Skip to main content

Location: Ethiopia

For more information, contact CIMMYT’s Ethiopia office.

CIMMYT farm mechanization project attracts wide coverage by Ethiopian media

It is not often that conservation agriculture, the subject of numerous scholarly articles and dissertations, gets wide coverage from the mainstream media in Ethiopia.

It is thus remarkable that the media gave particular attention to a training event held last June at the ILRI-Ethiopia campus and organized by CIMMYT through the USAID-funded “Africa Research in Sustainable Intensification for the Next Generation” project (Africa RISING project, www.africa-rising.net). A focus of CIMMYT’s work in Ethiopia and other countries of East and Southern Africa is to improve smallholder farming practices by exploiting the synergies between small-scale mechanization and conservation agriculture.

Lead trainer Joseph M. Mutua shows service providers how to drive a two-wheel tractor. Photo: Frédéric Baudron/CIMMYT

Reporters representing two major daily English language newspapers in Addis Ababa attended and wrote extensively about the five-day training event that the project organized for service providers from different states in Ethiopia with the objective of promoting farm mechanization and sustainable productivity.

The Ethiopian Herald gave the most coverage through a lengthy article titled “Advancing farming systems improve food, nutrition and income security.” The article describes the advantages of increasing smallholder production through the adoption of modern agricultural practices and proven new technologies such as the two-wheel tractor, which can help increase the efficiency of seed and fertilizer use, reduce labor, time and post-harvest losses, and improve grain quality and farm income. The article also recommends that “all stakeholders should identify the challenges of promoting mechanization and deliver appropriate technologies to farmers.”

The Monitor gave the story a prominent place under the headline “Two-wheel tractors to improve agriculture in Ethiopian highlands.” The story in particular mentions the role of the project in light of a draft national strategy developed in 2014 by the Ethiopian Agricultural Transformation Agency with the aim of increasing farm power available to Ethiopian farmers by as much as 10-fold by 2025.

The article also reports the testimonies of participating service providers on the suitability and ease of using two-wheel tractor technologies, vis-à-vis traditional tools. One farmer noted, “Compared with using traditional tools like oxen power… this machine will help increase my income while also saving my time.”

At the end, the article quotes FACASI project coordinator Frédéric Baudron, who noted that the trainees are expected to share their knowledge of two-wheel tractor technologies with their local communities to achieve more impact and productivity in the future.

It is worth noting that CIMMYT employs a range of methodologies to accelerate delivery of two-wheel tractor-based technologies to smallholders in selected sites in SSA countries, including: on-station and on-farm participatory evaluation of two-wheel tractor technologies; business model development; market and policy analysis; and establishment of a permanent knowledge platform as well as a common monitoring and evaluation system that includes gender-disaggregated data.

Zimbabwe and CIMMYT to establish maize lethal necrosis quarantine facility

A modern quarantine facility to safely import maize breeding materials to southern Africa, and to enable local institutions to proactively breed for resistance against Maize Lethal Necrosis (MLN) disease, will be established this year at Mazowe, just outside Harare in Zimbabwe.

After the signing ceremony, BM Prasanna, MAIZE CRP Director, shakes hands with Ringson Chitsiko, the Permanent Secretary of Zimbabwe’s Ministry of Agriculture. Looking on, is Mulugetta Mekuria, CIMMYT-SARO Regional Representative. Photo: Johnson Siamachira
After the signing ceremony, BM Prasanna, MAIZE CRP Director, shakes hands with Ringson Chitsiko, the Permanent Secretary of Zimbabwe’s Ministry of Agriculture. Looking on, is Mulugetta Mekuria, CIMMYT-SARO Regional Representative. Photo: Johnson Siamachira

After the signing ceremony, BM Prasanna, MAIZE CRP Director, shakes hands with Ringson Chitsiko, the Permanent Secretary of Zimbabwe’s Ministry of Agriculture. Looking on, is Mulugetta Mekuria, CIMMYT-SARO Regional Representative. Photo: Johnson Siamachira

The announcement was made on 3 August 2015 at the signing ceremony of a Memorandum of Agreement (MoA) between CIMMYT and the Government of Zimbabwe. Ringson Chitsiko, the Permanent Secretary of Agriculture, Mechanization and Irrigation Development, signed on behalf of the Government of Zimbabwe while BM Prasanna, Director of MAIZE CRP and CIMMYT’s Global Maize Program, represented CIMMYT.

“MLN is a reality that cannot be ignored. We have to work together to control its spread. We need to focus on finding practical solutions to tackle this complex challenge, including strengthening MLN disease diagnostic and surveillance capacity, while we continue with intensive inter-institutional efforts to develop and deploy improved maize varieties that incorporate MLN resistance. The commercial seed sector must also play a key role by producing and delivering MLN-free healthy seed to farmers,” said Prasanna during the MoA signing ceremony.

The MLN Quarantine Facility, the first of its kind in southern Africa, will be set up by CIMMYT before the end of this year at the Plant Quarantine Institute in Mazowe, Mashonaland Central Province, one of Zimbabwe’s important research facilities run by the Department of Research and Specialist Services (DR&SS).

MLN was first detected in Kenya’s Rift Valley region in September 2011, and has since been reported in Tanzania, Uganda, Democratic Republic of Congo, Rwanda and Ethiopia. It is caused by a double infection of maize plants by two viruses: maize chlorotic mottle virus and sugarcane mosaic virus. There is an urgent need to prevent the deadly disease from moving further south.

Prior to signing of the MoA, Joseph Made, Zimbabwe’s Minister of Agriculture, discussed with Prasanna and CIMMYT-Southern Africa Regional Office (CIMMYT-SARO) senior staff how to strengthen maize research and development in Zimbabwe. “The Government of Zimbabwe is honored to be selected to host the new facility, which is important for stopping the spread and impact of MLN,” said Made.

To strengthen the phytosanitary work at the MLN Quarantine Facility, CIMMYT will also offer capacity building to DR&SS researchers through trainings, technical assistance, and advisory services, according to Prasanna. “This MLN Quarantine Facility, and the collaborative efforts between institutions of the Government of Zimbabwe, especially DR&SS and CIMMYT-SARO, are key in our efforts to prevent the possible spread of MLN in Africa,” said Prasanna.

Mulugetta Mekuria, CIMMYT-SARO Regional Representative said that the new collaboration to set up the MLN Quarantine facility in Zimbabwe would further enrich the long-standing and successful partnership between CIMMYT-SARO and DR&SS.
After the signing ceremony, officials from CIMMYT and DR&SS visited the site at the Plant Quarantine Institute at Mazowe where the MLN Quarantine Facility will be established, and discussed implementation arrangements, including steps for strengthening the national phytosanitary capacity.

Government of Zimbabwe and CIMMYT to establish maize lethal necrosis quarantine facility at Mazowe

A modern quarantine facility to safely import maize breeding materials to southern Africa, and to enable local institutions to proactively breed for resistance against Maize Lethal Necrosis (MLN) disease, will be established this year at Mazowe, just outside Harare in Zimbabwe.

The announcement was made on 3 August 2015 at the signing ceremony of a Memorandum of Agreement (MoA) between CIMMYT and the Government of Zimbabwe. Ringson Chitsiko, the Permanent Secretary of Agriculture, Mechanization and Irrigation Development, signed on behalf of the Government of Zimbabwe while BM Prasanna, Director of MAIZE CRP and CIMMYT’s Global Maize Program, represented CIMMYT.

“MLN is a reality that cannot be ignored. We have to work together to control its spread. We need to focus on finding practical solutions to tackle this complex challenge, including strengthening MLN disease diagnostic and surveillance capacity, while we continue with intensive inter-institutional efforts to develop and deploy improved maize varieties that incorporate MLN resistance. The commercial seed sector must also play a key role by producing and delivering MLN-free healthy seed to farmers,” said Prasanna during the MoA signing ceremony.

The MLN Quarantine Facility, the first of its kind in southern Africa, will be set up by CIMMYT before the end of this year at the Plant Quarantine Institute in Mazowe, Mashonaland Central Province, one of Zimbabwe’s important research facilities run by the Department of Research and Specialist Services (DR&SS).

MLN was first detected in Kenya’s Rift Valley region in September 2011, and has since been reported in Tanzania, Uganda, Democratic Republic of Congo, Rwanda and Ethiopia. It is caused by a double infection of maize plants by two viruses: maize chlorotic mottle virus and sugarcane mosaic virus. There is an urgent need to prevent the deadly disease from moving further south.

Prior to signing of the MoA, Joseph Made, Zimbabwe’s Minister of Agriculture, discussed with Prasanna and CIMMYT-Southern Africa Regional Office (CIMMYT-SARO) senior staff how to strengthen maize research and development in Zimbabwe. “The Government of Zimbabwe is honored to be selected to host the new facility, which is important for stopping the spread and impact of MLN,” said Made.

After the signing ceremony, BM Prasanna, MAIZE CRP Director, shakes hands with Ringson Chitsiko, the Permanent Secretary of Zimbabwe’s Ministry of Agriculture. Looking on, is Mulugetta Mekuria, CIMMYT-SARO Regional Representative. Photo: Johnson Siamachira

To strengthen the phytosanitary work at the MLN Quarantine Facility, CIMMYT will also offer capacity building to DR&SS researchers through trainings, technical assistance, and advisory services, according to Prasanna. “This MLN Quarantine Facility, and the collaborative efforts between institutions of the Government of Zimbabwe, especially DR&SS and CIMMYT-SARO, are key in our efforts to prevent the possible spread of MLN in Africa,” said Prasanna.

Mulugetta Mekuria, CIMMYT-SARO Regional Representative said that the new collaboration to set up the MLN Quarantine facility in Zimbabwe would further enrich the long-standing and successful partnership between CIMMYT-SARO and DR&SS.

After the signing ceremony, officials from CIMMYT and DR&SS visited the site at the Plant Quarantine Institute at Mazowe where the MLN Quarantine Facility will be established, and discussed implementation arrangements, including steps for strengthening the national phytosanitary capacity.

Show and tell: when technology adoption becomes farmer-driven

What does the CASFESA project have to show for two-and-a-half years in Kenya?

Many poor smallholder farmers in Africa bear the brunt of infertile soils. Research offers a partial solution: Conservation Agriculture (CA) helps farmers improve soil productivity through sustainable intensification.

show-and-tellPicture2
Farmers evaluating maize stand on the conventional versus conservation agriculture plots during field days organized in Embu.

Participants of the project closing workshop held on March 5, 2015.
And some smallholders in Africa are already reaping CA benefits. For example, the Conservation Agriculture and Smallholder Farmers in Eastern and Southern Africa (CASFESA) Project worked with farmers and other partners in Kenya and Ethiopia since 2012. CASFESA’s aim was to buffer small-scale farmers by enhancing farm resilience through better natural resource management in maize based systems.

In Kenya, CASFESA ran for two-and-a-half years in Embu County. At a summative closing workshop held at Embu on 5 March 2015, farmers shared their CASFESA experience. For some of them, the project transformed their farming with remarkable benefits, due to their commitment, as well as the commitment of other key actors in CA dissemination such as the Kenya Agricultural and Livestock Research Organization.

In Kenya, CASFESA promoted three main technologies targeting maize farmers. The technologies are maize and legume intercropping, residue retention and zero tillage with permanent furrows and ridges. Thirty farmers in 15 randomly selected villages volunteered their farms for demonstrations showcasing the three technologies in tandem. Practical demonstrations were done during farmer field days in the selected villages to compare the performance of maize and beans using conservation agriculture and using normal practice. Intercropping is not new and is already very common in the area.

Moti Jaleta, CASFESA Project Coordinator, observed, “From a quick adoption monitoring survey, we noticed about 60 percent of the sample farmers have tried at least some of these techniques with keen interest to continue. The success of the CASFESA Project in Embu has been in getting these technologies to the farmers through practical demonstration, and linking them with farm input suppliers. With this, I believe we have accomplished our task in supporting the smallholders to improve their crop management.”

Participants of the project closing workshop held on March 5, 2015.
Participants of the project closing workshop held on March 5, 2015.

Farmers evaluating maize stand on the conventional versus conservation agriculture plots during field days organized in Embu.

Indeed, a good number of farmers in the villages started using zero tillage with permanent furrows and ridges covered with maize residue. But there was a hitch: initially, adopting the full suite of sustainable-intensification practices appeared unpopular. And why was this? Not because of the practices themselves but because most farmers use maize residue for animal feed. This made residue retention for mulching and enhancing soil fertility a big challenge. So how did the farmers themselves – independent of the researchers – get around these unfavorable trade-offs? Let’s hear it from them.

One farmer, Nancy Mbeere, who adopted CA, harvested an additional eight bags of maize from her small farm. And she did not keep her new know-how to herself: “I have trained my three neighbors on this new technique and they have already started using furrows and ridges and residue retention in their maize shamba [farms].”

Nancy and her neighbors found a solution on animal fodder. “We agreed to have one in every three rows remain in the field as residue and use the other two as feed,” explained Nancy.

For Bethwel Kathiomi, another CA farmer, when his farm had two very good seasons, other farmers approached him for tips on his new-found farming technique. “People kept stopping by my farm to ask questions, and I was happy to share this information with them.”

At the closure workshop, farmers attending committed to continue sharing their experiences and successes, and to support each other through small groups to learn, and access inputs like fertilizers, herbicides and improved seeds. This community commitment should lead to greater CA adoption, given the attention CA benefits are drawing going by the experience of Bethwel and Nancy. It would therefore appear that in this particular case, CA has successfully moved from researchers to farmers, who are now the ones propagating CA practices. Good news indeed for impact, reach and sustainability!

QPM maize expected to improve protein intake in Ethiopia

For community health extension workers (CHWs) in Ethiopia, as elsewhere, educating smallholder farmers on the importance of protein is a continuous task year in, year out. It’s not that farmers don’t know how important protein is. The big problem has been the availability of affordable protein that is within the reach of smallholder farmers. Now life is getting easier for CHWs in Ethiopia thanks to quality protein maize (QPM), a pioneering technology developed several decades ago by CIMMYT scientists. Read more here at CIMMYT’s Nutritious Maize for Ethiopia project page.

Seed improvement to prevent rust disease key to boosting wheat productivity

A new project in Ethiopia aims to improve the livelihoods of wheat farmers by encouraging the development and multiplication of high-yielding, rust-resistant bread and durum wheat varieties.

Photo: CIMMYT

High-quality seed is the key entry point for elevating farmer productivity in Ethiopia. As Norman Borlaug, the late Nobel Peace Prize laureate and wheat breeder who worked for many years with the International Center for Maize and Wheat Improvement (CIMMYT) wrote: “Rust never sleeps.”

Stem, leaf and yellow rusts choke nutrients and devastate wheat crops without recognition of political boundaries, making it essential that global action is taken to control all virulent strains of these devastating diseases to ensure food security.

At a recent workshop hosted by the Ethiopian Institute of Agricultural Research (EIAR) in the capital, Addis Ababa, 150 participants from 24 organizations discussed the project, which builds upon the successes of a previous EIAR and International Center for Agricultural Research in the Dry Areas (ICARDA) program funded by the U.S. Agency for International Development (USAID).

Bekele Abeyo points out that high-quality seed is critical in Ethiopia. Photo: CIMMYT

The purpose of the March workshop titled “Seed Multiplication and Delivery of High-Yielding Rust-Resistant Bread and Durum Wheat Varieties to Ethiopian Farmers” was to launch the three-year seed project, which has a budget of $4.75 million, and strengthen the involvement of stakeholders and key partners.

Aims include enhancing rust disease surveillance, early warning and phenotyping; fast-track variety testing and pre-release seed multiplication; accelerating seed multiplication of durable rust-resistant wheat varieties; demonstrating and scaling up improved wheat varieties; and improving the linkages between small-scale durum wheat producers and agro-industries.

To achieve these goals EIAR, CIMMYT and the University of Minnesota will implement project activities in collaboration with other key Ethiopian stakeholders, including agricultural research centers, public and private seed enterprises, the Ethiopian Agricultural Transformation Agency, the Ethio-Italian Development Cooperation “Agricultural Value Chains Project in Oromia” and the Ethiopia Seed Producers Association.

The project covers 51 districts in four major wheat-growing regions of Ethiopia. Milestones include the following: reaching 164,000 households with direct access to the new technology and having more than 2 million households benefiting from indirect access to high-yielding rust resistant cultivars; wheat yield increases of 25 percent for farmers with access to rust-resistant seed varieties; training for about 5,000 agricultural experts, development agents, seed producers and model farmers; more than 50 percent of the wheat area being sown to cultivars with durable resistance to current rust threats; an increased number of seed growers and associations participating in accelerated seed multiplication; and the increased participation of women farmers to lead accelerated seed multiplication and scaling up.

All partners will be involved in close monitoring and working groups related to the project.

At the workshop, a key topic was emphasizing to farmers that they must avoid susceptible rust suckers as they are pumping more spores on cultivars under production, which is one reason for the recurrent epidemics of wheat rusts and break down of resistant genes.

Delegates also engaged in discussions on the importance of cropping systems and variety diversifications. Fruitful deliberations and interactions occurred and important feedback was captured for project implementation and to ensure successful results.

A previous workshop on the surveillance, early warning and phenotyping component of the project was held at the Cereal Disease Laboratory in Minnesota.

Bekele Abeyo is a CIMMYT senior scientist based in Addis Ababa, Ethiopia. He will lead the seed improvement project.

Quality Protein Maize – what’s in a name?

Across Ethiopia, farmers bring a different dimension to the age-old tradition of naming children in symbolic and meaningful ways, by assigning a human name to Quality Protein Maize (QPM) that reflects its importance. In some parts of Oromia region, QPM is known as Gabissa, meaning builder, because it is believed to build bodies and make people strong. In the Amhara region, it is known as ‘Almi Bekolo’ or ‘Gembi bekolo, both names meaning building the body.  QPM has gained its fame across Ethiopia, as an affordable and viable option to alleviate protein malnutrition and reduce animal feed costs thanks to the CIMMYT’s Nutritious Maize for Ethiopia (NuME) project and many national partners.

QPM looks and tastes the same as normal maize but contains up to twice as much of the essential amino acids, lysine and tryptophan. Eating QPM is beneficial for children who survive on a maize-dominated diet. According to a study in Food Policy children who consume QPM benefit from 12% increased weight and 9% increased height.

Commitment to the agriculture sector

Around 10% of the Ethiopian national budget has been allocated to agriculture, according to the Ministry of Agriculture. As a result, the agriculture sector, which accounts for roughly 43 per cent of overall GDP, has been registering steady progress over the past two decades, landing the country on a path to food security. A number of other measures have contributed to this success, such as the availability of fertilizer, improved seed and agricultural extension services, which have currently reached more than 8 million farmers.

A focus on nutrition security

The Ethiopian government is currently stepping up nutrition interventions targeting women and children, with aims for a 3% annual reduction in the number of stunted and underweight children, according to the Government’s five-year Growth and Transformation Plan. However, the fact that 2 out of every 5 children in Ethiopia are stunted and 28% of all child mortality in Ethiopia is associated with undernutrition or malnutrition, is a clear indication that a lot still needs to be done.

In Hawassa, southern Ethiopia, maize is eaten as corn bread, baked on a big clay plate. To ensure that QPM bread tastes as good as the conventional maize bread, NuME teamed up with two lecturers of the Hawassa University, Tafese and Debebe, who are organized taste tests. Photo: H. De Groote/CIMMYT
In Hawassa, southern Ethiopia, maize is eaten as corn bread, baked on a big clay plate. To ensure that QPM bread tastes as good as the conventional maize bread, NuME teamed up with two lecturers of the Hawassa University, Tafese and Debebe, who are organized taste tests. Photo: H. De Groote/CIMMYT

To tackle the challenge of malnutrition in Ethiopia, CIMMYT takes a holistic approach to QPM and conducts a range of activities including: improved crop management practices, post-harvest handling and processing, increasing the participation of women, nutrition campaigns, as well as strengthening institutional capacity. Since 2012, 143,747 farmers, extension workers and development officials (of which 28% are women) have attended 993 field demonstrations and 240 field days on QPM utilization.

Funded by the Canadian Department of Foreign Affairs, Trade and Development, CIMMYT is working with the Ethiopian Institute of Agricultural Research, the Ministry of Agriculture and other partners to improve food and nutritional security in Ethiopian farming communities through the promotion and expansion of QPM backed by improved agronomic practices that increase productivity. NuME is building on the success of previous CIMMYT projects to bring QPM to rural maize producers in the Ethiopian maize belt and beyond where consumers, especially young children and women, are at risk of lysine deficiency.

In fond memory of Paula Kantor (1969-2015)

As you all know, Paula Kantor died tragically on May 13, in the aftermath of a Taliban attack on the hotel where she was staying in Kabul, Afghanistan. We are all very sorry for her loss and are gathered here today to pay homage to a caring, committed, energetic and talented colleague.

Paula joined CIMMYT as a senior gender and development specialist in February 2015 to lead an ambitious research project focused on understanding the role of gender in major wheat-growing areas of Afghanistan, Ethiopia and Pakistan.

CIMMYT colleagues plant a tree in memory of Kantor. (Photo: C. Beaver/CIMMYT)
CIMMYT colleagues plant a tree in memory of Kantor. (Photo: C. Beaver/CIMMYT)

She was not a stranger to Afghanistan, having worked in Kabul from 2008 to 2010 as director and manager of the gender and livelihoods research portfolios at the Afghanistan Research and Evaluation Unit, an independent research agency. She had a love for the Afghani people and was committed to improving their lives.

I never met Paula, but having spoken to colleagues who knew her, she had an exceptionally sharp, analytical mind and a deep understanding of how change can empower men and women to give them a better chance to influence their own lives and choose their own path.

By planting this tree, we want to remember Paula for her strong passion in ensuring that her work made a difference and it is now upon us to move forward and make that difference she strived for.

CIMMYT's director general, Martin Kropff, during the memorial event. (Photo: C. Beaver/CIMMYT)
CIMMYT’s director general, Martin Kropff, during the memorial event. (Photo: C. Beaver/CIMMYT)

For development expert Paula Kantor, gender equality was crucial

1400EL BATAN, Mexico (CIMMYT) – Paula Kantor had an exceptionally sharp, analytical mind and a deep understanding of how change can empower men and women to give them greater control over their own lives, helping them shape their future direction, said a former colleague.

Kantor, a gender and development specialist working with the International Maize and Wheat Improvement Center (CIMMYT), died tragically on May 13 at age 46, in the aftermath of a Taliban attack on the hotel where she was staying in Kabul, Afghanistan.

At the time, she was working on a new CIMMYT research project focused on understanding the role of gender in the livelihoods of people in major wheat-growing areas of Afghanistan, Ethiopia and Pakistan.

The aim of the three-year project, supported by Germany’s Federal Ministry for Economic Cooperation and Development (BMZ), is to find out how wheat research-and-development can contribute to gender equality in conservative contexts so that, in turn, gender equality can contribute more to overall development.

“Paula’s research was targeting a very large populace facing serious threats to both food security and gender equality,” said Lone Badstue, gender specialist at CIMMYT, an international research organization, which works to sustainably increase the productivity of maize and wheat to ensure global food security, improve livelihoods and reduce poverty.

“Paula had vast experience – she spent most of her working life in these contexts – in very patriarchal societies – and had a great love for the people living in these regions. She also had a deep understanding of what she felt needed to change so that both men and women could have a better chance to influence their own lives and choose their own path.”

Kantor, a U.S. citizen, was no stranger to Afghanistan. Several years before joining CIMMYT, she had been based in Kabul where she worked as director and manager of the gender and livelihoods research portfolios at the Afghanistan Research and Evaluation Unit (AREU), an independent research agency, from 2008 to 2010.

The project Kantor was working on at the time of her death builds on the idea that research and development interventions should be informed by a socio-cultural understanding of context and local experience, Badstue said.

Ultimately, this approach lays the groundwork for a more effective, equitable development process with positive benefits for all, she added.

WHEAT AND GENDER

Globally, wheat is vital to food security, providing 20 percent of calories and protein consumed, research shows. In Afghanistan, wheat provides more than half of the food supply, based on a daily caloric intake of 2,500 calories, while in Pakistan wheat provides more than a third of food supply, and in Ethiopia it provides about 13 percent of calories, according to the U.N. Food and Agriculture Organization (FAO) and the Global Food Security Index. These data do not reflect gender disparity with regard to food access.

In Afghanistan, Ethiopia and Pakistan, the central role of wheat in providing food security makes it an important part of political stability. Overall, gender inequality and social disparities have a negative impact on general economic growth, development, food security and nutrition in much of the developing world, but particularly in these three countries, Badstue said.

Women make up between 32 to 45 percent of economically active people in agriculture in the three countries, which are classified by the U.N. Development Programme’s Gender Inequality Index in the “low human development” category.

Although women play a crucial role in farming and food production, they often face greater constraints in agricultural production than men, Badstue added.

Additionally, rural women are less likely than men to own land or livestock, adopt new technologies, access credit, financial services, or receive education or extension advice, according to the FAO.

Globally, if women had the same access to agricultural production resources as men, they could increase crop yields by up to 30 percent, which would raise total agricultural output in developing countries by as much as 4 percent, reducing the number of hungry people by up to 150 million or 17 percent, FAO statistics show.

“Addressing gender disparities between women and men farmers in the developing world offers significant development potential,” Badstue said.

“Improvements in gender equality often lead to enhanced economic efficiency and such other beneficial development outcomes as improved access to food, nutrition, and education in families.”

METICULOUS RESEARCHER

Paula was brilliant,” Badstue said. “She had a clear edge. She was someone who insisted on excellence methodologically and analytically. She was very well equipped to research issues in this context because of her extensive experience in Afghanistan, as well as her considerate and respectful manner.”

Kantor’s involvement in “Gennovate,” a collaborative, comparative research initiative by gender researchers from a series of international agricultural research centers, was also critical, Badstue said.

The group focuses on understanding gender norms and how they influence the ability of people to access, try out, adopt or adapt new agricultural technology. Kantor provided key analytical and theoretical guidance, inspiring the group to take action and ensure that Gennovate took hold.

Kantor’s work went beyond a focus on solving practical problems to explore underlying power differences within the family or at a local level.

“Agricultural technology that makes day-to-day work in the field easier is crucial, but if it doesn’t change your overall position, if it doesn’t give you a voice, then it changes an aspect of your life without addressing underlying power dynamics,” Badstue said.

“Paula was trying to facilitate lasting change – she wasn’t banging a particular agenda, trying to force people into a particular mind-set. She was really interested in finding the space for manoeuver and the agency of every individual to decide what direction to take in their own life. She was a humanist and highly respected throughout the gender-research community.”

Before joining CIMMYT, Kantor served as a senior gender scientist with the CGIAR’s WorldFish organization for three years from 2012. She also worked at the International Center for Research on Women (ICRW) in Washington, D.C., developing intervention research programs in the area of gender and rural livelihoods, including a focus on gender and agricultural value chains.

A funeral mass will be held for Paula Kantor at 11 a.m. on June 11, 2015 at St Leo the Great Catholic Church in Winston Salem, North Carolina. 

CIMMYT will hold a memorial service for Paula Kantor on Friday, June 12, 2015 at 12:30 p.m. at its El Batan headquarters near Mexico City. 

Conservation agriculture in Africa: where does it fit?

Conservation agriculture (CA) encompasses the principles of minimum soil disturbance, retention of crop residues on the soil and diversification through crop rotations and associations. Worldwide, CA adoption exceeds 125 million hectares. Its benefits include reduced production costs and soil degradation, more effective and efficient use of resources like water and fertilizer, and greater overall cropping system productivity. CA-based practices have recently regained scientific attention as part of newly emerging concepts such as sustainable intensification, ecological intensification and climate-smart agriculture.

CIMMYT’s increasing efforts to promote CA in Sub-Saharan Africa began at a regional hub in southern Africa in 2004, moved to eastern Africa in 2009, and subsequently expanded to other Africa locations. In Africa, conservation agriculture has benefitted from significant donor attention and the call to address multiple agricultural challenges, which include the pressure of expanding populations on land resources, declining soil fertility, low productivity, and the negative effects of climate variability.

Research has proven the biophysical and economic benefits of CA for Africa, yet CA adoption and spatial expansion by African farmers is relatively low, compared to its acceptance in similar agro-ecologies in the Americas and Australia.

The lack of widespread adoption in Africa has led some researchers to question the suitability of CA for smallholder farmers in Africa or the wisdom of spending resources to study and promote it. A divide between CA-for-Africa proponents and opponents in the research community has opened, obscuring issues and hindering unbiased examination of CA opportunities and constraints. Adding to the uncertainty, there is little research in Africa to assess where CA might make the best impact or, more generally, where conditions are simply too marginal for cropping systems of any type.

AFTER 10 YEARS OF RESEARCH, WE FEEL IT IS CRITICAL TO LOOK OBJECTIVELY AT WHERE WE ARE WITH CA IN AFRICA. Specifically: What is CIMMYT’s comparative advantage in the research and development of CA systems? Does “business-as-usual” — that is, conventional tillage systems — provide better outcomes? Is there any form of alternative agriculture being adopted more quickly or widely than CA? Do we gain anything if we lose our comparative advantage as a leading global CA research institute and only focus on “good agronomic practices”?

We believe that CA has great promise for smallholder farmers in sub-Saharan Africa but CIMMYT and other organizations may have approached its study and extension from the wrong angle. In particular, CA has often been promoted in Africa as a way to raise yields. In fact, short-term yield gains are common from better moisture capture and retention under CA, in seasons with erratic and prolonged dry spells. But yield benefits from CA are normally not immediate; they generally begin to appear after two-to-five cropping seasons. Smallholder farm households often live at the edge of food insecurity year-in and year-out and are undisposed to risk an innovation that raises system productivity only in the medium term.

In contrast, the adoption of CA outside of Africa has been driven by benefits such as energy savings, reduced erosion, more timely sowing, and enhanced water- and nutrient-use efficiency. Furthermore, CA adopters worldwide have typically been large-scale commercial farmers who seek enhanced and sustainable profits and, as a consequence, ways to cut production costs. So how can their positive experience apply to smallholders and be used for proper targeting and extension of CA systems in Africa?

IN OUR OPINION, CIMMYT AND ITS PARTNERS SHOULD FOCUS ON (1) identifying the key drivers that have facilitated adoption of CA worldwide and (2) delineating the niches in Africa where these drivers are present, meaning where CA is likely to fit. As a start, we may wish to look at settings where:

  • Farm energy is scarce or expensive (whether provided by motors, draft animals or human labor ).
  • Timely planting is crucial, soil degradation extensive, and climate-related stress common. (This niche might be bigger than we think in Africa)

WE BELIEVE THAT CHALLENGES HAVE TOO OFTEN BEEN CONFUSED WITH BARRIERS TO ADOPTION. Too much time and effort have been spent highlighting challenges arising when implementing CA, instead of actively looking for ways to overcome them through technological and institutional innovations, including improved working arrangements between multiple actors. Furthermore, we feel that far too many resources are being channelled by CIMMYT’s Global Conservation Agriculture and Socioeconomics Programs into diagnostic studies, without commensurate investments in applied research for innovations to address the challenges.

Future research with farmers and other stakeholders should explore opportunities to ensure that CA systems meet smallholder farmers’ needs. It should also aim to target CA principles and practices in areas where highest returns are expected. In conclusion, we believe that BUSINESS AS USUAL IS NOT AN OPTION and that, in many places where CIMMYT works, CA IS IN DEMAND to alleviate labor bottlenecks, improve the timeliness of operations, control erosion and improve water- and nutrient-use efficiency. Should this demand be ignored? Of course challenges exist, but research – and international research in particular – should not simply document challenges but also provide solutions.

Christian ThierfelderChristian Thierfelder is a CIMMYT cropping systems agronomist based in Harare, Zimbabwe. He has worked since 2004 in CA projects in Malawi, Mozambique, Zambia and Zimbabwe and has conducted applied and strategic research on-farm and on-station to adapt CA to the needs of smallholder farmers in southern Africa. Through effective partnerships he has reached out to more than 10,000 farmers in southern Africa. He guided the research programs of 25 B.Sc., M.Sc. and Ph.D. students, and has authored and co-authored more than 30 research articles in high-impact peer-reviewed journals and books.

Frederic Baudron
A CIMMYT systems agronomist based in Addis Ababa, Ethiopia, Frédéric Baudron trained as a tropical agronomist, specialized as a livestock scientist and worked for various development programs targeting the interface between people (mainly farmers) and wildlife. He then completed a PhD in plant production systems. Projects he leads include Farm Mechanization and Conservation Agriculture for Sustainable Intensification (FACASI), implemented in Ethiopia, Kenya, Tanzania and Zimbabwe.

IsaiahNyagumboIsaiah Nyagumbo is a CIMMYT cropping systems agronomist based in Harare, Zimbabwe. He has worked in water harvesting and soil conservation research initiatives and was a pioneer of CA work on smallholder farming systems in Zimbabwe since the 1990s. Isaiah currently leads the agronomy component of the CIMMYT managed and ACIAR funded regional program ‘Sustainable Intensification of Maize-Legume Systems in Eastern and Southern Africa (SIMLESA)’ operating in 5 countries of Eastern and Southern Africa. Isaiah has also authored and contributed to regional research publications focusing mainly on CA, agricultural water management, water harvesting and technology dissemination.

For further detail regarding these views, stay tuned for the upcoming paper:

Baudron, F., Thierfelder, C., Nyagumbo, I., Gérard B., 2015. Where to target conservation agriculture? How to overcome challenges associated with its implementation? Experience from Eastern and Southern Africa. Forthcoming (expected in early-July) in Environments.

SUPER WOMAN: Jeanie Borlaug Laube unites global wheat community

jeanieborlaugInternational Women’s Day on March 8, offers an opportunity to recognize the achievements of women worldwide. This year, CIMMYT asked readers to submit stories about women they admire for their selfless dedication to either maize or wheat. In the following story, Linda McCandless writes about her Super Woman of Wheat, Jeanie Borlaug Laube, chair of the Borlaug Global Rust Initiative.

Jeanie Borlaug Laube has served as the chair of the Borlaug Global Rust Initiative (BGRI) since 2009, a year after it was first launched.

She is an enthusiastic proponent of wheat research and enjoins all scientists to “take it to the farmer.”

She has helped build a community of wheat researchers and amplified their collective voice among politicians, policymakers, farmers, scientists and donors.

She is an influential advocate for wheat research and science. To mark the 100th anniversary of her father Norman Borlaug’s birth, in 2013 and 2014 she visited Ethiopia, Kenya, India, Pakistan, Turkey, Mexico, Washington, D.C, and Minnesota, speaking at various political events as an ambassador for wheat, food security, and global cooperation. Additionally, she met with scientists, farmers and other leaders.

The late Borlaug, known as “the father of the Green Revolution” for the high-yielding, disease-resistant, semi-dwarf wheat varieties he developed, won the Nobel Peace Prize in 1970.

In 2009, she initiated the Jeanie Borlaug Laube Women in Triticum Award for young career scientists, and there are now 25 awardees who are changing the face of wheat research.

In 2010, she initiated the Jeanie Borlaug Laube Mentor Award for those scientists, male or female, who are valuable mentors of young wheat scientists.

For her enthusiastic, persistent and persuasive advocacy of wheat as one of the most important crops for global food security, I nominate Jeanie Borlaug Laube as a Wheat Super Woman.

Any views expressed in this article are those of the author and not of the International Maize and Wheat Improvement Center

CIMMYT remembers vital legacy of gender specialist Paula Kantor

Paula Kantor.
Paula Kantor.

EL BATAN, Mexico (CIMMYT) CIMMYT is sad to announce the tragic death of our friend and respected colleague, gender and development specialist Paula Kantor.

Paula died on May 13, in the aftermath of an attack on the hotel where she was staying in Kabul, Afghanistan.

“We extend our deepest condolences to her family, friends and colleagues,” said Thomas Lumpkin, CIMMYT’s director general.

“Paula’s desire to help people and make lasting change in their lives often led her into challenging settings. Her dedication and bravery was much admired by those who knew her and she leaves a lasting legacy upon which future research on gender and food security should build.”

Paula joined CIMMYT as a senior scientist (gender and development specialist) in February 2015 to lead an ambitious new project aimed at empowering and improving the livelihoods of women, men and youth in important wheat-growing areas of Afghanistan, Ethiopia and Pakistan.

“We’re shocked and left speechless by the tragic loss,” said Olaf Erenstein, director of socio-economics at CIMMYT. “Paula was such a caring, committed, energetic and talented colleague. She inspired everyone she worked with – and it’s so sad that her life and career were prematurely ended. She will be sorely missed – our deepest sympathies to her family, friends and colleagues throughout the world.”

At the time of her death at age 46, Paula had many years of experience in the area of gender and social development. She was an established and respected professional and prolific writer, having published more than a dozen peer-reviewed academic publications, some 10 peer-reviewed monographs and briefs, 15 other publications and 10 conference papers during her lifetime.

Dynamic Career

Before joining CIMMYT, Paula served as a senior gender scientist with CGIAR sister organization WorldFish for three years from 2012.

At WorldFish, working in Bangladesh, Malaysia and Egypt, Paula contributed significantly to the design and development of gender-transformative approaches for the CGIAR Research Programs (CRP) on Aquatic Agricultural Systems (AAS) and Livestock and Fish.

She coached many of her colleagues in a range of pursuits, and among many noteworthy achievements, she mentored an international non-governmental organization in its efforts to deliver gender programming to women fish retailers in Egypt.

“It is such a tragic, shocking waste of a remarkable talent,” said Patrick Dugan, WorldFish deputy director general and CRP AAS Director.

“Her commitment to gender, and wider social equality inspired the people she worked with. She’ll be sorely missed by us all.”

For two years previously, Paula worked at the International Center for Research on Women (ICRW) in Washington, D.C., developing intervention research programs in the area of gender and rural livelihoods, including a focus on gender and agricultural value chains.

From 2008 to 2010, Paula was based in Kabul, working as director and manager of the gender and livelihoods research portfolios at the Afghanistan Research and Evaluation Unit (AREU), an independent research agency.

After earning a doctoral degree focused on international economic development and gender from the University of North Carolina at Chapel Hill in 2000, she taught in the Departments of Consumer Science and Women’s Studies at the University of Wisconsin-Madison.

An American citizen from North Carolina, after earning a Bachelor of Science in Economics from the Wharton School of the University of Pennsylvania in 1990, Paula earned a master’s degree in Gender and Development from Britain’s Institute of Development Studies at the University of Sussex.

“Paula was a key pillar in our gender work and a dear friend to many of us,” said Lone Badstue, CIMMYT gender specialist.

“It was a privilege to work with her. She had a strong passion for ensuring that her work made a difference. It’s hard to imagine how to move forward, but I am convinced that Paula would want us to do that and to make the difference for which she strived.”

Paula is survived by her mother and father, Barbara and Anthony Kantor, her brother Anthony John, her sister Laura Styrlund (Charles), her niece Lindsay and her nephew Christopher.

If you would like to offer your condolences you can send us a message to cimmyt@cgiar.org. CIMMYT will deliver all messages received to Paula’s family. Thank you for your thoughts and support.

MLN diagnostics and management in Africa through multi-institutional synergies

MLN coverMaize Lethal Necrosis (MLN) disease has continued to wreak havoc on maize production in East Africa since it was first reported in Kenya in 2011, and since then reported in the Democratic Republic of the Congo, Ethiopia, Rwanda, Tanzania, South Sudan and Uganda. The disease, caused by a combination of the Maize Chlorotic Mottle Virus (MCMV) and Sugarcane Mosaic Virus (SCMV), causes irreversible damage that kills maize plants before they can grow and yield grain. MLN pathogens can be transmitted not only by insect vectors but also through contaminated seed. The epidemic is exacerbated by lack of MLN-resistant maize varieties and year round cultivation of maize in many areas in eastern Africa, enabling the build-up of virus inoculum and allowing transmission via insect vectors. For this reason, CIMMYT scientists Monica Mezzalama, Biswanath Das, and B.M. Prasanna have developed a brochure “MLN Pathogen Diagnosis, MLN-free Seed Production and Safe Exchange to Non-Endemic Countries” for providing important information on these key areas to stakeholders, especially seed companies and regulatory agencies operating in both MLN-affected as well as MLN non-endemic countries.

“MLN is an increasing regional threat to food security in sub-Saharan Africa, and must be tackled with concerted effort from all actors in order to safeguard the maize seed sector and protect the livelihoods of smallholder farmers,” said Prasanna. The brochure proposes several key steps to curb the spread of MLN, through MLN diagnostics, production of MLN-free seed, and safe exchange to MLN-endemic countries. The brochure also advises on appropriate agronomic practices that can prevent disease incidence in seed production fields.

An International Conference on “MLN Diagnostics and Management in Africa” will be organized jointly by AGRA (Alliance for Green Revolution in Africa) and CIMMYT during 12-14 May in Nairobi, Kenya, in order to review the present status of MLN incidence and impacts in sub-Saharan Africa (SSA), controlling seed transmission of MLN, managing seed production in MLN-endemic countries, creating awareness about MLN diagnostic protocols, and identifying ways to strengthen MLN diagnostics capacity in SSA, among other topics.

Maize lethal necrosis: a serious threat to food security in eastern Africa and beyond

MLN_WS_participants_w
Participants are shown how to inspect maize fields for MLN symptoms and how to collect samples for laboratory analysis.

Maize lethal necrosis (MLN) has rapidly emerged as one of the deadliest maize diseases in eastern Africa capable of causing complete yield loss under heavy disease pressure. This means that Kenya and neighboring countries which largely depend on maize as their main staple food and source of income are on the verge of a looming food and economic crisis.

The disease is difficult to control for two reasons: firstly, it is caused by a combination of viruses; secondly, it can be spread through seed and by insect vectors that may be carried by wind over long distances. Affected crops suffer various symptoms such as severe stunting, tassel abnormality, small ears with poor seed set, chlorotic leaf mottling, leaf necrosis and premature plant death.

Much more than CIMMYT and East Africa

Sixty phytosanitary regulators and seed industry scientists from 11 countries in eastern and southern Africa attended an MLN diagnostics and screening workshop from March 17–19, 2015, in Naivasha, Kenya. The objective of the workshop was to train scientists on the latest MLN diagnostics and screening methods and to share knowledge on how to control the spread of MLN. Besides DR Congo, Ethiopia, Kenya, Rwanda and Tanzania where the disease has been reported, other participants were from South Sudan and southern Africa (Malawi, Mozambique, South Africa, Zambia and Zimbabwe) that have no confirmed cases of MLN, but where maize is an important crop.

CIMMYT organized the workshop in response to the high demand for development of appropriate diagnostics methods and harmonization of regional protocols. Hence, facilitation by agencies like the Food and Agricultural Organization provided a much-needed regional overview of the MLN threat, in addition to perspectives from the International Centre of Insect Physiology Ecology and the Kenya Plant Health Inspectorate Services (KEPHIS) on MLN insect vectors and diagnostics methods respectively.

The workshop was conducted at the MLN screening facility in Naivasha, the largest of its kind established in response to the MLN outbreak in eastern Africa in 2013. It supports countries in the sub-Saharan region to screen seeds under artificial inoculation. The facility is managed jointly by the Kenya Agricultural and Livestock Research Organization (KALRO) and CIMMYT, and was established with support from the Bill & Melinda Gates Foundation and the Sygenta Foundation for Sustainable Agriculture. Biswanath Das, a maize breeder at CIMMYT, noted that “the site has evaluated more than 20,000 accessions since its inception in 2013 from over 15 multinational and national seed companies and national research programs.” This, he added, “has become a primary resource in the fight against MLN regionally.”

Collective pre-emptive actions for prevention: seeds of hope
Participants received hands-on training to identify symptoms of MLN-causing viruses and how to score disease severity by screening germplasm at the site. For some participants, this was a first. “This is my first time to see an MLN-infected plant. Now I understand the impact of MLN on maize production and the need to set up a seed regulatory facility. South Sudan has no laboratory to test planting materials. My first step will be to talk to my counterparts in the ministry to set up one,” said Taban James, a regulator from the Ministry of Agriculture in South Sudan.

DAS-ELISA_demo_w.jpg
CIMMYT staff demonstrate DAS–ELISA method used for detecting MLN-causing viruses.

The tragic reality is that almost all commercial maize varieties in East Africa are highly susceptible to MLN, based on evaluations done at the screening facility. Therefore, stronger diagnostic and sampling capacity at common border-points was agreed to be a key step towards controlling inadvertent introduction of MLN through contaminated seeds. This was particularly important for participants from southern Africa countries who noted an urgent need for surveillance at seed import ports and border areas to contain the spread.

Currently, Kenya, Uganda and Zimbabwe are the only countries that require imported seed to be certified as free of MLN-causing viruses. KEPHIS and CIMMYT have worked closely to restrict movement of germplasm from Kenya to countries in East Africa with reported MLN cases. Seed production fields are inspected thrice by KEPHIS, in addition to analysis of final seed lots. Plans are underway for CIMMYT in collaboration with the ministries of agriculture in Mexico and Zimbabwe to establish quarantine sites to ease germplasm movement in and out of these countries. Speaking on KEPHIS’ role, Francis Mwatuni, the officer-in-charge of Plant Quarantine and Biosecurity Station said, “We ensure all seed fields are inspected and samples tested for MLN resistance including local and imported seed lots from seed companies, to ensure that farmers get MLN-free seeds.”

The latest trends and options for diagnostics on MLN-causing viruses were covered as well, giving participants hands-on training using ELISA diagnostics systems. They were also briefed on polymerase chain reaction based diagnostics and the latest lateral flow diagnostic kits that are under development that will enable researchers to obtain diagnostic results in the field in minutes.

What next for MLN?
The rapid multiplication of the disease coupled with uncertainties over its spread is the biggest hurdle that scientists and other stakeholders are grappling with. KALRO Chief Researcher, Anne Wangai, who played a key role in discovering the disease in Kenya in 2011 observes that “The uncertainties over the transmission of MLN is a worrying phenomenon that requires stakeholders to urgently find a control point to manage and ensure seeds being given to farmers are MLN-free.”

Breeding remains a key component in the search for long-term solution for MLN, and several milestones have been covered to develop MLN-resistant varieties in East Africa. “CIMMYT has developed five hybrids with good MLN tolerance under artificial inoculation, which have either been released or recommended for release in Kenya, Uganda and Tanzania. Thirteen hybrids are currently under national performance trials in the three countries,” noted Mosisa Regasa, a maize seed system specialist at CIMMYT. He further added that it is critical for the MLN-tolerant hybrids to also have other traits important to farmers, so farmers accept these new hybrids.

Open information sharing forums like the diagnostics workshop are an important step to raise awareness and seek solutions to manage the disease. Sharing best practice and lessons learnt in managing the disease are major steps towards curbing MLN. In pursuit of this end, a major international conference on MLN opens next week.

Links: Slides from the workshop | Workshop announcement |Open call for MLN screening – May 2015

Two-wheeled tractors key to smallholder mechanization in Africa

The Farm Mechanization and Conservation Agriculture for Sustainable Intensification (FACASI) project held its second review and planning meeting, as well as mid-term review, during a five-day event in Hawassa, Ethiopia. This was followed by country site visits by the review team.

“The goal of FACASI is to improve farm power balance, reduce labor drudgery and minimize biomass trade-offs in eastern and southern Africa through accelerated delivery and adoption by smallholders of two-wheeled tractor (2WT)-based technologies,” said J.C. Achora, Knowledge and Information Manager, African Conservation Tillage Network. The meeting highlighted the importance of 2WT technologies to smallholders through five field visits, consisting of a youth community project, a vocational youth training institution, government research centers and manufacturing plants.

“Opportunities for use of two-wheeled tractors exist,” said Achora. “New projects coming up will ignite the demand for the two-wheeled tractors, and could trigger an increase in imports and manufacturing in Africa. Perhaps not too far in the future two-wheeled tractors could be the stepping stone to smallholder farm mechanization in Africa.”

FACASI participants learned and shared experiences on small-scale agricultural machinery, specifically the two-wheeled tractor, in diverse environments. Participants observed and drew lessons from services that support small-farm mechanization and associated business models.

Other places visited included the Hawassa research station for demonstrations of seeders and multi-use shellers and threshers, the Ato Tibebe Selemon Metal works, and the Selam Hawassa Business and Vocational College, which provides disadvantaged youth with practical training in metal fabrication and assembly and electrical installations. The last visit was to the Metals and Engineering Corporation (METEC), which integrates engineering into machines and installs industrial facilities.