Participants of the kick-off meeting for the Ukama Ustawi Initiative stand for a group photo in Nairobi, Kenya. (Photo: Mwihaki Mundia/ILRI)
Partners of CGIARâs new regional integrated Initiative in eastern and southern Africa held a kick-off meeting in Nairobi on March 2â3, 2022. Eighty-five people participated, including national agricultural research extension programs, government representatives, private sector actors, funders and national and regional agricultural research and development organizations.
Entitled Ukama Ustawi, the Initiative aims to support climate-smart agriculture and livelihoods in 12 countries in eastern and southern Africa: Kenya, Zambia, Ethiopia and Zimbabwe (in Phase 1); Malawi, Rwanda, Tanzania and Uganda (in Phase 2); and Eswatini, Madagascar, Mozambique and South Africa (in Phase 3).
The Initiative aims to help millions of smallholders intensify, diversify and de-risk maize-mixed farming through improved extension services, institutional capacity strengthening, targeted farm management bundles, policy support, enterprise development and private investment.
Ukama Ustawi is a bilingual word derived from the Shona and Swahili languages. In Shona, Ukama refers to partnerships, and in Swahili, Ustawi means well-being and development. Together, they resemble the vision for the Initiative to achieve system-level development through innovative partnerships.
The meeting brought together partners to get to know each other, understand roles and responsibilities, identify priorities for 2022, and review the cross-cutting programmatic underpinnings of Ukama Ustawi â including gender and social inclusion, capacity strengthening and learning.
Baitsi Podisi, representing the Centre for Coordination of Agricultural Research and Development for Southern Africa (CCARDESA), said he is excited to be part of the Initiative: “CCARDESA, in its cooperation and coordination mandate, can learn a lot from CGIAR in restructuring to respond to the changing times.â Podisi supported the partnership with CGIAR in the Initiativeâs embedded approach to policy dialogue, working with partners such as CCARDESA, the Association for Strengthening Agricultural Research in Eastern and Central Africa (ASARECA) and the Food, Agriculture and Natural Resources Policy Analysis Network (FANRPAN).
Similarly, FANRPANâs Francis Hale emphasized the need not to re-invent the wheel but to work with partners who already have a convening power, to advance the policy agenda for diversification and sustainable intensification.
What were key issues discussed?
One of the features of Ukama Ustawi is the use of four interconnected platforms: a scaling hub, a policy hub, an accelerator program and a learning platform. These will provide spaces for exchange and learning with partners across all CGIAR Initiatives in the region. Partners conducted a series of âfishbowlâ interactions across work packages to review the planned activities and provide a clearer understanding of deliverables, identify synergies, potential overlaps, common partners and countries, and set timelines.
The Initiative will work with innovative multimedia platforms to change knowledge, attitudes and practices of millions of farmers in eastern and southern Africa. One key partner in this area is the Shamba Shape Up TV show and the iShamba digital platform. Sophie Rottman, Producer of Shamba Shape Up, said she is looking forward to the work with Initiative partners, that will help expand the show to Uganda and Zambia.
Jean Claude Rubyogo, representing the Pan-Africa Bean Research Alliance (PABRA) said: âIt is time we move away from CGIAR-initiated to country-initiated development activities. This is what Ukama Ustawi is all aboutâ.
Martin Kropff, Global Director of Resilient Agrifood Systems at CGIAR, explained CGIARâs regional integrated initiatives are designed to respond to national/regional demands. âThe initiatives will start by working with partners to assess the food and nutritional challenges in the region, and tackle them by bringing in innovative solutions.â
The event was concluded by agreeing on the implementation of the inception phase of the Ukama Ustawi Initiative, and follow-on discussions to finalize key activities in 2022.
Agriculture is one of the five main greenhouse gas-emitting sectors where innovations can be found to reach net zero emissions, according to the new documentary and ten-part miniseries âSolving for Zero: The Search for Climate Innovation.â The documentary tells the stories of scientists and innovators racing to develop solutions such as low-carbon cement, wind-powered global transportation, fusion electricity generation and sand that dissolves carbon in the oceans.
Three CGIAR scientists are featured in the documentary, speaking about the contributions being made by agricultural research.
Whereas all sectors of the global economy must contribute to achieve net zero emissions by 2050 to prevent the worse effects of climate change, agricultural innovations are needed by farmers at the front line of climate change today.
CIMMYT breeder Yoseph Beyene spoke to filmmakers about the use of molecular breeding to predict yield potential. (Image: Wondrium.com)
Breeding climate-smart crops
âClimate change has been a great disaster to us. Day by day itâs getting worse,â said Veronica Dungey, a maize farmer in Kenya interviewed for the documentary.
Around the world, 200 million people depend on maize for their livelihood, while 90% of farmers in Africa are smallholder farmers dependent on rainfall, and facing drought, heatwaves, floods, pests and disease related to climate change. According to CGIAR, agriculture must deliver 60% more food by 2050, but without new technologies, each 1°C of warming will reduce production by 5%.
âSeed is basic to everything. The whole family is dependent on the produce from the farm,â explained Yoseph Beyene, Regional Maize Breeding Coordinator for Africa and Maize Breeder for Eastern Africa at the International Maize and Wheat Improvement Center (CIMMYT). As a child in a smallholder farming family with no access to improved seeds, Beyene learned the importance of selecting the right seed from year to year. It was at high school that Beyene was shown the difference between improved varieties and the locally-grown seed, and decided to pursue a career as a crop breeder.
Today, the CIMMYT maize program has released 200 hybrid maize varieties adapted for drought conditions in sub-Saharan Africa, called hybrids because they combine maize lines selected to express important traits over several generations. Alongside other CGIAR Research Centers, CIMMYT continues to innovate with accelerated breeding approaches to benefit smallholder farmers.
âCurrently we use two kinds of breeding. One is conventional breeding, and another one is molecular breeding to accelerate variety development. In conventional breeding you have to evaluate the hybrid in the field,â Beyene said. âUsing molecular markers, instead of phenotypic evaluation in the field, we are evaluating the genetic material of a particular line. We can predict based on marker data which new material is potentially good for yield.â
Such innovations are necessary considering the speed and the complexity of challenges faced by smallholder farmers due climate change, which now includes fall armyworm. âFall armyworm is a recent pest in the tropics and has affected a lot of countries,â said Moses Siambi, CIMMYT Regional Representative for Africa. âIncreased temperatures have a direct impact on maize production because of the combination of temperature of humidity, and then you have these high insect populations that lead to low yield.â
Resistance to fall armyworm is now included in new CIMMYT maize hybrids alongside many other traits such as yield, nutrition, and multiple environmental and disease resistances.
Ana MarĂa Loboguerrero, Research Director for Climate Action at the Alliance of Bioversity and CIAT, spoke about CGIARâs community-focused climate work. (Image: Wondrium.com)
Building on CGIARâs climate legacy
Ana MarĂa Loboguerrero, Research Director for Climate Action at the Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), told the filmmakers about CGIARâs community-focused climate work, which includes Climate-Smart Villages and Valleys. Launched in 2009, these ongoing projects span the global South and effectively bridge the gap between innovation, research and farmers living with the climate crisis at their doorsteps.
âTechnological innovations are critical to food system transformation,â said Loboguerrero, who was a principal researcher for the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). âBut if local contexts are not considered, even the best innovations may fail because they do not respond to beneficiaries needs.â
CCAFSâs impressive legacy â in research, influencing policy and informing $3.5 billion of climate-smart investments, among many achievements â is now being built upon by a new CGIAR portfolio of initiatives. Several initiatives focus on building systemic resilience against climate and scaling up climate action started by CCAFS that will contribute to a net-zero carbon future.
Loboguerrero pointed to other innovations that were adopted because they addressed local needs and were culturally appropriate. These include the uptake of new varieties of wheat, maize, rice and beans developed by CGIAR Research Centers. Taste, color, texture, cooking time and market demand are critical to the success of new varieties. Being drought-resistant or flood-tolerant is not enough.
Local Technical Agroclimatic Committees, another CCAFS innovation that is currently implemented in 11 countries across Latin America, effectively delivers weather information in agrarian communities across the tropics. Local farmers lead these committees to receive and disseminate weather information to better plan when they sow their seeds. âThis success would not have been possible if scientists hadnât gotten out of their labs to collaborate with producers in the field,â Loboguerrero said.
Climate adaptation solutions
Across CGIAR, which represents 13 Research Centers and Alliances, and a network of national and private sector partners, the goal is to provide climate adaptation solutions to 500 million small-scale farmers around the world by 2030. This work also covers reducing agricultural emissions, environmental impacts and even the possibility of capturing carbon while improving soil health.
Interested in learning more? The documentary âSolving for Zero: The Search for Climate Innovationâ is available at Wondrium.com alongside a 10-part miniseries exploring the ongoing effort to address climate change.
Womenâs involvement in maize production is often shrouded in assumptions. One might assume that women have minimal say in management decisions, especially regarding jointly managed plots, due to rigid gender norms that prioritize menâs decisions on farming-related matters. However, operating under such assumptions about womenâs role in the management of maize farms risks confining women to specific roles and not meeting their needs in the maize seed system.
To break these assumptions, Rachel Voss, Gender Specialist at the International Maize and Wheat Improvement Center (CIMMYT), and a team of fellow researchers are conducting a study, “Unpacking maize plot management roles of women and men in smallholder households in Kenya.” The study, part of the Accelerating Genetic Gains in Maize and Wheat (AGG) project, aims to asses the gender dynamics of maize management in Kenya in order to categorize plots and households, analyzing intrahousehold decision-making and evaluating which women have the power and agency to apply their preferences for seed on their farms â and which ones do not.
Challenging perceptions
Take, for example, Sofa Eshiali, a 60-year-old farmer from Ikolomani, western Kenya, who participated in the study. She defies the stereotype of women having a limited role in maize farming, as she is deeply involved in decision-making on maize production in her household and represents an important client for new breeding efforts and more inclusive seed distribution programs. Together with her husband, she has grown maize primarily for family consumption since getting married, getting involved in all matters concerning their half acre farm. âFor us, when we want to plant [our maize seeds], we sit together and discuss the cash we have at hand and decide if we can get two hands to help us work our half acre of land,â she says.
Eshiali and her husband make a joint decision on the maize seed variety they plant every season based on performance of the previous planting season. âWe previously used the H614D [maize seed variety] and it did well in our farm â except when it gets very windy, as our crops fall and our bean crop gets destroyed before it is ready for harvest. Last season, we decided to use the H624 because it remains there even when it is windy,â she said, demonstrating her knowledge of maize seed variety.
In addition to seed choice and farm labour, Eshiali and her husband also discuss what fertilizer to use and when they need to shift to a new choice, and they make decisions together concerning their farm and farm produce. This includes deciding what amount of harvest they can sell and what to do with the sale proceeds. For a household like Eshiali’s, new maize varieties need to appeal to â and be marketed to â both spouses.
Sofa Eshiali, a 60-year-old maize farmer from Ikolomani, Western Kenya, who participated in the study. (Photo: Susan Umazi Otieno/CIMMYT)
Farming roles
Eshiali’s reality of equitable engagement in the farm may not be the case for other households in her community and across Kenya, meaning that reaching women with new varieties is not always simple.
As Voss points out, women are often less involved in major household decisions than men, frequently due to longstanding social norms. However, there is little understanding of how decisions are negotiated at the household level, particularly when crops are jointly produced. Furthermore, in many places, men are perceived to be the ârealâ farmers, while women are viewed to only play a supportive role within household farming. This can lead to the exclusion of women from extension activities, trainings and input marketing efforts.
Against this background, Voss notes that the ongoing study aims to identify in which types of households women have control over seed choice and in which households other constraints might be more important.
âTo get new maize varieties into menâs and womenâs fields, we need to identify the bottlenecks to reaching women. This means understanding, among other things, how decisions about seed are made within households and how households source their seed,â she explains.
Vignettes showing five different decision-making scenarios based on fictitious husband and wife characters. (Photo: Susan Umazi Otieno/CIMMYT)
Best-case scenario
To overcome the challenge of discussing the sensitive topic of decision-making roles between spouses and to encourage more culturally unbiased, candid responses, the study uses vignettes, or short stories, to describe various scenarios. This enables farmers to relate with different farm management decision making scenarios without pointing fingers at their spouses.
The studyâs coauthor and research team leader, Zachary Gitonga, explains that the use of vignettes is still a relatively new method, especially in agricultural research, but enables digging deeper into sensitive topics.
Data collection involved a joint survey with both men and women household heads about maize plot management before breaking into separate discussions using the vignettes. These presented five possible decision-making scenarios with fictitious husband and wife characters. The five scenarios were then used to discuss strategic seed choices, operational decisions related to issues such as planting date and hiring farm labor, and financial decisions such as the use of the income from the maize sales.
âBy presenting a set of short stories, a farmer can determine what scenario they relate with. In the study, farmers can talk about sensitive interaction without having to assign responsibility to their spouse, especially negatively, in the way decisions are made,â Gitonga said.
The vignettes also made it easier for both the enumerators to explain the scenarios and the farmers to understand and freely give their feedback. Sometimes, he pointed out, what men and women perceive as joint decision-making might not be the same. For instance, some men may think informing their wives that they are going to buy a particular seed means involving them. Here, the vignette activity aims to unpack the reality of joint decision-making in households.
From East Africa to Asia
During a recent field visit to the study area in Kakamega, Kenya, Hom Gartaula, Gender and Social Inclusion Research Lead at CIMMYT, noted the studyâs importance to the inclusion of women in the farming cycle. âWe urgently need to better understand the reality of womenâs and menâs situation in terms of access to maize seed and other needed inputs and services. Otherwise, we risk designing breeding and seed systems that do not address the needs of the most vulnerable farmers, including women,â he said, adding that data from the study will enable insights into and comparison with the gender dynamics of wheat production in South Asia through cross-regional learning.
Gartaula also noted that, even though men predominantly manage South Asiaâs wheat agriculture, women significantly contribute to it, especially in smallholder farming systems. In recent years, womenâs contribution to providing labor and decision-making in wheat agriculture has increased due to the feminization of agriculture and livelihood diversification among smallholders.
Since womenâs contributions to wheat farming are often vital to pre- and post-harvest processes, Gartaula notes they ought to be part of the entire maize and wheat value chain. That includes building more equitable seed delivery systems. âIt is therefore important to have seed products that address the needs of different users and include home consumption and commercial sales,â he says.
The study will inform future efforts to ensure equitable seed access for both men and women farmers. Ultimately, if both men and women farmers access the best seed based on their needs and priorities, incomes will rise, households will be better sustained, and communities will become more food secure.
Dorcus Chepkesis Gemenet is a Breeding Simulation Specialist working with CIMMYTâs Integrated Development program.
She is currently working with the CGIAR Excellence in Breeding (EiB) Platform, in the Breeding Program Optimization team as a Breeding Simulation Specialist mainly giving direct support on program optimization for Roots, Tubers and Bananas CGIAR group of crops (RTB) with IITA, CIAT and CIP.
She has more than 10 yearsâ experience working with different CGIAR centers. Before joining EIB, she worked for the International Potato Center (CIP) as a Molecular Breeder and Quantitative Geneticist with duties to develop genomics-ssisted breeding tools and establish quality control standards in sweet potato and potato. Before CIP, as part of her PhD, she worked with ICRISAT in the Sahel region of West Africa (Niger, Mali, Burkina Faso and Senegal) on the genetic basis of low phosphorus tolerance in the Pearl millet systems. Chepkesis Gemenet was also part of the Kenya Maize Working group (KALRO) and worked on CIMMYT/NARS Projects including IRMA II, DTMA, WEMA and IMAS.
The findings, published in Nature Food, extend many potential benefits to national breeding programs, including improved wheat varieties better equipped to thrive in changing environmental conditions. This research was led by Sukhwinder Singh of the International Maize and Wheat Improvement Center (CIMMYT) as part of the Seeds of Discovery project.
Since the advent of modern crop improvement practices, there has been a bottleneck of genetic diversity, because many national wheat breeding programs use the same varieties in their crossing program as their âeliteâ source. This practice decreases genetic diversity, putting more areas of wheat at risk to pathogens and environmental stressors, now being exacerbated by a changing climate. As the global population grows, shocks to the worldâs wheat supply result in more widespread dire consequences.
The research team hypothesized that many wheat accessions in genebanks â groups of related plant material from a single species collected at one time from a specific location â feature useful traits for national breeding programs to employ in their efforts to diversify their breeding programs.
âGenebanks hold many diverse accessions of wheat landraces and wild species with beneficial traits, but until recently the entire scope of diversity has never been explored and thousands of accessions have been sitting on the shelves. Our research targets beneficial traits in these varieties through genome mapping and then we can deliver them to breeding programs around the world,â Singh said.
Currently adopted approaches to introduce external beneficial genes into breeding programsâ elite cultivars take a substantial amount of time and money. âBreeding wheat from a national perspective is a race against pathogens and other abiotic threats,â said Deepmala Sehgal, co-author and wheat geneticist in the Global Wheat program at CIMMYT. âAny decrease in the time to test and release a variety has a huge positive impact on breeding programs.â
Deepmala Sehgal shows LTP lines currently being used in CIMMYT trait pipelines at the experimental station in Toluca, Mexico, for introgression of novel exotic-specific alleles into newly developed lines. (Photo: CIMMYT)
Taking into genetic biodiversity
The findings build from research undertaken through the Seeds of Discovery project, which genetically characterized nearly 80,000 samples of wheat from the seed banks of CIMMYT and the International Center for Agricultural Research in the Dry Areas (ICARDA).
First, the team undertook a large meta-survey of genetic resources from wild wheat varieties held in genebanks to create a catalog of improved traits.
âOur genetic mapping,â Singh said, âidentifies beneficial traits so breeding programs donât have to go looking through the proverbial needle in the haystack. Because of the collaborative effort of the research team, we could examine a far greater number of genomes than a single breeding program could.â
Next, the team developed a strategic three-way crossing method among 366 genebank accessions and the best historical elite varieties to reduce the time between the original introduction and deployment of an improved variety.
Sukhwinder Singh (second from left) selects best performing pre-breeding lines in India. (Photo: CIMMYT)
Worldwide impact
National breeding programs can use the diverse array of germplasm for making new crosses or can evaluate the germplasm in yield trials in their own environments.
The diverse new germplasm is being tested in major wheat producing areas, including India, Kenya, Mexico and Pakistan. In Mexico, many of the lines showed increased resistance to abiotic stresses; many lines tested in Pakistan exhibited increased disease resistance; and in India, many tested lines are now part of the national cultivar release system. Overall, national breeding programs have adopted 95 lines for their targeted breeding programs and seven lines are currently undergoing varietal trials.
âThis is the first effort of its kind where large-scale pre-breeding efforts have not only enhanced the understanding of exotic genome footprints in bread wheat but also provided practical solutions to breeders,â Sehgal said. âThis work has also delivered pre-breeding lines to trait pipelines within national breeding programs.â
Currently, many of these lines are being used in trait pipelines at CIMMYT to introduce these novel genomic regions into advanced elite lines. Researchers are collaborating with physiologists in CIMMYTâs global wheat program to dissect any underlying physiological mechanisms associated with the research teamâs findings.
âOur investigation is a major leap forward in bringing genebank variation to the national breeding programs,â Singh explained. âMost significantly, this study sheds light on the importance of international collaborations to bring out successful products and new methods and knowledge to identify useful contributions of exotic in elite lines.â
Cover photo: A researcher holds a plant of Aegilops neglecta, a wild wheat relative. Approximately every 20 years, CIMMYT regenerates wheat wild relatives in greenhouses, to have enough healthy and viable seed for distribution when necessary. (Photo: RocĂo Quiroz/CIMMYT)
Farmer Florence Ochieng harvests green maize on her 105-acre family farm near Kitale, Kenya. (Photo: P. Lowe/CIMMYT)
Smallholder farmers are often torn between maize seed varieties that have multiple desirable traits. Since they cannot always have it all â there are limits on what traits breeders can integrate in any given variety â they face the dilemma of which seed to pick at the expense of an equally desirable option.
Trait preference trade-offs among maize farmers in western Kenya, published in March 2021, provides evidence of this prioritization and seeks to help breeders, seed companies and other stakeholders set priorities that account for farmersâ needs and their willingness to make preference trade-offs. The researchers evaluated responses from 1,288 male and female farmers in the mid-altitude maize growing areas of western Kenya.
The study argues that farmer-centered seed systems (including seed companies) should be guided by farmersâ priorities and reflect a greater understanding of the tradeoffs these farmers make between traits and varieties. They have two key options, according to Paswel Marenya, the studyâs lead researcher and adoption and impact assessment economist at the International Maize and Wheat Improvement Center (CIMMYT). The first involves prioritizing the critical must-have traits in any one variety. The second option entails having multiple varieties that meet diverse farmersâ needs and then segmenting the seed markets.
While Marenya argues that prioritization is important for balancing commercial realities and farmersâ diverse interests, he is quick to add that âmarket segmentation has limits imposed by the commercial viability of each segment.â
âAt every turn, from breeding to farmer varietal preferences to seed company considerations, there have to be trade-offs, as one cannot keep segmenting the market forever,â Marenya said. âAt some point, you must stop and choose what traits to prioritize in your breeding or commercially viable market segments, based on the most pressing challenges already identified.â
CIMMYT researchers conduct interviews in Kenya to determine farmer preferences for maize traits. (Photo: CIMMYT)
Differences in tradeoffs among men and women
From a gender lens, the paper reveals an obvious difference in tradeoffs made by men and women. Whereas the two groups desire some similar traits in their varieties of choice, women seem to be willing to make slightly larger yield sacrifices in favor of tolerance to drought and Striga and good storability. Women also valued good storability over 90-day maturity, while men appeared to place a higher value on the closed tip, a sign of resistance to moisture infiltration which causes grain rotting.
âThese results imply that unless the risks of storage or pre-harvest losses are reduced or eliminated, the value of high yielding varieties can be diminished if they are susceptible to production stresses or the grain characteristics make them susceptible to storage pests,â the study states.
The study indicates that farmers may adopt stress tolerant and high yielding varieties with somewhat low storability only if advanced grain storage technologies are available.
Until then, the suggestion to policy makers responsible for maize breeding is to use âmulti-criteria evaluationsâ of new varieties to ensure that traits for stress tolerance and storability are given optimal weighting in variety release decisions.
Additionally, information about farmer preferences should be fed back to breeding programs in national and international institutes responsible for maize genetic improvement.
Mary Nzau enters a mock agrodealer shop set up on a field on the outskirts of Tala town in Machakos County, Kenya. On display are nine 2kg bags of hybrid maize seed. She picks one. By the look of it, her mind is made up. After a quick scan of the shelf, she has in her hand the variety that she has been purchasing for years.
Regina Mbaika Mutua is less lucky. The variety she always buys is not on display in the mock shop. As part of the experiment, the research team has removed from the shelf the variety she indicated she usually buys. The teamâs goal is to observe what factors influence her seed purchase decision in the absence of the variety she was expecting to purchase.
âAlthough I did not find the variety I was looking for, I picked an alternative as I have seen it perform well on a neighboring farm,â Mutua says, adding that she will plant it this season alongside recycled (farm-saved) seed on her one-acre farm.
Michael Mutua passes up the popular variety he has been planting for the previous two years. He picks one that has been advertised extensively on local radio. âI have heard about it severally on radio. I would like to experiment with this new seed and see how it performs on my farm. Should I like the results, I will give it a chance in ensuing seasons,â he says.
Pieter Rutsaert explains the study setup at a mock agrodealer shop. (Photo: Joshua Masinde/CIMMYT)
The big adoption conundrum
The goal of the out-of-stock study is to improve an understanding of how farmers make their maize seed choices, says Pieter Rutsaert, Markets and Value Chain Specialist at the International Maize and Wheat Improvement Center (CIMMYT).
âWe do this by inviting farmers to a mock agrodealer store that we set up in their villages and give them a small budget to purchase a bag of seed. However, not all farmers walk into the same store: some will find their preferred variety, others wonât. Some will have access to additional trait information or see some varieties with price promotions while others donât.â
Rutsaert acknowledges that breeding programs and their partner seed companies have done a great job at giving farmers access to maize hybrids with priority traits such as drought tolerance and high yield. CIMMYT then works closely with local seed companies to get varieties into the hands of farmers. âWe want to extend that support by providing insights to companies and public breeding programs on how to get new varieties more quickly into the hands of farmers,â he says.
Pauline Muindi (left), gender research associate with CIMMYT, acts as a mock agrodealer clerk and attends a farmer. (Photo: CIMMYT)
The hybrid maize seed sector in Kenya is highly competitive. Amid intensifying competition, new varieties face a daunting task breaking into the market, independent of their quality. While farmers now have more options to pick from, a major challenge has been how to get them to adopt new varieties.
âMoving farmers from something they know to something they donât is not easy. They tend to stick with what they know and have been growing for years,â Rutsaert says.
Pauline Muindi, gender research associate with CIMMYT, acted as the stand-in clerk at the mock store. She noticed that farmers tend to spend very little time in the shop when their preferred variety is available. However, this all changes in the out-of-stock situation, pushing farmers to step out of their comfort zone and explore new options.
The first step to overcoming this challenge is to entice maize farmers to try a new seed variety, even just once, Rutsaert observes. If it is a good variety, farmers will see that and then the market will work in its favor: farmers will come back to that variety in subsequent years and tell others about it.
âThe good news is that many of the varieties we are currently seeing on the market have performed well â thatâs why theyâre popular. But there are newer varieties that are even better, especially in terms of attributes like drought tolerance. We would like to understand how farmers can be convinced to try out these newer varieties. Is it about the need for more awareness on varietal traits? Can we use price promotions? Or are there other factors?â he says.
A researcher interviews Mary Nzau (right), a farmer from Tala town in Machakos County, after her mock purchase. (Photo: Joshua Masinde/CIMMYT)
Does seed price matter?
âWith todayâs climate uncertainty, it is better to stick to a variety that is adapted to such climate rather than banking on a variety one is oblivious of. The risk is not worth it,â Nzau says. She adds that she would rather buy a higher-priced seed packet she knows and trusts than a lower-priced one that she has not used in the past. Radio promotions of new or other varieties have limited sway over her decision to make the switch.
Faith Voni, another farmer, agrees. âIt is better to purchase a higher-priced variety whose quality I can vouch for than risk purchasing a lower-priced one that I know little about. I do not wish to take such a risk.â Voni says she would also be more inclined to experiment with another variety that she had seen perform well on a neighborâs farm.
Michael Mutua holds a different view. âIf there is an option of an equally good but new variety that is lower-priced than the variety I prefer, my wallet decides,â he says.
Vivian Hoffmann, an economist at the International Food Policy Research Institute (IFPRI) and collaborator on the study, says price can be key for convincing consumers to try a new product. âOur previous research on maize flour choice found that a provisional 10 percent discount boosted sales tremendously,â Hoffmann says. âOf course, that only gets your foot in the door; after that, a new variety will need to win farmers over based on its merits.â
Hoffmann is interested in the extent to which drawing farmersâ attention to key varietal attributes influences their seed choice. âThis information is generally already available on seed packets, but we live in a world of information overload. Promoting certain attributes through in-store signage is an approach that is widely used to help consumers make more healthier food choices. Doing the same for new seed varieties makes a lot of sense.â
Michael Mutua (left) responds to preliminary questions from one of the research team members before proceeding to make his seed selection at the mock agrodealer shop. (Photo: Joshua Masinde/CIMMYT)
The value of drought tolerance
Situated on Kenyaâs eastern region, Machakos is characterized by persistent water stress. Climate change induced erratic rainfall has pushed traits that can tolerate the unfavorable weather conditions in the favoriteâs corner. While other traits such as high yield and disease resistance are equally important, the seed, when planted, must first withstand the effects of droughts or water stress in some seasons and germinate. This is the most crucial step in the long journey to either a decent, bare minimum or no yield. A lot of farmers still plant recycled seed alongside hybrid varieties. But these are no match to water stress conditions, which decimate fields planted with farmer-saved seed.
âIf a variety is not climate resilient, I will likely not harvest anything at all,” says Nzau. She has planted a drought-tolerant variety for ten years now. Prior to that, she had planted about three other varieties as well as recycled seed. âThe only advantage with recycled seed is that given the right amount of rainfall, they mature fast â typically within two months. This provides my family with an opportunity to eat boiled or roast maize,â she notes.
However, varieties need to do more than just survive harsh weather conditions. Breeders face a daunting task of incorporating as many traits as possible to cater to the overarching and the specific interests of multiple farmers. As Murenga Mwimali, a maize breeder at the Kenya Agricultural and Livestock Research Organization (KALRO) and collaborator in this research says, innovations in breeding technologies are making breeding more efficient.
âIt is better to have a diversity of product profiles as different market niches are captured within a particular agroecological zones. This is such that farmers may not just benefit from the minimum traits like drought tolerance, but also more specific traits they are looking for,â Mwimali says.
Smallholder farmers continue to play a central role in the seed development process. Capturing what happens at the point of purchase, for instance, at the agrodealer, and understanding how they purchase seed offers valuable insights on the traits that are deemed essential in the breeding process. This work contributes to CIMMYTâs focus on fast-tracking varietal turnover by turning the levers towards a demand-driven seed system.
Cover photo: Pauline Muindi, gender research associate with CIMMYT, at the mock agrodealer shop where she acted as a clerk. (Photo: CIMMYT)
Last month, the CGIAR Excellence in Breeding (EiB) platform handed over digitization equipment to the Kenya Agricultural and Livestock Research Organization (KALRO) as part of ongoing efforts to modernize the public agencyâs crop breeding programs. The handover of the equipment, valued at roughly $85,000, took place at KALRO headquarters in Nairobi on March 8, 2021, with representatives from the International Maize and Wheat Improvement Center (CIMMYT), EiB and KALRO in attendance.
KALRO received 23 units of equipment including seed counters, label printers, handheld data collectors, tablets and package printers. These will help the organization speed up and enhance the accuracy of various breeding processes, including seed preparation, data collection and data analysis. They will also support inventory management within KALROâs maize, wheat, rice, sorghum, bean, soybean and potato breeding programs at six of its research centers in Kenya.
(L-R) CIMMYT Regional Representative for Africa and Kenya Country Representatives Moses Siambi, CGIAR EiB NARS Coordinator Biswanath Das, KALRO Director General Eliud Kireger and KALRO Deputy Director General for Crops Felister Makini at the digitization equipment handover event in Nairobi, Kenya. (Photo: Joshua Masinde/CIMMYT)
Dispensing with laborious systemsÂ
A lack of digitization equipment hampers the research efforts of many national agricultural research systems (NARS) across Africa. This adverse situation is compounded by unreliable institutional memory, which constrains NARS efforts to breed an assortment of crop varieties efficiently.
âCurrently, KALRO uses very laborious systems including manual layouts and collection, followed by manual data entry into computers. This old age process is prone to data entry errors and delays in analysis, publication and reporting,â says KALRO Director General Eliud Kireger.
âWith the equipment we are receiving, information and data can be recalled by a click of a button. The equipment will also significantly reduce research costs related to labor, thus freeing our scientists to focus on core research activities.â
The equipment will also support KALROâs ongoing efforts to digitize its historical data, especially for the maize and wheat programs using the Breeding Management System (BMS). So far, 20 years of maize historical data has been uploaded onto the BMS platform for ease of access.
Prepped for emerging challenges Â
The CGIAR EiB platform was established in 2017 to help modernize public breeding programs in the CGIAR and NARS to increase their rates of genetic gain. In recent years, there has been an upsurge in challenges including climate change, population growth, rapid urbanization, changing dietary inclinations, transboundary movement of pests and diseases. These have exerted an enormous strain on food production systems and elicited the urgency to prioritize the adoption of new plant breeding techniques and technologies to address current and emerging threats. This calls for a holistic approach to tackle the issues including better agronomy and policy, according to EiB NARS Coordinator Biswanath Das.
âModernizing our plant breeding programs to develop new, climate smart, market driven varieties will be at the heart of the solution,â says Das. âWe must ensure that public plant breeding programs are not left behind because for many crops in Africa, there is limited private sector interest. Public breeding programs must shoulder the responsibility for ensuring the development and adoption of the next generation of crop varieties.â
CGIAR EiB NARS Coordinator Biswanath Das shares remarks at the digitization handover event in Nairobi, Kenya. (Photo: Joshua Masinde/CIMMYT)
Already, KALRO breeding programs, in collaboration with international CGIAR centers, have played a leading role in supporting farmers in subâSaharan Africa to address many emerging plant threats such as wheat rust (UG99), maize lethal necrosis (MLN) and fall armyworm.
As part of its commitment to supporting NARS partners, EiB provided over 10 million Kenyan shillings ($92,000) worth of material and in-kind support to various KALRO breeding operations in 2020. This included genotyping support for maize and wheat, support to adopt the BMS digital data management system, technical support and training of KALRO breeders.  Much of the digitization work is driven by EiB’s Operations and Phenoytyping module, led by Gustavo Teixeira. âWe’ll continue to consider a whole range of devices and solutions,â says Teixeira. âIt’s a part of our culture of continuous improvement, so breeding programs can focus on what really adds value to their clients.”
EiB will continue to support NARS across Africa and beyond to digitize their operations, and is working with partners to secure more equipment, training and resources. With this digitization project, EiB has targeted 24 breeding programs in 14 African countries. These include programs run by AfricaRice, CIMMYT, the International Institute of Tropical Agriculture (IITA) and the International Rice Research Institute (IRRI).
“We want to do more to support centers to improve their operations so they can achieve the most effective and cost efficient phenotypic processes â agronomic practices, seed processing and other areas,” explains Teixeira. “We aim to expand to more programs and partners.”
East African Seed Company has a rich history of nearly 50 years, serving farmers with improved climate-resilient seed varieties. Established in 1972, the company produces and sells improved seed, through a wide distribution network in at least 15 countries in sub-Saharan Africa. It also markets agrochemicals and other farm inputs, and has ambitions of expanding to the rest of Africa, trading as Agriscope Africa Limited.
Smallholder farmers in sub-Saharan Africa continue to face multiple biotic and abiotic stresses as they try to improve their farmsâ productivity and their livelihoods. Maize seed that guarantees high yield is a key trait, coupled with other key attributes such as drought tolerance, disease and pest resistance, early seedling vigor as well as suitability for food and animal feed.
With the varieties serving both small- and large-scale commercial farmers, challenges such as the fall armyworm, diminishing soil fertility and erratic rains have persisted in recent years and remain as key farming obstacles. âSuch challenges diminish crop production and the grain quality thereby, lessening farmersâ profitability,â says Rogers Mugambi, Chief Operating Officer of East African Seed Company.
Scientists at the International Maize and Wheat Improvement Center (CIMMYT), in collaboration with partners in the national agriculture research systems and the commercial seed sector, continue to develop seed varieties that can guarantee decent yield even in times of climatic, disease and pest stress.
General view of the East African Seed warehouse. (Photo: Jerome Bossuet/CIMMYT)
Top-notch research trickles down to farmers
Over the years, East African Seed has inked partnerships with CIMMYT, national research institutes and other agencies in the countries where it operates. Such partnerships have been the driving force to its success and the impacts within the farming communities in sub-Saharan Africa.
âOur collaboration with CIMMYT began in 2008 with germplasm acquisition. The cooperation has expanded to include testing networks for new hybrids, early-generation seed production and marketing. The overall beneficiary is the smallholder farmer who can access quality seeds and produce more with climate-smart products,â Mugambi says.
Apart from the multi-stress-tolerant varieties developed and released over time by the national agricultural research programs, CIMMYT recently announced a breakthrough: fall armyworm-tolerant elite maize hybrids for eastern and southern Africa. This success followed three years of rigorous research and experiments conducted in Kenya and signified a key milestone in the fight against fall armyworm.
As part of the partnership in the Drought Tolerant Maize for Africa (DTMA) and Stress Tolerant Maize for Africa (STMA) projects, East African Seed Company (Agriscope Africa Limited) established demonstration farms and conducted field days in Kenya, reaching thousands of farmers as a result. It was also able to produce early generation seed, which supported production of 2,000 metric tons of certified seed. This partnership now continues in the Accelerating Genetic Gains in Maize and Wheat (AGG) project.
The company has contracted large- and small-scale growers across the country to meet its seed production targets.
âMost of our small-scale growers are clustered in groups of up to 30 farmers with less than five acres of farmland. The large growers have advanced irrigation facilities such as the pivot system and seed processing plants. The seed from the fields is pre-cleaned and dried in the out-grower facilities before delivery to our factory for further cleaning and processing,â Mugambi explains.
A handful of improved maize seed from the drought-tolerant variety TAN 250, developed and registered for sale in Tanzania through CIMMYT’s Drought Tolerant Maize for Africa (DTMA) project. (Photo: Anne Wangalachi/CIMMYT)
Out with the drought
Currently, of the 1,300 metric tons of drought-tolerant hybrid seeds it produces yearly, 500 metric tons constitute those derived from the partnership in the STMA project. Two notable hybrids, Â HODARI (MH501) and TOSHEKA (MH401), were derived during the DTMA and STMA projects. Released in 2014 and accepted for regional certification through the Common Market for Eastern and Southern Africa (COMESA)âs regional catalogue, the MH501 is a mid-altitude adapted and medium maturing three-way cross hybrid. The yield advantage of 15% over the local commercial checks triggered widespread adoption by the farmers, according to Mugambi. In Kenya, it was used as a commercial check during national performance trials, from 2017 to 2019.
The MH401, an early maturing hybrid with moderate drought tolerance, has been adopted in lowland and mid-altitude dry ecologies of Kenya and Tanzania. It has a 20% yield advantage over the local commercial checks.
As part of its varietal replacement, East African Seed Company looks to steadily retire older varieties such as KH600-15A and WE1101 and promote new ones including TAJIRI (EASH1220), TAJI (MH502) and FARAJA (MH503).
To promote new varieties and successfully reach smallholders, the company conducts field days, farm-level varietal demonstrations, road shows and radio programs. It also disseminates information on the benefits of new varieties while also dispensing promotional materials such as branded t-shirts and caps.
âAdditionally, we organize annual field days at our research farm in Thika, where key and influential farmers and other stakeholders are invited from across Kenya and neighboring countries to learn about our new agricultural technologies,â Mugambi says.
The food security and livelihoods of smallholder farming families in sub-Saharan Africa depend on maize production. The region accounts for up to two-thirds of global maize production, but is facing challenges related to extreme weather events, climate-induced stresses, pests and diseases, and deteriorating soil quality. These require swift interventions and innovations to safeguard maize yields and quality.
In this Q&A, we reflect on the results and impact of the long-term collaborative work on drought-tolerant maize innovations spearheaded by two CGIAR Research Centers: the International Maize and Wheat Improvement Center (CIMMYT) and International Institute of Tropical Agriculture (IITA). This innovative work has changed guises over the years, from the early work of the Drought Tolerant Maize for Africa (DTMA) and Drought Tolerant Maize for Africa Seed Scaling (DTMASS) projects through later iterations such as Stress Tolerant Maize for Africa (STMA) and the newest project, Accelerating Genetic Gains in Maize and Wheat (AGG).
In this Q&A, three leaders of this collaborative research reflect on the challenges their work has faced, the innovations and impact it has generated for smallholder farmers, and possible directions for future research. They are: B.M Prasanna, director of CIMMYTâs Global Maize Program and of the CGIAR Research Program on Maize (MAIZE); Abebe Menkir, a maize breeder and maize improvement lead at IITA; and Cosmos Magorokosho, project lead for AGG-Maize at CIMMYT.
Briefly describe the challenges confronting small-scale farmers prior to the introduction of drought-tolerant maize and how CIMMYT and IITA responded to these challenges?
B.M.P.: Maize is grown on over 38 million hectares in sub-Saharan Africa, accounting for 40% of cereal production in the region and providing at least 30% of the populationâs total calorie intake. The crop is predominantly grown under rainfed conditions by resource-constrained smallholder farmers who often face erratic rainfall, poor soil fertility, increasing incidence of climatic extremes â especially drought and heat â and the threat of devastating diseases and insect pests.
Around 40% of maize-growing areas in sub-Saharan Africa face occasional drought stress with a yield loss of 10â25%. An additional 25% of the maize crop suffers frequent drought, with yield losses of up to 50%. Climate change is further exacerbating the situation, with devastating effects on the food security and livelihoods of the millions of smallholder farmers and their families who depend on maize in sub-Saharan Africa. Therefore, the improved maize varieties with drought tolerance, disease resistance and other farmer-preferred traits developed and deployed by CIMMYT and IITA over the last ten years in partnership with an array of national partners and seed companies across sub-Saharan Africa are critical in effectively tackling this major challenge.
A.M.: Consumption of maize as food varies considerably across sub-Saharan Africa, exceeding 100 kg per capita per year in many countries in southern Africa. In years when rainfall is adequate, virtually all maize consumed for food is grown in sub-Saharan Africa, with a minimal dependence on imported grain. Maize production, however, is highly variable from year to year due to the occurrence of drought and the dependence of national maize yields on seasonal rainfall. One consequence has been widespread famine occurring every five to ten years in sub-Saharan Africa, accompanied by large volumes of imported maize grain as food aid or direct imports.
This places a significant strain on resources of the World Food Programme and on national foreign exchange. It also disincentivizes local food production and may not prevent or address cyclical famine. It also leaves countries ill-equipped to address famine conditions in the period between the onset of the crisis and the arrival of food aid. Investment in local production, which would strengthen the resilience and self-sufficiency in food production of smallholder farming families, is a far better option to mitigate food shortages than relying on food aid and grain imports.
C.M.: Smallholder farmers in sub-Saharan Africa face innumerable natural and socioeconomic constraints. CIMMYT, in partnership with IITA and national agricultural research system partners, responded by developing and catalyzing the commercialization of new maize varieties that produce reasonable maize yields under unpredictable rainfall-dependent growing season.
Over the life of the partnership, more than 300 new climate-adaptive maize varieties were developed and released in more than 20 countries across sub-Saharan Africa where maize is a major staple food crop. Certified seed of over 100 stress-tolerant improved maize varieties have been produced by seed company partners, reaching more than 110,000 tons in 2019. The seeds of these drought-tolerant maize varieties have benefited more than 8 million households and were estimated to be grown on more than 5 million hectares in eastern, southern and west Africa in 2020.
A farmer in Mozambique stands for a photograph next to her drought-tolerant maize harvest. (Photo: CIMMYT)
In what ways did the drought-tolerant maize innovation transform small-scale farmersâ ability to respond to climate-induced risks? Are there any additional impacts on small scale farmers in addition to climate adaptation?
B.M.P.: The elite drought-tolerant maize varieties can not only provide increased yield in drought-stressed crop seasons, they also offer much needed yield stability. This means better performance than non-drought-tolerant varieties in both good years and bad years to a smallholder farmer.
Drought-tolerant maize varieties developed by CIMMYT and IITA demonstrate at least 25-30% grain yield advantage over non-drought-tolerant maize varieties in sub-Saharan Africa under drought stress at flowering. This translates into at least a 1 ton per hectare enhanced grain yield on average, as well as reduced downside risk in terms of lost income, food insecurity and other risks associated with crop yield variability. In addition to climate adaptation, smallholder farmers benefit from these varieties due to improved resistance to major diseases like maize lethal necrosis and parasitic weeds like Striga. We have also developed drought-tolerant maize varieties with enhanced protein quality â such as Quality Protein Maize or QPM â and provitamin A, which improve nutritional outcomes.
We must also note that drought risk in sub-Saharan Africa has multiple and far-reaching consequences. It reduces incentives for smallholder farmers to intensify maize-based systems and for commercial seed companies to invest and evolve due to a limited seed market.
Drought-tolerant maize is, therefore, a game changer as it reduces the downside risk for both farmers and seed companies and increases demand for improved maize seed, thus strengthening the commercial seed market in sub-Saharan Africa. Extensive public-private partnerships around drought-tolerant maize varieties supported the nascent seed sector in sub-Saharan Africa and has enabled maize-based seed companies to significantly grow over the last decade. Seed companies in turn are investing in marketing drought-tolerant maize varieties and taking the products to scale.
A.M.: The DTMA and STMA projects were jointly implemented by CIMMYT and IITA in partnership with diverse national and private sector partners in major maize producing countries in eastern, southern and western Africa to develop and deploy multiple stress-tolerant and productive maize varieties to help farmers adapt to recurrent droughts and other stresses including climate change.
These projects catalyzed the release and commercialization of numerous stress-resilient new maize varieties in target countries across Africa. Increasing the resilience of farming systems means that smallholder farmers need guaranteed access to good quality stress resilient maize seeds. To this end, the two projects worked with public and private sector partners to produce large quantities of certified seeds with a continual supply of breeder seeds from CIMMYT and IITA. The availability of considerable amount of certified seeds of resilient maize varieties has enabled partners to reach farmers producing maize under stressful conditions, thus contributing to the mitigation of food shortages that affect poor people the most in both rural and urban areas.
C.M.: The drought-tolerant maize innovation stabilized maize production under drought stress conditions in sub-Saharan Africa countries. Recent study results showed that households that grew drought-tolerant maize varieties had at least half a ton more maize harvest than the households that did not grow the drought-tolerant maize varieties, thus curbing food insecurity while simultaneously increasing farmersâ economic benefits. Besides the benefit from drought-tolerant innovation, the new maize varieties developed through the partnership also stabilized farmersâ yields under major diseases, Striga infestation, and poor soil fertility prevalent in sub-Saharan Africa.
How is the project addressing emerging challenges in breeding for drought-tolerant maize and what opportunities are available to address these challenges in the future?Â
Margaret holds an improved ear of drought-tolerant maize. Margaretâs grandmother participated in an on-farm trial in Murewa district, 75 kilometers northeast of Zimbabweâs capital Harare. (Photo: Jill Cairns/CIMMYT)
B.M.P.: A strong pipeline of elite, multiple-stress-tolerant maize varieties â combining other relevant adaptive and farmer-preferred traits â has been built in sub-Saharan Africa through a strong germplasm base, partnerships with national research partners and small- and medium-sized seed companies, an extensive phenotyping and multi-location testing network, and engagement with farming communities through regional on-farm trials for the identification of relevant farmer-preferred products.
CGIAR maize breeding in sub-Saharan Africa continues to evolve in order to more effectively and efficiently create value for the farmers we serve. We are now intensively working on several areas: (a) increasing genetic gains (both on-station and on-farm) through maize breeding in the stress-prone environments of sub-Saharan Africa by optimizing our breeding pipelines and effectively integrating novel tools, technologies and strategies (e.g., doubled haploids, genomics-assisted breeding, high-throughput and precise phenotyping, improved breeding data management system, etc.); (b) targeted replacement of old or obsolete maize varieties in sub-Saharan Africa with climate-adaptive and new varieties; (c) developing next-generation climate-adaptive maize varieties with traits such as native genetic resistance to fall armyworm, and introgressed nutritional quality traits (e.g., provitamin A, high Zinc) to make a positive impact on the nutritional well-being of consumers; and (d) further strengthening the breeding capacity of national partners and small and medium-sized seed companies in sub-Saharan Africa for a sustainable way forward.
A.M.:Â The DTMA and STMA projects established effective product pipelines integrating cutting-edge phenotyping and molecular tools to develop stress-resilient maize varieties that are also resistant or tolerant to MLN disease and fall armyworm. These new varieties are awaiting release and commercialization. Increased investment in strengthening public and private sector partnerships is needed to speed up the uptake and commercialization of new multiple stress-resilient maize varieties that can replace the old ones in farmersâ fields and help achieve higher yield gains.
Farmersâ access to new multiple-stress-tolerant maize varieties will have a significant impact on productivity at the farm level. This will largely be due to new varietiesâ improved response to fertilizer and favorable growing environments as well as their resilience to stressful production conditions. Studies show that the adoption of drought-tolerant maize varieties increased maize productivity, reduced exposure to farming risk among adopters and led to a decline in poverty among adopters. The availability of enough grain from highly productive and stress-resilient maize varieties can be the cheapest source of food and release land to expand the cultivation of other crops to facilitate increased access to diversified and healthy diets.
C.M.: Â The project is tackling emerging challenges posed by new diseases and pests by building upon the successful genetic base of drought-tolerant maize. This is being done by breeding new varieties that add tolerance to the emerging disease and pest challenges onto the existing drought-tolerant maize backgrounds. Successes have already been registered in breeding new varieties that have high levels of resistance to MLN disease and the fall armyworm pest.
Opportunities are also available to address new challenges including: pre-emptively breeding for threats to maize production challenges that exist in other regions of the world before these threats reach sub-Saharan Africa; enhancing the capacity of national partners to build strong breeding programs that can address new threats once they emerge in sub-Saharan Africa; and sharing knowledge and novel high-value breeding materials across different geographies to immediately address new threats once they emerge.
Cover photo: Alice Nasiyimu stands in front of a drought-tolerant maize plot at her family farm in Bungoma County, in western Kenya. (Photo: Joshua Masinde/CIMMYT)
Scientists are calling for accelerated adoption of new hybrid maize varieties with resistance to maize lethal necrosis (MLN) disease in sub-Saharan Africa. In combination with recommended integrated pest management practices, adopting these new varieties is an important step towards safeguarding smallholder farmers against this devastating viral disease.
A new publication in Virus Research shows that these second-generation MLN-resistant hybrids developed by the International Maize and Wheat Improvement Center (CIMMYT) offer better yields and increased resilience against MLN and other stresses. The report warns that the disease remains a key threat to food security in eastern Africa and that, should containment efforts slacken, it could yet spread to new regions in sub-Saharan Africa.
The publication was co-authored by researchers at the International Maize and Wheat Improvement Center (CIMMYT), Kenya Agricultural and Livestock Research Organization (KALRO), the Alliance for a Green Revolution in Africa (AGRA), the African Agricultural Technology Foundation (AATF) and Aarhus University in Denmark.
CIMMYT technician Janet Kimunye (right) shows visitors a plant with MLN symptoms at the MLN screening facility in Naivasha, Kenya. (Photo: CIMMYT)
Stemming the panic
The first reported outbreak of MLN in Bomet County, Kenya in 2011 threw the maize sector into a panic. The disease caused up to 100% yield loss. Nearly all elite commercial maize varieties on the market at the time were susceptible, whether under natural of artificial conditions. Since 2012, CIMMYT, in partnership with KALRO, national plant protection organizations and commercial seed companies, has led multi-stakeholder, multi-disciplinary efforts to curb MLNâs spread across sub-Saharan Africa. Other partners in this endeavor include the International Institute of Tropical Agriculture (IITA), non-government organizations such as AGRA and AATF, and advanced research institutions in the United States and Europe.
In 2013 CIMMYT established an MLN screening facility in Naivasha. Researchers developed an MLN-severity scale, ranging from 1 to 9, to compare varietiesâ resistance or susceptibility to the disease. A score of 1 represents a highly resistant variety with no visible symptoms of the disease, while a score of 9 signifies extreme susceptibility. Trials at this facility demonstrated that some of CIMMYTâs pre-commercial hybrids exhibited moderate MLN-tolerance, with a score of 5 on the MLN-severity scale. CIMMYT then provided seed and detailed information to partners for evaluation under accelerated National Performance Trials (NPTs) for varietal release and commercialization in Kenya, Tanzania and Uganda.
Between 2013 and 2014, four CIMMYT-derived MLN-tolerant hybrid varieties were released by public and private sector partners in East Africa. With an average MLN severity score of 5-6, these varieties outperformed commercial MLN-sensitive hybrids, which averaged MLN severity scores above 7. Later, CIMMYT breeders developed second-generation MLN-resistant hybrids with MLN severity scores of 3â4. These second-generation hybrids were evaluated under national performance trials. This led to the release of several hybrids, especially in Kenya, over the course of a five-year period starting in 2013. They were earmarked for commercialization in East Africa beginning in 2020.
Maize Lethal Necrosis (MLN) sensitive and resistant hybrid demo plots in Naivashaâs quarantine & screening facility (Photo: KIPENZ/CIMMYT)
Widespread adoption critical
The last known outbreak of MLN was reported in 2014 in Ethiopia, marking an important break in the virusâs spread across the continent. Up to that point, the virus had affected the Democratic Republic of the Congo, Kenya, Rwanda, Tanzania and Uganda. However, much remains to be done to minimize the possibility of future outbreaks.
âDue to its complex and multi-faceted nature, effectively combating the incidence, spread and adverse effects of MLN in Africa requires vigorous and well-coordinated efforts by multiple institutions,â said B.M. Prasanna, primary author of the report and director of the Global Maize Program at CIMMYT and of the CGIAR Research Program on Maize (MAIZE). Prasanna also warns that most commercial maize varieties being cultivated in eastern Africa are still MLN-susceptible. They also serve as âreservoirsâ for MLN-causing viruses, especially the maize chlorotic mottle virus (MCMV), which combines with other viruses from the Potyviridae family to cause MLN.
âThis is why it is very important to adopt an integrated disease management approach, which encompasses extensive adoption of improved MLN-resistant maize varieties, especially second-generation, not just in MLN-prevalent countries but also in the non-endemic ones in sub-Saharan Africa,â Prasanna noted.
The report outlines other important prevention and control measures including: the production and exchange of âcleanâ commercial maize seed with no contamination by MLN-causing viruses; avoiding maize monocultures and continuous maize cropping; practicing maize crop rotation with compatible crops, especially legumes, which do not serve as hosts for MCMV; and continued MLN disease monitoring and surveillance.
L.M. Suresh (center-right), Maize Pathologist at CIMMYT and Head of the MLN Screening Facility, facilitates a training on MLN with national partners. (Photo: CIMMYT)
Noteworthy wins
In addition to the development of MLN-resistant varieties, the fight against MLN has delivered important wins for both farmers and their families and for seed companies. In the early years of the outbreak, most local and regional seed companies did not understand the disease well enough to produce MLN-pathogen free seed. Since then, CIMMYT and its partners developed standard operating procedures and checklists for MLN pathogen-free seed production along the seed value chain. Today over 30 seed companies in Ethiopia, Kenya, Uganda, Rwanda and Tanzania are implementing these protocols on a voluntary basis.
âMLN represents a good example where a successful, large-scale surveillance system for an emerging transboundary disease has been developed as part of a rapid response mechanism led by a CGIAR center,â Prasanna said.
Yet, he noted, significant effort and resources are still required to keep the maize fields of endemic countries free of MLN-causing viruses. Sustaining these efforts is critical to the âfood security, income and livelihoods of resource-poor smallholder farmers.
To keep up with the diseaseâs changing dynamics, CIMMYT and its partners are moving ahead with novel techniques to achieve MLN resistance more quickly and cheaply. Some of these innovative techniques include genomic selection, molecular markers, marker-assisted backcrossing, and gene editing. These techniques will be instrumental in developing elite hybrids equipped not only to resist MLN but also to tolerate rapidly changing climatic conditions.
Cover photo: Researchers and visitors listen to explanations during a tour of infected maize fields at the MLN screening facility in Naivasha, Kenya. (Photo: CIMMYT)
Maize yields in sub-Saharan Africa are less than a third of what they are in the USâin large part because of drought. A new seed developed by the International Maize and Wheat Improvement Center (CIMMYT) is helping farmers in Africa catch up with their counterparts elsewhere.
By adopting best practices and established modern tools, national agricultural research systems (NARS) are making data-driven decisions to boost genetic improvement. And they are measuring this progress through tracking and setting goals around “genetic gain.”
Genetic gain means improving seed varieties so that they have a better combination of genes that contribute to desired traits such as higher yields, drought resistance or improved nutrition. Or, more technically, genetic gain measures, “the expected or realized change in average breeding value of a population over at least one cycle of selection for a particular trait of index of traits,” according to the CGIAR Excellence in Breeding (EiB)’s breeding process assessment manual.
CGIAR breeders and their national partners are committed to increasing this rate of improvement to at least 1.5% per year. So, it has become a vital and universal high-level key performance indicator (KPI) for breeding programs.
“We are moving towards a more data-driven culture where decisions are not taken any more based on gut feeling,” EiB’s Eduardo Covarrubias told nearly 200 NARS breeders in a recent webinar on Enhancing and Measuring Genetic Gain. “Decisions that can affect the sustainability and the development of organization need to be based on facts and data.”
Improved metrics. Better decisions. More and better food. But how are NARS positioned to better measure and boost the metric?
EiB researchers have been working with both CGIAR breeding programs and NARS to broaden the understanding of genetic gain and to supply partners with methods and tools to measure it.
The recent webinar, co-sponsored by EiB and the CIMMYT-led Accelerating Genetic Gains in Maize and Wheat (AGG) project, highlighted tools and services that NARS are accessing, such as genotyping, data analysis and mechanization.
Through program assessments, customized expert advice, training and provision of services and resources, EiB researchers are helping national partners arrive at the best processes for driving and measuring genetic gains in their programs.
For example, the EiB team, through Crops to End Hunger (CtEH), is providing guidelines to breeders to help them maximize the accuracy and precision, while reducing the cost of calculating genetic gains. The guidelines make recommendations such as better design of trials and implementing an appropriate check strategy that permits regular and accurate calculation of genetic gain.
A comprehensive example at the project level is EiB’s High-Impact Rice Breeding in East and West Africa (Hi-Rice), which is supporting the modernization of national rice programs in eight key rice-producing countries in Africa. Hi-Rice delivers training and support to modernize programs through tools such as the use of formalized, validated product profiles to better define market needs, genotyping tools for quality control, and digitizing experiment data to better track and improve breeding results. This is helping partners replace old varieties of rice with new ones that have higher yields and protect against elements that attack rice production, such as drought and disease. Over the coming years, EiB researchers expect to see significant improvements in genetic gain from the eight NARS program partners.
And in the domain of wheat and maize, AGG is working in 13 target countries to help breeders adopt best practices and technologies to boost genetic gain. Here, the EiB team is contributing its expertise in helping programs develop their improvement plans â to map out where, when and how programs will invest in making changes.
NARS and CGIAR breeding programs also have access to tools and expertise on adopting a continuous improvement process â one that leads to cultural change and buy-in from leadership so that programs can identify problems and solve them as they come up. Nearly 150 national breeding partners attended another EiB/AGG webinar highlighting continuous improvement key concepts and case studies.
National programs are starting to see the results of these partnerships. The Kenya Agricultural & Livestock Research Organization (KALRO)âs highland maize breeding program has undertaken significant changes to its pipelines. KALRO carried out its first-ever full program costing, and based on this are modifying their pipeline to expand early stage testing. They are also switching to a double haploid breeding scheme with support from the CGIAR Research Program on Maize (MAIZE), in addition to ring fencing their elite germplasm for future crosses.
KALRO has also adopted EiB-supported data management tools, and are working with the team to calculate past rates of genetic gains for their previous 20 years of breeding. These actions â and the resulting data â will help them decide on which tools and methods to adopt in order to improve the rate of genetic gain for highland maize.
âBy analyzing historical genetic gain over the last 20 years, it would be interesting to determine if we are still making gains or have reached a plateau,â said KALROâs Dickson LIgeyo, who presented a Story of Excellence at EiBâs Virtual Meeting 2020. âThe assessment will help us select the right breeding methods and tools to improve the program.â
Other NARS programs are on a similar path to effectively measure and increase genetic gain. In Ghana, the rice breeding program at Council for Scientific and Industrial Research (CSIR) have developed product profiles, identified their target market segments, costed out their program, digitized their operations, and have even deployed molecular markers for selection.
With this increased expertise and access to tools and services, national breeding programs are set to make great strides on achieving genetic gain goals.
“NARS in Africa and beyond have been aggressively adopting new ideas and tools,” says EiB’s NARS engagement lead Bish Das. “It will pay a lot of dividends, first through the development of state-of-the-art, and ultimately through improving genetic gains in farmers’ fields. And that’s what it’s all about.”
Maize post-harvest losses in smallholder farming systems in sub-Saharan Africa have been shown to result in significant costs at household and national level, making it difficult to move towards achievement of SDG2 â Zero Hunger.
Within smallholder farming systems, new grain storage technologies such as metal silos can help reduce these losses during storage. However, technologies are often introduced into systems with complex sets of relationships, which may differentially affect the ability of women and men to secure the expected benefits. This, in turn, can have a knock-on effect on adoption rates and expected outcomes.
A recent study by an international team of researchers investigated whether modern storage structures such as metal silos provide equal benefits to women and men farmers in sub-Saharan Africa, using a mixed methods approach to explore the relationships governing maize production and storage in Kenya, Malawi, Zambia and Zimbabwe, where 1717 metal silos have been introduced through the Effective Grain Storage Project (EGSP).
The authors used random sampling to carry out quantitative surveys on metal silo owners in Kenya (124 respondents) and Malawi (100 respondents). Qualitative surveys using purposive sampling were also conducted in all four countries covering 14 ethnic groups using focus group discussions (360 respondents), key informant interviews (62 respondents), and household case studies (62 respondents). âOur aim was to understand gendered post-harvest management and storage strategies in traditional systems and to map changes when metal silos were introduced,â explain the authors.
âWe hypothesized that existing gender norms might differentially influence womenâs ability to benefit from the introduction of metal silos and our findings seem to indicate that this is correct. In most instances when metal silos are introduced, ownership of the grain storage facility and any benefits attached to that ownership typically switch from women to men, or menâs existing control over stored maize is deepened.â
A farmer from Embu, Kenya, demonstrates how to load maize grain into a metal silo for storage. (Photo: CIMMYT)
Their findings highlight that roles and responsibilities regarding the ownership and management of storage structures are strongly gendered. Though there are differences between ethnic groups and countries, overall men benefit more than women from the introduction of metal silos. Ownership of a grain storage facility and the benefits attached to this ownership can switch from women to men, with women having less scope for bargaining over their rights to use the stores for their own needs and the benefit of all household members.
Many of the women interviewed suggested that this compromised their ability to access sufficient maize because men might insist on taking any grain set aside to meet their personal needs. âWe did not measure how much grain is taken and whether food security is indeed negatively affected, but our research registers that women are concerned about this issue.â
The qualitative research explored whether ownership over the granary â and control over the maize stored within â changed when metal silos were purchased. In all four countries, cultural norms tend to result in men typically owning all large household assets such as land, water pumps, ox-ploughs and carts, etc. They generally make key decisions about how these assets are to be used as well. Furthermore, the income differential between women and men in male-headed households means that it is considerably more difficult for women than men to make a large purchase like a metal silo. âAs a consequence of these factors, we found men were more likely to own metal silos in each country.â
There is some differentiation between ethnic groups. In Zimbabwe, for example, Zezuru women who had previously owned and managed a dura â a traditional granary â lost control over maize grain reserves when metal silos were introduced. But for Korekore women nothing changed: men had always controlled traditional storage technologies and the maize within, and they continued to do so when metal silos were introduced. These examples highlight the fact that despite the cultural differences between ethnic groups, Zimbabwean women lost out across the board when metal silos were introduced, either through losing control over storage structures, or because male ownership was not challenged.
In light of these findings, the authors argue that understanding social context is key to designing and disseminating post-harvest technologies that meet the needs and preferences of both men and women farmers in various cultural contexts.
Their results make a strong case for ensuring that agricultural policy-makers prioritize the provision of equal access to improved technologies, as this is crucial not only for supporting women to meet their individual production goals, but also for ensuring that household-level food security needs are met.
âWe want to feed the people, we donât want them to go hungry. We have to do something to make sure there is food on the table. That is where my motivation is⊠Let there be food to eat.â
â Ruth Wanyera, 2019
The International Maize and Wheat Improvement Center (CIMMYT) has long attributed its widespread impact and reach to strong collaborations with national agricultural research systems (NARS) around the world. Today, CIMMYT â and especially the Global Wheat Program and the CGIAR Research Program on Wheat â wish to honor one long-term collaborator whose work and dedication to wheat research has had abiding positive effects beyond her home region of sub-Saharan Africa.
Ruth Wanyera, national wheat research program coordinator at the Kenya Agricultural and Livestock Research Organization (KALRO), has spent her more than 30-year career dedicated to plant protection research, fueled by her motivation to âfeed the people.â She was one of the first scientists to recognize stem rust in east Africa and has been one of CIMMYTâs strongest allies in fighting the devastating wheat disease, stem rust Ug99.
National Wheat Coordinator Ruth Wanyera (third from right) gives a lesson to pathology interns in the field of a fungicide efficiency trial at KALRO Njoro Research Station, Nakuru, Kenya. (Photo:CIMMYT)
A long-term relationship with CIMMYT
Sridhar Bhavani, senior scientist and head of Rust Pathology and Molecular Genetics at CIMMYT has worked closely with Wanyera and her team since the mid-2000s.
âRuth is a passionate researcher who has tirelessly dedicated her entire career to cereal pathology, and as a team, we coordinated the stem rust phenotyping platform for over a decade and had great successes on multiple international projects,â he said.
CIMMYTâs relationship with Wanyeraâs team strengthened when Nobel Prize Laureate Norman Borlaug visited the Kenyan research facility to observe the emerging threat of stem rust. Upon witnessing how serious the outbreak had become, Borlaug organized an emergency summit in Nairobi in 2005, famously âsounding the alarmâ for swift and concerted action on stem rust, and ultimately leading to the establishment of the BGRI.
âRuth and her team of dedicated scientists from KALRO have not only made Kenya proud but have also made a remarkable contribution to the global wheat community in mitigating the threat of stem rust Ug99,â says Bhavani. âRuth has mentored masterâs and PhD students who are now leading researchers at KALRO. She has elevated the research capacity of KALRO to international repute.â
Two recent wheat breeding projects helped extend the CIMMYT-KALRO partnership beyond Kenya. The Durable Rust Resistance in Wheat (DRRW) and Delivering Genetic Gain in Wheat (DGGW) projects brought in a partnership with the Ethiopia Institute for Agricultural Research (EIAR) to establish and operate stem rust phenotyping platforms that addressed the global threat of Ug99 and other serious stem rust races, and helped provide solutions for the region. Thanks to KALROâs screening efforts at the CIMMYT-KALRO Stem Rust Screening Platform in Njoro, Kenya, CIMMYT-derived rust-resistant varieties now cover more than 90% of the wheat farming area in Kenya and Ethiopia.
Ruth Wanyera receives the Kenya Agricultural Research Award (KARA), during the High Panel Conference on Agricultural Research in Kenya. (Photo: CIMMYT)
The partnership continues to grow
Continued collaboration with Ruthâs team at KALRO will be essential in the new Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods (AGG) project. AGG â which aims to accelerate the development and delivery of more productive, climate-resilient, gender-responsive, market-demanded, and nutritious wheat varieties in in sub-Saharan Africa and South Asia â has a particular focus on enhanced collaboration with national partners such as KALRO.
Its success is also closely tied to the Njoro Stem Rust Screening Platform â which, since its establishment in 2008, has conducted crucial screening for over 600,000 wheat lines, varieties, varietal candidates, germplasm bank accessions and mapping populations. Wanyeraâs leadership in the Platform, alongside that of CIMMYT wheat scientist Mandeep Randhawa, plays a major role in screening, monitoring, and clearing seed in time for sowing.
As Hans Braun, former director of the CIMMYT Global Wheat Program said, âWithout our national agriculture research system partnerships, CIMMYT would become obsolete.â
Indeed, the unparalleled wealth of knowledge, skills, and research facilities of the CGIAR as a whole would not be so uniquely impactful if it werenât for the 3000+ partnerships with national governments, academic institutions, enthusiastic farmers, private companies and NGOs that help carry out this work.
CIMMYTâs historic and continued impact depends on close international partnerships with scientists and leaders like Ruth Wanyera, and we congratulate her on her numerous awards, thank her for her collaboration, and wish her a pleasant retirement.