The foundation for a Vision for Adapted Crops and Soil (VACS) is capacity building: to boost adoption of opportunity crops, for nutritional security, diverse and climate-resilient cropping systems, to build healthy soils, a cohort of researchers and professionals is being supported to improve opportunity crops in Africa. Launched in October 2024 in Nairobi, Kenya, the VACS Capacity Project aims to train scholars and professionals in the latest plant breeding technologies. Professor Julia Sibiya, VACS Capacity Project Lead at CIMMYT, elaborates on how the project aims to contribute to the promotion, development and delivery of improved âcrops that nourishâ people, and the planet.
As part of the VACS Capacity Project, 30 Master and PhD students will be mentored by prominent experts in plant breeding. What support will they receive?
The students will be exposed to the latest technologies in plant breeding but will also learn from their mentors to deliver the VACS vision on opportunity crops and healthy soils.
The project also includes training of 40 mid-careers professionals. We want them to master the latest technologies and be able to apply them to develop improved opportunity crop varieties that will be used by farmers.
For maximum and long-term impact, the CIMMYT Academy, with the support of the Sustainable Agrifood Systems program, is developing gender-aware mentoring and curriculum on a wide range of topics, to directly address priorities of the 70 scholars and professionals. Expertise is being sourced at institutions such as Iowa State University, CIMMYT and African universities for robust e-learning modules on the entire plant breeding pipeline and seed systems, with materials updated and designed for the African continent.
What gaps does the VACS Capacity Project aim to address?
Today, in Africa, very few plant breeders and scientists working on plant improvement are focusing on the opportunity crops identified by VACS, such as finger millet, bambara groundnut, and amaranth. Most breeders focus on the main staples. This is why we want to build a critical mass of scientists who work on opportunity crops that are vital for food security and nutrition under climate change.
Besides increasing the critical mass of researchers working on the opportunity crops, we also want to bring up-to-date the skills of professionals in the breeding sector, which is a sector where technologies are evolving very quickly. Most of the approaches to crop improvement used today differ greatly from approaches used ten years ago, hence the request by many professionals to upgrade their skills.
In addition to the long-term training fellowships for Master and PhD students, we will provide targeted skills training to professionals, with short-term placements between one and six months in institutions where they can learn cutting-edge techniques that they will apply to opportunity crops.
The project is also designed to build networks and communities of practice around these crops, so people can collaborate in breeding and scaling efforts that are requested by farmers and consider market intelligence for impact pathways. This is in addition to exchanging knowledge and germplasm.
How does this project differ from other plant breeding capacity building projects?
The difference is that we will place professionals into institutions where they will be provided with hands-on training. We will work with universities, international research institutes, and the private sector, including seed companies. This is like offering internships to mid-career professionals who want to upgrade their skills or learn new ones.
Our approach also includes mentorships for both scholars and professionals. Mentors will be recruited from all over the world to assist the fellows in various aspects of their research journey. Last but not least, we hope to see researchers working with farmers so they can learn from each other.
What are the expected outcomes of reaching a âcritical mass of plant breedersâ?
The objective is to have sufficient breeders to implement crop breeding programs designed for opportunity crops. We also want to encourage them to apply modern techniques to improve opportunity crops and, this way, to contribute to the development of more nutritious plants that are grown in healthy soils. As I mentioned earlier, besides empowering scientists themselves, we also aim to create the conditions for effective collaboration and partnerships for the successful delivery of improved opportunity crop varieties, and this delivery will be accelerated by reducing the breeding cycle. Overall, it will allow us to scale up efforts towards opportunity crops worldwide.
A section of key speakers at the Drylands Legumes and Cereals Network Meeting in Accra, Ghana in January 2023. (Photo: Eagle Eye Projects)
The formation of regional crop improvement networks took center stage at a meeting held in January 2023 in Accra, Ghana. The meeting convened more than 200 scientists and stakeholders in dryland crops value chains from 28 countries from Africa and across the globe to co-design a network approach.
The meeting followed a series of consultative visits and discussions between three CGIAR research centers â the International Maize and Wheat Improvement Center (CIMMYT), Alliance of Bioversity International and CIAT, and the International Institute of Tropical Agriculture (IITA) â African National Agricultural Research Institutes (NARIs), and other common-visioned partners during 2021 and 2022. These earlier discussions gathered insights, brainstormed, and co-designed approaches to empower national programs to deliver impact through their crop improvement programs.
âThe idea is to add value to the existing capacities in National Agricultural Research and Extension Services, through networks where the partners agree on the goals and resources needed to achieve desired outcomes. So, itâs really a collaborative model,â said Harish Gandhi, breeding lead for dryland legumes and cereals at CIMMYT. He added that the teams have been learning from and aiming to add value to existing models such as the Pan-Africa Bean Research Alliance (PABRA), USAID Innovation Labs, and Innovation and plant breeding in West Africa (IAVAO).
Paradigm shift for African National Agricultural Research Institutes
Making the opening remarks, Ghana Council for Scientific and Industrial Research (CSIR) Director General, Paul Bosu said that at the very least, African countries should aim to feed themselves and transition from net importers to net exporters of food. âDryland legumes and cereals, especially millet and sorghum, are very well adapted to the continent and offer great opportunity towards achieving food securityâ, said Bosu. He applauded the Bill & Melinda Gates Foundation and other partners for investing in research on these crops.
Representing West and Central African Council for Agricultural Research and Development (CORAF), Ousmane Ndoye noted that research in dryland legumes and cereals is a valid and needed action amidst the COVID-19 pandemic and civil unrest in different parts of the world. He added that the first and crucial step to increasing food production especially in sub-Saharan Africa is the availability of sufficient quantities of seed.
Director General of Ugandaâs National Agriculture Research Organization (NARO), Ambrose Agona observed that a paradigm shift should occur for desired transformation in agriculture. He noted that African governments ought to commit adequate budgets to agriculture and that seed funding should serve to complement and amplify existing national budgets for sustainability.
He commended efforts to consult NARIs in Africa and noted that the quality of ideas exchanged at the meeting strengthen the work. âThe NARIs feel happier when they are consulted from the very beginning and contribute to joint planning unlike in some cases where the NARIs in Africa are only called upon to make budgets and are excluded from co-designing projectsâ, said Agona.
Participants following the proceedings at the Drylands Legumes and Cereals Network Meeting in Accra, Ghana in January 2023. (Photo: Eagle Eye Projects)
Challenge to deliver effectively
During his remarks at the meeting, CIMMYT Director General Bram Govaerts noted that the focus legume and cereal crops are key to transforming and driving diversification of food systems in Africa. âIt is therefore an honor and a privilege to work together with partners to improve cereal and legume systems. We will put forward our experience in breeding and commit to innovative systems approaches towards achieving impact and leverage what we are already good at, to become even better,â said Govaerts.
Referencing his visit with the United States Special Envoy for Global Food Security Cary Fowler to Southern Africa in January 2023, Govaerts narrated witnessing firsthand a food, energy and fertilizer crisis impacting Zambian and Malawian farmers. He challenged the meeting participants to envision the future impact they would like to see their breeding programs have as they design and strategize at the meeting. He pointed out that farmers are more interested in the qualities and characteristics of varieties released than the institutions responsible for the release.
CIMMYT Global Genetic Resources Director and Deputy Director General, Breeding and Genetics, Kevin Pixley also underscored the need to generate more impact through adoption of improved varieties in Africa. Pixley noted that on average, fewer than 30 percent of farmers are using improved varieties of sorghum, millet, and groundnut across the countries with ongoing work.
The meeting heard One CGIARâs commitment to deliver resilient, nutritious and market preferred varieties as part of its Genetic Innovation Action Area, alongside improving systems and processes for sustainability from CGIAR Senior Director Plant Breeding and Pre-Breeding, John Derera. Speaking in the capacity of IITAâs Breeding Lead, Derera noted the progress made in IITA cowpea breeding program, including its modernization, owing to strong partnerships, cross learning and germplasm exchange between institutions.
PABRA Director & Leader of the Bean Programme at the Alliance of Bioversity International and CIAT, Jean-Claude Rubyogo, pointed out that despite remarkable achievements, such as those witnessed in the bean research, more effort is needed to tackle the challenges of climate change and also increase understanding of consumers traits.
Commenting on innovative pathways to improve adoption of improved varieties, the Director General of the Institute of Agricultural Research (IAR) in Zaria, Nigeria, Mohammad Ishiyaku observed the tendency for some seed companies to continue selling specific seed varieties for years, even when the productivity of the variety is low. He noted the seed companies always claimed consumer preferences concluding then that amidst investor demands, breeders ought to keenly investigate the expectations of consumers and famers to arrive at the best parameters for breeding choices.
A group photo of over 200 scientists and stakeholders in dryland crops value chains that participated at the Drylands Legumes and Cereals Network Meeting in Accra, Ghana in January 2023. (Photo: Eagle Eye Projects)
High-level statements on approaches to gender integration in agricultural research and development were delivered by Scovia Adikini, NARO millet breeder, Geoffrey Mkamillo, Director General of Tanzaniaâs Agricultural Research Institute (TARI), Francis Kusi of Ghanaâs Savanna Agricultural Research Institute (SARI), and Aliou Faye, Director of Senegalâs Regional Center of Excellence on Dry Cereals and Associated Crops (CERAAS).
AVISA Achievements
Finally, this meeting marked the transition from the recently ended Accelerated Varietal Improvement and Seed Systems in Africa (AVISA) project to align with One CGIAR initiatives under the Genetic Innovation Action Area, with specific focus on dryland crops.
Solomon Gyan Ansah, the Director of Crop Services at the Ministry of Food and Agriculture, Ghana, acknowledged the success of AVISA Project and commended the forumâs efforts to build on the gains made by the project in developing the new approach.
âBy the end of 2022, AVISA project partners had reached 4.8 million farmers with 30,600 metric tons of seed of improved legume and cereal varieties, covering almost one million hectares of landâ, revealed Chris Ojiewo, Strategic Partnerships and Seeds Systems Lead. Other achievements supported by the AVISA Project include upgrading of NARES facilities and building capacities of researchers through short- and long-term trainings.
The meeting was hosted by Ghana Council for Scientific and Industrial Research (CSIR) and Ghanaâs Savannah Agricultural Research Institute (SARI), and was organized by CIMMYT, in partnership with IITA and the Alliance of Bioversity and CIAT (ABC).
Resource-poor farmers in low-income and middle-income countries will hugely benefit from improved crop varieties that perform better in terms of nutritional quality, income generation, water and nutrient use, stability of yields under climate change, and the needs of both women and men as farmers and as consumers. Â
However, many smallholder farmers still grow old varieties, in part because they derive inadequate benefits from recent breeding efforts. To trigger timely adoption, new varieties must be widely available and affordable to farmers, and offer a step-change in performance through higher rates of genetic gain. A faster pace of varietal turnover is critical â to enable farmers to adapt and advance rapidly as climatic and market conditions change.Â
Breeding programs also need a greater focus on developing farmer- and consumer- preferred varieties adapted to distinct production environments, markets and end uses. This can be facilitated by smarter design of breeding programs; stronger partnerships between CGIAR, National Agricultural Research and Extension Systems (NARES) and small and medium enterprises (SMEs); and strengthened organizational capacity.
This Initiative aims to develop better-performing, farmer-preferred crop varieties and to decrease the average age of varieties in farmersâ fields, providing real-time adaptation to climate change, evolving markets and production systems.Â
The objective will be achieved through:
Re-focusing breeding teams and objectives on farmersâ needs, in particular the needs of women, through achievable product profiles and breeding pipelines targeting prioritized regions and market segments.Â
ReorganizingâŻbreeding teams to drive efficiency gains through the coordinated engagement of specialists and processes using a common organizational framework, stage gates, key performance indicators and handover criteria.Â
TransformingâŻtowards inclusive, impactful CGIAR-NARES-SME breeding networks with empowered partners, along with customized capacity building, standardized key performance indicators, and by dividing labor and resources across partners according to comparative advantage and aligned with national priorities.Â
Discovering optimum traits and deployments through agile, demand-driven and effective trait discovery and deployment pipelines, and development of elite donor lines with novel and highly valuable traits.Â
AcceleratingâŻpopulation improvement and variety identification through optimizing breeding pipelines (trailing, parent selection, cycle time, use of Breeding Resources tools and services, etc.), with the goal of assuring all programs deliver market-demanded varieties that deliver greater rates of genetic gain per dollar invested.Â
Engagement
This Initiative will work with breeding programs serving countries in Sub-Saharan Africa, and South Asia, along with Asia and Latin America. Priority countries for the Initiative include Ghana, Kenya, Nigeria, Senegal, Tanzania, Uganda, Zambia and Zimbabwe in Africa, and Bangladesh and India in South Asia.Â
Outcomes
Proposed 3-year outcomes include:
At least 75%âŻof breeding pipelines are oriented towards specific market segments, enabling greater focus on farmersâ needs, drivers of adoption, distinct impact areas and the strategic allocation of resources.Â
At least 70%âŻof breeding pipelines use a revised organizational framework that provides operational clarity and effectiveness for specialized teams pursuing breeding outputs.Â
At least 80%âŻof the breeding networks have implemented documented steps toward stronger partnership models where NARES and SMEs have increased breeding capacity, and make greater scientific, operational and decision-making contributions to the breeding process.Â
At least 50%âŻof breeding pipelines are supported by a dedicated trait discovery and deployment program that delivers high-impact traits in the form of elite parental lines.Â
At leastâŻ70%âŻof breeding pipelines have increased the rate of genetic gain in the form of farmer-preferred varieties, with at least 50% providing significantly improved varieties delivered to seed system recipients.   Â
AGG is a collaborative project led by the International Maize and Wheat Improvement Center (CIMMYT) bringing together global partners to advance the development of higher-yielding varieties.
This field day was organized by the Crops Research Institute at Ghana’s Council for Scientific and Industrial Research (CSIR-SARI), the International Institute of Tropical Agriculture (IITA) and the department of agriculture.
During the event, researchers aimed to encourage farmer adoption by familiarizing them with the stress-tolerant hybrids and emphasizing the high and stable grain yields.
Smallholdings represent over 80% of the worldâs farms, mostly located in the Global South, and supply 50% of global food. Enhanced agronomy management has a great potential to increase productivity, sustainability, efficiency and competitiveness of these smallholdings, which is characterized by low and variable yields and profitability, smallholder farming challenges include water scarcity, climate change, low resource use efficiencies and declining soil health. These result in negative impacts on food and nutrition security, equitable livelihoods and ecosystem health.âŻÂ
Smallholder farmers seasonally make critical agronomic decisions regarding crop choice, planting dates and pest, disease, weed, soil fertility and water management, often based on suboptimal practices and information. Traditional agronomic research enhances our understanding of basic processes, but with limited connection to stakeholder demand and often based on outdated approaches. The development, deployment and uptake of interventions is hampered by social, economic and institutional constraints, further confounded by adherence to conventional supply-driven innovation strategies.
Objective
This Initiative aims to deliver an increase in productivity and quality per unit of input (agronomic gain) for millions of smallholder farming households in prioritized farming systems by 2030, with an emphasis on women and young farmers, showing a measurable impact on food and nutrition security, income, resource use, soil health, climate resilience and climate change mitigation.âŻÂ
Activities
This objective will be achieved through:
Facilitating the delivery of agronomy-at-scale solutions, including development and technical/user-experience validation and the co-creation and deployment of gender- and youth-responsive solutions to smallholder farmers via scaling partners.Â
Enabling the creation of value from big data and advanced analytics through the assembly and governance of data and tools; application of existing analytics and solutions for specific use cases; supply of information on climate impacts, inclusivity and sustainability of agronomic solutions; and national agricultural research system capacity strengthening.Â
Driving the next generation of agronomy-at-scale innovationsâŻby addressing key knowledge gaps and facilitating innovation in agronomy research through engagement with partners.Â
Nurturing internal efficiencies for an agile and demand-driven agronomy research and development community through internal organization and external partnerships for prioritization, demand mapping and foresight.Â
Most agricultural production in the Global South takes place in mixed farming systems, which allow farmers to diversify risk from single crop production, use labor efficiently, access cash and add value to products. Key drivers â climate change, population pressure, urbanization, water scarcity, changing diets, volatile food prices â mean that flexible and accelerated changes in mixed farming systems will be needed to achieve global targets such as the Sustainable Development Goals. Sustainable intensification, or the production of more food on the same piece of land while reducing the negative environmental impact, is a viable avenue.
Two types of hurdles must be overcome to adequately meet the challenge at farming systems level. One hurdle is to ensure efficient coordination, integration and transfer of innovations, information, tools and standardized methodologies. A second hurdle is to integrate multiple biophysical and socio-economic thematic-level outputs and identify strategies that minimize trade-offs and maximize synergies, resulting in multiple impacts at scale.
Objective
This Initiative aims to provide equitable, transformative pathways for improved livelihoods of actors in mixed farming systems through sustainable intensification within target agro-ecologies and socio-economic settings.
Activities
This objective will be achieved through:
Analyzing status, trends and future dynamics of mixed farming systems to identify entry points for equitable sustainable intensification, to mitigate negative impacts of change and seize emerging opportunities for livelihoods.
Building methods and tools for sustainable intensification of mixed farming systems to support decisions on what kind of sustainable intensification might work where, and for whom, in specific contexts.
Participatory co-design of mixed farming systems with evidence-based, validated sustainable intensification innovation packages that are responsive to improving efficiency, equity and resilience, in regions where mixed farming systems dominate the landscape.
Advancing and supporting scaling of innovations, through strategic partnerships and building the capacity of relevant actors in scaling approaches â a gender-transformative approach will be central to all innovation and scaling design to enhance equity.
Capacity-building for mixed farming system design and analyses, to support long-term impact on university and college students, scientists, extension agents, farmers, private sector, policy makers and development actors.
Outcomes
Proposed 3-year outcomes include:
Smallholder farmers use resource-efficient and climate-smart technologies and practices to enhance their livelihoods, environmental health and biodiversity.
Research and scaling organizations enhance their capabilities to develop and disseminate innovations.
Smallholder farmers implement new practices that mitigate risks associated with extreme climate change and environmental conditions and achieve more resilient livelihoods.
Women are youth are empowered to be more active in decision-making in food, land and water systems.
National and local governments utilize enhanced capacity to assess and apply research evidence and data in policymaking processes.
Sorghum field in Kiboko, Kenya. (Photo: E Manyasa/ICRISAT)
As part of the One CGIAR reform, the Global Science Group on Genetic Innovation will implement a crop breeding and seed systems project for key crops including groundnut, sorghum and millet, across western and eastern African countries.
The International Maize and Wheat Improvement Center (CIMMYT), a leader in innovative partnerships, breeding and agronomic science for sustainable agri-food systems, will lead the project.
The Accelerated Varietal Improvement and Seed Delivery of Legumes and Cereals in Africa (AVISA) project aims to improve the health and livelihoods of millions by increasing the productivity, profitability, resilience and marketability of nutritious grain, legumes and cereal crops. The project focuses on strengthening networks to modernize crop breeding by CGIAR and national program partners, and public-private partnerships to strengthen seed systems. The project currently works in Burkina Faso, Ethiopia, Ghana, Mali, Nigeria, Uganda and Tanzania.
âSorghum, groundnut and millets are essential staples of nutritious diets for millions of farmers and consumers and are crucial for climate-change-resilient farming systems,â explained CIMMYT Deputy Director General and Head of Genetic Resources, Kevin Pixley. âThe oversight of this project by CGIARâs Genetic Innovation Science Group will ensure continued support for the improvement of these crops in partnership with the national agricultural research and extension systems (NARES) that work with and for farmers,â he said.
âCIMMYT is delighted to lead this project on behalf of the Genetic Innovations Science Group and CGIAR,â confirms CIMMYT Director General, Bram Govaerts.
âWe look forward to contributing to co-design and co-implement with partners and stakeholders the next generation of programs that leverage and build the strengths of NARES, CGIAR and others along with the research to farmers and consumers continuum to improve nutrition, livelihoods, and resilience to climate change through these crops and their cropping systems.â
Dryland Crops, formerly known as the Accelerated Varietal Improvement and Seed Systems in Africa (AVISA) project, aims to improve the livelihoods of small-scale producers and consumers of sorghum, millet, groundnut, cowpea and bean. Project partners focus on improving the breeding and seed systems of these crops in their key geographies in Burkina Faso, Ethiopia, Ghana, Mali, Nigeria, Tanzania and Uganda. Other crops receiving growing attention in the project include finger millet, pigeon pea and chickpea.
Although significant adoption of improved seed of dryland cereals and legume crops in Africa has been reported, its overall use remains low. There is a growing interest in these crops, particularly because of their resilience to climate-change; however, the seed sector is constrained by lack of product information, dearth of knowledge of the size and scale of the business opportunity, and inadequate access to early generation seed.
Dryland Crops will address these constraints by contributing to the establishment of robust systems that:
Enable networks to work synergistically across countries with common challenges and opportunities.
Support national agricultural research systems to access research, professional development and infrastructure-building opportunities.
Increase the quantity and quality of data substantiating varietal superiority and the demand for seed and grain of improved varieties.
Boost the availability of early generation seed and strengthen links between the research system and private- and public-sector actors.
The aspiration is to codevelop, validate by co-implementation, and continuously improve with partners research-to-farm-to-consumer models that achieve positive impacts on farmersâ livelihoods and consumersâ wellbeing.
The Alliance of Bioversity and CIAT and IITA will lead initiatives for common bean and cowpea, respectively. For sorghum, pearl millet and groundnut breeding, CIMMYT will design programs that support crop improvement networks, including CGIAR and national agricultural research systems, and incorporate best approaches, principles, and tools, particularly those availed through the Excellence in Breeding (EiB) platform.
The project is committed to gender equity as a guiding principle, considering the critical role women play in choosing legume and cereal varieties and seed sources. Women seed entrepreneurs and women-led seed companies will garner special attention for capacity development. Partnerships with actors through the value chain, platforms and demonstrations will ensure women have equal access to improved technologies.
The previous phase of the AVISA project was led by the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT).
The food security and livelihoods of smallholder farming families in sub-Saharan Africa depend on maize production. The region accounts for up to two-thirds of global maize production, but is facing challenges related to extreme weather events, climate-induced stresses, pests and diseases, and deteriorating soil quality. These require swift interventions and innovations to safeguard maize yields and quality.
In this Q&A, we reflect on the results and impact of the long-term collaborative work on drought-tolerant maize innovations spearheaded by two CGIAR Research Centers: the International Maize and Wheat Improvement Center (CIMMYT) and International Institute of Tropical Agriculture (IITA). This innovative work has changed guises over the years, from the early work of the Drought Tolerant Maize for Africa (DTMA) and Drought Tolerant Maize for Africa Seed Scaling (DTMASS) projects through later iterations such as Stress Tolerant Maize for Africa (STMA) and the newest project, Accelerating Genetic Gains in Maize and Wheat (AGG).
In this Q&A, three leaders of this collaborative research reflect on the challenges their work has faced, the innovations and impact it has generated for smallholder farmers, and possible directions for future research. They are: B.M Prasanna, director of CIMMYTâs Global Maize Program and of the CGIAR Research Program on Maize (MAIZE); Abebe Menkir, a maize breeder and maize improvement lead at IITA; and Cosmos Magorokosho, project lead for AGG-Maize at CIMMYT.
Briefly describe the challenges confronting small-scale farmers prior to the introduction of drought-tolerant maize and how CIMMYT and IITA responded to these challenges?
B.M.P.: Maize is grown on over 38 million hectares in sub-Saharan Africa, accounting for 40% of cereal production in the region and providing at least 30% of the populationâs total calorie intake. The crop is predominantly grown under rainfed conditions by resource-constrained smallholder farmers who often face erratic rainfall, poor soil fertility, increasing incidence of climatic extremes â especially drought and heat â and the threat of devastating diseases and insect pests.
Around 40% of maize-growing areas in sub-Saharan Africa face occasional drought stress with a yield loss of 10â25%. An additional 25% of the maize crop suffers frequent drought, with yield losses of up to 50%. Climate change is further exacerbating the situation, with devastating effects on the food security and livelihoods of the millions of smallholder farmers and their families who depend on maize in sub-Saharan Africa. Therefore, the improved maize varieties with drought tolerance, disease resistance and other farmer-preferred traits developed and deployed by CIMMYT and IITA over the last ten years in partnership with an array of national partners and seed companies across sub-Saharan Africa are critical in effectively tackling this major challenge.
A.M.: Consumption of maize as food varies considerably across sub-Saharan Africa, exceeding 100 kg per capita per year in many countries in southern Africa. In years when rainfall is adequate, virtually all maize consumed for food is grown in sub-Saharan Africa, with a minimal dependence on imported grain. Maize production, however, is highly variable from year to year due to the occurrence of drought and the dependence of national maize yields on seasonal rainfall. One consequence has been widespread famine occurring every five to ten years in sub-Saharan Africa, accompanied by large volumes of imported maize grain as food aid or direct imports.
This places a significant strain on resources of the World Food Programme and on national foreign exchange. It also disincentivizes local food production and may not prevent or address cyclical famine. It also leaves countries ill-equipped to address famine conditions in the period between the onset of the crisis and the arrival of food aid. Investment in local production, which would strengthen the resilience and self-sufficiency in food production of smallholder farming families, is a far better option to mitigate food shortages than relying on food aid and grain imports.
C.M.: Smallholder farmers in sub-Saharan Africa face innumerable natural and socioeconomic constraints. CIMMYT, in partnership with IITA and national agricultural research system partners, responded by developing and catalyzing the commercialization of new maize varieties that produce reasonable maize yields under unpredictable rainfall-dependent growing season.
Over the life of the partnership, more than 300 new climate-adaptive maize varieties were developed and released in more than 20 countries across sub-Saharan Africa where maize is a major staple food crop. Certified seed of over 100 stress-tolerant improved maize varieties have been produced by seed company partners, reaching more than 110,000 tons in 2019. The seeds of these drought-tolerant maize varieties have benefited more than 8 million households and were estimated to be grown on more than 5 million hectares in eastern, southern and west Africa in 2020.
A farmer in Mozambique stands for a photograph next to her drought-tolerant maize harvest. (Photo: CIMMYT)
In what ways did the drought-tolerant maize innovation transform small-scale farmersâ ability to respond to climate-induced risks? Are there any additional impacts on small scale farmers in addition to climate adaptation?
B.M.P.: The elite drought-tolerant maize varieties can not only provide increased yield in drought-stressed crop seasons, they also offer much needed yield stability. This means better performance than non-drought-tolerant varieties in both good years and bad years to a smallholder farmer.
Drought-tolerant maize varieties developed by CIMMYT and IITA demonstrate at least 25-30% grain yield advantage over non-drought-tolerant maize varieties in sub-Saharan Africa under drought stress at flowering. This translates into at least a 1 ton per hectare enhanced grain yield on average, as well as reduced downside risk in terms of lost income, food insecurity and other risks associated with crop yield variability. In addition to climate adaptation, smallholder farmers benefit from these varieties due to improved resistance to major diseases like maize lethal necrosis and parasitic weeds like Striga. We have also developed drought-tolerant maize varieties with enhanced protein quality â such as Quality Protein Maize or QPM â and provitamin A, which improve nutritional outcomes.
We must also note that drought risk in sub-Saharan Africa has multiple and far-reaching consequences. It reduces incentives for smallholder farmers to intensify maize-based systems and for commercial seed companies to invest and evolve due to a limited seed market.
Drought-tolerant maize is, therefore, a game changer as it reduces the downside risk for both farmers and seed companies and increases demand for improved maize seed, thus strengthening the commercial seed market in sub-Saharan Africa. Extensive public-private partnerships around drought-tolerant maize varieties supported the nascent seed sector in sub-Saharan Africa and has enabled maize-based seed companies to significantly grow over the last decade. Seed companies in turn are investing in marketing drought-tolerant maize varieties and taking the products to scale.
A.M.: The DTMA and STMA projects were jointly implemented by CIMMYT and IITA in partnership with diverse national and private sector partners in major maize producing countries in eastern, southern and western Africa to develop and deploy multiple stress-tolerant and productive maize varieties to help farmers adapt to recurrent droughts and other stresses including climate change.
These projects catalyzed the release and commercialization of numerous stress-resilient new maize varieties in target countries across Africa. Increasing the resilience of farming systems means that smallholder farmers need guaranteed access to good quality stress resilient maize seeds. To this end, the two projects worked with public and private sector partners to produce large quantities of certified seeds with a continual supply of breeder seeds from CIMMYT and IITA. The availability of considerable amount of certified seeds of resilient maize varieties has enabled partners to reach farmers producing maize under stressful conditions, thus contributing to the mitigation of food shortages that affect poor people the most in both rural and urban areas.
C.M.: The drought-tolerant maize innovation stabilized maize production under drought stress conditions in sub-Saharan Africa countries. Recent study results showed that households that grew drought-tolerant maize varieties had at least half a ton more maize harvest than the households that did not grow the drought-tolerant maize varieties, thus curbing food insecurity while simultaneously increasing farmersâ economic benefits. Besides the benefit from drought-tolerant innovation, the new maize varieties developed through the partnership also stabilized farmersâ yields under major diseases, Striga infestation, and poor soil fertility prevalent in sub-Saharan Africa.
How is the project addressing emerging challenges in breeding for drought-tolerant maize and what opportunities are available to address these challenges in the future?Â
Margaret holds an improved ear of drought-tolerant maize. Margaretâs grandmother participated in an on-farm trial in Murewa district, 75 kilometers northeast of Zimbabweâs capital Harare. (Photo: Jill Cairns/CIMMYT)
B.M.P.: A strong pipeline of elite, multiple-stress-tolerant maize varieties â combining other relevant adaptive and farmer-preferred traits â has been built in sub-Saharan Africa through a strong germplasm base, partnerships with national research partners and small- and medium-sized seed companies, an extensive phenotyping and multi-location testing network, and engagement with farming communities through regional on-farm trials for the identification of relevant farmer-preferred products.
CGIAR maize breeding in sub-Saharan Africa continues to evolve in order to more effectively and efficiently create value for the farmers we serve. We are now intensively working on several areas: (a) increasing genetic gains (both on-station and on-farm) through maize breeding in the stress-prone environments of sub-Saharan Africa by optimizing our breeding pipelines and effectively integrating novel tools, technologies and strategies (e.g., doubled haploids, genomics-assisted breeding, high-throughput and precise phenotyping, improved breeding data management system, etc.); (b) targeted replacement of old or obsolete maize varieties in sub-Saharan Africa with climate-adaptive and new varieties; (c) developing next-generation climate-adaptive maize varieties with traits such as native genetic resistance to fall armyworm, and introgressed nutritional quality traits (e.g., provitamin A, high Zinc) to make a positive impact on the nutritional well-being of consumers; and (d) further strengthening the breeding capacity of national partners and small and medium-sized seed companies in sub-Saharan Africa for a sustainable way forward.
A.M.:Â The DTMA and STMA projects established effective product pipelines integrating cutting-edge phenotyping and molecular tools to develop stress-resilient maize varieties that are also resistant or tolerant to MLN disease and fall armyworm. These new varieties are awaiting release and commercialization. Increased investment in strengthening public and private sector partnerships is needed to speed up the uptake and commercialization of new multiple stress-resilient maize varieties that can replace the old ones in farmersâ fields and help achieve higher yield gains.
Farmersâ access to new multiple-stress-tolerant maize varieties will have a significant impact on productivity at the farm level. This will largely be due to new varietiesâ improved response to fertilizer and favorable growing environments as well as their resilience to stressful production conditions. Studies show that the adoption of drought-tolerant maize varieties increased maize productivity, reduced exposure to farming risk among adopters and led to a decline in poverty among adopters. The availability of enough grain from highly productive and stress-resilient maize varieties can be the cheapest source of food and release land to expand the cultivation of other crops to facilitate increased access to diversified and healthy diets.
C.M.: Â The project is tackling emerging challenges posed by new diseases and pests by building upon the successful genetic base of drought-tolerant maize. This is being done by breeding new varieties that add tolerance to the emerging disease and pest challenges onto the existing drought-tolerant maize backgrounds. Successes have already been registered in breeding new varieties that have high levels of resistance to MLN disease and the fall armyworm pest.
Opportunities are also available to address new challenges including: pre-emptively breeding for threats to maize production challenges that exist in other regions of the world before these threats reach sub-Saharan Africa; enhancing the capacity of national partners to build strong breeding programs that can address new threats once they emerge in sub-Saharan Africa; and sharing knowledge and novel high-value breeding materials across different geographies to immediately address new threats once they emerge.
Cover photo: Alice Nasiyimu stands in front of a drought-tolerant maize plot at her family farm in Bungoma County, in western Kenya. (Photo: Joshua Masinde/CIMMYT)
The first meetings of the Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods (AGG) wheat and maize science and technical steering committees â WSC and MSC, respectively â took place virtually on 25th and 28th September.
Researchers from the International Maize and Wheat Improvement Center (CIMMYT) sit on both committees. In the WSC they are joined by wheat experts from national agricultural research systems (NARS) in Bangladesh, Ethiopia, Kenya, India, and Nepal; and from Angus Wheat Consultants, the Foreign, Commonwealth & Development Office (FCDO), HarvestPlus, Kansas State University and the Roslin Institute.
Similarly, the MSC includes maize experts from NARS in Ethiopia, Ghana, Kenya and Zambia; and from Corteva, the Foundation for Food and Agriculture Research (FFAR), the International Institute for Tropical Agriculture (IITA), SeedCo, Syngenta, the University of Queensland, and the US Agency for International Development (USAID).
During the meetings, attendees discussed scientific challenges and opportunities for AGG, and developed specific recommendations pertaining to key topics including breeding and testing scheme optimization, effective engagement with partners and capacity development in the time of COVID-19, and seed systems and gender intentionality.
Discussion groups noted, for example, the need to address family structure in yield trials, to strengthen collaboration with national partners, and to develop effective regional on-farm testing strategies. Interestingly, most of the recommendations are applicable and valuable for both crop teams, and this is a clear example of the synergies we expect from combining maize and wheat within the AGG project.
All the recommendations will be further analyzed by the AGG teams during coming months, and project activities will be adjusted or implemented as appropriate. A brief report will be submitted to the respective STSCs prior to the second meetings of these committees, likely in late March 2021.
Stakeholders in the Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods (AGG) project have pledged to strengthen efforts to deliver desirable stress tolerant, nutritious and high-yielding maize and wheat varieties to smallholder farmers in a much shorter time. The alliance, comprising funders, national agricultural research systems (NARS), private seed companies, non-governmental organizations, the International Maize and Wheat Improvement Center (CIMMYT) and, for the maize component the International Institute for Tropical Agriculture (IITA), made these assurances during virtual events held in July and August 2020, marking the inception of the 5-year AGG project.
The initiative seeks to fast-track the development of higher-yielding, climate resilient, demand-driven, gender-responsive and nutritious seed varieties for maize and wheat, two of the worldâs most important staple crops. The project is funded by the Bill & Melinda Gates Foundation, the Foreign, Commonwealth & Development Office (FCDO), the U.S. Agency for International Development (USAID), and the Foundation for Food and Agriculture Research (FFAR).
Tackling current and emerging threats
Jeff Rosichan, scientific program director of the Foundation for Food and Agricultural Research (FFAR), acknowledged the significant and ambitious aim of the project in tackling the challenges facing maize and wheat currently and in the future. âWe are seeing the emergence of new pests and pathogens and viral diseases like never before. A lot of the work of this project is going to help us to tackle such challenges and to be better prepared to tackle emerging threats,â he said.
AGG builds on gains made in previous initiatives including Drought Tolerant Maize for Africa (DTMA), Improved Maize for African Soils (IMAS), Water Efficient Maize for Africa (WEMA), Stress Tolerant Maize for Africa (STMA) and Delivering Genetic Gain in Wheat (DGGW), with support from partners in 17 target countries in sub-Saharan Africa (SSA) and South Asia.
Hailu Wordofa, agricultural technology specialist at the USAID Bureau for Resilience and Food Security, underscored his expectation for CIMMYTâs global breeding program to use optimal breeding approaches and develop strong collaborative relationships with NARS partners, âfrom the development of product profiles to breeding, field trials and line advancement.â
Similarly, Gary Atlin, senior program officer at the Bill & Melinda Gates Foundation lauded the move toward stronger partnerships and greater emphasis on the CIMMYT and IITA breeding programs. âThe technical capacity of partners has increased through the years. It is prudent to ensure that national partnerships continue. It is always a challenging environment, this time multiplied by the COVID-19 crisis, but through this collaboration, there is a greater scope to strengthen such partnerships even more,â he said.
Anne Wangui, Maize Seed Health Technician, demonstrates how to test maize plants for maize dwarf mosaic virus (MDMV). (Photo: Joshua Masinde/CIMMYT)
Symbiotic partnerships with great impact
âFrom the NARS perspective, we are committed to doing our part as primary partners to deliver the right seed to the farmers,â said Godfrey Asea, director of the National Crops Resources Research Institute at the National Agriculture Research Organization (NARO), Uganda. âWe see an opportunity to review and to use a lot of previous historical data, both in-country and regionally and to continue making improved decisions. We also reiterate our commitment and support to continuously make improvement plans in our breeding programs.â
Martin Kropff, director general of CIMMYT, recognized the tremendous impact arising from the longstanding cooperation between CIMMYTâs maize and wheat programs and national programs in countries where CIMMYT works. âA wheat study in Ethiopia showed that 90% of all the wheat grown in the country is CIMMYT-related, while an impact study for the maize program shows that 50% of the maize varieties in Africa are CIMMYT-derived. We are very proud of that â not for ourselves but for the people that we work for, the hundreds of millions of poor people and smallholder farmers who really rely on wheat and maize for their living and for their incomes,â he said.
Founder and Chief Executive Officer of East Africa-based Western Seed Company Saleem Esmail expressed optimism at the opportunities the project offers to improve livelihoods of beneficiaries. âI believe we can do this by sharing experiences and by leveraging on the impacts that this project is going to bring, from new technologies to new science approaches, particularly those that help save costs of seed production.â
He, however, observed that while the target of fast-tracking varietal turnover was great, it was a tough call, too, âbecause farmers are very risk averse and to change their habits requires a great deal of effort.â
On his part, director of Crop Research at the Oromia Agricultural Research Institute (OARI) in Ethiopia Tesfaye Letta revealed that from collaborative research work undertaken with CIMMYT, the institute has had access to better-quality varieties especially for wheat (bread and durum). These have helped millions of farmers to improve their productivity even as Ethiopia aims for wheat self-sufficiency by expanding wheat production under irrigation.
âWe expect more support, from identifying wheat germplasm suitable for irrigation, developing disease resistant varieties and multiplying a sufficient quantity of early generation seed, to applying appropriate agronomic practices for yield improvement and organizing exposure field visits for farmers and experts,â he said.
Challenges and opportunities in a time of crisis
Alan Tollervey, head of agriculture research at Foreign, Commonwealth and Development Office (FCDO) and the UK representative to the CGIAR System Council, emphasized the need for continued investment in agricultural research to build a resilient food system that can cope with the demands and pressures of the coming decades. This way, organizations such as CIMMYT and its partners can adequately deliver products that are relevant not only to the immediate demands of poor farmers in developing countries â and the global demand for food generally â but also to address foreseen threats.
âWe are at a time of intense pressure on budgets, and that is when projects are most successful, most relevant to the objectives of any organization, and most able to demonstrate a track record of delivery. CIMMYT has a long track history of being able to respond to rapidly emerging threats,â he said.
Felister Makini, the deputy director general for crops at the Kenya Agricultural Research Organization (KALRO) lauded the fact that AGG not only brings together maize and wheat breeding and optimization tools and technologies, but also considers gender and socioeconomic insights, âwhich will be crucial to our envisioned strategy to achieve socioeconomic change.â
Zambia Agriculture Research Organization (ZARI) maize breeder Mwansa Kabamba noted that the inclusion of extension workers will help to get buy-in from farmers especially as far as helping with adoption of the improved varieties is concerned.
In its lifecycle, the AGG project aims to reduce the breeding cycles for both maize and wheat from 5-7 years currently to 3-4 years. By 2024, at least 150,000 metric tons of certified maize seed is expected to be produced, adopted by 10 million households, planted on 6 million hectares and benefit 64 million people. It also seeks to serve over 30 million households engaged in wheat farming the target countries.
Cover photo: CIMMYT researcher Demewoz Negera at the Ambo Research Center in Ethiopia. (Photo: Peter Lowe/CIMMYT)
By 2050, global demand for wheat is predicted to increase by 50 percent from todayâs levels and demand for maize is expected to double. Meanwhile, these profoundly important and loved crops bear incredible risks from emerging pests and diseases, diminishing water resources, limited available land and unstable weather conditions â with climate change as a constant pressure exacerbating all these stresses.
Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods (AGG) is a new 5-year project led by the International Maize and Wheat Improvement Center (CIMMYT) that brings together partners in the global science community and in national agricultural research and extension systems to accelerate the development of higher-yielding varieties of maize and wheat.
Funded by the Bill & Melinda Gates Foundation, the UK Foreign, Commonwealth & Development Office, the U.S. Agency for International Development (USAID) and the Foundation for Food and Agriculture Research (FFAR), AGG fuses innovative methods to sustainably and inclusively improve breeding efficiency and precision to produce seed varieties that are climate-resilient, pest- and disease-resistant, highly nutritious, and targeted to farmersâ specific needs.
AGG seeks to respond to the intersection of the climate emergency and gender through gender-intentional product profiles for its improved seed varieties and gender-intentional seed delivery pathways.
AGG will take into account the needs and preferences of female farmers when developing the product profiles for improved varieties of wheat and maize. This will be informed by gender-disaggregated data collection on current varieties and preferred characteristics and traits, systematic on-farm testing in target regions, and training of scientists and technicians.
Farmer Agnes Sendeza harvests maize cobs in Malawi. (Photo: Peter Lowe/CIMMYT)
To encourage female farmers to take up climate-resilient improved seeds, AGG will seek to understand the pathways by which women receive information and improved seed and the external dynamics that affect this access and will use this information to create gender-intentional solutions for increasing varietal adoption and turnover.
âUntil recently, investments in seed improvement work have not actively looked in this area,â said Olaf Erenstein, Director of CIMMYTâs Socioeconomics Program at a virtual inception meeting for the project in late August 2020. Now, âit has been built in as a primary objective of AGG to focus on [âŠ] strengthening gender-intentional seed delivery systems so that we ensure a faster varietal turnover and higher adoption levels in the respective target areas.â
In the first year of the initiative, the researchers will take a deep dive into the national- and state-level frameworks and policies that might enable or influence the delivery of these new varieties to both female and male farmers. They will analyze this delivery system by mapping the seed delivery paths and studying the diverse factors that impact seed demand. By understanding their respective roles, practices, and of course, the strengths and weaknesses of the system, the researchers can diagnose issues in the delivery chain and respond accordingly.
Once this important scoping step is complete, the team will design a research plan for the following years to understand and influence the seed information networks and seed acquisition. It will be critical in this step to identify some of the challenges and opportunities on a broad scale, while also accounting for the related intra-household decision-making dynamics that could affect access to and uptake of these improved seed varieties.
âIt is a primary objective of AGG to ensure gender intentionality,â said Kevin Pixley, Director of CIMMYTâs Genetic Resources Program and AGG project leader. âOften women do not have access to not only inputs but also information, and in the AGG project we are seeking to help close those gaps.â
Cover photo: Farmers evaluate traits of wheat varieties, Ethiopia. (Photo: Jeske van de Gevel/Bioversity International)
Drought tolerant maize route out of poverty for community-based seed producer, Kenya. (Photo: Anne Wangalachi/CIMMYT)
As plant pests and diseases continue to evolve, with stresses like drought and heat intensifying, a major priority for breeders and partners is developing better stress tolerant and higher yielding varieties faster and more cost effectively.
A new project, Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods (AGG), seeks to achieve these results by speeding up genetic gains in maize and wheat breeding to deliver improved, stress resilient, nutritious seed to smallholders in 13 countries in sub-Saharan Africa (SSA) and four in South Asia. The 5-year AGG project is funded by the Bill & Melinda Gates Foundation, the UK Department for International Development (DFID), the U.S. Agency for International Development (USAID), and the Foundation for Food and Agriculture Research (FFAR).
The maize component of the project brings together diverse partners, including the International Maize and Wheat Improvement Center (CIMMYT) and the International Institute of Tropical Agriculture (IITA) as co-implementers; national agricultural research systems (NARS); and small and medium-sized (SME) seed companies.
Ambitious targets
At the inception meeting of the maize component of AGG on July 10, 2020, project leaders, partners and funders lauded the ambitious targets that aim to bolster the resilience and better the livelihoods, food and nutritional security of millions of smallholder farmers in SSA. At least 150,000 metric tons of certified seed is expected to be produced, adopted by 10 million households, planted on 6 million hectares by 2024 and benefiting 64 million people.
âWe are developing climate resilient, nutritious, efficient, productive maize varieties for the farming community in sub-Saharan Africa. We will continue to work closely with our partners to develop product profiles, which are centered on the varieties that are really needed,â said CIMMYT Interim Deputy Director for Research Kevin Pixley.
AGG draws a solid foundation from previous projects such as Drought Tolerant Maize for Africa (DTMA), Improved Maize for Africa Soils (IMAS), Water Efficient Maize for Africa (WEMA) and Stress Tolerant Maize for Africa (STMA). Several high-yielding maize varieties that tolerate and/or resist diseases such as maize lethal necrosis (MLN), gray leaf spot (GLS), northern corn leaf blight, maize streak virus (MSV), turcicum leaf blight (TLB) and are drought-tolerant (DT), were developed and released to farmers across SSA. Varieties with nutritional traits such as nitrogen use efficiency (NUE) and quality protein maize (QPM) were also developed in the preceding initiatives.
Drought Tolerant Maize for Africa (DTMA) project monitoring and evaluation takes place in Tanzania. (Photo: Florence Sipalla/CIMMYT)
A matter of âlife or deathâ
âWhen farmers are confronted by aggressive farming challenges, they want products that address those challenges at the earliest opportunity. Waiting for years could mean the difference between life and death,â remarked David Chikoye, the director of Southern Africa Hub at IITA.
A key focus of AGG is to incorporate gender-intentionality – special attention to the needs of women farmers and consumers – from the traits bred into new varieties, through the communication and technology deployment strategies.
âAGG provides an excellent opportunity to reorient our maize breeding, seed scaling and delivery strategies for greater impact on the livelihoods of smallholder farmers, especially women and the disadvantaged communities that are not well reached so far,â said B.M. Prasanna, director of CIMMYT’s Global Maize Program and the CGIAR Research Program on Maize. âOur vision is to accelerate genetic gains to 1.5-2 percent annually across different breeding pipelines in the 13 participating countries in SSA and to reach over 10 million households with improved varieties.â
AGG will strengthen the capacity of partners to achieve and sustain accelerated variety replacement — or turnover — and increase genetic gains in farmersâ fields.
Old vs new
Many improved varieties have been released in the past decade. However, the turnover of old and obsolete varieties with new and improved ones is not happening as quickly as anticipated.
âWe are producing good products and getting them out, but not at the speed that farmers need. How do we make it possible and profitable for seed companies to quickly introduce new hybrids?â posed Gary Atlin, program officer at the Bill & Melinda Gates Foundation. âWe need to move towards a breeding and seed system where we know that we can develop a new product in 4 or 5 years and then get it to the farmers much more quickly. This is a complex problem.â
To enhance AGGâs ability to identify new products that perform well for farmers under their challenging circumstances, on-farm testing will be scaled up significantly.
Guest of honor, Ethiopiaâs Minister of State for Agriculture Mandefro Nigussie, lauded CIMMYTâs support in improving the resilience and productivity of maize and wheat in the country. He observed that this has helped improve maize productivity in Ethiopia from around 2 tons/ha to about 4 tons/ha over the past two decades.
âWe consider such a huge accomplishment as a combination of efforts in germplasm development and breeding efforts of CIMMYT and the Ethiopian national programs. That partnership will flourish further in this new project,â he said.
Accelerating Genetic Gains in Maize and Wheat (AGG), a project led by the International Maize and Wheat Improvement Center (CIMMYT), brings together partners in the global science community and in national agricultural research and extension systems to accelerate the development of higher-yielding varieties of maize and wheat â two of the world’s most important staple crops.
Specifically focusing on supporting smallholder farmers in low- and middle-income countries, the project uses innovative methods that improve breeding efficiency and precision to produce varieties that are climate-resilient, pest- and disease-resistant, and highly nutritious, targeted to farmersâ specific needs.
The maize component of the project serves 13 target countries: Ethiopia, Kenya, Malawi, Mozambique, South Africa, Tanzania, Uganda, Zambia and Zimbabwe in eastern and southern Africa; and Benin, Ghana, Mali, and Nigeria in West Africa. The wheat component of the project serves six countries: Bangladesh, India, Nepal, and Pakistan in South Asia; and Ethiopia and Kenya in sub-Saharan Africa.
This project builds on the impact of the Delivering Genetic Gain in Wheat (DGGW) and Stress Tolerant Maize for Africa (STMA) projects.
Objectives
The project aims to accelerate the development and delivery of more productive, climate-resilient, gender-responsive, market-demanded, and nutritious maize and wheat varieties in support of sustainable agricultural transformation in sub-Saharan Africa and South Asia.
To encourage adoption of new varieties, the project works to improve equitable access, especially by women, to seed and information, as well as capacity building in breeding, disease surveillance, and seed marketing.
Funders
Project funding is provided by the Bill & Melinda Gates Foundation, the UK Foreign, Commonwealth & Development Office, the United States Agency for International Development and the Foundation for Food and Agricultural Research (FFAR).
Key partners
The primary partners for this project are the national agricultural research systems in the project target countries and, for the maize component, the International Institute for Tropical Agriculture (IITA) and small and medium enterprise (SME) seed companies.
Scientific and technical steering committees
We are grateful to our excellent maize and wheat scientific and technical steering committees for their suggestions and thoughtful question on key issues for the success of AGG. Read about the recommendations from the maize steering committee here and the wheat steering committee here.
Year 1 Executive Summary
In its first year of operation, AGG has made great strides in collaboration with our national partners towards the project goals âdespite the unprecedented challenges of working through a global pandemic. For specific milestones achieved, we invite you to review our AGG Year 1 Executive Summary and Impact Report (PDF).
Year 2 Executive Summary
AGG has made progress towards all outcomes. Our scientists are implementing substantial modifications to breeding targets and schemes. AGG is also in a continuous improvement process for the partnership modalities, pursuing co-ownership and co-implementation that builds the capacities of all involved. For specific milestones achieved, we invite you to review our AGG Year 2 Executive Summary and Impact Report (PDF).
A maize farmer in southern Ethiopia. (Photo: S. Samuel/CCAFS)
Because of unpredictable climate conditions, agricultural production in Ethiopia faces uncertainties during both the growing and harvesting seasons. The risk and uncertainty are bigger for smallholder farmers, as they canât protect themselves from climate-related asset losses. Access to insurance schemes, climate information and other tools could help to minimize climate risks for smallholder farmers.
A new collaborative project launched in Ethiopia aims to reduce agricultural investment risk. The Capacitating African Stakeholders with Climate Advisories and Insurance Development (CASCAID-II) project builds on learnings from the CASCAID-I project in West Africa. It will target Ethiopia, Ghana and Senegal, focusing not only on smallholder farmers but on the food value chain as a whole. In a context of increasing integration of farmers into urban markets, the project will improve agricultural productivity, food security and profitability of agricultural enterprises.
The International Maize and Wheat Improvement Center (CIMMYT) will partner with the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) and the University of Florida, with the support of the CGIAR research program on Climate Change, Agriculture and Food Security (CCAFS).
Kindie Tesfaye, CIMMYT, presents an overview of climate services in Ethiopia. (Photo: Simret Yasabu /CIMMYT)
Physical and digital tools across the value chain
In October 2019, thirty partners gathered for the CASCAID-II project launch and meeting in Addis Ababa, Ethiopia. They agreed on the project goals, a set of priority research questions and a schedule of activities for the next two years.
Partners also reviewed the tools that could be used to deliver climate advisories and agricultural insurance products, ensuring that all the actors in the value chain are engaged from the start. Team members aim to embed services in existing physical and digital (âphygitalâ) data infrastructures and to collect user feedback, so performance can be improved. Users will be segmented according to advanced socioeconomic and agro-ecological factors, so they can be targeted more efficiently with appropriate services and climate-smart agriculture options. The project will draw on real-time and multi-scale yield forecasting for better preparedness and decision-making.
Project partners agreed to start with the CCAFS Regional Agricultural Forecasting Tool (CRAFT) for sub-national yield forecasting in Ethiopia and to develop climate advisories and insurance services in line with the needs of the Ministry of Agriculture.
Participants of the launch of the digital agro-climate advisory platform gather for a group photo. (Photo: Semu Yemane/EIAR)
Precise data from scientists to farmers
In a related development, Ethiopia recently launched a digital agro-climate advisory platform, which offers great potential to improve farmersâ management of climate-induced risks, facilitate technology adoption and improve livelihoods.
Speaking at the platformâs launch ceremony, Eyasu Abraha, advisor to the Minister of Agriculture, thanked development partners for supporting the establishment of the platform in the timely move towards digitalization and use of precise data.
The platform incorporates location-specific climate information, as well as soil- and crop-specific best-bet agronomic management recommendations for farmers, development agents and extension officers. It automates crop-climate modeling and uses technologies such as text messaging, interactive voice response (IVRS) and smartphone apps for dissemination.