Skip to main content

Location: Ethiopia

For more information, contact CIMMYT’s Ethiopia office.

How collaboration can help grow and transform agriculture in Africa

Women at a maize mill in Ethiopia. (Photo: P. Lowe/CIMMYT)
Women at a maize mill in Ethiopia. (Photo: P. Lowe/CIMMYT)

It’s been four years since African leaders met in Equatorial Guinea to commit themselves to boosting agricultural growth across the continent. This is an important way to create real change in Africa. During the gathering, all the African Union’s heads of state signed the Malabo Declaration. It offered a blueprint for Africa’s agricultural sectors, to be achieved by 2025.

For example, the declaration called for at least 10% of any nation’s public expenditure to be allocated to agriculture and rural development. It also set out plans for increasing countries’ food security by intensifying agriculture in a way that didn’t destroy the environment.

There has been some progress in attaining these goals, as a recent status report conducted by the African Union Commission shows. But there’s still a great deal of work to be done.

The report shows that in 2015 and 2016 only ten of the 47 signatory states reached or exceeded the target of 10 percent investment in public expenditure in agriculture and rural development. These are Malawi, Ethiopia, Angola, Egypt, Sudan, Mauritania, Mali, Senegal, Burkina Faso and Equatorial Guinea. Some other countries had invested as little as 0.6 percent of public expenditure in these crucial sectors. Only 20 of the 47 signatories are on track to meet the declaration’s goals by 2025.

There’s no doubt that investment in agriculture can empower economic transformation in the region. But money alone can’t solve Africa’s agricultural problems. International collaboration is key. And it can yield real results, as a project we’re involved in has proved.

The project has relied on multidisciplinary teams of both local and international researchers from the International Maize and Wheat Improvement Centre, The University of Queensland and the Association for Strengthening Agricultural Research in East and Central Africa. Ethiopia, Kenya, Malawi, Mozambique and Tanzania’s departments of agriculture are also involved.

The collaborative effort has meant that it’s been possible to address multiple constraints. These include low crop productivity, poor market access, environmental degradation, and social inequalities. The project had a strong value chain focus. This involves linking – among others – farmers, agribusinesses, traders and policy makers. The result has been improved productivity. We’ve also seen reduced climate risks and improved soil fertility and soil conservation among highly vulnerable smallholder farmers in five East and Southern African countries.

Initiatives like these can help translate the Malabo Declaration from mere document to reality.

Great gains

The Sustainable Intensification of Maize-Legume Cropping Systems for Food Security in Eastern and Southern Africa Programme is led by the International Maize and Wheat Improvement Centre. It is funded by the Australian government. Researchers from Australia and the participating African countries have worked together with researchers from the centre.

The project was set up in 2010 in response to major concerns about food security across the eastern and southern Africa regions. So far, 258,393 smallholder farmers in Ethiopia, Kenya, Malawi, Mozambique and Tanzania have benefited from our activities. We expect this number to increase to 600,000 by 2020.

To date, up to 91 percent of the targeted farmers have adopted at least one of sustainable intensification practices the project promotes. These practices include using drought tolerant maize non-GMO varieties; the rotation of maize and legumes; and intercrops, where a legume is sown into a standing maize crop.

Yields have increased between 30 and 60 percent across the five countries because these practices and associated technologies were adopted.

We don’t only work directly with farmers. It’s important to develop skills and capacity in crop and soil management, market development, resource conservation, gender issues and project management and evaluation.

One key resource here has been the Australia Awards Scholarships. These give people from developing countries the chance to undertake undergraduate or postgraduate studies at Australian institutions. So far this award has supported 65 master’s and doctoral candidates.

Once they return to their countries, these graduates can contribute to solving the complex problems of achieving food security and eliminating poverty. They apply modern research tools, inform policy, train others and even provide leadership in their original institutions.

Harnessing potential

The Malabo Declaration is a useful document against which to measure progress. It offers countries clear targets. It sets metrics against which they can monitor their success. This will help countries to achieve many of the UN’s Sustainable Development Goals by 2030 – including those related to agriculture and food security.

The work of the Sustainable Intensification of Maize-Legume Cropping Systems for Food Security in Eastern and Southern Africa Programme offers an insight into how these goals can be met.

Countries must develop a better understanding of constraints and opportunities so they can massively scale out more productive, efficient and sustainable farm practices. They also need to develop markets, value chains and supporting policies and institutions. And crucially, continued collaborations will be necessary to increase the continent’s capacity in science, extension, policy, institutions, governance and leadership.

These must be priorities to harness Africa’s agricultural potential and spur economic growth.

This article orinally appeared on The Conversation. For the full article, click here

Farmers in Ethiopia willing to pay more for quality protein maize

A blindfolded woman panelist performing a triangular test to differentiate dabbo samples made from different maize varieties. Photo: CIMMYT
A blindfolded woman panelist performing a triangular test to differentiate dabbo samples made from different maize varieties. Photo: CIMMYT

In Ethiopia, 44 percent of children under the age of five are stunted, or experience impaired growth due to poor nutrition, and 29 percent are underweight, according to the United States Agency for International Development. Quality protein maize (QPM) – a biofortified crop that increases lysine and tryptophan, two amino acids necessary for protein synthesis in humans – helps combat stunting and boosts nutrition in children who survive on a maize-dominated diet.

As maize is Ethiopia’s most consumed cereal, QPM could be especially beneficial to rural communities in the country, which consume more maize and suffer even higher rates of malnutrition than urban areas.

Until recently, farmers have been hesitant to adopt QPM over traditional varieties because the up-front cost is higher, and they have doubted the marketability due to the novelty of the variety.  There is strong competition in productivity between QPM and conventional maize varieties and farmers tend to only plant newest or the best yielding varieties, where they feel sure they will get the highest return for their investment.

A study in Ethiopia found that farmers are willing to pay almost 50 percent more for quality protein maize (QPM) over conventionally grown maize, due to rising consumer preference for QPM varieties.

The major objective of the study was to know whether farmers as consumers have a preference for the QPM and if that would translate to a willingness to pay more for its attributes. As QPM is still a widely unknown variety, many farmers in the study had preconceived notions that it would be sour, would not taste good in traditional foods, or would be visually unappealing.

The study, conducted at CIMMYT as part of a MSc thesis, found that traditional food products made from QPM were correctly identified by most consumers, and were actually preferred over foods made from conventional maize. Farmers repeatedly expressed their preference for dabo, a local type of bread, made from QPM for its aroma, taste and texture. Mothers and children also consistently preferred genfo, a stiff maize-based porridge, made from QPM.

A slice of traditional bread called dabbo made from yellow QPM served for sensory evaluation. Photo: CIMMYT
A slice of traditional bread called dabbo made from yellow QPM served for sensory evaluation. Photo: CIMMYT

Although traditional foods made from white grain/flour are usually preferred in Ethiopia, yellow QPM received higher preference than the white, signifying the trait responsible to its yellowness seems to contribute to its taste and functional property.

Based only on this taste difference, farmers were willing to pay as much as 48 percent more for QPM in some communities. On average, farmers were willing to pay 37 percent more for yellow QPM, but only five percent more for white QPM, due to the variability of sensory qualities between the white and yellow QPM varieties.

When given information about the increased nutritional benefit of QPM, farmer willingness to pay more for white QPM shot up to be roughly on par with yellow QPM, and reduced the amount that farmers said they would be willing to pay for conventional maize.

This suggests that the taste preference between white and yellow QPM is small and that education is a particularly powerful tool to increase its uptake among farmers.

Based on this study, QPM has an advantage in Ethiopia’s maize market not only because of its nutritional benefits but also aroma, taste, and texture, which is significant for women who are responsible for household diet.

QPM requires a special value chain that considers its nutritional advantage and taste, and strong extension communication is vital for the adoption of QPM as nutritional information reinforces the market share, specifically for white QPM. Extension agents could use the reported sensory preference for yellow QPM to begin large-market dissemination of QPM, alongside information about its nutritional advantages.

Consumer willingness to pay more for QPM grain should encourage maize farmers, seed suppliers and other stakeholders to invest in the variety. Market acceptability of QPM means more profits for stakeholders, facilitating adoption, and in this case, contributing to the fight against malnutrition.

Read the full study Sensory acceptance of quality protein maize dishes and willingness to pay for its grain in districts around Gilgel Gibe hydro-electricity dam: Omo Nada district” here, and learn more about CIMMYT’s work with QPM here.

The Nutritious Maize for Ethiopia Project is funded by the Government of Canada

End of eight-year project leaves farmers ready to tackle climate change in Africa

Kemeriya Mohamed stacking harvested wheat, Kechema village, Dodola district,west Arsi zone Ethiopia. Photo: CIMMYT/P. Lowe
Kemeriya Mohamed stacking harvested wheat, Kechema village, Dodola district,west Arsi zone
Ethiopia. Photo: CIMMYT/P. Lowe

ADDIS ABABA, Ethiopia (CIMMYT) – After eight years the Sustainable Intensification of Maize-Legume Cropping Systems for Food Security in Eastern and Southern Africa (SIMLESA) project concludes this June.

Led by the International Maize and Wheat Improvement Center (CIMMYT) and funded by the Australian Centre for International Agricultural Research (ACIAR), the multi-regional project has helped over 235,000 farming households adopt more sustainable practices to cope with the effects of climate change and declining soil fertility.

“The work done by SIMLESA has yielded increasing farm-level food security and productivity, in the context of climate risk and change,” said Eyasu Abraha, Ethiopian Minister for Agriculture and Natural Resources, at the official opening of SIMLESA’s end of project external review and stakeholders’ meeting. The four-day event reflected on the project’s achievements, challenges and opportunities through an external project review and stakeholder discussions.

According to the U.N. Intergovernmental Panel on Climate Change, Africa is the most vulnerable region to climate change, with erratic rainfall and increasing temperatures already causing crop failures. Small-scale family farmers, who provide the majority of food in Africa, are expected to be the worst affected.

In response, SIMLESA has facilitated the release of 40 improved maize and 64 legume varieties to smallholder farmers in Ethiopia, Kenya, Malawi, Mozambique, and Tanzania and spill over countries of Botswana, Rwanda and Uganda since 2010. The spillover countries are benefitting from ongoing SIMLESA research activities. Maize is a major staple crop and legumes provide nutrition, income and improve soil fertility in most of Africa, and both crops provide vital cash income to families across the region, says ACIAR.

The project focused primarily on improving maize-legume cropping systems by encouraging the adoption of intensification of agricultural practices that offer the potential to simultaneously address a number of pressing development objectives, unlocking agriculture’s potential to adapt farming systems to climate change and sustainably manage land, soil, nutrient and water resources, while improving food and nutrition.

The review also found that SIMLESA could have even greater impact by strengthening its livelihoods focus, such as promoting diversification in household food and nutrition.

“While taking stock on our achievements, we are aware that there are still major challenges to be overcome,” said Mulugetta Mekuria, CIMMYT senior scientist and SIMLESA project leader. “We now seek to extend our impact by learning from past and current work, case studies and trying new ideas, technologies and approaches.”

SIMLESA is currently consolidating cropping trials and training farmers in its final year, and laying the foundations for a follow-up project that would focus on researching sustainable intensification, diversification, smallholder mechanization and crop-livestock integration across Africa. Meeting attendees also proposed a one-year extension period of the project to help consolidate, synthesize, publish and disseminate current achievements, and draw lessons and insights from the last two SIMLESA phases.

The project is working to improve maize and legume productivity by 30 percent and to reduce the expected downside yield risk by 30 percent for approximately 650,000 small farming households by 2023. There is high possibility for a third phase of the project although this has not been confirmed yet.

CIMMYTNEWSlayer1

Science can reverse “new normal” of climate change-related disasters

Naivasha, Kenya 2017. Photo: CIMMYT/ P.Lowe
Naivasha, Kenya 2017. Photo: CIMMYT/ P.Lowe

In the last decade, the climate of Africa has been changing in dramatic ways. Many regions face unpredictable levels of rainfall, which can lead both droughts and severe flooding. Sub-Saharan Africa is the only region in the world with over 30 percent of children under five facing stunting – severe malnutrition, and is the only region where the rate of undernourished people has consistently increased.

The Sustainable Intensification of Maize-Legume Cropping Systems for Food Security in Eastern and Southern Africa (SIMLESA) program, launched in 2010, works to improve maize and legume productivity and reduce yield risk for over 650,000 farm households in sub-Saharan Africa.

Maize is a vital staple cash and sustenance crop in most of Africa, and legumes provide nutrition, income and improve soil fertility. However, farmers’ yields are suffering due to declining soil fertility, drought and poor access to improved technologies.

Over the last eight years, SIMLESA has developed productive, resilient and sustainable smallholder maize-legume cropping systems. SIMLESA focuses on improving maize-legume cropping systems by encouraging the adoption of sustainable agriculture systems through conservation agriculture practices such as crop residue retention, crop rotation and intercropping practices to simultaneously maintain and boost yields, increase profits and protect the environment.

Recently, Elliud Kireger, director general of the Kenya Agricultural and Livestock Research Organization (KALRO), Mulugetta Mekuria Asfaw, SIMLESA project leader and Daniel Rodriguez, associate professor, Queensland Alliance for Agriculture and Food Innovation (QAAFI) The University of Queensland, wrote a joint opinion piece “Africa: Science Can Reverse ‘New Normal’ of Hunger and Climate Disaster” in All Africa on the impacts of SIMLESA, read it here.

The Sustainable Intensification of Maize-Legume Cropping Systems for Food Security in Eastern and Southern Africa (SIMLESA) program is funded by the Australian Centre for International Agricultural Research (ACIAR).

CIMMYTNEWSlayer1

Building small scale mechanization capacity of service providers in Ethiopia

The project, titled “Appropriate Mechanization for Sustainable Intensification of Smallholder Farming in Ethiopia,” aims to increase soil fertility through direct row planting of major crops in Ethiopia, such as maize, wheat and teff. However, they identified in their pilot phase that the necessary infrastructure and supply chains were not in place to ensure project sustainability and that the involvement of the private sector would be necessary.

Therefore, the project in its second phase focused on these critical activities, especially increasing capacity of service providers to deliver services and manage their businesses, and mechanics who closely support service providers in their daily business. Mechanics work with the local spare parts representatives identified by AMIO Engineering Plc, a local private sector partner in manufacturing and dealer of small scale agriculture technologies and machinery, to ensure that the fast moving and critical parts are always available in stock at their local warehouses.

In October 2017, two trainings were conducted at the Ethiopian Institute of Agricultural Research (EIAR) in Melkassa.

The first training was organized for selected mechanics by AMIO and CIMMYT with funding from the Integrated Soil Fertility Management program (ISFM), part of the German Cooperation for International Development Agency (GIZ). The one-week training covered the use and function as well as maintenance, repair and spare parts of the two-wheel tractor (2WT).

The second training, intended for service providers (SPs), focused on capacity building and quality development of small-scale mechanization services. The 44 SPs in attendance were encouraged to exchange individual experiences and expertise about service provision businesses, technical challenges in the field and the extent of potential business opportunities.

These trainings specifically focused on the use, operation, maintenance and safety of the 2WT and its ancillaries, as with correct aggregation almost all farming tasks can be accomplished with a single machine. The use of a 2WT for these tasks reduces both the time required to establish a crop and the chore of the task, by increasing productivity of both labor and crops.

Economic assessments show that mechanized planting using a 2WT is an economically viable and attractive option for both farmers and SPs. This is especially true when services offered include full use of 2WT and attachments; as these services are useful 365 days a year.

After farmers see these technologies, they are often interested in purchasing the services associated with the equipment and service providers frequently asked to procure additional equipment.

In order to achieve the aim of increased soil fertility through direct row planting of major crops in Ethiopia, the project selected six micro-watersheds in January 2016 that corresponded to ISFM intervention sites to test the delivery of small mechanization through service provision. The sites are located in the regions of Amhara, Oromia and Tigray.

The project imported six equipment packages from China for mechanized crop establishment, harvesting of small grain cereals and water pumping. These machines were loaned to individual service providers in Oromia and Tigray, and to a farmers group in Amhara. In addition, EIAR locally manufactured six trailers and three threshers which have been be dispatched to service providers.

Furthermore, in this second phase, the GIZ-ISFM through CIMMYT with Ethiopia’s Ministry of Agriculture and Natural Resources (MoANR) dispatched 100 units of 2WT with plows, and an additional 15 trailers and 18 direct row planters that can be attached.

Based on encouraging results, the second phase of the project will focus on establishing viable, private sector-based input delivery mechanisms (maintenance and repair services, spare parts, and new equipment) and generating sufficient demand for self-sustained scaling-out processes.

CIMMYT promotes gender awareness in agriculture research and development in Ethiopia

CIMMYT research in Ethiopia and other countries has shown that, in communities where women and men work together and women have access to knowledge and resources and share in decision making, everyone benefits. Photo: CIMMYT/Apollo Habtamu
CIMMYT research in Ethiopia and other countries has shown that, in communities where women and men work together and women have access to knowledge and resources and share in decision making, everyone benefits. Photo: CIMMYT/Apollo Habtamu

Gender awareness and gender-sensitive approaches are slowly spreading into agricultural research, extension, and policy in Ethiopia, based on recent statements from a cross section of professionals and practitioners in the country.

An initiative led by the International Maize and Wheat Improvement Center (CIMMYT) is helping to drive evidence-based approaches to foster gender equality and include it in mainstream agricultural research.

Moges Bizuneh, deputy head of the agricultural office of Basona District, attended a CIMMYT-organized workshop in which Ethiopia-specific results were presented from GENNOVATE, a large-scale qualitative study involving focus groups and interviews with more than 7,500 rural men and women in 26 developing countries. “I have learned a lot about gender and it’s not just about women, but about both women and men,” said Bizuneh.

The District of Basona has nearly 30,000 households, 98 percent of which depend on agriculture for food and livelihoods but have access to an average of only 1.5 hectares of land. More than 10,000 of those households are headed by females, because many males and youth have left Basona to seek opportunities in large cities or other countries.

Bizuneh and his colleagues are working with a district gender specialist and a women and gender unit to make gender sensitive approaches a regular part of their activities. In this, he concedes that he and other professionals are contending with “deep-rooted social and cultural norms around divisions of labor and a lack of awareness regarding gender issues.”

One surprise for Bizuneh, from group discussions regarding innovation and involvement in CIMMYT’s gender research, was that women said it was important to share experiences with other farmers and obtain new knowledge.

“No men mentioned that,” he remarked. “This shows that, if provided with information and support, women can innovate.”

Kristie Drucza, CIMMYT gender and development specialist, has been studying, publishing on, and presenting widely about people-centered, evidence-based approaches for gender equality that are being taken up by agirculture for development professionals. Photo: CIMMYT/Apollo Habtamu
Kristie Drucza, CIMMYT gender and development specialist, has been studying, publishing on, and presenting widely about people-centered, evidence-based approaches for gender equality that are being taken up by agriculture-for-development professionals. Photo: CIMMYT/Apollo Habtamu

Women and men plan and change together

Another product from the project is a 2017 review of gender-transformative methodologies for Ethiopia’s agriculture sector, co-authored by Kristie Drucza, project lead, and Wondimu Abebe, a research assistant, both from CIMMYT.

Drucza presented on the people-centered methodologies described in the publication at a recent workshop in Addis Ababa, offering diverse lessons of use for research and development professionals.

“The methodologies involve participatory research to help households and communities assess their situation and develop solutions to problems,” said Drucza. “By working with men and boys and allowing communities to set the pace of change, these approaches reduce the likelihood of a backlash against women—something that too frequently accompanies gender-focused programs.”

Annet Abenakyo Mulema, social scientist in gender at the International Livestock Research Institute (ILRI), intends to apply some of the same methods to help rural families understand household and community gender dynamics and their role in managing the families’ goats, sheep, and other livestock.

Annet Abenakyo Mulema, social scientist in gender at the International Livestock Research Institute (ILRI), is applying participatory research and gender-sensitive methods to help households and communities assess their situation and develop solutions to problems. Photo: ILRI archives
Annet Abenakyo Mulema, social scientist in gender at the International Livestock Research Institute (ILRI), is applying participatory research and gender-sensitive methods to help households and communities assess their situation and develop solutions to problems. Photo: ILRI archives

“A 2015 study we did uncovered gender relationships associated with disease transmission,” Mulema explained. “Women and girls normally clean the animal pens and so are exposed to infections. Social conventions in the community make women feel inferior and not empowered to speak out about animal health, which is considered a man’s domain. We encouraged men and women to share roles and work together, and this made it easier for both to quickly identify disease outbreaks at early stages and prevent infections from spreading throughout the herd or to humans.”

Mulema said Drucza’s workshop helped her to understand and appreciate methodologies such as social analysis and action, community conversations, and gender action learning systems to support a shared, local response to the problem. “As another outcome, we spoke to service providers, such as veterinarians and extension agents, who needed to understand how gender related to animal health and the fact that the relationships between women and men in a community can change.”

Meskerem Mulatu, gender and nutrition specialist in Ethiopia’s Agricultural Growth Program II (AGP II) Capacity Development Support Facility (CDSF), said her group invited Drucza to speak on gender and social norms at a national workshop organized by AGP II CDSF in October 2017.

“Our event was on gender, nutrition, and climate-smart agriculture,” according to Meskerem. “Many technologies are gender-sensitive but research and extension are not giving this adequate attention because there is no common operational definition. Their preconception is ‘technology is technology; it’s the same for men and women.’ Drucza’s evidence-based presentation showed that men and women may have different technology demands.”

Meskerem is going to train district agricultural officers to use a transformative methodology identified by Drucza. “Kristie’s report is really good timing,” she said. “We were thinking of doing something in terms of gender and these methodologies make sense.”

Recording data on changes in social norms

In June 2017, Drucza presented the findings of her meta-analysis of evaluations of gender in Ethiopian agricultural development at a senior staff meeting of the Ethiopia office of CARE, the global humanitarian organization. Among the 26 agricultural program evaluations considered, explained Drucza, only three had strong findings, a heavy inclusion of gender, and evidence of changes in social norms—and all three were CARE projects.

Moges Bizuneh helps lead an agricultural office in Basona District, home to more than 10,000 female-headed households, and is working to support innovation by women. Photo: CIMMYT/Mike Listman
Moges Bizuneh helps lead an agricultural office in Basona District, home to more than 10,000 female-headed households, and is working to support innovation by women. Photo: CIMMYT/Mike Listman

One was the Graduation with Resilience to Achieve Sustainable Development (GRAD) initiative. As an outcome of Drucza’s presentation, CARE is refining the way it records certain social data, according to Elisabeth Farmer, Deputy Chief of Party for the CARE’s Feed the Future Ethiopia–Livelihoods for Resilience Activity project, which emerged from GRAD.

“Our baseline study protocol and questionnaire for the new project hadn’t been finalized yet,” Farmer said. “We were thinking through the difference between using a scale that scores responses along a range, such as a Likert scale, versus asking respondents “yes or no”-type questions, for instance regarding women’s access to information or equitable decision-making in the household.

“As Drucza explained, when it comes to gender norms, you may not get all the way from a “no” to a “yes”, but only from a “2” to “3”, and we want to make sure that we are capturing these smaller shifts, so we incorporated scales with ranges into our baseline and will ensure that these are used in future assessments to track transformations in social norms.”

According to Drucza, who leads the CIMMYT project “Understanding gender in wheat-based livelihoods for enhanced WHEAT R4D impact in Afghanistan, Pakistan and Ethiopia,” funded by the German Federal Ministry for Economic Cooperation and Development, research must be relevant and useful.

“I’m happy to learn that our results are useful to a diverse range of actors, from development partners to policy makers and local agricultural officers,” she said.

Emergency seed fuels quick farm recovery in drought-affected Ethiopia

Worker rogueing a wheat seed production plot. Photo: CIMMYT/A.Habtamu.
Worker rogueing a wheat seed production plot. Photo: CIMMYT/A.Habtamu.

In response to Ethiopia’s worst drought in 50 years and the country’s critical shortage of maize and wheat seed for sowing in 2016, Ethiopian organizations, seed producers, and the International Maize and Wheat Improvement Center (CIMMYT) partnered to deliver to farmers over 3,400 tons of high quality seed that was sown on more than 100,300 hectares.

“We went three years without rain,” says farmer Usman Kadir, whose 1.5-hectare homestead in Wanjo Bebele village, Halaba Special Woreda, supports a household of 11 persons. “We were able to eat thanks to emergency food programs.” In 2017, Kadir used emergency maize seed to sow half a hectare and harvested 3 tons, getting his farm back on its feet. “If more new improved varieties come, we want to work with you and expand our farming operation.”

Funded by the U.S. Agency for International Development (USAID) and Office of Foreign Disaster Assistance (OFDA) of the U.S. Ethiopia mission, seed relief complemented international and national food aid, helping farm families to quickly grow crops after several seasons of erratic or failed rains in Ethiopia and the catastrophic 2015-16 El Niño droughts. At that time, more than 10 million people struggled to find food, as eastern Ethiopia faced crop losses from 50 to 90 percent of expected yields.

“This effort helped rescue the food security and livelihoods of more than 271,000 rural households and 1.6 million individuals in Ethiopia’s Amhara, Oromia, Tigray, and SNNP regions, and strengthened seed systems to address future climate, disease, and pest crises,” said Bekele Abeyo, CIMMYT wheat scientist who led the seed relief initiative.

Farmers are using maize and wheat varieties suitable for drought-affected areas and resistant to prevalent crop diseases. Photo: CIMMYT/A.Habtamu
Farmers are growing maize and wheat varieties suitable for drought- and disease-affected areas. Photo: CIMMYT/ A. Habtamu

Wheat and maize: Mainstays of food security

Agriculture provides 42 percent of Ethiopia’s GDP, 77 percent of employment, and 84 percent of exports. Subsistence, smallholder farmers predominate, making their living from less than two hectares of land. Wheat and maize are the most important crops for food security; they are also at the center of Ethiopia’s increasingly vibrant agricultural output markets and have been the focus in recent years of public investment to raise national production.

Maize and wheat production in Ethiopia depends on rainfall, making the unpredictable weather patterns caused by climate change exceptionally detrimental here. Various studies predict an average 30 percent reduction in farm incomes due to climate change impacts, including greater extremes in temperatures and rainfall (floods, droughts) and the emergence of new pest and disease strains. Research shows that reduced precipitation is already holding back wheat yields.

To address this, experts identified maize and wheat varieties suitable for drought-affected areas and highly resistant to prevalent crop diseases. Of the maize varieties, some 10 percent were quality protein maize, which carries enhanced levels of key amino acids for protein synthesis in humans.

“This effort also provided training for district and zonal development agents in crop protection, agronomy, drought mitigation practices, and seed systems,” said Abeyo. “Finally, five women seed producer associations received wheat seed threshers and a large union of farmer seed producer cooperatives received a maize sheller through the initiative. This equipment will greatly expedite their operations and contribute to the expanded and more reliable access of farmers to affordable, quality seed in the future.”

Partners and contributors

Emergency relief seed was sourced through diverse CIMMYT partnerships, including producers in the USAID-funded “Drought Tolerant Maize for Seed Scaling Project” (DTMASS) and “Wheat Seed Scaling Initiative.” Stakeholders included the Ministry of Agriculture and Natural Resources (MoANR), the Bureau of Agriculture and Natural Resources (BoANR), public and private seed companies/enterprises, farmer cooperative unions, federal and regional research institutes, and non-government organizations working in target areas. With funding from the Bill & Melinda Gates Foundation, Ethiopia’s Agricultural Transformation Agency (ATA) helped deliver seed to drought-affected districts and jointly organized training and workshops.

Click here to read a full report on the emergency seed relief initiative. 

Women are the foundation for change in rural Ethiopia

The idea that “Educating women/girls is nothing but a loss,” used to be a common sentiment amongst members of rural Ethiopian communities where the Nutritious Maize for Ethiopia (NuME) project works. Now one is more likely to hear “Women are the foundation for change.”

The International Maize and Wheat Improvement Center (CIMMYT)-led NuME project is reducing food insecurity in Ethiopia by increasing the country’s capacity to feed itself. The project is improving household food and nutritional security, especially for young children and women, through shifting gender norms and the adoption of Quality Protein Maize (QPM).

QPM refers to a type of maize biofortified with two essential amino acids through traditional breeding to improve the inadequacy of protein quality of the conventional maize grown widely by farmers. Consumption of QPM instead of conventional maize leads to increase in the rate of growth in infants and young children with mild to moderate undernutrition from populations in which maize is the major staple food.

According to the World Bank, women contribute 40-60 percent of the labor in agricultural production in Ethiopia and play an important role in income generation, as well as unpaid household tasks. However, many women face severely restricted access to resources and services and lack control over income, greatly hindering their participation in and benefit from new innovations.

A community conversation session in Shebedino, Ethiopia. Photo: Tsegaye, M./SNNPR.

A community conversation session in Shebedino, Ethiopia. Photo: Tsegaye, M./SNNPR.

Few programs have specifically considered gender relations when implementing new initiatives in communities, however, when NuME found lower participation of women in the community-based promotion and dissemination of QPM, adapted community conversations were launched in two selected project woredas, or districts – Shebedino and Meskan – for a nine-month pilot in an attempt to raise women’s role in the project.

Community conversation (CC) is a facilitated approach based on the principle that communities have the capacity to identify their societal, economic and political challenges; set priorities; mobilize human, physical and financial resources; plan for action and address their challenges sustainably. It focuses on people’s strengths, resources and how they relate to challenges or problems communities face.

The people benefiting from a CC-driven project set priorities and create a plan of action to mobilize resources to address their challenges sustainably. This helps communities develop a sense of ownership, use local resources and take responsibility to bring about sustainable changes.

Because this approach involves the entire community, it also includes traditionally marginalized groups like women and youth.

When NuME first started community conversations, seating was very rigid due to cultural and religious traditions, but as the sessions continue paving the way for more community awareness on issues around gender norms and stereotypes, the seating has become much more mixed.

A facilitator from Shebedino woreda said, “Participants can’t wait for the bi-monthly conversations and they never want to miss them. These exchanges have helped men and women to get together and discuss their concerns, which was not a common practice before.”

“Women have begun raising their voices during community conversation meetings, while they used to be too shy and afraid to speak and very much reserved about sharing their ideas in public,” a female participant from Meskan woreda reported.

Community conversation participants have started changing the traditional gender stereotypes.

Through debate and the sharing of opinions, and more active participation from women, community conversations have educated participants on gender inequality, its prevalence and harm and have allowed men and women community members to exchange ideas about nutrition more effectively.

The NuME project will continue into 2019. Read more about how CIMMYT is working to equally boost the livelihoods of women, youth and men here.

The NuME Project is funded by Global Affairs Canada with major implementing partners the Ethiopian Ministry of Agriculture and Natural Resources (MoANR), the Ethiopian Institute of Agricultural Research (EIAR), the Ethiopian Public Health Institute (EPHI), the Sasakawa Africa Association (SAA)/Sasakawa Global 2000 (SG2000) and Farm Radio International (FRI).

CIMMYTNEWSlayer1

Ethiopian farmers profit from scaled-up, fast-track production of disease resistant wheat seed

A sunny November day brings hundreds of farmer seed producers to Doyogena, a scenic highland village in Ethiopia’s Southern Nations, Nationalities, and Peoples’ Region (SNNP). The visitors form a bustling line to collect more than $90 each – on average – in profits from representatives of the Zereta Kembata Seed Multiplication and Marketing Union.

Farmers in line at Doyogena. Photo: CIMMYT/A. Habtamu
Ethiopian farmer seed producers collect payment at the Zereta Kembata Seed Multiplication and Marketing Union facility, in  Doyogena. Photo: CIMMYT/A. Habtamu

“The union receives seed grown by more than 1,100 farmers, several hundred of whom are women, belonging to 8 farmer cooperatives,” said Yosief Balewold, general manager of the union.

With help from Ethiopia’s Agricultural Transformation Agency, Zereta Kembata began in 2016 to collect, clean, pack, and sell seed of wheat, potato, sorghum, and faba bean. “This year we marketed nearly 27 tons of the new, disease resistant wheat seed; that’s enough to sow around 270 hectares of the crop.”

Pitted against a yearly onslaught of fast-evolving fungal diseases that can infect as much as $200 million worth of the crops they are growing, more than 75,000 small-scale wheat farmers in Ethiopia’s 4 major wheat-growing regions will have gained access by late 2017 to a vital asset—over 400 tons of new, disease resistant wheat varieties of wheat seed, much of it produced by other farmers.

Marketed in tandem with science-based recommendations for growing wheat, the annual seed supply has steadily increased since 2014 through the Wheat Seed Scaling Initiative, led by the International Maize and Wheat Improvement Center (CIMMYT) and funded by the U.S. Agency for International Development (USAID).

“We’re energizing and diversifying Ethiopia’s wheat seed sector, partly by involving and benefitting both formal and farmer seed producers, including women and men,” said Bekele Abeyo, a CIMMYT scientist who leads the project.

With money from union shares purchased by farmer cooperatives and a regulatory 30 percent reinvestment of earnings, the union is building a large warehouse to store seed. In a smaller shack nearby sits a 0.75 ton steel seed cleaner donated by the Wheat Seed Scaling Initiative, which has been working with Zereta Kembata and other seed producers identified as outstanding by SNNP policymakers.

Abebe Abora, farmer in the Doyogena District of Ethiopia’s Southern Nations, Nationalities, and Peoples' Region (SNNP), has been a member of a seed production cooperative for four years. “Because of modern technology such as improved wheat varieties, farming is better for me than it was for my father,” he said. Photo: CIMMYT/A. Habtamu
Abebe Abora, farmer in the Doyogena District of Ethiopia’s Southern Nations, Nationalities, and Peoples’ Region (SNNP), has been a member of a seed production cooperative for four years. “Modern technology such as improved wheat varieties has made farming better for me than it was for my father,” he said. Photo: CIMMYT/A. Habtamu

“Ethiopia has seen a rapid rise in recent years of new and deadly strains of stem rust and yellow rust, wheat adversaries since biblical times that have lately mutated to overcome resistance genes bred into many modern wheat varieties,” said Ayele Badebo, a CIMMYT wheat pathologist based in Ethiopia. “Farmers must swiftly begin to sow a range of varieties bearing new resistance genes, but limited access to the seed has been a bottleneck.”

In addition to assisting government-managed seed producers and 4 seed companies, through the initiative CIMMYT supports 10 farmer unions that purchase, pack, and sell the seed grown by numerous farmer cooperatives, as well as 12 farmer seed production associations, including 5 women’s groups, who profit from growing and selling quality seed of the new varieties.

“The Seed Scaling Initiative gives wheat farmers 25-50 kilograms of wheat seed, based on land availability, to kick-start their seed production operation,” explained Terefe Fitta, manager of the Seed Scaling Initiative. “The farmers pay back the ‘loan’ at harvest with the same amount of seed, which is given to other prospective farmer seed producers, and so on.”

A critical innovation of the initiative has been to link farmer seed producers directly with sources of “early-generation” seed, principally state and federal researchers. “The project has also brought on board laboratories that monitor seed production and test harvested seed, certifying it for marketing,” said Badebo, citing those accomplishments as lasting legacies of the Initiative.

Women seize chance to advance

Recognizing the critical role of women in Ethiopian agriculture and rural communities, the Seed Scaling Initiative is supporting several women’s seed producer groups. An example is the Tembo Awtena Women’s Seed Producers Association, in Angacha District, SNNP.

Established in 2014, Tembo Awtena is the first women’s cooperative in the district. The group first tried to bake and sell bread but reformed in 2015 to produce seed, having heard that it was profitable from other farmer cooperatives.

Through the Seed Scaling Initiative, CIMMYT gave the association around two tons of seed to start and Ethiopia’s Southern Seed Enterprise purchased the entire first year of seed production at a 20 percent premium over market price because the quality was so good, according to Amarech Desta, Tembo Awtena chairwoman.

Amarech Desta, Tembo Awtena chairwoman. Photo: CIMMYT/A. Habtamu
Amarech Desta (left), Tembo Awtena chairwoman, with fellow farmer and association member Desalech Ashamo. Photo: CIMMYT/A. Habtamu

“In 2016, with support from CIMMYT, we sold more than $7,400 worth of seed,” said Desta, adding that word of the association’s success had attracted 30 additional women farmers in 2017, bringing the total membership to 133.

Desalech Ashamo, an association member who is a single head of household, received nearly $300 for the seed she grew in 2017 and used the earnings to paint her house. “A big advantage is that all our seed is sold in one lot, rather than piecemeal, so we receive a lump sum that can be used for a significant household project.”

Desta explained that, despite Angacha being a very traditional community, men support women’s seed production activities. “My husband knows the benefits are for all and the men even help us with field activities.”

Tembo Awtena members are especially pleased at being one of the three women’s seed production groups in the Oromia and SNNP regions to receive seed threshers recently through the Seed Scaling Initiative. Association members had been threshing the wheat seed manually, a long and laborious process, according to Desta. “With the new machine we will be able thresh in one hour what would take us three days by hand,” she said.

The chairwoman also has plans for an office, a storage area, a milling machine, opening a shop to sell farm supplies, and gaining recognition and publicity to share their story with others who may benefit.

Power from valued partnerships

The success of the Wheat Seed Scaling Initiative depends on the commitment and contributions of diverse national and global partners, among them the Ethiopian Institute of Agricultural Research (EIAR) and state and district level officials in the Amhara, Oromia, SNNP, and Tigray regions, which are home to 90 percent of Ethiopia’s nearly 5 million wheat farmers.  Most of the varieties come from breeding lines of CIMMYT and the International Center for Agricultural Research in the Dry Areas (ICARDA); a number were developed through the Delivering Genetic Gain in Wheat (formerly Durable Rust Resistance in Wheat) project, led by Cornell University and funded by the Bill & Melinda Gates Foundation and the UK’s Department for International Development (DFID) under their UKAid project.

Community-based approach to gender research has far-reaching impacts

Kristie Drucza leads a gender workshop. Photo courtesy of Kristie Drucza.
Kristie Drucza leads a gender workshop. Photo courtesy of Kristie Drucza.

Researchers are changing rural development in Ethiopia by putting local communities in control of initiatives.

A project funded by the German Federal Ministry for Economic Cooperation and Development is working to increase gender equality in wheat-based cropping systems in Ethiopia, Sub-Saharan Africa’s largest wheat producer.

Kristie Drucza, a gender and social development research manager at the International Maize and Wheat Improvement Center (CIMMYT) and project lead, recently co-authored a report detailing how researchers can boost gender equality and reach program goals even faster by applying people-centered research methods in their work.

Traditionally, communities are not involved enough in development processes for researchers to offer permanent solutions. The seven methodologies laid out in the report use participatory methods, such as mapping exercises, to put people in control of the agenda.

“Program managers seem to be looking for ways to improve gender within their programs, these methodologies work and should be used more. Currently, non-government organizations implement these methodologies to change behaviors and gender norms, but the data is not collected. These methodologies generate a rich source of data that reveals how gender norms change and at what pace, this data could advance our understanding of how and why gender norms change.”

Drucza tells us more about these methodologies and where they’ve been successful in the following interview:

Creating a gender balance tree. Photo courtesy of Kristie Drucza.
Creating a gender balance tree. Photo courtesy of Kristie Drucza.

Q: What are ‘participatory methodologies’?

Participatory methodologies are a collection of research tools or activities that are designed to get participants to think, learn, analyze and plan for action. They often use visioning exercises and diagram tools to enable participants to see the world in a new way, build empathy for those who are less fortunate and plan to change what they do not like.

One example from the Gender Action Learning System (GALS) methodology is a gender balance tree.

Each participant draws all the members of their household at the trunk, and the tasks family members do at the roots. The branches represent expenses and symbols are placed on the tree to show who owns what property and who makes which decisions.

The participants discuss any imbalances and draw an action plan to make the tree more balanced.

This exercise helps put a focus on gaps that are directly identified and agreed upon by families and helps illiterate people envision a future that they can control.

Q: How do these methodologies boost gender equality?

Participants at a gender workshop. Photo courtesy of Kristie Drucza.
Participants at a gender workshop. Photo courtesy of Kristie Drucza.

We collected data from four wheat-growing communities, and in one there was a really big difference in gender relations: in how people understood it, explained it and how equal their relations were.

We found out that this community was doing community conversations (CCs), a methodology that we identified as being very effective. This community was part of a health program that was using CCs, but it also had a positive and unintended impact on the agricultural sector by enabling women and men to work as one economic unit.

Usually, men make decisions without consulting their wives on things like household expenditure and which crops to grow. This can leave a wife having to secretly take from the harvest, or sell assets so that she can make ends meet. In the community where CCs were held, households worked better together to make more informed and transparent decisions that benefited the whole family.

Q: How does your project help boost gender equality?

The most important thing we need to realize is that gender equality doesn’t just mean focusing on women, and doing so can actually create more inequality. We need to empower women but not at the expense of male sense of self and happiness.

Moreover, the social norms that underpin gender inequality need to be addressed for lasting change to ensue. Because these methodologies put communities in the driving seat, they deliver empowerment with community cohesion.

 

Learn more about the Understanding gender in wheat-based livelihoods for enhanced WHEAT R4D impact in Afghanistan, Pakistan and Ethiopia Project and read the full report “Gender transformative methodologies in Ethiopia’s agricultural sector: a review” here.

BMZ_2017_Web2x_en

CIMMYTNEWSlayer1

Borlaug Dialogue delegates widen net to curb threat from fall armyworm

2002 World Food Prize laureate, Pedro Sanchez, a professor at the University of Florida and Akinwumi Adesina, 2017 World Food Prize laureate and president of the African Development Bank speak about fall armyworm at a press conference on the sidelines of the 2017 Borlaug Dialogue conference in Des Moines, Iowa. Credit: World Food Prize
The 2002 World Food Prize laureate, Pedro Sanchez, a professor at the University of Florida and Akinwumi Adesina, 2017 World Food Prize laureate and president of the African Development Bank speak about the fall armyworm at a press conference on the sidelines of the 2017 Borlaug Dialogue conference in Des Moines, Iowa. Credit: World Food Prize

DES MOINES, Iowa (CIMMYT) – World Food Prize laureates have joined forces with an international alliance battling the fall armyworm (Spodoptera frugiperda), an aggressive pest indigenous to the Americas with a voracious appetite, now widespread throughout Africa.

The 2002 World Food Prize laureate, Pedro Sanchez, currently a research professor at the University of Florida, addressed delegates at the Borlaug Dialogue conference in Des Moines, Iowa, which is timed each year to coincide with annual World Food Prize celebrations.

Sanchez described the severity of the challenge posed by the pest, which has a host range of more than 80 plant species, including maize, a staple food on which millions of people throughout sub-Saharan Africa depend for their food and income security.

Fall armyworm activities not only put food security, livelihoods and national economies at risk, but also threaten to undo recent hard-earned crop production gains on the continent, Sanchez said.

“Hopefully, it will be controlled; it will never be eradicated,” Sanchez said. “I think the fate of African food security really hinges now on this clear and present danger. It threatens to reverse the gains achieved in the last 10 years. It’s the epitome of an invasive species.”

The pest, which has no known natural predators, can cause total crop losses, and at advanced larval development stages can be difficult to control even with synthetic pesticides. The female fall armyworm can lay up to a thousand eggs at a time and can produce multiple generations very quickly without pause in tropical environments. The moth can fly 100 km (62 miles) a night, and some moth populations have even been reported to fly distances of up to 1,600 kilometers in 30 hours, according to experts.

Sanchez said that Akinwumi Adesina, 2017 World Food Prize laureate and president of the African Development Bank, and Rob Fraley, 2013 World Food Prize laureate and chief technology officer at Monsanto, had united with him to urgently “raise the alarm” about the threat from the pest.

By joining forces as laureates, we aim to really bring attention to this issue to avoid a food crisis, Adesina said. Mobile phones should be effectively used in the fight against the pest, he said.

“There’s just no better way in which farmers can detect, recognize and send information very fast to extension agents or universities that can allow them to identify it and get the information they need to deal with it,” he said, adding that the new African Development Bank initiative Technologies for African Agricultural Transformation (TAAT), will play a key role in fighting the fall armyworm.

Projections by the Centre for Agriculture and Biosciences International, (CABI), indicate that if left unchecked, the fall armyworm could lead to maize yield losses of around $2.5 to $6.2 billion a year in just 12 of the 28 African countries where the pest has been confirmed.

Joint force

In April, the International Maize and Wheat Improvement Center (CIMMYT), the Food and Agriculture Organization of the United Nations (FAO) and the Alliance for a Green Revolution in Africa (AGRA) hosted an international joint stakeholders meeting in Nairobi, committing to an integrated pest management strategy to tackle the pest.

CIMMYT, the U.S. Agency for International Development (USAID), and experts from several national and international research organizations, are currently developing a detailed field manual on Fall Armyworm management in Africa, said B.M. Prasanna, director of the Global Maize Program at CIMMYT and the CGIAR Research Program on Maize, who spoke at a Borlaug Dialogue side event with a panel of scientific experts.

Scientist B.M. Prasanna, director of the Global Maize Program at CIMMYT and the CGIAR Research Program on Maize, speaks at a Borlaug Dialogue side event about the fall armyworm with a panel of scientific experts. CIMMYT/Julie Mollins
Scientist B.M. Prasanna, director of the Global Maize Program at CIMMYT and the CGIAR Research Program on Maize, speaks at a Borlaug Dialogue side event about the fall armyworm with a panel of scientific experts. CIMMYT/Julie Mollins

“The manual will offer protocols and best management practices related to fall armyworm scouting, monitoring and surveillance; biological control; pesticides and pesticide risk management; host plant resistance; pheromones and sustainable agro-ecological management of fall armyworm, especially in the African context,” Prasanna said, adding that the pest has so far devastated at least 1.5 million hectares of maize in just six countries.

A Southern Africa Regional Training-of-Trainers and Awareness Raising Workshop on Fall Armyworm management was conducted in Harare, Zimbabwe, from Oct. 30 to Nov. 1, while a similar workshop for Eastern Africa is scheduled for Nov. 13 to 15 in Addis Ababa, Ethiopia, and for West Africa in early 2018.

The workshops are aimed at supporting pest control and extension actors to effectively scout, determine the need for intervention, and apply specific practices to control the pest in maize and other crops, Prasanna said.

Fall armyworm toolbox

Prasanna announced that the CIMMYT team in Africa is intensively evaluating maize germplasm for resistance to fall armyworm. Initial experiments have indicated some promising breeding materials, which need to be validated further and utilized in product development and deployment pipelines, he said.

“The crisis is quickly escalating due to the loss of quality maize seed in production fields, and the extensive and indiscriminate use of low cost highly toxic pesticides,” Prasanna said.

“We need to quickly bring awareness among the farming communities in Africa about environmentally safer approaches of Fall Armyworm management,”  he said, adding that the international community can learn from the experiences of Brazil and the United States, where the pest has been endemic for  several decades.

“Sustainable agro-ecological management at the field and landscape levels is key,” Prasanna said. “We must make our solutions affordable to smallholder farmers.”

Panelist Mark Edge, director of collaborations for developing countries at agrochemical and biotechnology company Monsanto, said that integrated pest management, collaboration and public-private sector partnerships would be key to fighting the pest.

“First and foremost, it really is about an integrated pest management system – we’re not trying to propose that biotechnology is a silver bullet for this,” he said. “We need to continue to use many different technologies and biotechnology is one very powerful tool that we have in the toolbox.”

Over the past 10 years, the Water Efficient Maize for Africa (WEMA) a Monsanto-CIMMYT partnership project funded by the Bill & Melinda Gates Foundation and USAID has led to the development of almost 100 hybrid varieties effective against drought and a Bt – or biological pesticide – trait effective against the maize stem borers (Chilo partellus and Busseola fusca). The varieties will be available royalty-free to smallholder farmers.

“Insect resistance together with drought is our target; we’ve made tremendous progress over the past 10 years,” Edge said. “In the Americas, we still have challenges with fall armyworm, but we’re certainly able to control it to where farmers are actually able to get very good yields and manage the pests very effectively.”

Smallholder farmers need access to these varieties as soon as possible, so the focus should be on getting regulatory approvals in place by encouraging governments to support the technology, Edge said. The Bt trait varieties will need to be managed carefully so they do not develop resistance to the pest, he added.

“Scientists alone are not going to carry the day on this,” Edge said. “We need to bring together the science on this, but we also need the political will to help make that happen.”

Panelist Segenet Kelemu, director general of the International Institute of Insect Physiology and Ecology (ICIPE), said that techniques used to fight the stem borer have proven effective against the fall armyworm, although experiments are ongoing to craft an integrated pest management strategy to control various stages of the pest from egg to moth. The continent will face deepening challenges from insects due to climate change, she said.

“If there were capacity on the ground, fall armyworm would have been identified sooner,” Kelemu said. “We need a more comprehensive way and a global partnership to tackle this.”

Panelist Gregg Nuessly, a pest management researcher and the director of the Everglades Research and Education Center at the University of Florida, said that the fall armyworm could be effectively controlled through an integrated pest management approach.

“Success in control is not only possible, it’s quite common in the Western Hemisphere,” Nuessly said.

Related stories:

Borlaug Dialogue delegates to discuss strategy for tackling fall armyworm in Africa

Multi-pronged approach key for effectively defeating fall armyworm in Africa

Zimbabwe enacts new strategy in fall armyworm fight

Global experts meet to develop fall armyworm emergency plan for Africa

Fall armyworm in Africa: quick and coordinated regional response required

Scientists tackle deadly fall armyworm infestation devastating Africa

CIMMYTNEWSlayer1

 

Smallholder farmers to gain from targeted CRISPR-Cas9 crop breeding

Speakers on panel "How Can CRISPR-Cas Technology Assist Small Holder Farmers Around the World?" at the 2017 Borlaug Dialogue in Des Moines Iowa. L-R: Kevin Pixley, leader of the Seeds of Discovery project and the Genetic Resources Program at CIMMYT; Feng Zhang, core member of Broad Institute; Neal Gutterson, a member of CIMMYT’s board of trustees and vice president of research and development at DuPont Pioneer, part of the agriculture division at DowDuPont; Nigel Taylor, interim director of the Institute for International Crop Improvement at Donald Danforth Plant Science Center. Picture credit: World Food Prize
Speakers on panel “How Can CRISPR-Cas Technology Assist Small Holder Farmers Around the World?” at 2017 Borlaug Dialogue in Des Moines Iowa. L-R: Kevin Pixley, leader of Seeds of Discovery and the Genetic Resources Program at CIMMYT; Feng Zhang, core member of Broad Institute; Neal Gutterson, member of CIMMYT’s board of trustees and vice president of research and development at DuPont Pioneer, in DowDuPont agriculture division; Nigel Taylor, interim director, Institute for International Crop Improvement, Donald Danforth Plant Science Center. Picture credit: World Food Prize

DES MOINES, Iowa (CIMMYT) – Gene editing technology could revolutionize the way scientists breed high-yielding drought, disease and pest resistant, quality plant seeds, greatly reducing the time it currently takes to develop new varieties, said a panel of expert scientists at the Borlaug Dialogue conference in Des Moines, Iowa.

Using CRISPR-Cas9 to select or suppress desired traits in a genome is almost as simple as editing a Microsoft Word document on a computer, said Feng Zhang, the originator of the technology who is a core member of the Broad Institute of MIT and Harvard.

To edit genes, a protein called Cas9 is programmed to create an RNA search string, which can search and edit paired DNA to alter a genome to achieve desired effects in plants, Zheng said.

“There’s a lot of exciting opportunity to apply this technology in both human health and in agriculture,” he said.

Although the gene editing process itself is extremely fast, it will likely be several years before the benefits of the process for smallholder farmers begin to be realized, said Kevin Pixley, who leads the Seeds of Discovery project and the Genetic Resources Program at the International Maize and Wheat Improvement Center (CIMMYT).

CIMMYT scientists aim to use the breakthrough technology to help smallholder farmers in the developing world address food security, nutrition shortcomings and economic threats to their livelihoods caused by climate change, pests and disease. Additionally, they see the potential to reduce the use of pesticides, and to boost nutrition through bio-fortification of crops.

“We want sustainable agriculture that provides food and nutrition security for all, while enabling biodiversity conservation,” Pixley said. “CRISPR-Cas9 is an affordable technology that can help us close the technology gap between the resource rich and resource poor farmers of the world.”

CRISPR-Cas9 improved varieties could also reduce the risk of investing in fertilizers, grain storage or other technologies, thereby contributing to “double benefits” for smallholder farmers, Pixley said.

Poverty alleviation and improved livelihoods for farmers are part of the shared vision for CIMMYT and our research partners, and we see CRISPR-Cas9 as a technology that can make a significant contribution to achieving this aim, he added.

DELIVERING BENEFITS

“We think about this as being about bringing abundant potential to agriculture through this technology,” said Neal Gutterson, a member of CIMMYT’s board of trustees and vice president of research and development at DuPont Pioneer, part of the agriculture division at DowDuPont.

“For us, it’s part of the evolution of breeding systems, it’s targeted breeding that’s enabled by CRISPR-Cas9 technology,” he said, describing joint research projects with CIMMYT and the Donald Danforth Plant Science Center.

Currently, CIMMYT and DuPont Pioneer are researching the benefits of using CRISPR-Cas9 to combat maize lethal necrosis (MLN) disease in East Africa. MLN is caused by a combination of two viruses, which can only be treated by developing genetic resistance in the plant.

“We can ultimately accelerate the delivery of improved products that are really highly performing, high yielding, and also resistant to that viral disease,” Gutterson said, explaining how the technology would benefit smallholders. “Should the disease spread outside of Africa we’ll be poised to deliver solutions even faster.”

DuPont Pioneer and the Broad Institute have signed an agreement to allow universities and non-profit organizations to use the technology for agricultural research and product development.

The joint licensing relationship opens up democratic access to CRISPR-Cas9 for agriculture, Gutterson said, adding that research collaborations with CIMMYT and Donald Danforth Plant Science Center will facilitate access to the technology in the developing world, enriching the livelihoods of farmers.

The technology will also benefit non-commodity crops, known as “orphan crops,” said Nigel Taylor, interim director of the Institute for International Crop Improvement at Donald Danforth Plant Science Center.

“The exciting thing about them is that they have huge potential because they have not undergone the improvement maize or rice have gone through,” Taylor said.

Donald Danforth and DuPont Pioneer are conducting joint research using CRISPR Cas9 into cassava brown streak virus disease, which is projected to spread from East Africa to Nigeria, the largest producer of cassava in the world.

“We edited two of the genes, which means the virus cannot replicate properly in the plant,” Taylor said. “We’re seeing the viral load is completely reduced.”

Taylor also said he would like to develop improved varieties of teff, which is widely grown in Ethiopia and Eritrea, where the seeds are used to make the food staple “injera,” a sourdough flatbread.

REGULATORY FRAMEWORK

To ensure access to the technology, consumers, farmers and scientists in Africa must be involved, and questions about how new crops are regulated must be addressed, the scientists agreed.

“We must engage in regulatory work with stakeholders,” Taylor said. “African research centers and others around the world must be part of this conversation right now – communication and education about new technologies are essential.”

If scientists use CRISPR-Cas9 to rapidly convert popular varieties from, for example, MLN-susceptible to MLN-resistant, they will make a lasting contribution to farmer livelihoods in Africa, Pixley said.

“However, we can’t yet assume that the benefits of these technologies will reach smallholder farmers,” he said.

“Public opinion is largely unformed because few people know about CRISPR-Cas9, and since the regulatory framework is largely undefined, we have a great opportunity to help form it in a way to make the benefits of these technologies available to smallholder farmers.”

We need to begin by recognizing and respecting the sovereignty of every country to decide if, when and how they are going to use this technology, he added.

I think we have a great responsibility to provide accurate, complete and trustworthy information to the public as we bring this technology into the public domain and to the regulatory process, he said.

“We know that it’s not going to be a magic bullet because no technology is, but we also think that it’s unethical to dismiss any technology without responsibly considering its possible contributions,” Pixley said.

The Borlaug Dialogue conference is held each year in Des Moines to coincide with World Food Prize celebrations. This year delegates feted the 2017 laureate Akinwumi Adesina, president of the African Development Bank, thematically focused on “The Road out of Poverty.”

Related:

How a seed bank in Mexico produces data to alleviate poverty

Seeds of Discovery website: http://seedsofdiscovery.org/

Al Jazeera: Crop Biodiversity the Key to Ending Hunger

Project helps African farmers identify regional best practices

MEXICO CITY (CIMMYT) – Traditional farming systems in Africa must be updated for today’s climate and market challenges, according to a new report by the University of Queensland.  

Hoeing the field. Photo: CIMMYT.
Hoeing the field. Photo: CIMMYT.

The Sustainable Intensification of Maize-Legume Systems for Food Security in Eastern and Southern Africa (SIMLESA) is an international research-for-development project working directly with farmers to solve some of the challenges they face.

For example, the project has greatly improved food production in Mozambique since 2010. It is also promoting rotational cropping systems with legumes in Tanzania to improve soil fertility as well as dietary diversity, and in Malawi, rainfall erosion has been reduced by 80 percent as farmers leave plant residues on fields to improve stability.

The exact details of best practice change everywhere you go in Africa,” said Caspar Roxburgh, a research officer at the University of Queensland who works with SIMLESA. “A lot of this research just hasn’t been done yet in Africa.”

SIMLESA seeks to have an open dialogue between farmers and scientists to identify what works best in individual areas and define best practices for the region.

“We find out who’s doing the best, learn from them, and then we do the science to back it all up,” explained Roxburgh.

Over the past seven years, SIMLESA has helped more than 200,000 farmers adopt sustainable technologies and practices, improving yields and income.

SIMLESA is funded by the Australian Centre for International Agricultural Research (ACIAR) and implemented by the International Maize and Wheat Improvement Center (CIMMYT), the University of Queensland along with the governments of Ethiopia, Kenya, Tanzania, Malawi and Mozambique.

Read more about how SIMLESA is changing how food is grown in Africa here.

receive newsletter

New evidence shows forests help reduce malnutrition

Even in areas of high food security, vitamin and mineral deficiencies affect children in Southern Ethiopia. CIFOR Photo/Mokhamad Edliadi
Even in areas of high food security, vitamin and mineral deficiencies affect children in Southern Ethiopia. CIFOR Photo/Mokhamad Edliadi

EL BATAN, Mexico (CIMMYT) — A new study shows that dietary diversity is highest in areas close to forests, even when people don’t collect forest food and don’t generate income from forest products.

Dietary diversity reflects the variety of foods you eat and is strongly associated with adequate nutrition you receive. Increasing dietary diversity is a key element in combatting malnutrition. In areas near forests, people typically have high-producing home gardens, fed by manure from the livestock they let graze in the woods.

Throughout the world, and particularly in the tropics, remaining forests are cut down to make way for farmland in order to feed a growing global population. However, even in areas of high food availability, children may struggle to get enough vitamins and minerals if they only eat calorically dense, nutrient sparse cereal crops, a phenomenon called hidden hunger. The authors state that while cereal crops will no doubt remain crucial to meet the caloric needs of the global population, it is important to maintain – and restore in places – high dietary diversity when facing hidden hunger. They recommend taking a holistic approach to agricultural development that maintains landscape diversity, as opposed to the current trend toward mono-cropping – growing a single crop year after year – and landscape simplification.

Read the full study “Indirect contributions of forests to dietary diversity in Southern Ethiopia” and check out the blog published by the Center for International Forestry Research (CIFOR).

 

receive newsletter

New online portal offers information to curb maize lethal necrosis in Africa

Artificial inoculation of maize germplasm at the Naivasha MLN screening site, Kenya. (Photo: B.Wawa/CIMMYT)
Artificial inoculation of maize germplasm at the Naivasha MLN screening site, Kenya. (Photo: B.Wawa/CIMMYT)

The new maize lethal necrosis (MLN) online portal provides up-to-date information and surveillance tools to help researchers control and stop the spread of the deadly disease.

MLN was first reported in Kenya in 2011 and has since then been reported in several countries in eastern Africa, especially the Democratic Republic of the Congo, Ethiopia, Kenya, Rwanda, Tanzania and Uganda. The disease kills plants before they can grow, and the pathogens are transmitted by insects or contaminated seed. Serious damage to the region’s maize production from MLN has impacted household food security.

The online portal, found at mln.cimmyt.org, details the spread of MLN, where the disease has been managed and controlled, and how to identify it in the field. It also provides key MLN publications, surveillance software, MLN incidence maps, information on the MLN Screening Facility, and MLN-tolerant hybrids that are either released or in pipeline.

One tool on the portal is the MLN surveillance and monitoring system that provides real-time data to identify the presence and spread of the disease across five endemic countries in eastern Africa, and three selected non-endemic countries in southern Africa. The system was developed by scientists collaborating with the International Maize and Wheat Improvement Center (CIMMYT), with support from the United States Agency for International Development (USAID).

In 2016, MLN surveillance was successfully conducted in Malawi, Zambia and Zimbabwe – three major seed producing countries in Africa – and the data is presented in the portal, detailing MLN’s status across 652 surveyed maize fields. Future data gathered in other affected countries will also be uploaded to the portal as surveillance teams conduct fieldwork using Global Positioning System online survey tools, to assess the spread and severity of the disease in these countries. Ongoing surveillance in endemic countries allows stakeholders to see real-time updates on the spread of MLN.

MLN susceptible hybrids compared to a CIMMYT-derived MLN-tolerant hybrid. Photo: CIMMYT
MLN susceptible hybrids compared to a CIMMYT-derived MLN-tolerant hybrid. Photo: CIMMYT

Since the disease was first reported, collaborative efforts have resulted in the establishment of a MLN Screening Facility at the Kenya Agricultural & Livestock Research Organization (KALRO) center at Naivasha in 2013. The facility, managed by CIMMYT, has so far screened nearly 100,000 maize germplasm entries — 56 percent from CIMMYT — against MLN under artificial inoculation over the last four years.

Nine CIMMYT-derived MLN-tolerant hybrids have been already released in three countries – seven in Kenya, one in Uganda and one in Tanzania. Eleven second generation hybrids are currently in national performance trials in these countries. Intensive efforts are currently being made by seed companies in Kenya, Tanzania and Uganda to expand the delivery of MLN-tolerant maize seed to the smallholders.

The MLN portal enables researchers to comprehensively assess the situation with regard to MLN, helps strengthen the national disease monitoring and diagnostic systems by providing faster and accurate data, and offers access to CIMMYT-offered MLN phenotyping services.