Skip to main content

Location: Kenya

For more information, contact CIMMYT’s Kenya office.

Breaking Ground: Tawanda Mashonganyika unites crop breeders and market experts for more impactful varieties

Tawanda Mashonganyika

The low rate at which farmers adopt improved varieties is one of the biggest obstacles to overcoming food insecurity. The average maize variety grown by farmers in sub-Saharan Africa is 15 years old, even though maize breeders have been releasing more than 50 new varieties every year.

When it comes to climate change, for example, thanks to a plentiful arsenal of genetic diversity crop breeders are developing varieties adapted to increased heat and drought, but farmers continue to grow crops developed for the climate of yesterday.

One part of the answer is that it is not enough merely to create a variety resistant to heat, drought or flooding; complex dynamics are at play in crop markets and in farmers’ fields that must be reflected in the design of new varieties.

This where product manager Tawanda Mashonganyika comes in, working for the CGIAR Excellence in Breeding Platform (EiB) out of CIMMYT-Kenya, and one of the first to occupy such a role in the CGIAR system.

“This position is supposed to bring in a business kind of thinking in the way products and varieties are developed,” said Mashonganyika, who studied agricultural economics, agribusiness and value chains at the universities of Reading, U.K. and Queensland, Australia, and has professional experience with crops grown in Africa.

“You need to know who you are developing varieties for, who are your customers and clients, and you also need to design products so that they can have success on the market.”

Mashonganyika’s role is to support CGIAR and national agricultural research system (NARS) breeders to design new varieties focused on replacing older products in a specific market, as opposed to only breeding for an agro-ecological zone. Key to this approach is the involvement of experts from other disciplines such as gender, socioeconomics and nutrition, as well as people involved in the value chain itself, such as food processors, seed producers and farmers.

The outcome of this collaboration is a product profile: a written description of a new product with all the traits needed to replace the variety that currently dominates the target market. The profile serves as a common goal for CGIAR and NARS collaboration, and as a tool to communicate with donors. With the breeding program accountable for delivering a pipeline of new products designed for impact, they can ensure that these varieties also deliver traits such as biofortification to farmer’s fields.

Instead of breeding for all the traits that may be desirable in a new variety, what sets the product profile approach apart is that breeding programs can then focus resources on the traits that will have the greatest impact in the market, and therefore the field. This market-focused approach also enables better collaboration between breeders and experts from other disciplines:

“When you bring a cross-functional team together, you really need to give them an understanding of the desired goal of what we want to design and eventually put onto the market,” said Mashonganyika. “We put an emphasis on data-driven decisions, so it is not just a meeting of experts with different opinions; we always try to create a platform to say ‘we need to follow what the market is saying.’”

“[Non-breeding experts] are usually very excited to talk about the data that they have about markets, and the knowledge that they have about how gender or nutrition affects products on the market,” said Mashonganyika. “There are so many women farmers, especially in Africa, so when you begin to incorporate gender, we are increasing the scope of impact.”

Although actors such as seed producers or food processors may have no breeding expertise, Mashonganyika views their input as essential: “They are the ones that are at the mouthpiece of the market, they eventually take up the varieties and they multiply the seed, so they have very good information.”

One example is a collaboration with the National Agricultural Research Organization (NARO), Uganda, where representatives from private sector seed companies are being included to help breeders better understand their customers. “They give information about seed multiplication processes, and what makes a variety be considered for multiplication in seed systems.”

EiB has created a standardized tool to create product profiles, and 200 were submitted to the growing database in the first three months of the pilot period alone, including profiles submitted by 10 national agricultural research programs in Africa and Asia.

In addition to promoting the use of product profiles, a product manager is also involved ensuring communication and accountability throughout the development of new products.

“With product profiles we say a breeder should be accountable for delivering each product in a certain timeframe,” said Tawanda. “We always emphasize that a breeding program should have an annual product review process, because markets are dynamic, they are bound to change. This is a good habit to ensure that your products remain relevant and designed for impact.”

Although Mashonganyika is one of the first CGIAR product managers, a desire to see greater impact in the field is turning others in the same direction.

“I hope that in the near future we will see other CGIAR centers developing similar positions,” said Mashonganyika.

Maize Lethal Necrosis Phenotyping Service

The CIMMYT-Kenya Agriculture and Livestock Research Organization (KALRO) Maize Lethal Necrosis (MLN) Screening Facility quarantine site is used to provide an MLN Phenotyping Service at cost to national agricultural research systems and seed companies in Africa.

KALRO and CIMMYT have been screening germplasm against MLN in Kenya since Nov 2012. The dedicated screening facility at KALRO Naivasha was established in 2013. This facility now represents a high quality phenotyping platform, permitting large-scale screening of germplasm from regional public and private partners.

To date, close to 90 percent of materials screened at Naivasha are susceptible under artificial inoculation. However, resistant and tolerant materials have been identified. Four first-generation MLN tolerant and resistant hybrids have been released in East Africa and a further 15-20 second generation hybrids are at advanced stages of testing.

Maize Lethal Necrosis Diagnostics and Prevention of Seed Transmission

This four-year Maize Lethal Necrosis Diagnostics and Prevention of Seed Transmission project will coordinate regional efforts to strengthen response to the rapid emergence and spread of Maize Lethal Necrosis (MLN).

Coordinated by CIMMYT, it will establish a community of practice among national plant protection organizations in eastern Africa for implementing harmonized MLN diagnostic protocols for detecting MLN-causing viruses and enable commercial seed companies to implement necessary standard operational procedures to produce MLN-free clean seed at various points along the maize seed value chain. It will also step-up MLN surveillance and monitoring in Malawi, Zambia and Zimbabwe, three of the major commercial maize seed exporting countries in sub-Saharan Africa.

The MLN project will be implemented in close partnership with the Alliance for a Green Revolution in Africa, the African Agricultural Technology Foundation, national plant protection organizations and commercial seed companies in eastern Africa. It will also pool expertise from relevant public- and private-sector partners, regional organizations, and seed trade organizations operating in the region.

Partners:  The Alliance for a Green Revolution in Africa, the African Agricultural Technology Foundation, national plant protection organizations and commercial seed companies in eastern Africa

Sustainable Intensification of Maize-Legume Systems for Food Security in Eastern and Southern Africa (SIMLESA)

The Sustainable Intensification of Maize-Legume Systems for Food Security in Eastern and Southern Africa (SIMLESA) program aims to improve maize and legume productivity by 30 percent and to reduce the expected downside yield risk by 30 percent on approximately on approximately 650,000 farm households by 2023. Launched in 2010, the focal countries of program research are Australia, Botswana, Burundi, Ethiopia, Kenya, Malawi, Mozambique, Tanzania, South Sudan, Uganda, Rwanda, Zambia and Zimbabwe.

The main thrust of the SIMLESA program is increasing farm-level food security, productivity and incomes through promotion of maize-legume intercropping systems in the context of reduced climate risk and change.

The program has also laid the foundation for developing conservation agriculture based sustainable intensification options, including integration of improved maize and legume varieties identified for their compatibility with CA-based practices; promoting technology adoption by both female and male farmers; capacity building for national agricultural research systems of partner countries; creating enhanced partnerships and collaboration with established innovation platforms for coordinated scaling-out of SIMLESA-generated options and practices.

Funding Institutions: Australian Centre for International Agricultural Research (ACIAR)

Partners: National agricultural systems of Ethiopia, Kenya, Malawi, Mozambique and Tanzania, as well as international and local research centers, extension agencies, non-governmental organizations, universities and agribusinesses along the value chain.

Read the final report of the SIMLESA project

Drought Tolerant Maize for Africa Seed Scaling (DTMASS)

The Drought Tolerant Maize for Africa Seed Scaling (DTMASS) project was officially launched in 2014 with the aim to meet demand and improve access to good-quality maize through production and deployment of affordable and improved drought-tolerant, stress-resilient and high-yielding maize varieties for smallholder farmers.

Led by CIMMYT and implemented through in-country public and private partnerships, DTMASS emphasizes scaling up and scaling out of drought tolerant maize seed, and uptake of the same among smallholder farmers. Over its lifespan, the project aims to produce close to 12,000 metric tons of certified seed for use by approximately 400,000 households, or 2.5 million people, in six countries in eastern and southern Africa.

DTMASS target countries (Ethiopia, Kenya, Mozambique, Tanzania, Uganda and Zambia) account for 25 percent, or 252 million, of the people in sub-Saharan Africa, and 41 percent of the maize production areas. DTMASS builds on the progress made by Drought Tolerant Maize for Africa and other complementary CIMMYT maize projects in Africa, including Improved Maize for African Soils and Water Efficient Maize for Africa.

Stress Tolerant Maize for Africa (STMA)

The Stress Tolerant Maize for Africa (STMA) project aims to diminish devastating constraints in maize production across sub-Saharan Africa. The project develops improved maize varieties with resistance and tolerance to drought, low soil fertility, heat, diseases such as Maize Lethal Necrosis and pests affecting maize production areas in the region.

STMA operates in eastern (Ethiopia, Kenya, Tanzania, Uganda), southern (Malawi, South Africa, Zambia, Zimbabwe) and West Africa (Benin, Ghana, Mali, Nigeria). These countries account for nearly 72 percent of all maize area in sub-Saharan Africa and include more than 176 million people who depend on maize-based agriculture for their food security and economic well-being. Climate change effects like drought, a lack of access to resources like fertilizer and other stresses increase the risk of crop failure that negatively affects income, food security and nutrition of millions of smallholder farmers and their families.

The project will develop 70 new stress-tolerant varieties using innovative modern breeding technologies, and promote improved stress-tolerant varieties expected to increase maize productivity up to 50 percent. The project aims to produce estimated 54,000 tons of certified seed to put into the hands of more than 5.4 million smallholder farmer households by the end of 2019.

Objectives

  • Use innovative breeding tools and techniques applied for increasing the rate of genetic gain in the maize breeding pipeline.
  • Increase commercialization of improved multiple-stress-tolerant maize varieties with gender-preferred traits by the sub-Saharan African seed sector.
  • Increase seed availability and farmer uptake of stress-tolerant maize varieties in target countries.
  • Optimize investment impact through effective project oversight, monitoring, evaluation and communication.

Drought Tolerant Maize for Africa (DTMA)

The Drought Tolerant Maize for Africa project aims to mitigate drought and other constraints to maize production in sub-Saharan Africa, increasing maize yields by at least one ton per hectare under moderate drought and with a 20 to 30 percent increase over farmers’ current yields, benefiting up to 40 million people in 13 African countries. The project brings together farmers, research institutions, extension specialists, seed producers, farmer community organizations and non-governmental organizations. It is jointly implemented by CIMMYT and the International Institute for Tropical Agriculture, in close collaboration with national agricultural research systems in participating nations. Millions of farmers in the region are already benefiting from the outputs of this partnership, which includes support and training for African seed producers and promoting vibrant, competitive seed markets.

Achievements:

  • Between 2007 and 12, participants marketed or otherwise made available 60 drought tolerant hybrids and 57 open-pollinated varieties to smallholder farmers
  • In addition to drought tolerance, the new varieties and hybrids also possess such desirable traits as resistance to major diseases
  • Engage government officials in policy dialogue to help fast-track varietal releases and fosters competitive seed markets and more
    widespread access to quality seed at affordable prices
  • Help ensure farmers’ access to the best possible products and services, coordinate various capacity-building events and
    activities for maize breeders, technicians, seed producers, extension workers, non-government organizations and farmer groups
  • Provide technical and advisory support to 50 African undergraduate and 28 African graduate students
  • Expand smallholder farmers’ use of drought and other stress tolerant maize seed to benefit 30 to 40 million people and provide added grain worth $160-200 million each year in drought-affected areas of sub-Saharan Africa

Principal coordinator

Tsedeke Abate

Exploring young Africans’ role and engagement in the rural economy

Tabitha Kamau checks the maize at her family’s farm in Machakos County, Kenya. (Photo: Joshua Masinde/CIMMYT)
Tabitha Kamau checks the maize at her family’s farm in Machakos County, Kenya. (Photo: Joshua Masinde/CIMMYT)

How do young rural Africans engage in the rural economy? How important is farming relative to non-farm activities for the income of young rural Africans? What social, spatial and policy factors explain different patterns of engagement? These questions are at the heart of an interdisciplinary research project, funded by the International Fund for Agricultural Development (IFAD), that seeks to provide stronger evidence for policy and for the growing number of programs in Africa that want to “invest in youth.”

One component of the Challenges and Opportunities for Rural Youth Employment in Sub-Saharan Africa project, led by the Institute of Development Studies (IDS), draws on data from the World Bank’s Living Standard Measurement Study – Integrated Surveys on Agriculture (LSMS-ISA) to develop a more detailed picture of young people’s economic activities. These surveys, covering eight countries in sub-Saharan Africa, were conducted at regular intervals and in most cases followed the same households and individuals through time. While the LSMS-ISA are not specialized youth surveys and therefore may not cover all facets of youth livelihoods and wellbeing in detail, they provide valuable knowledge about the evolving patterns of social and economic characteristics of rural African youth and their households.

“LSMS-ISA data are open access, aiming to help national governments and academics analyze the linkages between poverty and agricultural productivity in developing countries,” said Sydney Gourlay, Survey Specialist in the Development Data Group of the World Bank. She explained that LSMS-ISA datasets cover rural and urban livelihoods — including asset ownership, education, farm and non-farm incomes — and contain detailed information on farming practices and productivity. “LSMS-ISA data have untapped potential for valuable youth analyses that could lead to evidence-based youth policy reform,” Gourlay said.

To stimulate greater use of LSMS-ISA data for research on these issues, the International Maize and Wheat Improvement Center (CIMMYT), IDS, and the LSMS team of the World Bank organized a workshop for young African social scientists, hosted by CIMMYT in Nairobi from February 4 to February 8, 2019.

Early-career social scientists from Ethiopia, Ghana, Kenya, Nigeria, Uganda, and Zimbabwe explored the potential of LSMS-ISA data, identified research issues, and developed strategies to create new analyses. The workshop was also a chance to uncover potential areas for increased data collection on youth, as part of the LSMS team’s IFAD-funded initiative “Improving Data on Women and Youth.”

What does that data point represent?

The workshop stressed the importance of getting to know the data before analyzing them. As explained by World Bank senior economist Talip Kilic in The Crowd and the Cloud, “Every data point has a human story.” It is important to decipher what the data points represent and the limits within which they can be interpreted. For instance, the definition of youth differs by country, so comparative studies across countries must harmonize data from different sources.

“Because LSMS-ISA survey locations are georeferenced, it is possible to integrate spatial information from multiple sources and gain new insights about patterns of interest, as well as the drivers associated with such patterns,” said Jordan Chamberlin, spatial economics expert at CIMMYT. “For example, in all countries we’ve examined, the degree of non-farm economic engagement is strongly associated with distance from urban centers.”

Chamberlin noted that georeferencing also has limitations. For instance, to ensure privacy, LSMS-ISA coordinates for households are randomly offset by as much as 5 km. Nonetheless, diverse geospatial data from the datasets — distance to the nearest tarmac road or population density, among other information — may be integrated via the location coordinates.

A young farmer holding a baby participates in a varietal assessment exercise on a maize trial plot in Machakos County, Kenya. (Photo: Joshua Masinde/CIMMYT)
A young farmer holding a baby participates in a varietal assessment exercise on a maize trial plot in Machakos County, Kenya. (Photo: Joshua Masinde/CIMMYT)

One key variable to assess farm productivity is harvested area. The LSMS team’s research has revealed high, systematic discrepancies between farmers’ self-assessments of area, GPS measurements, and compass and rope, which is considered the most accurate method. Methodological validation data from Ethiopia, Nigeria, and Tanzania show that on average farmers overestimate the area of plots smaller than 200 m2 by more than 370 percent and underestimate the size of plots larger than 2 hectares by 13 percent, relative to compass and rope measurements. Such errors can skew yield analyses and the accuracy of assessments of national agricultural research programs’ impact.

Several workshop participants expressed interest in using the LSMS dataset for studies on migration, given that it contains information about this variable. In the case of internal migrants — that is, persons who have moved to another area in the same country — LSMS enumerators will find and interview them and these migrants will continue to be included in future rounds of the panel survey. In Malawi, for example, about 93 percent of individuals were tracked between the 2010/11 and the 2013 Integrated Household Surveys. Plot characteristics — such as type of soil, input use, and crop production — include information on the person who manages the plot, allowing for identification and analysis of male and female managed plots.

Following the training, the participants have better articulated their research ideas on youth. Prospective youth studies from the group include how land productivity affects youth opportunities and whether migration induces greater involvement of women in agriculture or raises the cost of rural labor. Better studies will generate more accurate knowledge to help design more effective youth policies.

 

Solving the “last mile” challenge of maize seeds

Philomena Muthoni Mwangi stands at the entrance of her agrodealer shop, Farm Care, in the village of Ngarariga. (Photo: Jerome Bossuet/CIMMYT)
Philomena Muthoni Mwangi stands at the entrance of her agrodealer shop, Farm Care, in the village of Ngarariga. (Photo: Jerome Bossuet/CIMMYT)

Agrodealers play a pivotal role in delivering the gains of the green revolution to millions of smallholders in Africa. Reaching even the most remote corners of the continent, they give farmers access to agricultural inputs and services.

So far, seed systems research has mainly focused on the factors influencing farmers’ adoption of or seed companies’ investment in new varieties. However, little is known about independent agrodealers, who play an important role in the “last mile” of seed systems, distributing improved maize seeds and fertilizers as well as giving agronomic advice. There is a gap of knowledge about who they are, their needs and constraints, and the ways in which they secure and develop their businesses.

Understanding how to better support agrodealers is important for the International Maize and Wheat Improvement Center (CIMMYT), to ensure that new varieties reach the largest possible number of farmers. Under the Stress Tolerant Maize for Africa (STMA) project, CIMMYT has launched a new research effort to better understand agrodealers in Kenya, with a specific focus on maize seed marketing.

Researchers are now testing the tools and expect to begin field work in March 2019, during the next maize planting season. “We want to collect detailed quantitative and qualitative data about the way agrodealers outsource and choose their maize varieties, and how they market these seeds to farmers,” explained CIMMYT associate scientist Pieter Rutsaert, who leads the study. This research will help government agencies, NGOs and funders to design better interventions related to agrodealers, for greater and more sustainable impact.

CIMMYT researchers Jason Donovan (left) and Pieter Rutsaert (right) discuss the research study questionnaire with consultant enumerator Victor Kitoto. (Photo: Jerome Bossuet/CIMMYT)
CIMMYT researchers Jason Donovan (left) and Pieter Rutsaert (right) discuss the research study questionnaire with consultant enumerator Victor Kitoto. (Photo: Jerome Bossuet/CIMMYT)

The million-shilling question

The way questions are selected and phrased, and data collected, is critical. “Figuring out how to ask the right question to the right person is a hard business, especially when we ask agrodealers to evaluate their own performance,” recognized Rutsaert. For example, it could be challenging to estimate the importance of maize seed sales if owners are hesitant to provide details about their businesses to outsiders. Anticipating the challenges of collecting reliable and comparable data, Rutsaert’s team will use visual tools, like illustrated cards, to facilitate conversations with interviewees. They will also use innovative exercises, like the shop investment game, where owners are asked how they would invest one million Kenyan shillings (about US$10,000).

Standing behind the counter of her shop, selling bags of feeding supplements for dairy cattle and small pesticide bottles on dusty shelves, Philomena Muthoni Mwangi explained she had run out of maize seeds for sale. This small agrodealer in the village of Ngarariga, in central Kenya, will restock her maize seeds from a big agrovet shop nearby at the onset of the rainy season.

This is quite common, as agrodealers do not take risks when it comes to selling new varieties. Not knowing the future demand, leftover seed stock after the planting season would severely reduce Mwangi’s potential profit, as margins per bag are low. To address this issue, CIMMYT researchers will conduct an intercept farmer survey in the coming weeks, to better understand what farmers look for when buying maize seeds.

Agrodealers are not a homogeneous group. Ranging from large one-stop shops to small shacks, their business models, seed marketing strategy and type of clients may differ a lot. This study will provide useful insights to design targeted seed scaling strategies that consider all kinds of agrodealers, moving away from a one-size-fits-all approach.

The Stress Tolerant Maize for Africa (STMA) project is funded by the Bill & Melinda Gates Foundation and the United States Agency for International Development (USAID).

The 70-year-old owner of a farm input shop in Kikuyu town, Kiambu County, answers the questions of CIMMYT researchers. (Photo: Jerome Bossuet/CIMMYT)
The 70-year-old owner of a farm input shop in Kikuyu town, Kiambu County, answers the questions of CIMMYT researchers. (Photo: Jerome Bossuet/CIMMYT)

How gender equity and social inclusion are improving the lives of rural families in Africa

Women have the potential to be drivers of agricultural transformation in Africa, holding the key to improving their families’ livelihoods and food security. However, constraints such as lack of access to initial capital, machinery, reliable markets, and knowledge and training are difficult to overcome, leading to restricted participation by women and young people in agricultural systems in Africa.

A new video from the Sustainable Intensification of Maize-Legume Systems for Food Security in Eastern and Southern Africa (SIMLESA) project highlights the importance of gender equity and social inclusion to achieving project impacts and outcomes, helping to drive transformative change towards securing a food-secure future for Africa. Case studies and interviews with women and men farmers — including young people — detail how SIMLESA’s approach has re-shaped their maize-based farming lives.

The video is aligned with the theme for International Women’s Day 2019, “Think Equal, Build Smart, Innovate for Change,” which places the spotlight on innovative ways in which we can advance gender equality and the empowerment of women.

“This video is intended to educate the agricultural community and wider public on the importance of applying sustainable intensification agricultural practices and technologies in order to bridge the gender gap in agricultural productivity and achieve agricultural transformation for smallholder farmers in Africa,” said Rahma Adam, Gender and Development Specialist with CIMMYT in Kenya. “We hope stakeholders will be able to see the benefits of these practices and technologies, and work towards finding ways to implement them into their agricultural practices or programs.”

Launched in 2010, SIMLESA is led by the International Maize and Wheat Improvement Center (CIMMYT) and funded by the Australian Center for International Agricultural Research (ACIAR). It is implemented by national agricultural research systems, agribusinesses and farmers in partner countries including Ethiopia, Kenya, Malawi, Mozambique, Rwanda, Tanzania and Uganda.

SIMLESA lead farmer Agnes Sendeza harvests maize cobs from a stook on her farm in Tembwe, Salima district, Malawi. (Photo: Peter Lowe/CIMMYT)
SIMLESA lead farmer Agnes Sendeza harvests maize cobs from a stook on her farm in Tembwe, Salima district, Malawi. (Photo: Peter Lowe/CIMMYT)

Putting equal opportunities at the center

Following a participatory research for development approach, the SIMLESA team works alongside farmers and partner organizations to achieve increased food production while minimizing pressure on the environment by using smallholder farmers’ resources more efficiently and empowering women, men and young people to make decisions.

The SIMLESA project achieves impact by integrating gender sensitivity into all project activities and developing a deep understanding of social contexts and factors that constrain access to, and adoption of, improved technologies. Initiatives are able to reach all individuals in the project’s target communities, leaving no one out.

“The benefits of fostering equal opportunities for women, men and young people through SIMLESA’s work are enormous,” said Adam. Equal opportunities mean better access to information, markets, and improved varieties of seeds; participation in field trials, demonstrations and training; and the provision of leadership opportunities in local innovation platforms.

Central to the success of the SIMLESA project is the concept of Agricultural Innovation Platforms. “Being members of these platforms, farmers can access credits, which they can use to purchase farm inputs,” explained Adam. “They are able to take part in collective marketing and get a better price for their crops. The Agricultural Innovation Platforms also facilitate training on better agribusiness management practices and the sharing of ideas about other productive investment opportunities to better farmers’ lives. All these benefits were hard to come by when the women and youth farmers were farming on their own without being associated to the SIMLESA project or part of the platforms.”

The words of Rukaya Hasani Mtambo, a farmer from Tanzania, are a testimony to the power of this idea. “As a woman, I am leader of our group and head of my household. I always encourage my fellow women, convincing them we are capable. We should not underestimate what we can do.”

To watch the full video, click here.

To watch other videos about the SIMLESA project, click here.

Drought-tolerant hybrid seed offers farmers reprieve from hunger

MACHAKOS, Kenya (CIMMYT) — The scorching heat from the sun does not stop Mary Munini, a middle-aged smallholder farmer in Vyulya, Machakos County, from inspecting her distressed maize crop. Traces of worry cloud her face. “I will not harvest anything this season,” she says, visibly downcast.

Like many other smallholder farmers spread across the water-stressed counties of Machakos, Makueni and Kitui, in Kenya’s lower eastern region, Munini is staring at a massive crop loss. Prolonged dry spells have for years threatened the food security and livelihoods of many rural families in the region who depend entirely on rain for their agricultural production. Here, most smallholder farmers typically plant farm-saved maize seeds, which lack the attributes to tolerate harsher droughts, extreme heat or water stress. With such conditions, farmers can hardly harvest any maize.

“We just had a little rain at the start of planting. Since then, we have not had any more rain. As you can see, my maize could not withstand the extended dry spell,” says Munini. Like her, over 80 percent of Kenyans depend on maize as their main staple food to supply their dietary requirements, especially in rural areas.

Mary Munini, a smallholder farmer in Vyulya, in Kenya’s Machakos County, inspects her maize crop. She planted the farm-saved seed, which does not tolerate drought or severe heat, so she is expecting a massive crop loss this season. (Photo: Joshua Masinde/CIMMYT)
Mary Munini, a smallholder farmer in Vyulya, in Kenya’s Machakos County, inspects her maize crop. She planted the farm-saved seed, which does not tolerate drought or severe heat, so she is expecting a massive crop loss this season. (Photo: Joshua Masinde/CIMMYT)

In a neighboring farm, the situation is different. The owner, Gitau Gichuru, planted the SAWA hybrid, an improved maize seed variety designed to withstand drought conditions. This variety was developed by scientists at the International Maize and Wheat Improvement Center (CIMMYT) and promoted to Kenyan farmers by Dryland Seed, a local seed company. This initiative to improve maize farmers’ climate resilience in the region was possible thanks to the support of the Bill & Melinda Gates Foundation under the Stress Tolerant Maize for Africa (STMA) project. With the right agronomic practices, the SAWA hybrid can return a yield advantage of up to 20 percent compared to other popular drought-tolerant hybrids in the region, according to Dryland Seed’s managing director, Ngila Kimotho.

“This variety has become so popular in this region that we have decided to make it our flagship brand. There are occasions when the demand is so high that we run out of stock,” Kimotho says.

Farmer Gitau Gichuru (right) shows maize from his farm to CIMMYT’s regional representative for Africa, Stephen Mugo. Gichuru planted SAWA hybrid maize, developed by CIMMYT scientists. (Photo: Joshua Masinde/CIMMYT)
Farmer Gitau Gichuru (right) shows maize from his farm to CIMMYT’s regional representative for Africa, Stephen Mugo. Gichuru planted SAWA hybrid maize, developed by CIMMYT scientists. (Photo: Joshua Masinde/CIMMYT)

Reaping the benefits

The company distributes improved seeds through a network of about 100 agrodealers across Kenya. One of the most effective ways to promote drought-tolerant hybrids such as SAWA is demonstration plots managed by lead farmers, who can showcase to their peers the hybrid’s performance under recommended agronomic practices. Most of the demo farms are located by the roadside for better visibility to road users, who frequently stop and ask about the healthy-looking maize crop. Field days have also had a positive effect of creating awareness and getting farmers to adopt the SAWA hybrid and other improved seed varieties. Farmers attending field days are ordinarily issued with small seed packs as samples to try out on their farms.

Gichuru, who planted the SAWA hybrid maize seed for the first time last season, is happy with the results. “I decided to try it on a portion of the land that is sandy. We have only had some little rain, twice or so, at the time of planting and during the vegetative state. To be honest, I didn’t expect the crop to amount to anything. But, as you can see, I am looking forward to a good harvest,” Gichuru says.

The managing director of Dryland Seed, Ngila Kimotho (left), shows packages of SAWA maize seeds at the company’s office. (Photo: Jerome Bossuet/CIMMYT)
The managing director of Dryland Seed, Ngila Kimotho (left), shows packages of SAWA maize seeds at the company’s office. (Photo: Jerome Bossuet/CIMMYT)

Doris Muia, a mother of three who has planted the hybrid for two years at her farm, is equally happy with the outcome. She says her household will never lack food and she hopes to get additional income from the sale of the surplus maize produce.

“When we see how the varieties that we have developed such as the SAWA hybrid are putting smiles on farmers’ faces, this makes us very happy,” expresses Stephen Mugo, CIMMYT Regional Representative for Africa.

For some farmers, however, it is hard to gather the money to buy improved seed varieties. The little income Munini earns from her small shop goes towards supporting her children’s education, and she often has nothing left to buy improved hybrid seed varieties, despite being aware of the advantages. In other instances, some farmers often buy small portions of the improved maize variety and mix it with farm-saved seed stock or poor-quality seeds from informal sources.

“The expectation is that if one variety succumbs to drought or severe heat, the next variety may survive. However, with proper agricultural practices, hybrids such as SAWA can cope well against such climate stresses, thereby improving the smallholders’ livelihood and food security,” concludes Mugo.

Doris Muia shows how well SAWA maize is doing at her farm, despite limited rainfall. (Photo: Joshua Masinde/CIMMYT)
Doris Muia shows how well SAWA maize is doing at her farm, despite limited rainfall. (Photo: Joshua Masinde/CIMMYT)

The Stress Tolerant Maize for Africa (STMA) project seeks to develop maize cultivars with tolerance and resistance to multiple stresses for farmers, and support local seed companies to produce seed of these cultivars on a large scale. STMA aims to develop a new generation of over 70 improved stress tolerant maize varieties, and facilitate production and use of over 54,000 metric tons of certified seed.

The STMA project is funded by the Bill & Melinda Gates Foundation and USAID.

Seeds go digital

Seed Assure app testing in the field in Kiboko, Kenya. Photo credit: CIMMYT.
Seed Assure app testing in the field in Kiboko, Kenya. (Photo: CIMMYT)

Many Kenyan maize farmers are busy preparing their seed stock for the next planting season. Sowing high quality seeds of stress-tolerant varieties is a cost-effective way for African smallholder farmers to boost their harvests while being resilient to evolving crop pests and diseases as well as an erratic climate. However, even if a majority of farmers buy their seeds, they are often of dubious quality or of old, outdated varieties, which do not cope well against increasing drought and heat shocks or emerging diseases.

Insufficient seed quality control

The African seed sector has long been plagued by counterfeit seeds and a complex and costly certification process, which hampers access to better, higher-yielding, wide-ranging varieties for farmers.

Since the 1990s, national agencies could not keep up with the seed trade growth to handle the certification processes. Backlogs of certification requests and erroneous seed checks make it costly for private seed companies to produce and commercialize new varieties. As a result, maize varieties grown by farmers in sub-Saharan Africa are old: 28 years old on average for hybrids and up to 40 years old for open-pollinated varieties.

“A lot of the national certification systems in the region are overwhelmed. They do not have enough seed inspectors with proper training and tools to carry out compliance checks effectively and in a timely manner. The licensing, labeling and branding protocols and regulations are equally not in full force, and much of the work still needs to be digitized. This slows the entire process,” said Kate Fehlenberg, Drought Tolerant Maize for Africa Seed Scaling (DTMASS) Project Manager at the International Maize and Wheat Improvement Center (CIMMYT), at a recent Common Market for Eastern and Southern Africa (COMESA) seed policies’ harmonization event in Nairobi.

Go digital

To solve this certification bottleneck, seed actors are looking at digital solutions for faster, more accurate seed quality checks for both seed producers and regulators. One Kenyan company, Cellsoft Ltd., has developed SeedAssure, a cloud-based platform that enables digital seed inspections. Data necessary for quality seed production, pest and disease surveillance, and the required checks to apply for a commercial license can be shared in real-time on a common platform that links seed companies, inspectors and local authorities.  Such a tool not only enables optimal quality in seed production, but expedites the licensing, certification and trade processes with traceable data records.

SeedAssure is rapidly being rolled out across eastern and southern Africa with support across the seed value chain. This includes regional trade bodies like COMESA and the Southern African Development Community (SADC), national regulators such as the Seed Control and Certification Institute (SCCI), to research and development organizations like CIMMYT and the Alliance for a Green Revolution in Africa (AGRA). So far, 15 seed companies in seven countries in the region have been testing SeedAssure.

Transboundary data-sharing to boost regional seed trade

Kinyua Madhan from Zamseed and Nicolai NASECO testing SeedAssure on smartphone in the field in Kiboko, Kenya. Photo credit: CIMMYT.
Visitors test SeedAssure on a smartphone during a field visit in Kiboko, Kenya. (Photo: CIMMYT)

To boost regional seed trade, all actors along the seed value chain and across the region must embrace this digital revolution and “speak the same language”. This means adopting the same rules to identify and register a new variety, and using a common platform to easily share data between countries.

Currently, despite efforts to harmonize seed trade policies across the region, such as the COMESA Seed Harmonization Implementation Program (COMSHIP), passed in 2014, most countries still use different protocols to name and register seed varieties. One variety could have a different name in each country it is sold in. Data used for quality control are still often on paper rather than online, with each country performing its own tests. Seed companies must apply for new variety registration, with new data for each country they operate in. This all costs them time and money.

Adopting a unique identifier for seed products and digitalization can help alleviate this harmonization issue, easing comparable data sharing across border. Since November 2017, CIMMYT has adopted a Variety Identification Number (VIN) system. It is like a unique barcode for each variety which contains information about the organization that produced the variety, the year of release, the crop and specific traits such as drought-tolerance, the country where it is produced, etc. SADC and COMESA have just adopted this VIN system. COMSHIP is setting digital seed variety catalogues using the VIN, and soon regional seed labels. It will facilitate cross-border seed trade and help track seed fraud.

The  2019 Global Forum for Food and Agriculture (GFFA) held this week in Berlin is debating how digitalization is transforming the farming sector. This is particularly relevant for the African seed sector as digital innovations could make seed certification and quality control cheaper, faster and more transparent, while narrowing the space for fake seed. Seed companies would then be encouraged to release more new improved varieties, and ultimately accelerate our research impact for African farmers.

International Maize Improvement Consortium for Africa ramps up seed innovations

Group photo during the IMIC-Africa inception workshop in Harare, Zimbabwe, in May 2018. (Photo: CIMMYT)
Group photo during the IMIC-Africa inception workshop in Harare, Zimbabwe, in May 2018. (Photo: CIMMYT)

Maize is the most important staple food crop in sub-Saharan Africa, providing food security and a source of income to more than 200 million households. Nonetheless, maize yields in this region rank among the lowest worldwide.

The International Maize and Wheat Improvement Center (CIMMYT) launched the International Maize Improvement Consortium for Africa (IMIC-Africa) in May 2018, to better engage with a committed set of partners from the public and private sector, and to achieve enhanced maize yields in Africa.

Members of IMIC-Africa share a vision: meeting the challenges of maize production by scaling out and fully exploiting the potential of improved climate-resilient and stress-tolerant varieties in sub-Saharan Africa.

Cultivated on over 35 million hectares of typically rainfed land across sub-Saharan Africa, maize is subject to the vagaries of climate, suffering occasional to frequent drought stress. Other regional challenges include poor soil quality, characterized by nitrogen deficiency, and the ongoing threat of transboundary pathogens and pests, such as the voracious fall armyworm. In addition, farmers generally have inadequate access to improved seed that could help them achieve higher yields.

Although the challenges are complex, the effective use of improved, climate-resilient and multiple-stress-tolerant maize varieties has achieved tangible results in this region. Elite drought-tolerant (DT) maize hybrids developed by CIMMYT have demonstrated at least 25-30 percent grain yield advantage over non-DT maize varieties in sub-Saharan Africa under drought stress. CIMMYT has also derived elite heat-tolerant maize hybrids for sub-Saharan Africa, and during the recent outbreak of maize lethal necrosis (MLN), the rapid development and deployment of elite MLN-resistant hybrids was instrumental in the containment of this threat to eastern Africa.

Modelled on its successful counterpart initiatives in Asia (IMIC-Asia) and Latin America (IMIC-LatAm), there is hope that IMIC-Africa will follow a similar pattern of success.

The consortium is comprised of a diverse array of member institutions, including seed companies, national programs and foundations.

Its key objective is to enhance members’ capacity for germplasm development in their own breeding programs through provision of early generation or advanced maize lines. The subsequent multi-location testing of elite pre-commercial maize hybrids throughout sub-Saharan Africa by members will serve to identify products that can advance to commercialization and deployment.

“IMIC-Africa has a growing membership aimed at formalizing the sharing of maize lines under development with public and private maize breeding programs,” said CIMMYT scientist and Africa regional representative Stephen Mugo. “The consortium will also support a vibrant germplasm testing network, offer opportunities for training and cross learning among members, and grant access to other special services offered by CIMMYT including MLN testing, doubled haploid development and molecular quality assurance/quality control.”

The work of the consortium will ultimately benefit the farming community through the targeted development of maize varieties that express traits jointly identified and prioritized by consortium members and that are specifically adapted to the suite of agro-ecologies in sub-Saharan Africa. Traits of relevance include tolerance to abiotic stresses, disease and insect-pest resistance and higher yielding hybrids.

“IMIC-Africa will contribute to food security in Africa by broadening access to and use of stress-tolerant improved maize germplasm as well as strengthening maize breeding programs, thus improving farmers’ access to improved maize varieties,” Mugo explained.

In September 2018, members of IMIC-Africa held their first annual field day and visited the CIMMYT and Kenya Agriculture and Livestock Research Organization (KALRO) facilities in Kiboko and Naivasha.

Membership of IMIC-Africa is open to all organized and registered private commercial seed companies, corporations, and organized and registered public agencies or organizations involved in maize crop research and improvement, hybrid seed production or maize seed marketing.

For further information about membership and eligibility, please contact B.M. Prasanna, Director of CIMMYT’s Global Maize Program and the CGIAR Research Program on Maize: b.m.prasanna@cgiar.org.