations, which were followed up by end-season assessments a month later.

Participatory farmer evaluations are used to give crucial feedback to CIMMYT’s maize breeding work. First, farmers get an opportunity to state what traits are important for them and rank them according to their importance. Then, participants evaluate varieties planted in the trial and give a score on individual trait and the overall performance for each variety planted. And they conclude the exercise by rating the best three plots.

In the drier eastern part of Kenya, farmers might be more interested in traits such as drought tolerance, early maturity and disease resistance. In central Kenya, where dairy farming is commonly practiced, a variety with more biomass could be preferred.

“Our work is to tease out the information regarding which traits contribute to a good score in the overall score,” explains Bernard Munyua, a socioeconomics research assistant at CIMMYT. Statistical analysis of the farmers’ score cards will reveal if the initial rating of criteria plays a strong role in the final overall appreciation of a variety. For instance, farmers may give high importance to height or biomass, yet it may not play a role in their ranking of best varieties.

“Such data is important for maize breeders to support future variety improvement work,” Munyua notes. “Moreover, by disaggregating the farmers opinions by region and socioeconomic attributes such as gender, education and income, we can define the priority traits by region or farmers’ socioeconomic profiles. It helps better target maize breeding work according to the needs on the ground and gives useful knowledge to seed companies for their seed marketing strategy,” he adds.

For instance, in the drier eastern part of Kenya, farmers might be more interested in traits such as drought tolerance, early maturity and disease resistance. In central Kenya, where dairy farming is commonly practiced, a variety with more biomass could be preferred. In western Kenya, they could be more interested in grain yields and cob characteristics to improve their sales after harvest.

Agnes Nthambi (left) and other farmers evaluate maize varieties developed through CIMMYT’s Stress Tolerant Maize for Africa (STMA) project. (Photo: Joshua Masinde/CIMMYT)
Agnes Nthambi (left) and other farmers evaluate maize varieties developed through CIMMYT’s Stress Tolerant Maize for Africa (STMA) project. (Photo: Joshua Masinde/CIMMYT)

Agnes Nthambi, the farmer who hosted the demonstration plot, is very positive about her participation, as she learned about some of the ideal agronomic practices as well as the performance of new varieties. “On this trial, I learned that spacing was about two times shorter than we are generally used to. Even with the more constricted spacing, the maize has performed much better than what we are used to seeing,” she says. She also learned that fertilizer is applied at the time of planting. In her case, she normally applies fertilizer much later after germination has already occurred.

Nthambi says her family cannot afford losing both the fertilizer and the seed in case the rains fail. This time, she expects a good harvest from the one-acre farm, to supplement her family’s income.

Bill Gates highlights impact of CIMMYT’s drought-tolerant maize

 

In a blog post and video released today, Bill Gates talks about the essential role the CGIAR system plays in feeding the world. He highlights the work the International Maize and Wheat Improvement Center (CIMMYT) is doing to develop and spread the use of drought-tolerant maize varieties. “One of the leading CGIAR research centers is CIMMYT, the International Maize and Wheat Improvement Center. They are working on improvements to maize that are more productive, that are resistant to drought and diseases. It’s a leading example of the amazing work the CGIAR system does to help smallholder farmers,” Gates says.

In 2018, Bill Gates launched a campaign about climate change, because he worried not enough people understood the dimensions of the problem. In a previous blog post, he reminded readers that not only the energy sector is concerned, but also “the other 75%” — in particular agriculture and food systems. We need innovations to reduce our carbon footprint, Gates explained, but also to help the most vulnerable to cope with the effects of growing climate risks.

Rainfed smallholder farming families in sub-Saharan Africa are particularly at risk, as their livelihoods depend on unpredictable rainfall patterns. By the 2030s drought and rising temperatures could render 40% of the continent’s maize-growing area unsuitable for current varieties.

Drought-tolerant maize varieties could improve the climate resilience and the livelihoods of millions family farmers across Africa. The innovations offered by these varieties are affordable and scalable.

Behind the scenes

The video crew films and interview in a seed storage room. (Photo: Jerome Bossuet/CIMMYT)
The video crew films and interview in a seed storage room. (Photo: Jerome Bossuet/CIMMYT)

A team from Gates Notes came to drought-prone Machakos county in Kenya to visit farmers who are growing drought-tolerant hybrid maize. This variety, developed by the International Maize and Wheat Improvement Center (CIMMYT) and sold in the county by Dryland Seeds Limited under the SAWA brand, can yield up to 20% more than other drought-tolerant hybrids, explained the company’s managing director, Ngila Kimotho.

Despite limited rainfall in the village of Vyulya, Veronica Nduku harvested well-filled maize cobs. Her neighbour, who grows a local variety, had a less successful harvest.

CIMMYT developed these varieties under the Drought Tolerant Maize for Africa (DTMA) initiative, a ten-year project which finished in 2015. This work is continuing under the Stress Tolerant Maize for Africa (STMA) initiative, which is developing maize varieties that cope well with drought and other climate stresses. So far 3.5 million farmers in 13 African countries are benefitting from stress-tolerant maize varieties.

 

The video crew sets up the interview with Veronica Nduku. (Photo: Jerome Bossuet/CIMMYT)
The video crew sets up the interview with Veronica Nduku. (Photo: Jerome Bossuet/CIMMYT)

Honoring the life and legacy of Fred Palmer

Fred Palmer, former CIMMYT maize agronomist, in his office at Egerton University, Kenya, in 1994.

With sorrow we report the passing on June 14 of Anthony F. E. (Fred) Palmer, former maize agronomist and physiologist who contributed notably to the International Maize and Wheat Improvement Center (CIMMYT) networking and capacity building during crucial periods.

A British national, Palmer joined CIMMYT as a post-doctoral fellow in 1968 and retired from the center in 1996. With undergraduate studies in Agronomy at the University of Reading, Palmer completed masters and doctoral degrees in Crop Physiology at Cornell University. His early years at CIMMYT headquarters included work in maize physiology, agronomy and training.

In 1972 Palmer moved to Pakistan, serving as a production agronomist in that key Green Revolution setting until 1978, when he returned to Mexico as a training officer. “Fred was a true gentleman as a researcher and trainer,” said Stephen Waddington, retired CIMMYT maize agronomist who worked with Fred in Africa. “He was a mentor and friend to many junior CIMMYT staff, including myself, and countless trainees and visiting scientists from partner countries.”

Capitalizing on his experience and accomplishments, in 1985 CIMMYT posted Palmer to Nairobi, Kenya, as the team leader of the East African Cereal Project, funded by the Canadian International Development Agency (CIDA). During the project’s third phase, Palmer helped to establish and guide an entry-level crop management training program, in conjunction with the Kenya Agricultural Research Institute (KARI) and Egerton University, targeting maize researchers from eastern and southern Africa. Based at the university’s Njoro campus, the effort included construction of training facilities and guest rooms and Palmer successfully prepared Egerton administrators and faculty to take over the program, according to Joel Ransom, a North Dakota State University professor who served as a CIMMYT maize agronomist in Asia and sub-Saharan Africa.

“Scores of young agronomists mastered the fundamentals of on-farm research through that program,” Ransom said. “Palmer’s mentoring, training, and leadership greatly advanced the professional development of African maize and wheat scientists.”

Matthew Reynolds, CIMMYT distinguished scientist and wheat physiologist, recalls talking to Palmer about the latter’s efforts to apply fledgling tools for measuring photosynthesis in the field, a topic in which he had specialized at Cornell. “Fred was a very kind and unassuming man who treated everyone with respect, qualities that made him a great training officer and a well-regarded colleague,” said Reynolds.

Palmer firmly believed that national partners needed the capacity to train staff, particularly those fresh out of university studies, strengthening both their knowledge and professional linkages.

“By bringing young scientists together and working with them as a multidisciplinary research team,” Palmer wrote in a report on CIMMYT training in eastern and southern Africa, “it is anticipated that these scientists will learn to value each other’s work as essential to successful research.”

The CIMMYT community sends its warmest condolences to the Palmer family.

Millions at lower risk of vitamin A deficiency after six-year campaign to promote orange-fleshed sweet potato

A community health worker in Rwanda talks to people on hygiene and the importance of a balanced diet, as part of the SUSTAIN project. (Photo: CIP)
A community health worker in Rwanda talks to people on hygiene and the importance of a balanced diet, as part of the SUSTAIN project. (Photo: CIP)

STOCKHOLM, Sweden — Millions of families in Africa and South Asia have improved their diet with a special variety of sweet potato designed to tackle vitamin A deficiency, according to a report published today.

A six-year project, launched in 2013, used a double-edged approach of providing farming families with sweet potato cuttings as well as nutritional education on the benefits of orange-fleshed sweet potato.

The Scaling Up Sweetpotato through Agriculture and Nutrition (SUSTAIN) project, led by the International Potato Center (CIP) and more than 20 partners, reached more than 2.3 million households with children under five with planting material.

The project, which was rolled out in Kenya, Malawi, Mozambique and Rwanda as well as Bangladesh and Tanzania, resulted in 1.3 million women and children regularly eating orange-fleshed sweet potato when available.

“Vitamin A deficiency (VAD) is one of the most pernicious forms of undernourishment and can limit growth, weaken immunity, lead to blindness, and increase mortality in children,” said Barbara Wells, director general of CIP. “Globally, 165 million children under five suffer from VAD, mostly in Africa and Asia.”

“The results of the SUSTAIN project show that agriculture and nutrition interventions can reinforce each other to inspire behavior change towards healthier diets in smallholder households.”

Over the past decade, CIP and partners have developed dozens of biofortified varieties of orange-fleshed sweet potato in Africa and Asia. These varieties contain high levels of beta-carotene, which the body converts into vitamin A.

Just 125g of fresh orange-fleshed sweet potato provides the daily vitamin A needs of a pre-school child, as well as providing high levels of vitamins B6 and C, manganese and potassium.

Under the SUSTAIN project, families in target communities received nutritional education at rural health centers as well as cuttings that they could then plant and grow.

For every household directly reached with planting material, an additional 4.2 households were reached on average through farmer-to-farmer interactions or partner activities using technologies or materials developed by SUSTAIN.

The project also promoted commercial opportunities for smallholder farmers with annual sales of orange-fleshed sweet potato puree-based products estimated at more than $890,000 as a result of the project.

Two women sort orange-fleshed sweet potato in Faridpur district, Bangladesh. (Photo: Sara Quinn/CIP)
Two women sort orange-fleshed sweet potato in Faridpur district, Bangladesh. (Photo: Sara Quinn/CIP)

Perspectives from the Global South

The results of the initiative were published during the EAT Forum in Stockholm, where CGIAR scientists discussed the recommendations of the EAT-Lancet report from the perspective of developing countries.

“The SUSTAIN project showed the enormous potential for achieving both healthy and sustainable diets in developing countries using improved varieties of crops that are already widely grown,” said Simon Heck, program leader, CIP.

“Sweet potato should be included as the basis for a sustainable diet in many developing countries because it provides more calories per hectare and per growing month than all the major grain crops, while tackling a major nutrition-related health issue.”

At an EAT Forum side event, scientists highlighted that most food is grown by small-scale producers in low- and middle-income countries, where hunger and undernutrition are prevalent and where some of the largest opportunities exist for food system and dietary transformation.

“There are almost 500 million small farms that comprise close to half the world’s farmland and are home to many of the world’s most vulnerable populations,” said Martin Kropff, director general of the International Maize and Wheat Improvement Center (CIMMYT).

“Without access to appropriate technologies and support to sustainably intensify production, small farmers — the backbone of our global food system — will not be able to actively contribute a global food transformation.”

Matthew Morell, director general of the International Rice Research Institute (IRRI), added: “If the EAT-Lancet planetary health diet guidelines are to be truly global, they will need to be adapted to developing-world realities — such as addressing Vitamin A deficiency through bio-fortification of a range of staple crops.

“This creative approach is a strong example of how to address a devastating and persistent nutrition gap in South Asia and Africa.”


This story is part of our coverage of the EAT Stockholm Food Forum 2019.
See other stories and the details of the side event in which CIMMYT is participating.


For more information or interview requests, please contact:

Donna Bowater
Marchmont Communications
donna@marchmontcomms.com
+44 7929 212 434

The International Potato Center (CIP) was founded in 1971 as a research-for-development organization with a focus on potato, sweet potato and Andean roots and tubers. It delivers innovative science-based solutions to enhance access to affordable nutritious food, foster inclusive sustainable business and employment growth, and drive the climate resilience of root and tuber agri-food systems. Headquartered in Lima, Peru, CIP has a research presence in more than 20 countries in Africa, Asia and Latin America. CIP is a CGIAR research center. www.cipotato.org

CGIAR is a global research partnership for a food-secure future. CGIAR science is dedicated to reducing poverty, enhancing food and nutrition security, and improving natural resources and ecosystem services. Its research is carried out by 15 CGIAR centers in close collaboration with hundreds of partners, including national and regional research institutes, civil society organizations, academia, development organizations and the private sector. www.cgiar.org