Like many scientists at the International Maize and Wheat Improvement Center (CIMMYT) who grew up in smallholder farm households, Dagne Wegary draws inspiration from recollections of adversity and has found in science a way to make things better.
“I saw how my community struggled with traditional crop and livestock husbandry and, at an early age, started to wonder if there was a science or technology that might ease those hurdles,” Wegary said, referring to his childhood in a village in Wollega, a western Ethiopian province bordering South Sudan.
“I chose to study and work in agriculture,” Wegary explains. “Even though the farming system in my home village has not changed significantly, I am happy that the community is now among Ethiopia’s top maize producers and users of improved seed and other agricultural inputs.”
As a maize seed system specialist, Wegary works at the nexus between breeding science and actual delivery of improved seed to farmers. He interacts regularly with diverse experts, including CIMMYT and Ethiopia’s breeders and members of the national ministries of agriculture, the Ethiopia Agricultural Transformation Agency (ATA), non-governmental organizations including Sasakawa Global-2000 and World Vision, and especially public, private or community-based seed producers.
Quality seed is farmers’ principal means to improve productivity and secure food, according to Wegary, who calls it “the carrier of complementary production technologies, which in combination with improved agronomy can significantly increase crop yields.”
“I am most happy with Ethiopia’s increased maize productivity and self-sufficiency, which is due partly to the use of improved technologies to which we all contribute,” he said, noting that maize grain yields in Ethiopia had more than doubled since the 1990s, reaching 3.7 tons per hectare in 2016, a level second only to that of South Africa, in sub-Saharan Africa.
According to Wegary, these improvements are the result of strong government support for maize research and development, along with the strong partnership between CIMMYT and the national program that has led to the release of high-yielding, stress tolerant and nutritionally-enriched maize varieties. He said that farmers’ have also increased their use of improved technologies and that public, private and community-based companies now market seed.
“Supplying seed used to be highly-centralized, but farmers’ main sources of seed now are cooperatives that buy from seed companies or companies that market directly to farmers” Wegary explained. “Many companies have their own stockists and dealers who directly interact with farmers.”
Before joining CIMMYT, as a scientist with the Ethiopian Institute of Agricultural Research (EIAR), Wegary helped to implement a number of CIMMYT-led projects. “These allowed me to know CIMMYT very well and sparked my interest in joining the Center and working with its high-caliber and exemplary scientists.”
A plant breeder by training with a doctoral degree in breeding from the University of the Free State, South Africa, soon after joining CIMMYT Wegary began to contribute to projects to develop and disseminate seed of improved maize varieties with high levels of drought tolerance and enhanced protein quality.
He has been involved since the early 2000s in promoting quality protein maize (QPM). The grain of QPM features enhanced levels of lysine and tryptophan, amino acids that are essential for humans and certain farm animals. Wegary took part in a CIMMYT project that supported the release of five new QPM varieties.
“Many companies are now producing and marketing QPM in Ethiopia,” Wegary said. A 2009 study in the science journal Food Policy found that eating QPM instead of conventional maize resulted in 12 and 9 percent increases in growth rates for weight and height, respectively, in infants and young children with mild-to-moderate undernutrition and where maize constituted the major staple food.
Wegary believes sub-Saharan Africa’s biggest challenges include climate change-induced heat and drought, natural resource depletion, and pest and disease outbreaks, coupled with increasing populations. In combination these factors are significantly reducing food security and the availability of resources.
“I want to be a key player in the battle towards the realization of food and nutritional security, as well as the economic well-being of poor farmers, through sustainable and more productive maize farming systems.”
The recent appearance of the fall armyworm, an insect-pest that causes damage to more than 80 crop species in 14 countries in sub-Saharan Africa, poses a serious challenge and significant risk to the region’s food security.
In a recent interview, B.M. Prasanna, director of theGlobal Maize Program at International Maize and Wheat Improvement Center (CIMMYT) and the CGIAR Research Program on MAIZE, who is working at the forefront of CGIAR’s response, highlights the potential impact of the pest and how CGIAR researchers are contributing to a quick and coordinated response across the region.
Q: What is the fall armyworm and why is it so destructive?
The fall armyworm (Spodoptera frugiperda) is an insect-pest which causes major damage to more than 80 crop species, including economically important crops, such as maize, rice, sorghum, wheat, sugarcane, several other vegetable crops and cotton.
It was first officially reported in Nigeria in early 2016 and has been officially confirmed in 11 and suspected in at least 14 other African countries, as of April 2017.
Q: What are the potential impacts of the pest in sub-Saharan Africa?
The fall armyworm poses a serious challenge and a significant, ongoing risk to Africa’s food security.
The pest’s ability to feed on a range of crop species means that smallholder farming systems in Africa, which are based on intercropping, are particularly vulnerable. Also, the rapid damage and migratory capacity of the pest, combined with its capacity to reproduce quickly in the right environmental conditions and its ability to rapidly evolve resistance to synthetic pesticides increase the region’s vulnerability.
In sub-Saharan Africa, where fall armyworm is currently devastating maize crops, estimates indicate 13.5 million tons of maize valued at $3 billion are at risk in 2017-2018, which is equivalent to over 20 percent of total production for the region (based on data from CABI, April 2017).
Q: What are the key challenges that countries in sub-Saharan Africa will face?
There is no doubt that smallholder farmers, particularly maize farmers, in sub-Saharan Africa will face a significant and ongoing risk from the fall armyworm. In particular, resource-poor smallholders will be severely affected due to their inability to control the pest using synthetic pesticides, currently the only way to effectively respond, which are very costly.
Q: What are three ways that countries in sub-Saharan African can strengthen resilience of food and agricultural systems to the potential effects of Fall Armyworm?
Working groups need to be established quickly to develop and implement strategies to respond to the issue. In particular, we need to develop a comprehensive, regional response centered on: Monitoring and early warning; Social and economic assessments of impacts, and forecasting; Integrated Pest Management (IPM); Development and dissemination of low-cost, effective and sustainable solutions and development of appropriate regulatory tools and policies to support the response.
As this process unfolds, gaps, challenges and successes will need to be documented to inform capacity-building needs with a focus on understanding the capacity of individual countries to respond. While fall armyworm outbreaks across Africa is an emergency situation, it should also be an opportunity to review and understand regional food production and food security issues and as an opportunity to improve on systematic approaches to build capacity to prevent and respond to future threats of transboundary pests and pathogens in Africa.
Strong coordination across different levels of government is required: “political coordination” (among the local governments, NPPOs, and sub-regional organizations), and “technical coordination” (fast-tracked testing and deployment of relevant technologies).
Q: What role do CIMMYT and CGIAR have in building capacity in the region’s ability to respond to Fall Armyworm?
CGIAR institutions, including CIMMYT and the International Institute of Tropical Agriculture (IITA), have significant strengths in building the region’s ability to respond to trans-boundary pathogens (e.g., previous examples include Maize Lethal Necrosis, wheat rust and insect-pests, such as fall armyworm.
Specific examples of CGIAR/CIMMYT expertise that will be important in the fall armyworm response include:
Development and dissemination of crowd-source based tools and digital surveillance systems and analysis of the data collected across countries for a strong monitoring and early warning system.
Systematic and large-scale assessment of the present and potential socio-economic impact of fall armyworm in Africa, and the development of forecasting tools to understand potential losses
Review of the efficacy of different fall armyworm management options (learning from experiences of the United States, Brazil and Mexico), and adapting this information to the African context
Determining the efficacy of cultural control options against fall armyworm, including early versus late planting of crops like maize, handpicking, soil and habitat management, crop hygiene, etc.
Evaluating the impacts on-going integrated pest management (IPM) initiatives and the impacts of the fall armyworm invasion on the effectiveness of these interventions
Developing and implementing appropriate insect resistance monitoring and management strategy in fall armyworm affected countries
Analysis of the effects of conservation agriculture on fall armyworm management and the influence of fall armyworm incidence on diverse cropping systems
Testing and introgression of conventionally-derived resistance (from identified CIMMYT and U.S. Department of Agriculture-Agricultural Research Service [USDA-ARS] germplasm sources) into Africa-adapted maize germplasm, followed by fast-tracked varietal release, seed scale-up and delivery of improved maize hybrids/varieties through public-private partnerships (e.g., MLN is a great example of this).
Developing a “Fall Armyworm Information Portal”, similar to the MLN Information Portal and Wheat Rust Tracker (led by CIMMYT), as a one-stop portal for relevant information.
Q: CIMMYT recently co-hosted an emergency meeting on the strategy for effective management of fall armyworm in Africa. What were the key outcomes and next steps for the response to this issue?
The emergency meeting was an opportunity to assess the present and potential damage due to fall armyworm and to devise a holistic control strategy.
CIMMYT, Alliance for a Green Revolution in Africa (AGRA) and the U.N. Food and Agriculture Organization (FAO) jointly hosted a Stakeholders Consultation Meeting in Nairobi, Kenya (April 27-28, 2017). About 150 experts and stakeholders from 24 countries in Africa, and five outside Africa (Italy, Spain, Switzerland, Britain and the United States) participated, with participants from government, national plant protection agency, national agricultural research systems in Africa, as well as scientists from international agricultural research organizations, and representatives of service providers, non-governmental organizations, development partners, donor agencies and the media.
Discussions covered the present status of the pest in Africa as well as contingency plans to manage the pest, assessment of current control options being used. Experts from the U.S. and U.K. provided expertise and insight on the response to fall armyworm in the U.S. and Brazil.
Action points and recommendations on four key areas were developed to ensure an effective, coordinated response:
Contingency planning and awareness generation;
Fall armyworm monitoring and early warning;
Socio-economic impact assessments and modeling of potential losses;
Development and Dissemination of fall armyworm management options;
Coordination of Institutional Interventions for fall armyworm management in Africa.
FAO is expected to convene a regional workshop in early June to engage and coordinate with relevant regional organizations who will be involved in the response.
As climate change threatens to increase the incidence of plant pests and diseases, action must be taken to protect smallholder farmers and global food security.
At this year’s UN Climate Talks, CIMMYT is highlighting innovations in wheat and maize that can help farmers overcome climate change. Follow @CIMMYT on Twitter and Facebook for the latest updates.
Farmers test out agricultural mechanization tools in Zimbabwe as part of CIMMYT’s Farm Mechanization and Conservation Agriculture for Sustainable Intensification project. Photo: CIMMYT/ Frédéric Baudron
EL BATAN, Mexico (CIMMYT) – Small-scale agricultural mechanization is showing signs it has the potential to fuel rural employment for youth in sub-Saharan Africa, according to researchers at the International Maize and Wheat Improvement Center (CIMMYT).
Across Africa, youth are struggling with high unemployment and working poverty, the International Labor Organization records. However, increased adoption of agricultural mechanization – especially machines that are small, affordable and easy to maintain such as two-wheel tractors – is stimulating jobs and entrepreneurial opportunities for African youth, said Frédéric Baudron, senior systems agronomist at CIMMYT.
“Small-scale mechanization is more equitable than other forms of mechanization as even the poorest and most vulnerable have access to it,” he said.
Youth, along with women, are typically subject to labor intensive farm activities causing them to shun agriculture. But with mechanization improving productivity while reducing drudgery, youth are seeing economic opportunity in agribusiness, on rural farms and as service providers, said Rabe Yahaya, a CIM/GIZ integrated expert specialized in mechanization for sustainable agriculture intensification.
As a result, new jobs along the value chain from mechanics to spare parts providers have been created, he added.
Relatively cheap and easy to operate two-wheel tractors can be used for many different applications. On-farm, the tractors are used to speed up crop establishment while conserving soils through reduced tillage and precision fertilizer application. They allow farmers to tap into surface water for irrigation as well as aid shelling grain to reduce the time taken to get to market. The machinery has also been used to start rural commercial hire and transport services.
Beyene Abebe from Ethiopia, is one youth gaining economic opportunity as a mechanization service provider. Photo: CIMMYT/ Frédéric Baudron
24-year-old Beyene Abebe from Ethiopia is one youth benefiting from mechanization. Through CIMMYT managed training, Abebe has developed the skills needed to become a mechanization service provider. He now provides transportation services for an average of 200 households annually and ploughing services for 40 farmers in his village using two-wheel tractors. With the income from his service, Abebe can cover his family’s expenses and he bought farmland with his savings.
National government support for training and innovation is key to bolster agricultural mechanization throughout Africa, said Baudron. By creating a conductive business environment to attract private sector actors, governments can grease the wheels to scale out success.
Both Yahaya and Baudron shared some insights on the opportunities agricultural mechanization can provide rural communities in the following interview.
Q: Why is it important that agricultural research for development targets youth in rural areas?
RY: A growing population and diet change is increasing food demand in Africa, however, the amount of arable land is decreasing. This affects rural areas, where agriculture remains the main source of income and livelihood. Agriculture in the way it is currently practiced in rural areas is no longer attractive to the new generation of youth as it is labor intensive, rudimentary, risky, unproductive and does not support a good livelihood.
In addition, only 2 percent of Africa’s youth are undertaking agricultural curriculum at the university level. Despite young Africans being more literate than their parents, they suffer from increased unemployment. Agriculture could be the solution in tackling youth unemployment in rural areas, therefore providing peace, stability and food security.
FB: Youth unemployment is growing. Agriculture is perceived as a sector that can absorb much of this unemployment, particularly when combined with entrepreneurship.
In my view, an important issue when tackling issues of sustainable development as opposed to simply ‘development,’ is the issue of equity. We must ensure that the largest amount of people benefit from our interventions. Rural youth represent a large proportion of the vulnerable households in the areas where we work, because they lack capital and other resources, similar to women-headed households.
Q: How is mechanization creating new rural opportunities for youth and women?
RY: In many societies, youth and women are unequally disadvantaged and perform the most labor intensive agricultural activities such as plowing, sowing, weeding, harvesting, shelling, water pumping, threshing and transportation with very rudimentary implements using human and animal power. Therefore, increasing the use of engine power in agriculture will free youth and women from production drudgery discrepancies and most importantly increase farm productivity and consequently improve income generation if an organized value chain exists with a strong private sector involvement.
FB: Mechanization creates rural employment. It creates work for service provider jobs and it also stimulates other businesses along the mechanization value chains. Once demand for mechanization is established, employment opportunities grow for mechanics, fuel providers, savings and loans associations, spare part dealers, etc.
Q: What lessons are there to aid youth to be successful mechanization service providers?
RY: Training in mechanical, agronomic and business skills. Again training and constant follow up is key in order not only to produce successful youth mechanization service provider, but to ensure their continued success. In addition, infrastructure, aftersales — service and spare parts dealerships and financial schemes, promote the adoption of mechanization and support the development of value chain markets are crucial to success.
And remember whatever the technology may be, the farmer has to be able to earn money from it, otherwise they will not use it!
FB: Youth also tend to be better at managing modern technologies. We found consistently, in all countries where we work, that being a successful service provider is highly correlated to be a member of the youth. However, other factors are also important such as being entrepreneurial, educated, able to contribute to the cost of the machinery, and preferably having an experience in similar businesses and particularly in mechanics
Working with CIMMYT’s Farm Mechanization and Conservation Agriculture for Sustainable Intensification (FACASI) project, researchers have sought to promote the delivery and adoption of small-scale machines to make farming practices – including planting, harvesting, water pumping, shelling and transporting – more productive and sustainable in eastern and southern Africa. Funded by the Australian Center for International Agricultural Research, FACASI offers support throughout the supply chain, from importers to manufacturers, service providers and extension workers to ensure mechanization reaches farmers.
CIMMYT’s mechanization team has ongoing collaboration with GIZ/BMZ green innovation center in Ethiopia and works in Namibia with GIZ to provide knowledge, expertise and capacity building on conservation agriculture.
Women account for over 50 percent of farmers in many parts of Africa. Photo: CIMMYT/Peter Lowe
EL BATAN, Mexico (CIMMYT) — In a special interview to mark International Women’s Day, International Maize and Wheat Improvement Center (CIMMYT) gender and development specialist, Rahma Adam, detailed how her research aims to improve the agricultural productivity of women in southern and eastern Africa.
With women making up over 50 percent of farmers in many parts of Africa, it is essential to understand how gender roles, relations and responsibilities encourage and hinder their agricultural productivity, said Adam.
Understanding gender relations improves the work of researchers and development specialists to target programs in the correct areas and with right people in order to get the most impact, she said.
Conservation agriculture systems involve crop rotations and inter-cropping with maize and legumes to increase yields. Pictured here are conservation agriculture practitioner Lughano Mwangonde (L) and gender and development specialist Rahma Adam in Balaka district, Malawi. Photo: CIMMYT/Johnson Siamachira.
Sustainable intensification agriculture practices are aimed at enhancing the productivity of labor, land and capital without damaging the environment. In practice, sustainable intensification involves such conservation agriculture practices as minimal soil disturbance, permanent soil cover and the use of inter-cropping and crop rotation to simultaneously maintain and boost yields, increase profits and protect the environment. It contributes to improved soil function and quality, which can improve resilience to climate variability.
Through SIMLESA, supported by the Australian Center for International Agricultural Research (ACIAR), Adam shares her findings with a network of stakeholders, such as governments and non-governmental organizations, aiding the delivery of agricultural technologies, taking into account gender norms to hold a greater chance of adoption.
We spoke to about her work in a short interview listen here or read below:
Q: Please explain a bit about your work. What is SIMLESA, where does it operate and what are its key objectives?
A: SIMLESA stands for, Sustainable Intensification of Maize and Legume Systems for Food Security in Eastern and Southern Africa, we are now in the second phase of the project. We focus on several things, providing the needed knowledge in terms of technology, improved varieties of seeds for maize and legumes and how to use them in the practice of sustainable intensification practices. The idea is to improve crop yields from current levels, that’s the basic idea of SIMLESA.
The project operates in mainly five countries, Tanzania, Kenya, and Ethiopia for Eastern Africa and Malawi and Mozambique for southern Africa. But we have three spill over countries where SIMLESA also have some activities, they are Rwanda, Botswana and Uganda.
We want to make sure farmers know the practices of sustainable intensification, they are able to use them, able to adapt them for the benefit of improving food security of the household and increase their livelihoods.
Q: Why is gender analysis important in meeting SIMLESA’s objectives?
A: Women in sub-Saharan Africa play a lion’s share of farming, the literature shows on average they farm as much as men, they make up 60 percent of farmers or more in some countries. Because they are the majority, there is no way we could put them on the back-burner, and not address or try to understand what are their constraints for agricultural production and agricultural marketing and all the other things that go with an agricultural household being successful in terms of their livelihoods.
It is very important to think about women, not alone, but also their relationships with men, we also have to think about who are their husbands. In sub-Saharan Africa most households are patriarchal, so they are male dominated, meaning a husband has much more say than the wife in terms of decision making in regards to what to grow, how much money should be spent that they have collected from agriculture, among other things.
It is important to not only think about how to improve the lives of women but also to understand the norms that go on. The institutional norms within a community, within a household and how they can play some sort of role that can either make a women successful or make a woman unsuccessful in terms of bringing up her household, in terms of the betterment of nutrition and schooling, etc.
It is a very complex issue. That’s why we cannot ignore gender itself as it sits in the rural households of Africa, because it is the nucleus of it. Once we understand how the relationship works between husband and wife or man and woman working within a society then we will be able to say how we can really propel sustainable intensification in these communities.
Q: Although rural women in southern and eastern Africa play crucial role in farming and food production why are they less likely to own land or livestock, adopt new technologies, or access credit?
A: Most of the problem of women’s lack of ownership of assets, such as land, among others stems from the institutional social norms of the communities in which they reside. Usually for patriarchal societies in sub-Saharan Africa, women are married into their husband’s home, and thus nearly all assets including land, livestock, improved or new technologies and money belong to their husbands and in some occasions, wives have very little say, with regards to those assets.
Because the major assets of the households are under the hands of the husband, it is hard for the wife to be able to access credit facilities, without involving the husband. As most of the credit and financial facilities, require a collateral, before they provide one a loan.
To satisfy the enormous increase in demand for food in sub-Saharan Africa until 2050, cereal yields must increase to 80 percent of their potential. This calls for a drastic trend break. Graphic courtesy of Wageningen University
EL BATAN, Mexico (CIMMYT) – Sub-Saharan Africa will need to transform and intensify crop production to avoid over-reliance on imports and meet future food security needs, according to a new report.
Recent studies have focused on the global picture, anticipating that food demand will grow 60 percent by 2050 as population soars to 9.7 billion, and hypothesizing that the most sustainable solution is to close the yield gap on land already used for crop production.
Yet, although it is essential to close the yield gap, which is defined as the difference between yield potential and actual farm yield, cereal demand will likely not be met without taking further measures in some regions, write the authors of the report published in the Proceedings of the National Academy of Sciences (PNAS).
In particular, sub-Saharan Africa faces the prospect of needing greater cereal crop imports or expanding onto previously unfarmed lands, which will lead to a sharp uptick in biodiversity loss and greenhouse gas emissions in the region.
“No low-income country successfully industrialized in the second half of the 20th century while importing major shares of their food supply,” said co-author Kindie Tesfaye, a scientist with the International Maize and Wheat Improvement Center (CIMMYT).
To meet food demand without planting on previously unsown lands, farmers in sub-Saharan Africa will need to close yield gaps, but in addition consider options to sustainably intensify the number of crops grown on existing croplands by rotation and expanding the use of irrigation in a responsible manner.
“If intensification is not successful and massive cropland expansion is to be avoided, sub-Saharan Africa will become ever more dependent on imports of cereals than it is today,” Tesfaye said, adding that the African Development Bank highlights self-sufficiency in agriculture as a principal goal of its action plan for agricultural transformation.
More than half of global population growth between now and 2050 is projected to occur in Africa, where it increased 2.6 percent each year between 2010 and 2015, according to data from the U.N. Department of Economic and Social Affairs.
In sub-Saharan Africa, population will increase 2.5 times overall by 2050, and demand for cereals will triple, while current levels of cereal consumption already depend on substantial imports.
For the study, titled “Can Sub-Saharan Africa Feed Itself?”, scientists focused on 10 countries where cereals make up half of calories in the human diet and half the cropland area that are part of the Global Yield Gap Atlas, which is developed using local data, to estimate food production capacity on existing cropland. Of the 10 countries, seven do not have enough land area to support expansion.
Except in Ethiopia and Zambia, cereal yields in most countries in the region are growing more slowly than population and demand, while total cropland area has increased a massive 14 percent in the last 10 years. Although Ethiopia shows progress in crop production intensification, other countries lag behind, Tesfaye said.
“With improved cultivars, hybrid seeds, coupled with increased use of irrigation, fertilizers, modern pest management practices and good agronomy, it’s possible to achieve accelerated rates of yield gain, but more research and development are required,” he added.
“Can Sub-Saharan Africa Feed Itself?” appears in the Proceedings of the National Academy of Sciences the week of December 12. It is co-authored by Wageningen University, University of Nebraska-Lincoln, and multiple CGIAR centers, regional and national Institutions in Africa.
David Hodson, CIMMYT senior scientist (L), describes the challenges posed by wheat rust to Priti Patel, Britain’s international development secretary, during the Grand Challenges Annual Meeting in London. DFID/handout
LONDON (CIMMYT) – International wheat rust monitoring efforts are not only keeping the fast-spreading disease in check, but are now being deployed to manage risks posed by other crop diseases, said a scientist attending a major scientific event in London.
Although initially focused on highly virulent Ug99 stem rust, the rust tracking system – developed as part of the Borlaug Global Rust Initiative, an international collaboration involving Cornell University and national agricultural research programs – is also used to monitor other fungal rusts and develop prediction models with the aim of helping to curtail their spread.
“Our data reinforce the fact that we face threats from rusts per se and not just from the Ug99 race group – we are fortunate that international efforts laid the groundwork to establish a comprehensive monitoring system,” said Hodson, one of more than 1,200 international scientists at the gathering.
“The research investments are having additional benefits,” he told Priti Patel, Britain’s secretary of state for international development, explaining that the wheat rust surveillance system is now also being applied to the deadly Maize Lethal Necrosis disease in Africa.
“The learning from stem rust and investments in data management systems and other components of the tracking system have allowed us to fast-track a similar surveillance system for another crop and pathosystem.”
“Researchers at the University of Cambridge are working with the UK Met Office and international scientists to track and prevent deadly outbreaks of wheat rust which can decimate this important food crop for many of the world’s poorest people,” Patel said, referring to collaborative projects involving CIMMYT, funded by the Gates Foundation and DFID
Patel also launched a DFID research review at the meeting, committing the international development agency to continued research support and detailing how the UK intends to deploy development research and innovation funding of £390 million ($485 million) a year over the next four years.
Wheat improvement work by the CGIAR consortium of agricultural researchers was highlighted in the research review as an example of high impact DFID research. Wheat improvement has resulted in economic benefits of $2.2 to $3.1 billion per year and almost half of all the wheat planted in developing countries.
A QPM field demonstration in East Wollega, Ethiopia, showing the performance of BHQPY545, a QPM variety with yellow grain. Photo: CIMMYT
ADDIS ABABA, Ethiopia (CIMMYT) — The Nutritious Maize for Ethiopia (NuME) project was selected as a key actor in agricultural and rural innovation in Ethiopia by the Capacity Development for Agricultural Innovation Systems project (CDAIS).
Funded by the European Commission and implemented by AGRINATURA and the Food and Agriculture Organization of the United Nations (FAO), CDAIS is a global partnership on capacity development for agricultural innovation systems (AIS), or collaborative arrangements that bring together several organizations working toward technological, managerial, organizational and institutional change in agriculture. CDAIS aims to make AIS more efficient and sustainable in meeting the demands of farmers, agri-business and consumers.
CDAIS identified NuME as one of the most successful projects in Ethiopia in its scoping study, largely based on its ability to demonstrate how multi-sectoral networks facilitate and speed-up the dissemination of quality protein maize (QPM) technologies and strengthen innovation. The QPM technology promoted is a biofortified type of maize with improved protein quality due to its enhanced amino acid profile that makes it more useful in human and animal nutrition.
QPM technology is a biofortified type of maize with improved protein quality due to its enhanced amino acid profile that makes it more useful in human and animal nutrition. Photo: CIMMYT
NuME is founded on a network of key implementing partners from Ethiopian research institutions, national agricultural research and extension systems, international non-governmental organizations, universities and public and private seed companies and is implemented in 36 woredas (districts) of the four major maize producing and consuming regions of Ethiopia. Such multi-sectoral networking of actors has proved to be one of the most important factors that can bring remarkably high rates of adoption of technologies bya large number of farmers in different countries.
All partners work together to ensure QPM spreads to as many farmers as possible. For example, Farm Radio International (FRI) collaborated with local radio stations, designing an appropriate multilingual participatory radio campaign on nutrition, protein and QPM benefits. Universities and Agricultural Technical and Vocational Education Training (ATVETs) produce agricultural experts with technical knowledge and skills in the field of QPM production and management. Meanwhile private sector seed companies produce and market QPM to meet the growing demand for the technology across the country.
The project has also brought the issue of QPM to the attention of policy makers and national agricultural development planners. As a result, Ethiopia’s Ministry of Agriculture and Natural Resources (MoANR) and the Agricultural Transformation Council have included QPM as a priority commodity in the national agricultural development plan. In 2014, MoANR set the target to increase the QPM production area to 200,000 ha within three years (2015-17), an area that is approximately 10 percent of the total land area devoted to maize production in the country.
NuME is funded by Global Affairs Canada (GAC) and implemented by CIMMYT-Ethiopia in collaboration with various stakeholders from agriculture, nutrition and health sectors. The project is designed to contribute to the reduction of malnutrition, especially among women and young children, and to increase food security for resource-poor smallholder farmers in Ethiopia through the widespread adoption, production and utilization of QPM varieties and crop management practices that increase farm productivity.
ADDIS ABABA — As Ethiopia struggles with its worst drought in 50 years, farmers pin their hopes on seed delivered through emergency seed projects.
“The situation last year was so bad that we could only laugh or cry,” said Rameto Tefo, a smallholder farmer from Tsiaroa district in central Ethiopia. “We were highly affected by the drought and we are now reliant on the assistance of the government and organizations such as CIMMYT. Without the seed provided to us from CIMMYT through the emergency seed project, I would have had to beg from my neighbors or just plant grain and hope that it germinated.”
Rameto Tefo lost his entire harvest to drought last year. Without the maize seed provided through the emergency seed project, he said he would have had to beg his neighbors to provide food for his two wives and eight children. Photo: E.Quilligan/CIMMYT
Tefo would have had a difficult time begging for seed from his neighbors; the drought in this district was so severe that most farmers lost all their harvest. Furthermore, the effects of the strongest El Niño on record continued from 2015 into 2016 and the short belg rains that normally fall during March and April were erratic and scarce. By late April, the ground was once again dry and cracked, but the day before we visited Tsiaroa in early May, torrential rain had washed away roads and flooded houses and fields. No one knew whether this was late belg rains, or the start of the main rainy season, which would normally not occur until June.
In this district alone, 67 villages were affected by drought last year and produced little or no harvest. This meant that farmers were unable to save seed for planting this season, and also lacked the income to purchase seed. According to Bekele Abeyo, CIMMYT (International Maize and Wheat Improvement Center) senior wheat breeder/pathologist for sub-Saharan Africa, immediate large-scale support is critical to ensure that the food shortages encountered during 2016 do not balloon into a future crisis for Ethiopia. Abeyo is currently leading the emergency seed project being implemented by CIMMYT in collaboration with the Ethiopian government with support from the U.S. Agency for International Development (USAID). The project’s primary partner, Ethiopia’s Agricultural Transformation Agency (ATA), is supported by a grant from the Bill & Melinda Gates Foundation. Under this project, 50 tons of maize seed are being supplied to Tsiaroa district – enough for each of 4,000 farmers to plant 0.5 ha with improved, drought resistant maize.
In contrast to normal rain patterns, heavy rainfall fell in central Ethiopia in early May, between the usual short (March-April) and main (June-September) rainy seasons. Photo: E.Quilligan/CIMMYT
“We are optimistic that the high quality maize varieties provided through the emergency seed project will help ensure the future food security of this region,” said Dagne Wegary, CIMMYT maize breeder and maize seed coordinator for the emergency seed project. “Thanks to the long-established network of CIMMYT experts, government development agents, and district focal people, we are able to provide a complete package of improved seed and agronomy advice.”
Boti Decheso helps Demetu Edao carry maize seed received through the emergency seed project back to their farms. Photo: E.Quilligan/CIMMYT
Nearby Zewai Dugda district was also severely affected by the drought, and now has more than 20,000 farmers in need of emergency seed assistance. CIMMYT is working alongside the government and other organizations to provide seed to 4,400 farmers under the emergency seed project.
It’s a complex logistical task to ensure that the correct farmers receive the right amount of seed, but storekeeper Embete Habesha in Zewai Dugda has everything under control. Farmers may request one of four varieties of drought-tolerant maize (three hybrids and one open-pollinated variety). Habesha is responsible for collecting information and fingerprint signatures from the farmers who receive seed. They are optimistic that – with normal growing conditions – they will be able to achieve yields of up to 4.4 tons/hectare.
Demetu Edao was one of the farmers scheduled to receive seed on the day we visited. She has a 1-ha plot in the village of Ubobracha where she grows teff and wheat, in addition to maize, and she uses the income to pay the school fees for her six children. Edao said she is grateful not only for the seed, but also for the assistance and agronomy advice she receives from government development agents and agriculture experts. Her neighbor and fellow farmer, Boti Decheso, joked that while he looks young, he feels old with the pressure of providing for a wife and two young children. Decheso hopes to use this seed to produce a successful harvest and save some seed for next year, while also ensuring his family has enough to eat. Any surplus maize will be sold so that the family can purchase some livestock and diversify its livelihood as a buffer against future financial and environmental shocks.
Through the emergency seed project implemented by CIMMYT, more than 226,000 households will benefit from the provision of maize, wheat, and sorghum seed. “We hope that this provision of emergency seed will enable Ethiopian smallholder farmers to quickly recover from the devastating drought of 2015,” said Abeyo. “Our unique and strong links with the Ethiopian government, the formal seed sector, farmers’ cooperatives, and partners such as ATA have allowed CIMMYT to quickly respond to farmers’ needs and provide more than 2,700 tons of seed to help ensure Ethiopia’s future food security.”
In Zewai Dugda, storekeeper Embete Habesha discusses her store records with Tadele Asfaw, CIMMYT-Ethiopia program management officer and member of the Seed Procurement Committee for the emergency seed project funded by USAID. Photo: E.Quilligan/CIMMYT
Stocks of maize seed have been certified for quality and are now ready to be distributed to farmers in drought-affected districts. Photo: Tadele Asfaw/CIMMYT
As the Rio 2016 Olympics draw near, team managers are rushing to recruit their best sportspeople from all over the country, put them through fitness tests, and get them to various stadiums before the starter’s gun goes off.
The team working on the Emergency Seed Support for Drought Affected Maize and Wheat Growing Areas of Ethiopia initiative is facing a similar challenge. But instead of recruiting long jumpers and marathon runners, they are tasked with procuring quality seeds of elite maize, wheat, and sorghum varieties and distributing them to farmers before the start of the main planting season to increase food security in regions devastated by recent droughts.
Dry conditions are not uncommon in Ethiopia, but the 2015-2016 El Niño – the strongest on record – has led to the worst drought in a decade. Harvests across Ethiopia were affected, leaving 10.2 million people – more than 1 in 10 Ethiopians – in need of emergency food assistance.
Food security status across Ethiopia. Source: Fews.Net
Planning for a food-secure future
The government of Ethiopia and international organizations are working to provide food aid for people facing immediate shortages, but Bekele Abeyo, senior wheat breeder and pathologist at the International Maize and Wheat Improvement Center (CIMMYT) for sub-Saharan Africa and leader of the emergency seed project, is focusing on a more sustainable future.
“Relief efforts will provide sustenance today, but we need to ensure there is also food on plates tomorrow,” says Abeyo. “With the large crop losses experienced in 2015, farmers were not able to save seed for planting in 2016 and did not have sufficient income to purchase more. Unless these farmers are able to access seed, we may face further shortages in 2017.”
CIMMYT, with support from the U.S. Agency for International Development, is working with partners to supply over 2,700 tons of seed to more than 226,000 households across 71 woredas (districts) in four regions of Ethiopia. CIMMYT will work with both the formal seed sector and farmers’ cooperatives to source quality seed from within Ethiopia and make sure it reaches the farmers who need it the most. These high-yielding, drought resistant varieties are being supplied along with agronomic advice to further increase farmers’ resilience.
Together with Ethiopia’s Agricultural Transformation Agency (ATA), a primary partner in the project, CIMMYT organized workshops in each of the target regions –Amara, Oromia, Southern Nations, Nationalities, and People’s Region (SNNPR), and Tigray – to engage stakeholders and collectively finalize the workplan. Based on participant feedback, some sorghum will now also be supplied to selected regions, in addition to maize and wheat.
“It is important to consider the needs of the individual communities and regions,” says Yitbarek Semeane, director of ATA’s Seed Systems. “ATA has very strong links with the regions and government institutions so is able to provide feedback on farmers’ needs and preferences. As weather patterns in Ethiopia are becoming increasingly unpredictable, many farmers are changing their farming practices, or even switching crops.”
Seed is being distributed to 240 drought-affected farmers in the kebele of Ubobracha. Photo: E. Quilligan/CIMMYT
A race against time
With the main planting season rapidly approaching, the team is racing to source, procure, certify, transport and distribute seeds.
“The success of this project will depend on us procuring enough quality seed and distributing it to farmers before the main planting season,” says Tadele Asfaw, CIMMYT-Ethiopia program management officer and member of the project’s Seed Procurement Committee.
By mid-April, the team had successfully procured almost all the required maize and sorghum seeds and were navigating the complex logistics to get the requested varieties to each woreda. Agreements are also being signed with farmers’ cooperatives to ensure that wheat seed can be purchased without disrupting the normal seed system.
According to Ayele Badebo, CIMMYT scientist and wheat seed coordinator for the project, CIMMYT does not have the capacity to collect seed from individual farmers within each woreda, but this is something the cooperatives are ideally placed to do. They have the trust of both CIMMYT and farmers, and through the previous seed scaling project, they know which farmers were given seed to multiply and will now have it available for sale.
At the end of March, the seed procurement team traveled to eastern Oromia – one of the areas most affected by the 2015 drought – to meet with Chercher oda bultum, a farmers’ cooperative and seed supplier. The team was very satisfied to see that the supplier had sufficient stock of Melkassa2 and Melkassa4, locally-adapted drought resistant maize varieties that had already been certified for germination and moisture by another collaborator, Haramaya University. This same process is now underway for wheat seed.
Ethiopia’s Bureaus of Agriculture and Natural Resources are also working with woreda representatives to ensure that the seed will be distributed to those farmers who need it most, and who have sufficient land and agronomic tools to benefit from this initiative.
“Working with local enterprises and partners enables us to procure and deliver seed to drought-affected farmers as quickly as possible,” says Abeyo. “In combination with CIMMYT’s longer-term efforts in the region, we hope that we can foster a more robust seed system and increase food security for 2016 and beyond.”
The meeting room at ATA was a hive of activity as farmers’ unions met to negotiate transport of emergency seed. Photo: Emma Quilligan/CIMMYT
Partnering for success
While CIMMYT has the knowledge, networks and experience in Ethiopia to spring into action, the cooperation of partners such as the Agricultural Transformation Agency (ATA), farmers’ unions and Ethiopia’s Bureaus of Agriculture and Natural Resources is vital.
Established in 2010, the ATA is acting as a catalyst to spur the growth and transformation of Ethiopia’s agriculture sector. With funding from the Bill & Melinda Gates Foundation, ATA is working with the Ministry and Regional Bureaus of Agriculture and Natural Resources to coordinate the collection, cleaning, packing, labeling and distribution of quality seed to drought-affected farmers, as well as help train development agents and raise farmer awareness.
CIMMYT maize seed system specialist James Gethi inspects a maize field in Nzega, Tanzania. Photo: Kelah Kaimenyi/CIMMYT.
Maize is not only a staple in diets across sub-Saharan Africa – it is a cash crop that supports millions of farmer households. Maize is grown on over 33 million hectares in just 13 of 48 countries in the region – accounting for 72% of all maize produced in the region. This crop, without a doubt, is king.
However, rising temperatures and erratic rainfall patterns threaten maize production across the continent. Total crop loss occurs if there’s little or no rainfall at the flowering stage, when maize is most vulnerable. And when temperatures increase, soil moisture is quickly depleted and farmers have to resort to prolonged irrigation, a costly undertaking for smallholders.
Drought-tolerant (DT) maize varieties produce better yields both in good and bad seasons compared to most commercial varieties available in the region. Since 2006, CIMMYT has developed 200 drought-tolerant varieties and hybrids, many of which also possess desirable traits such as resistance to major diseases.
In addition to developing quality maize that is high yielding and disease resistant, the Drought Tolerant Maize for Africa Seed Scaling (DTMASS) project led by CIMMYT is working to ensure these improved varieties are affordable and attractive to farmers. Two and a half million smallholder farmers in Ethiopia, Kenya, Mozambique, Tanzania, Uganda and Zambia are expected to benefit from in-country partnerships and networks that boost production and distribution of DT maize seed. These countries account for 25 percent (or 252 million) of the population in sub-Saharan Africa, and 41 percent of maize production areas.
To access quality improved seed, farmers in Africa face various constraints such as high prices, low supply and limited knowledge about improved seeds. Through surveys conducted among nearly 5,000 farmer households in Kenya, Mozambique and Zambia, CIMMYT learned that when farmers buy seed, the traits they care most about are early crop maturity, yield, and tolerance/resistance to stresses such as drought and disease. In most cases, long-term use and preference for a particular seed variety influence buying habits, but now farmers are increasingly focusing on tolerance/resistance to drought, pests and diseases.
“Our key focus is on sustainable seed production and increasing demand,” said Kate Fehlenberg, DTMASS project manager. “This means building market skills for producers and creating an environment to entice risk-averse farmers to try new drought-tolerant varieties.”
CIMMYT is working with partners to increase farmer preference for DT seed by supporting promotional and marketing activities, and improving seed production capacity. CIMMYT will also work to ensure local institutions have the technological and production capacity to independently produce and distribute seed throughout DTMASS target countries.
Scaling activities will allow DT seed to spread across various geographical areas (scaling “out”) and build the capacity of local institutions to independently control sustainable seed production (scaling “up”). Both scaling up and out rely on giving stakeholders in the maize value chain compelling reasons to continue producing, distributing and consuming DT maize varieties.
Over 50 selected small- and medium-scale seed companies will be supported through training workshops on seed production and seed business management. Seed companies will also receive financial grants to support expansion activities such as purchasing special seed processing and packing equipment, restoring seed storage and other facilities, and marketing.
The next big challenge for DTMASS is to increase adoption of drought-tolerant maize, which will strengthen seed systems in Africa. Photo: Kelah Kaimenyi/CIMMYT.
This story is one of a series of features written during CIMMYT’s 50th anniversary year to highlight significant advancements in maize and wheat research between 1966 and 2016.
EL BATAN, Mexico (CIMMYT) – Maize and wheat biofortification can help reduce malnutrition in regions where nutritional options are unavailable, limited or unaffordable, but must be combined with education to be most effective, particularly as climate change jeopardizes food security, according to researchers at the International Maize and Wheat Improvement Center (CIMMYT).
Climate change could kill more than half a million adults in 2050 due to changes in diets and bodyweight from reduced crop productivity, a new report from the University of Oxford states. Projected improvement in food availability for a growing population could be cut by about a third, leading to average per-person reductions in food availability of 3.2 percent, reductions in fruit and vegetable intake of 4 percent and red meat consumption of .07 percent, according to the report.
Over the past 50 years since CIMMYT was founded in 1966, various research activities have been undertaken to boost protein quality and micronutrient levels in maize and wheat to help improve nutrition in poor communities, which the Oxford report estimates will be hardest hit by climate change. As one measure of CIMMYT’s success, scientists Evangelina Villegas and Surinder Vasal were recognized with the prestigious World Food Prize in 2000 for their work developing quality protein maize (QPM).
“We’ve got a lot of balls in the air to tackle the ongoing food security crisis and anticipate future needs as the population grows and the climate changes unpredictably,” said Natalia Palacios, head of maize quality, adding that a key component of current research is the strategic use of genetic resources held in the CIMMYT gene bank.
“CIMMYT’s contribution to boosting the nutritional value of maize and wheat is hugely significant for people who have access to these grains, but very little dietary diversity otherwise. Undernourishment is epidemic in parts of the world and it’s vital that we tackle the problem by biofortifying crops and including nutrition in sustainable intensification interventions.”
Undernourishment affects some 795 million people worldwide – meaning that more than one out of every nine people do not get enough food to lead a healthy, active lifestyle, according to the U.N. Food and Agriculture Organization (FAO). By 2050, reduced fruit and vegetable intake could cause twice as many deaths as under-nutrition, according to the Oxford report, which was produced by the university’s Future of Food Programme.
As staple foods, maize and wheat provide vital nutrients and health benefits, making up close to one-quarter of the world’s daily energy intake, and contributing 27 percent of the total calories in the diets of people living in developing countries, according to FAO.
“Nutrition is very complex and in addition to deploying scientific methods such as biofortification to develop nutritious crops, we try and serve an educational role, helping people understand how best to prepare certain foods to gain the most value,” Palacios said. “Sometimes communities have access to nutritious food but they don’t know how to prepare it without killing the nutrients.”
The value of biofortified crops is high in rural areas where people have vegetables for a few months, but must rely solely on maize for the rest of the year, she added, explaining that fortified flour and food may be more easily accessed in urban areas where there are more dietary options.
Some of the thousands of samples that make up the maize collection in the Wellhausen-Anderson Plant Genetic Resources Center at CIMMYT’s global headquarters in Texcoco, Mexico. (Photo: Xochiquetzal Fonseca/CIMMYT)
PROMOTING PROTEIN QUALITY
Conventional maize varieties cannot provide an adequate balance of amino acids for people with diets dominated by the grain and with no adequate alternative source of protein. Since the breakthrough findings of Villegas and Vasal, in some areas scientists now develop QPM, which offers an inexpensive alternative for smallholder farmers.
CIMMYT scientists also develop QPM and other nutritious conventionally bred maize varieties for the Nutritious Maize for Ethiopia (NuME) project funded by the government of Canada. NuME, which also helps farmers improve agricultural techniques by encouraging the deployment of improved agronomic practices, builds on a former seven-year collaborative QPM effort with partners in Ethiopia, Kenya, Tanzania and Uganda.
In Ethiopia, where average life expectancy is 56 years of age, the food security situation is critical due in part to drought caused by a recent El Nino climate system, according to the U.N. World Food Programme. More than 8 million people out of a population of 90 million people are in need of food assistance. Almost 30 percent of the population lives below the national poverty line, 40 percent of children under the age of 5 are stunted, 9 percent are acutely malnourished and 25 percent are underweight, according to the 2014 Ethiopia Mini Demographic and Health Survey. The NuMe project is helping to shore up sustainable food supplies and boost nutrition in the country, where the vast majority of people live in rural areas and are engaged in rain-fed subsistence agriculture.
INCREASING MICRONUTRIENTS
CIMMYT maize and wheat scientists tackle micronutrient deficiency, or “hidden hunger,” through the interdisciplinary, collaborative program HarvestPlus, which was launched in 2003 and is now part of the Agriculture for Nutrition and Health program managed by the CGIAR consortium of agricultural researchers.
Some 2 billion people around the world suffer from micronutrient deficiency, according to the World Health Organization (WHO). Micronutrient deficiency occurs when food does not provide enough vitamins and minerals. South Asia and sub-Saharan Africa are most affected by hidden hunger, which is characterized by iron-deficiency anemia, vitamin A and zinc deficiency.
Work at CIMMYT to combat micronutrient deficiency is aligned with the U.N. Sustainable Development Goals (SDGs) — in particular Goal 2, which aims to end all forms of malnutrition by 2030. The SDG also aims to meet internationally agreed targets on stunting and wasting in children under 5 years of age, and to address the nutritional needs of adolescent girls, older people, pregnant and lactating women by 2025.
WHOLESOME WHEAT
The wheat component of the HarvestPlus program involves developing and distributing wheat varieties with high zinc levels by introducing genetic diversity from wild species and landraces into adapted wheat.
Zinc deficiency affects about one-third of the world’s population, causing lower respiratory tract infections, malaria, diarrheal disease, hypogonadism, impaired immune function, skin disorders, cognitive dysfunction, and anorexia, according to the WHO, which attributes about 800,000 deaths worldwide each year to zinc deficiency. Additionally, worldwide, approximately 165 million children under five years of age are stunted due to zinc deficiency.
A project to develop superior wheat lines combining higher yield and high zinc concentrations in collaboration with national agriculture program partners in South Asia has led to new biofortified varieties 20 to 40 percent superior in grain zinc concentration.
“We’re playing a vital role in this area,” said CIMMYT wheat breeder Velu Govindan. “Our research has led to new varieties agronomically equal to, or superior to, other popular wheat cultivars with grain yield potential at par or — in some cases – even superior to popular wheat varieties adopted by smallholder farmers in South Asia where we’ve been focused.”
Scientists are studying the potential impact of climate-change related warmer temperatures and erratic rainfall on the nutritional value of wheat. An evaluation of the effect of water and heat stress with a particular focus on grain protein content, zinc and iron concentrations revealed that protein and zinc concentrations increased in water and heat-stressed environments, while zinc and iron yield was higher in non-stressed conditions.
“The results of our study suggest that genetic gains in yield potential of modern wheat varieties have tended to reduce grain zinc levels,” Govindan said. “In some instances, environmental variability might influence the extent to which this effect manifests itself, a key finding as we work toward finding solutions to the potential impact of climate change on food and nutrition security.”
Additionally, a recent HarvestPlus study revealed that modern genomic tools such as genomic selection hold great potential for biofortification breeding to enhance zinc concentrations in wheat.
IMPROVING MAIZE
Scientists working with HarvestPlus have developed vitamin A-enriched “orange” maize. Orange maize is conventionally bred to provide higher levels of pro-vitamin A carotenoids, a natural plant pigment found in such orange foods as mangoes, carrots, pumpkins, sweet potatoes, dark leafy greens and meat, converted into vitamin A by the body.
Maize breeders, who are currently working on developing varieties with 50 percent more pro-vitamin A than the first commercialized varieties released, identified germplasm with the highest amounts of carotenoids to develop the varieties. In Zambia, Zimbawe and Malawi, 12 varieties, which are agronomically competititve and have about 8ppm provitamin A, have been released.
Provitamin A from maize is efficiently absorbed and converted into vitamin A in the body. Stores of Vitamin A in 5 to 7 year old children improved when they ate orange maize, according to HarvestPlus research. The study also shows preliminary data demonstrating that children who ate orange maize for six months experienced an improved capacity of the eye to adjust to dim light. The findings indicate an improvement in night vision, a function dependent on adequate levels of vitamin A in the body.
Researchers are also developing maize varieties high in zinc.
Efforts on this front have been a major focus in Latin America, especially in Nicaragua, Guatemala and Colombia. Scientists expect the first wave of high zinc hybrids and varieties will be released in 2017. Further efforts are starting in such countries as Zambia, Zimbabwe and Ethiopia. Results from the first nutrition studies in young rural Zambian children indicate that biofortified maize can meet zinc requirements and provide an effective dietary alternative to regular maize for the vulnerable population.
HARARE — Several African nation ambassadors to Zimbabwe pledged to step up support for improved agriculture technologies during a visit to The International Maize and Wheat Improvement Center’s (CIMMYT) Southern Africa Regional Office (CIMMYT-SARO) in Harare, Zimbabwe, in April.
The special field day and meeting, held as part of CIMMYT 50 celebrations, gave ambassadors from 12 African countries (Algeria, Botswana, Democratic Republic of Congo, Ethiopia, Namibia, Nigeria, Sudan, South Sudan, Tanzania, Uganda, South Africa and Zambia) the opportunity to learn about CIMMYT projects that are helping to strengthen food systems in sub-Saharan Africa and discuss future initiatives.
During the visit, the need to develop policies that promote smallholder farmers’ access to technologies that enable them to increase yields and improve crop resilience in the face of challenges such as droughts, as well as policies to address poverty, food security and economic growth surfaced as main priorities for the countries represented.
African ambassadors learned about CIMMYT-promoted agricultural technologies while visiting the CIMMYT-Southern Africa Regional Office (CIMMYT-SARO) in Harare, Zimbabwe. Photo: Johnson Siamachira/CIMMYT
In his welcome address, Mulugetta Mekuria, CIMMYT-SARO regional representative, pointed out, “Sub-Saharan Africa’s food security faces numerous challenges, but drought is the most devastating because our farmers rely on rainfed agriculture. As you will see, CIMMYT’s work has created high-level impacts. But a host of challenges still hamper socioeconomic growth, such as reduced funding of agricultural research.”
According to Mekuria, CIMMYT’s work in sub-Saharan Africa aims to ensure farmers can access improved maize seed with drought tolerance and other relevant traits that contribute to higher, more stable yields, as well as technologies such as optimal fertilizer application. He noted that farmers in sub-Saharan African countries lag behind other regions in fertilizer application, applying, on average, less than 10 kg per hectare, which is 10 percent of the world average.
Another issue brought up was the lack of funding of agricultural research for development by most bilateral agencies on which African governments depend. The diplomats pledged to advise their governments of the need to increase support for improved agricultural technologies. They agreed that funding agricultural research work in line with the 2006 Abuja Declaration to allocate at least 1 percent of the donor country’s gross domestic product to agricultural research is of the utmost importance. Enhancing access to markets, extension services and inputs and supporting women and youth in agriculture were also identified as fundamental policy issues that need to be urgently addressed. Strong partnerships and collaborative efforts between various African governments, CIMMYT and the private sector were also called for.
The ambassadors were briefed on CIMMYT’s achievements in the region, and how, in partnership with national agricultural research systems and private seed companies, they have released more than 200 drought-tolerant maize varieties that perform significantly better under moderate drought conditions than varieties already on the market, while yielding the same – or better – in a normal season. More than 6 million farmers in sub-Saharan Africa grow improved drought tolerant maize varieties developed by CIMMYT and partners.
A wide range of CIMMYT-SARO technologies were also showcased, including sustainable intensification strategies based on the principles of conservation agriculture. Compared to conventional cropping practices, conservation agriculture increases yields after two to five cropping seasons due to the combined benefits of minimum soil disturbance, crop residue retention and crop rotation. Conservation agriculture has been successfully promoted in Malawi, Mozambique, Zambia and Zimbabwe for the past 10 years. For example, yield increases of 20-60 percent were recorded in trials in farmers’ fields in Malawi, while in Zambia and Zimbabwe, yields increased by almost 60% using animal traction innovation agriculture technologies.
Other technologies demonstrated were pro-vitamin A maize and quality protein maize. The diplomats learned that CIMMYT had released eight pro-vitamin A hybrids with 28% more vitamin A content in Zambia (4), Malawi (3) and Zimbabwe (1). On improved varieties, CIMMYT sent 823 seed shipments (1.3 million envelopes) to 835 institutions worldwide over the last four years.
“The success of our projects goes beyond the breeding work. Through the value chain approach, our work now is to ensure that seed companies and, ultimately, maize farmers benefit from the seed that is developed with their needs in mind. Getting drought-tolerant maize and other improved seeds to the markets and farmers is a critical next step,” said James Gethi, CIMMYT seed systems specialist.
HARARE (CIMMYT) — As CIMMYT joins the world in celebrating the International Day for Biological Diversity on 22 May, it can take pride in the diverse maize varieties it develops which have improved the livelihoods and health of smallholder farmers globally.
These varieties have brought tremendous benefits to smallholders in sub-Saharan Africa (SSA). Over 90 percent of agricultural production in SSA is rainfed, which puts farmers at risk for drought and heat in addition to the poor soil fertility, pests and diseases they face. Drought alone damages about 40 percent of all maize crops in SSA, endangering the livelihoods and food security of millions of smallholder farmers.
Stress tolerant maize not only reduces risks for farmers in the face of unpredictable environmental and biological conditions, it also allows more stable crop production. The International Maize and Wheat Improvement Center (CIMMYT) breeds high-yielding, locally-adapted maize varieties with farmer-preferred traits such as drought tolerance, nitrogen use efficiency, and disease and insect pest resistance. Many of these varieties also have increased nutritional traits such as high protein quality and increased provitamin A content, which help increase children’s weight and height growth rates and reduce childhood blindness.
“Since working with CIMMYT, we have unlocked our production potential,” says Sylvia Horemans, marketing director of Zambia-based Kamano Seeds. Since 2012 Kamano Seeds has benefitted from CIMMYT to strengthen its work in maize breeding, seed production and marketing. Photo: CIMMYT
“Increasing adoption of these stress tolerant maize varieties is helping African farmers cope with drought and climate change, improve yields at household level and thereby enhance the livelihoods and food security of tens of millions of farmers,” said Cosmos Magorokosho, CIMMYT-Southern Africa maize breeder.
These drought-tolerant varieties have proven resistant despite harsh conditions brought on in southern Africa by an intense El Niño, according to Magorokosho. “Significant impacts have been observed in plots of smallholder farmers who grow these varieties.”
In 2014, over 54,000 metric tons of certified seed of the stress tolerant maize varieties were produced and delivered by partner seed companies for planting by smallholders. By the end of that year, more than five million smallholders had planted the improved drought tolerant varieties on over two million hectares, benefiting more than 40 million people in 13 countries in SSA.
Today, there are more than 200 stress tolerant maize varieties that yield the same or more than commercial varieties under average rainfall, and more importantly, produce up to 30 percent more than commercial varieties under moderate drought conditions. Armed with these improved varieties, CIMMYT is assuming a greater role to ensure stress tolerant maize reaches nearly five and a half million smallholder households in SSA by the end of 2019.
“Even with a little rain, this seed does well,” says a smallholder farmer Philip Ngolania, in south-central Kenya, referring to a drought-tolerant maize variety he planted during the 2015 crop season. “Without this seed, I would have nothing. Nothing, like my neighbours who did not use the variety.” Photo: Johnson Siamachira/CIMMYT
“In close collaboration with our partners, we were able to create excitement about what can be achieved with drought tolerant maize in Africa,” said Tsedeke Abate, leader of CIMMYT’s Stress Tolerant Maize for Africa project. CIMMYT is working with national agricultural research systems, international research centers, and other development programs to disseminate improved maize seed to smallholder farmers in SSA through small-and medium-sized seed companies.
“The work we have undertaken on drought tolerant maize has created significant impacts. However, several challenges still remain,” cautioned B.M. Prasanna, Director of CIMMYT’s Global Maize Program and the CGIAR Research Program MAIZE. One of these challenges is maize lethal necrosis (MLN), which emerged in Kenya in 2011 and has since devastated maize crops across East Africa. CIMMYT is working to generate improved stress tolerant maize varieties with resistance to MLN and other major diseases.
Maize production in Africa is growing rapidly, making maize the most widely cultivated crop on the continent, and the staple food of more than 300 million people. Providing farmers with diverse, improved seed choices will thus strengthen food security, health and livelihoods in SSA.
Malawian smallholder farmer Dyless Kasawala of Kasungu District demonstrates her maize-legume rotation technologies. Through SIMLESA, she has managed to attain household food security in an area plagued by frequent droughts. CIMMYT/Johnson Siamachira
Delegates gathered in Malawi’s capital, Lilongwe, for the sixth SIMLESA annual review and planning meeting to discuss the project’s progress and achievements, share lessons learned over the past six years, and deliberate over potential improvements for implementing activities in the project’s final two years.
“The SIMLESA project has targeted increasing farm-level food security and productivity in the context of climate risk and change,” said Bright Kumwembe, principal secretary of Malawi’s Ministry of Agriculture and Food Security, speaking on behalf of the minister. “The program has become a model to many regional and sub-regional collaborative projects that address agricultural intensification. In this respect, the challenge to NARS lies especially in developing technologies, information and knowledge that sustainably increase agricultural productivity and at the same time reduce down-side risks.”
As part of the meeting, participants visited three farmers in Kasungu District who are involved in on-farm trials assessing conventional farming practices, conservation agriculture with no herbicide application, conservation agriculture using herbicides and conservation agriculture including maize-legume crop rotations. Farmer Dyless Kasawala, was observed to have managed to improve soil fertility in her fields, increase her maize yield and improve food security in her household.
Farmers in the area are engaging in agro-processing activities, such as extracting oil from groundnuts, to add value to their farming enterprises.
Established in 2010 and funded by the Australian Centre for International Agricultural Research (ACIAR), SIMLESA has as its primary objective to improve food security for 650,000 small farming households by increasing food production and incomes of vulnerable farmers with commercial viability by 2023. Ongoing SIMLESA Phase II activities will conclude in June 2018.
“The Program Steering Committee (PSC) recognizes the hard work of all participants and especially the dedicated scientists in the national programs. SIMLESA is on track to deliver significant impacts in the next two years, “said Eric Craswell, committee co-chair.
Delegates discussed the favorable Mid-Term Review (MTR) conducted last year. “SIMLESA I and II is a complex program with many partner countries, agencies, science disciplines, and objectives. Despite that complexity, the MTR found the program on the whole to be well-managed by CIMMYT, and the NARS partners had a strong sense of ownership of the program. It was very evident that the whole SIMLESA team is determined to meet the objectives of the program, to contribute and to work as a team,” Craswell said.
Mulugetta Mekuria, SIMLESA project leader, highlighted the 2015 MTR recommendations, which indicate that SIMLESA should rebalance plans and activities of all program objectives and various program-wide themes; ensure that the science which underpins the development of sustainable intensification packages and policy dialogue is completed and published in extension reports and peer-reviewed literature; and refocus its monitoring and evaluation processes, communication plans and gender activities.
To achieve these changes, each country and the program as a whole should prepare, within the approved budget, a revised work plan extending to the end of SIMLESA II. The program would then be able to make an informed decision on what to prioritize and what needs to be phased out, Mekuria said.
Participants discussed key issues in phase II, related to MTR recommendations, concluding that the goals should include:
consolidating activities during the 2016-2018 period, with no new activities implemented during the remaining life of the program
documenting scientific outputs for all the research conducted and synthesize the lessons learned
streamlining logframe activities and developing a revised work plan
scaling-out available technologies in collaboration with partners; and
redesigning the project’s livestock component to align it with SIMLESA objectives.
SIMLESA program steering committee co-chair Eric Craswell told participants to refocus their work through scaling up activities. CIMMYT/Johnson Siamachira
John Dixon, ACIAR principal advisor/research program manager, cropping systems and economics, said the 2015 SIMLESA review had highlighted the commitment to the program by national partners.
“This gives us the opportunity to rebalance plans, focus on areas that can be brought together and synthesize results,” Dixon said. “Now is the time to scale-up by taking our research to farmers through extension, non-governmental organizations and farmers’ associations – moving from doing, to handing over the research.”
Traditional maize storage in Tete province in Mozambique, April 27, 2015. CIMMYT/Tsedeke Abate
NAIROBI, Kenya (CIMMYT) – At least 40 million smallholder farmers throughout sub-Saharan Africa are profiting from more than 200 new drought-tolerant varieties of maize produced as part of the Drought Tolerant Maize for Africa (DTMA) Project, according to scientists at the Center for International Maize and Wheat Improvement (CIMMYT).
The project, underway between 2007 and 2015, led to the development of varieties with traits preferred by farmers that have successfully made smallholders in 13 countries more resilient to the erratic effects of climate change on growing conditions.
“Smallholder farmers in this region plant maize varieties that are obsolete and end up getting poor harvests, but that’s changing now thanks to the gallant efforts of the DTMA team that has released and commercialized a large number of modern varieties,” said Tsedeke Abate, the CIMMYT scientist who led the project. “Thanks to the new drought-tolerant varieties, many families have managed to overcome harsh growing conditions and boost yields substantially.”
“The adoption of the improved drought tolerant seed varied from one country to another and each county had unique challenges that made it difficult for some farmers to take up the new varieties. Some farmers were not aware of the availability of the seed in their markets, for some the seed was not available or the price was high,” Abate said. “We worked with national seed companies in these countries to increase production of certified seed so that many more farmers can buy the seed at an affordable price as well as demonstrating the benefits of the new varieties.”
Anthony Mwega, a farmer and leader in Olkalili village, in Hai district a semi-arid area in northern Tanzania about 600 kilometers (370 miles) from the capital Dar es Salaam, beat the price constraint by mobilizing 66 farmers from his village and neighboring villages Makiwaru and Ngaikati to pool resources and buy 5 metric tons of HB513 – a drought-tolerant and nitrogen-use efficient variety – at a very affordable price from Meru Agro Tours and Consultant Seed Company.
“The overall purchasing price we bought the seed for was about 50 percent less than the market price because we bought it in bulk,” said Mwega. “I saw how good the maize performed in demonstrations organized by Meru Agro during the 2014 planting season with extremely low rains, and knew this is a variety that my people would definitely benefit from.”
Scientists project that millions more farmers will gain access to and plant the new varieties due to collaborations with more than 100 national seed companies, which continue to make a significant contribution to the improvement of seed systems in Angola, Benin, Ethiopia, Ghana, Kenya, Malawi, Mali, Mozambique, Nigeria, Tanzania, Uganda, Zambia, Zimbabwe.
“Collaboration with CIMMYT through the DTMA project has been extremely instrumental in facilitating me to release my own varieties,” said Zubeda Mduruma of Aminata Seed Company in Tanga, Tanzania who has collaborated with CIMMYT both in maize breeding and production work since 1976.
“I was able to get some of the best germplasm, evaluate them through on-farm and on-station trials, and successfully released three of the best drought tolerant varieties in the market, including one quality protein DT variety that is very popular among women because of its nutritional value. With the quality of maize we get from CIMMYT, it’s very possible to release new improved varieties every year with much better yield compared to popular commercial varieties in our shops.”
The story of this success is told through a series of pictures and profiles of DTMA target countries. Each country profile illustrates the context of national maize production and the changes underway thanks to released drought-tolerant varieties.
The DTMA project will continue, first as the Drought Tolerant Maize for Africa Seed Scaling (DTMASS) initiative. Under the project, which is funded by USAID, CIMMYT scientists aim to facilitate the production of close to 12,000 metric tons of certified seed for use by about 2.5 million people, in Ethiopia, Kenya, Malawi, Mozambique, Tanzania, Uganda and Zambia.
In partnership with the International Institute of Tropical Agriculture who partnered with CIMMYT in DTMA work, the new Stress Tolerant Maize for Africa project will also carry forward the success and invaluable lessons from DTMA and CIMMYT’s Improved Maize for Africa Soils project, to develop new stress tolerant varieties to help farmers mitigate multiple stresses that occur concurrently in farmers’ fields.