Skip to main content

Location: Ethiopia

For more information, contact CIMMYT’s Ethiopia office.

Growing need for food is reason for more biodiversity

Recent research in Southern Ethiopia found that agricultural areas with the highest tree cover also experienced the most productivity in crop, feed and fuel. (Photo: Mokhamad Edliadi/CIFOR)
Recent research in Southern Ethiopia found that agricultural areas with the highest tree cover also experienced the most productivity in crop, feed and fuel. (Photo: Mokhamad Edliadi/CIFOR)

Deep within southern Ethiopia’s agroforestry landscapes, where farmers grow grain and keep cattle, sheep, goats and donkeys, researchers counted more than 4,100 birds as part of an assessment on agricultural productivity and biodiversity.

The researchers also counted some 4,473 individual trees from 52 tree species in the same study, which they believe is the first to link key indicators of biodiversity to more than one indicator of agricultural productivity, considering three products people in rural communities value most: fodder, fuel and food.

This has led to two important new conclusions: that encouraging biodiversity on and around agricultural land likely increases its productivity, and that measurements of productivity must be broadened to include what matters for local livelihoods.

Too often, agricultural productivity is measured through a very narrow lens, such as “mere” crop yields alone. But, according to the study, that has “disregarded local perspectives of what is actually important to people in terms of ecosystem services.

Take, for instance, trees: in addition to potentially growing food, they also benefit crop yield by controlling erosion; capture nutrients for the soil through their roots; help regulate the climate; and provide habitats for animals and insects, including natural enemies of crop pests. The study found that in this region of Ethiopia, agricultural productivity was higher in areas with heavy tree cover than in landscapes where trees had been removed for more crop space.

“We need to understand what would be the best way to produce food with minimum negative consequences on biodiversity,” says lead researcher FrĂ©dĂ©ric Baudron, challenging the assumption of trading one for the other in faith that agricultural intensification and biodiversity conservation can be achieved at once.

This study comes amid concerns that a rising demand for food and fuel to serve the world’s growing population – projected to reach 9 billion by 2050 – will drive greater agricultural expansion and intensification.

The proliferation of both would likely cause real harm to landscapes and biodiversity, threatening the essential natural constituents of the world’s ability to feed itself, warns Baudron. “That has serious implications for the sustainability of our global food production system,” he says. “We need biodiversity as an essential input.”

He also raises the issue of justice. Biodiversity loss hits hardest the millions of small farmers in developing countries – who make up the majority of farmers worldwide – because they depend almost exclusively on ecosystem services, and not external inputs, for production. And the resulting edible output is crucial for everyone; family farms produce more than 80 percent of the world’s food in value terms, according to FAO statistics.

Baudron says the study’s findings play into how small family farms should be managed through policy and in major restoration efforts, given that tree placement and configuration have enormous implications for biodiversity and ecosystem services it provides.

In other words, biodiversity shouldn’t be a bonus of productive landscapes. The study suggests, rather, that productive landscapes should be designed to make the most of all of the services provided by biodiversity.

The work was part of ‘The Agrarian Change Project’, with funding from the United Kingdom’s Department for International Development (DFID), the United States Agency for International Development (USAID) and the CGIAR Research Program on Wheat.

This article was originally published on Landscapes News. This content is licensed under Creative Commons Attribution-Non Commercial-Share Alike 4.0 International (CC BY-NC-SA 4.0). This means you are free to redistribute our material for non-commercial purposes, as long as you give Landscapes News appropriate credit and link to the original Landscapes News content, indicate if changes were made, and distribute your contributions under the same Creative Commons license. You must notify Landscapes News if you repost, reprint or reuse our materials by contacting G[dot]Lipton[at]cgiar.org.

How gender equity and social inclusion are improving the lives of rural families in Africa

Women have the potential to be drivers of agricultural transformation in Africa, holding the key to improving their families’ livelihoods and food security. However, constraints such as lack of access to initial capital, machinery, reliable markets, and knowledge and training are difficult to overcome, leading to restricted participation by women and young people in agricultural systems in Africa.

A new video from the Sustainable Intensification of Maize-Legume Systems for Food Security in Eastern and Southern Africa (SIMLESA) project highlights the importance of gender equity and social inclusion to achieving project impacts and outcomes, helping to drive transformative change towards securing a food-secure future for Africa. Case studies and interviews with women and men farmers — including young people — detail how SIMLESA’s approach has re-shaped their maize-based farming lives.

The video is aligned with the theme for International Women’s Day 2019, “Think Equal, Build Smart, Innovate for Change,” which places the spotlight on innovative ways in which we can advance gender equality and the empowerment of women.

“This video is intended to educate the agricultural community and wider public on the importance of applying sustainable intensification agricultural practices and technologies in order to bridge the gender gap in agricultural productivity and achieve agricultural transformation for smallholder farmers in Africa,” said Rahma Adam, Gender and Development Specialist with CIMMYT in Kenya. “We hope stakeholders will be able to see the benefits of these practices and technologies, and work towards finding ways to implement them into their agricultural practices or programs.”

Launched in 2010, SIMLESA is led by the International Maize and Wheat Improvement Center (CIMMYT) and funded by the Australian Center for International Agricultural Research (ACIAR). It is implemented by national agricultural research systems, agribusinesses and farmers in partner countries including Ethiopia, Kenya, Malawi, Mozambique, Rwanda, Tanzania and Uganda.

SIMLESA lead farmer Agnes Sendeza harvests maize cobs from a stook on her farm in Tembwe, Salima district, Malawi. (Photo: Peter Lowe/CIMMYT)
SIMLESA lead farmer Agnes Sendeza harvests maize cobs from a stook on her farm in Tembwe, Salima district, Malawi. (Photo: Peter Lowe/CIMMYT)

Putting equal opportunities at the center

Following a participatory research for development approach, the SIMLESA team works alongside farmers and partner organizations to achieve increased food production while minimizing pressure on the environment by using smallholder farmers’ resources more efficiently and empowering women, men and young people to make decisions.

The SIMLESA project achieves impact by integrating gender sensitivity into all project activities and developing a deep understanding of social contexts and factors that constrain access to, and adoption of, improved technologies. Initiatives are able to reach all individuals in the project’s target communities, leaving no one out.

“The benefits of fostering equal opportunities for women, men and young people through SIMLESA’s work are enormous,” said Adam. Equal opportunities mean better access to information, markets, and improved varieties of seeds; participation in field trials, demonstrations and training; and the provision of leadership opportunities in local innovation platforms.

Central to the success of the SIMLESA project is the concept of Agricultural Innovation Platforms. “Being members of these platforms, farmers can access credits, which they can use to purchase farm inputs,” explained Adam. “They are able to take part in collective marketing and get a better price for their crops. The Agricultural Innovation Platforms also facilitate training on better agribusiness management practices and the sharing of ideas about other productive investment opportunities to better farmers’ lives. All these benefits were hard to come by when the women and youth farmers were farming on their own without being associated to the SIMLESA project or part of the platforms.”

The words of Rukaya Hasani Mtambo, a farmer from Tanzania, are a testimony to the power of this idea. “As a woman, I am leader of our group and head of my household. I always encourage my fellow women, convincing them we are capable. We should not underestimate what we can do.”

To watch the full video, click here.

To watch other videos about the SIMLESA project, click here.

New publications: Gender and agricultural innovation in Oromia region, Ethiopia

Despite formal decentralization, agricultural services in Ethiopia are generally “top-down,” claim the authors of a recently published paper on gender and agricultural innovation. “Extension services,” they explain, “are supply-driven, with off-the-shelf technologies transferred to farmers without expectation of further adaptation.”

Drawing on GENNOVATE case studies from two wheat-growing communities in Ethiopia’s Oromia region, the authors examine how a small sample of women and men smallholders attempt to innovate with improved wheat seed, row planting, and the broad bed maker, introduced through the Ethiopian agricultural extension system. They also introduce the concept of tempered radicals, an analytic lens used to understand how individuals try to initiate change processes, and assess whether this can have validity in rural settings.

Dinke Abebe shows a handful of wheat at a traditional seed storage house in Boru Lencha village, Hetosa district, Arsi highlands, Ethiopia. (Photo: Peter Lowe/CIMMYT)
Dinke Abebe shows a handful of wheat at a traditional seed storage house in Boru Lencha village, Hetosa district, Arsi highlands, Ethiopia. (Photo: Peter Lowe/CIMMYT)

As the authors demonstrate through their literature review on cultural norms in the region, there are powerful institutional gender constraints to change processes, which can be punitive for women.

Ethiopian women smallholders are particularly disadvantaged because they have limited access to productive assets such as irrigation water, credit and extension services. Therefore, they find it harder to implement innovations. The study asserts that strategies to support innovators, and women innovators in particular, must be context-specific as well as gender-sensitive.

Read the full article “Gender and agricultural innovation in Oromia region, Ethiopia: from innovator to tempered radical” in Gender, Technology and Development.

Development of research methodology and data collection was supported by the CGIAR Gender and Agricultural Research Network, the World Bank, the Government of Mexico, the Government of Germany, and the CGIAR Research Programs on Maize and Wheat. Data analysis was supported by the Bill & Melinda Gates Foundation.

Check out other recent publications by CIMMYT researchers below:

  1. Alternative use of wheat land to implement a potential wheat holiday as wheat blast control: in search of feasible crops in Bangladesh. 2019. Mottaleb, K.A., Singh, P.K., Xinyao He, Akbar Hossain, Kruseman, G., Erenstein, O. In: Land Use Policy v. 82, p. 1-12.
  2. Applications of machine learning methods to genomic selection in breeding wheat for rust resistance. 2019. GonzĂĄlez-Camacho, J.M., Ornella, L., Perez-Rodriguez, P., Gianola, D., Dreisigacker, S., Crossa, J. In: Plant Genome v. 11, no. 2, art. 170104.
  3. Genetic diversity and population structure of synthetic hexaploid-derived wheat (Triticum aestivum L.) accessions. 2019. Gordon, E., Kaviani, M., Kagale, S., Payne, T.S., Navabi, A. In: Genetic Resources and Crop Evolution v. 66, no. 2, p. 335-348.
  4. Genomic-enabled prediction accuracies increased by modeling genotype × environment interaction in durum wheat. 2019. Sukumaran, S., Jarquín, D., Crossa, J., Reynolds, M.P. In: Plant Genome v. 11, no. 2, art. 170112.
  5. Improved water-management practices and their impact on food security and poverty: empirical evidence from rural Pakistan. 2019. Ali, A., Rahut, D.B., Mottaleb, K.A. En: Official Journal of the World Water Council Water Policy v. 20, no. 4, p. 692-711.
  6. Integrating genomic-enabled prediction and high-throughput phenotyping in breeding for climate-resilient bread wheat. 2019. Juliana, P., Montesinos-Lopez, O.A., Crossa, J., Mondal, S., Gonzalez-Perez, L., Poland, J., Huerta-Espino, J., Crespo-Herrera, L.A., Velu, G., Dreisigacker, S., Shrestha, S., Perez-Rodriguez, P., Pinto Espinosa, F., Singh, R.P. In: Theoretical and Applied Genetics v. 132, no. 1, p. 177-194.
  7. Pre-harvest management is a critical practice for minimizing aflatoxin contamination of maize. 2019. Mahuku, G., Nzioki, H., Mutegi, C., Kanampiu, F., Narrod, C., Makumbi, D. In: Food Control v. 96, p. 219-226.
  8. Root-lesion nematodes in cereal fields: importance, distribution, identification, and management strategies. 2019. Mokrini, F., Viaene, N., Waeyenberge, L., Dababat, A.A., Moens, M. In: Journal of Plant Diseases and Protection v. 126, no. 1, p. 1-11.
  9. Spider community shift in response to farming practices in a sub-humid agroecosystem of southern Africa. 2019. Mashavakure, N., Mashingaidze, A.B., Musundire, R., Nhamo, N., Gandiwa, E., Thierfelder, C., Muposhi, V.K. In: Agriculture, Ecosystems and Environment v. 272, p. 237-245.
  10. Threats of tar spot complex disease of maize in the United States of America and its global consequences. 2019. Mottaleb, K.A., Loladze, A., Sonder, K., Kruseman, G., San Vicente, F.M. In: Mitigation and Adaptation Strategies for Global Change v. 24, no. 2, p. 281–300.

Women’s equality crucial for Ethiopia’s agricultural productivity

The Government of Ethiopia recently announced an ambitious goal to reach wheat self-sufficiency by 2022, eliminating expensive wheat imports and increasing food security.

However, a new report based on a four-year research project on gender and productivity in Ethiopia’s wheat sector indicates that a lack of technical gender research capacity, a shortage of gender researchers and low implementation of gender-focused policies is hampering these efforts. Read more here.

Experts analyze food systems at EAT-Lancet Commission report launch in Ethiopia

Earlier this year, the EAT-Lancet Commission published a groundbreaking report linking healthy diets and sustainable food systems. It proposed scientific targets that meet both the Sustainable Development Goals (SDGs) and the Paris Agreement action plan to reduce carbon emissions. Since then, more than 20 launch events have been scheduled around the globe, including Addis Ababa, Ethiopia.

On February 7, the African Union hosted the EAT-Lancet Commission on healthy diets for sustainable food systems. Government officials, researchers and experts attended the “Food Systems Dialogue on Ethiopia” and developed a list of recommendations going forward. Some of these included at least 10 percent resource allocation to agriculture, the creation of functional and efficient internal markets for enhancing food distribution within the country, post-harvest loss reduction, and stronger collaboration between government and other stakeholders.

Representatives of government, civil society, and research for development organizations participated in the "Food Systems Dialogue on Ethiopia." (Photo: CIMMYT)
Representatives of government, civil society, and research for development organizations participated in the “Food Systems Dialogue on Ethiopia.” (Photo: CIMMYT)

“The report has drawn the attention of policy makers, civil society and donors,” said Kindie Tesfaye Fantaye, a researcher and crop modeler at the International Maize and Wheat Improvement Center (CIMMYT). “The event was a good opportunity to create awareness on the chronic problems of stunting and malnutrition in Africa, and agriculture’s central role in contributing to effective solutions.”

Tesfaye Fantaye said CIMMYT’s work is well aligned with the report’s recommendations. In addition to research on sustainable intensification approaches that improve livelihoods while reducing the environmental footprint, CIMMYT explores ways to reduce postharvest losses and increase the nutritional quality of food through biofortification.

During a high-level side event, the commissioners indicated that the report is in-line with the different African Union policies and strategies, including the Malabo Declaration on Agriculture and Postharvest Losses, Agenda 2063 and Comprehensive Africa Agriculture Development Program (CAADP).

“The power of food is its connection. If we get it right, it brings us to a healthy people and a healthy planet,” said Gunhild Anker Stordalen, the founder and executive chair of EAT Foundation.

The launch in Ethiopia of the EAT–Lancet Commission report on healthy diets from sustainable food systems took place in the African Union headquarters in Addis Ababa. (Photo: CIMMYT)
The launch in Ethiopia of the EAT–Lancet Commission report on healthy diets from sustainable food systems took place in the African Union headquarters in Addis Ababa. (Photo: CIMMYT)

Reducing high yield gaps with decision-support apps

Farmer Gudeye Leta harvests his local variety maize in Dalecho village, Gudeya Bila district, Ethiopia. (Photo: Peter Lowe/CIMMYT)
Farmer Gudeye Leta harvests his local variety maize in Dalecho village, Gudeya Bila district, Ethiopia. (Photo: Peter Lowe/CIMMYT)

Ethiopia is Africa’s third largest producer of maize, after Nigeria and South Africa. Although the country produces around 6.5 million tons annually, the national average maize yield is relatively low at 3.5 tons compared to the attainable yield of 8.5 tons. This high yield gap — the difference between attainable and actual yields — can be attributed to a number of factors, including crop varieties used, farm management practices, and plant density.

The Taking Maize Agronomy to Scale (TAMASA) project aims to narrow maize yield gaps in Ethiopia, Nigeria and Tanzania through the development and scaling out of decision-support tools, which provide site-specific recommendations based on information held in crop and soil databases collected from each country. These help farmers to make decisions based on more accurate variety and fertilizer recommendations, and can contribute to improving maize production and productivity.

One such tool is Nutrient Expert, a free, interactive computer-based application. It can rapidly provide nutrient recommendations for individual farmers’ fields in the absence of soil-testing data. The tool was developed by the International Plant Nutrition Institute in collaboration with the International Maize and Wheat Improvement Center (CIMMYT), the International Institute of Tropical Agriculture (IITA), and research and extension service providers.

Nutrient Expert user interface.
Nutrient Expert user interface.

In Ethiopia, regional fertilizer recommendations are widely used, but soil fertility management practices can vary greatly from village to village and even between individual farmers. This can make it difficult for farmers or extension agents to receive accurate information tailored specifically to their needs. Nutrient Expert fills this gap by incorporating information on available fertilizer blends and giving customized recommendations for individual fields or larger areas, using information on current farmer practices, field history and local conditions. It can also provide advice on improved crop management practices such as planting density and weeding, thereby helping farmers to maximize net returns on their investment in fertilizer.

Data calibration was based on the results of 700 multi-location nutrient omission trials conducted in major maize production areas in Ethiopia, Nigeria and Tanzania. These trials were designed as a diagnostic tool to establish which macro-nutrients are limiting maize growth and yield, and determine other possible constraints.

In Ethiopia, CIMMYT scientists working for the TAMASA project conducted nutrient omission trials on 88 farmer fields in Jimma, Bako and the Central Rift Valley in 2015 to produce a version of Nutrient Expert suitable for the country. Researchers trialed the app on six maize-belt districts in Oromia the following year, in which Nutrient Expert recommendations were compared with soil-test based and regional ones.

Researchers found that though the app recommended lower amounts of phosphorus and potassium fertilizer, overall maize yields were comparable to those in other test sites. In Ethiopia, this reduction in the use of NPK fertilizer resulted in an investment saving of roughly 80 dollars per hectare.

Results from Nutrient Expert trials in Ethiopia, Nigeria and Tanzania showed improved yields, fertilizer-use efficiency and increased profits, and the app has since been successfully adapted for use in developing fertilizer recommendations that address a wide variety of soil and climatic conditions in each of the target countries.

The World Bank’s 2016 Digital Dividends report states that we are currently “in the midst of the greatest information and communications revolution in human history.” This shifting digital landscape has significant implications for the ways in which stakeholders in the agricultural sector generate, access and use data. Amidst Africa’s burgeoning technology scene, CIMMYT’s TAMASA project demonstrates the transformative power of harnessing ICTs for agricultural development.

Learn more about different versions of Nutrient Expert and download the free software here.

TAMASA is a five-year project (2014-2019) funded by the Bill & Melinda Gates Foundation, seeking to improve productivity and profitability for small-scale maize farmers in Ethiopia, Nigeria and Tanzania. Read more about the project here.

A wheat self-sufficiency roadmap for Ethiopia’s future

The Ethiopian government announced recently that the country should become wheat self-sufficient over the next four years. Why is boosting domestic wheat production important for this country in the Horn of Africa, and could wheat self-sufficiency be attained in the next four years? The Ethiopian Institute for Agricultural Research (EIAR), with the support of International Maize and Wheat Improvement Center (CIMMYT), gathered agriculture and food experts from the government, research and private sectors on November 23, 2018, to draw the first outlines of this new Ethiopian wheat initiative.

The low-tech domestic wheat farming and price support issue

Despite a record harvest of 4.6 million metric tons in 2017, Ethiopia imported 1.5 million tons of wheat the same year, costing US$600 million. Population growth, continuous economic growth and urbanization over the last decade has led to a rapid change in Ethiopian diets, and the wheat sector cannot keep up with the growing demand for pasta, dabo, ambasha and other Ethiopian breads.

The majority of Ethiopia’s 4.2 million wheat farmers cultivate this cereal on an average of 1.2-hectare holdings, with three quarters produced in Arsi, Bale and Shewa regions. Most prepare the land and sow with draft animal power equipment and few inputs, dependent on erratic rainfall without complementary irrigation. Yields have doubled over the last 15 years and reached 2.7 tons per hectare according to the latest agricultural statistics, but are still far from the yield potential.

According to data from the International Food Policy Research Institute (IFPRI), wheat is preferred by wealthier, urban families, who consume 33 percent more wheat than rural households. Ethiopia needs to rethink its wheat price support system, which does not incentivize farmers and benefits mostly the wealthier, urban consumers. Wheat price support subsidies could, for instance, target bakeries located in poor neighborhoods.

Where to start to boost wheat productivity?

Ethiopia’s Minister of Agriculture and Natural Resources, Eyasu Abraha, welcomes conference participants. (Photo: JĂ©rĂŽme Bossuet/CIMMYT)
Ethiopia’s Minister of Agriculture and Natural Resources, Eyasu Abraha, welcomes conference participants. (Photo: JĂ©rĂŽme Bossuet/CIMMYT)

Ethiopia, especially in the highlands, has an optimum environment to grow wheat. But to make significant gains, the wheat sector needs to identify what limiting factors to address first. The Wheat initiative, led by Ethiopia’s Agricultural Transformation Agency (ATA), has targeted 2,000 progressive farmers across 41 woredas (districts) between 2013 and 2018, to promote the use of improved and recommended inputs and better cropping techniques within their communities. A recent IFPRI impact study showed a 14 percent yield increase, almost enough to substitute wheat imports if scaled up across the country. It is, however, far from the doubling of yields expected initially. The study shows that innovations like row planting were not widely adopted because of the additional labor required.

Hans Braun, WHEAT CGIAR research program and CIMMYT’s Global Wheat Program director, believes Ethiopian farmers can achieve self-sufficiency if they have the right seeds, the right agronomy and the right policy support.

One priority is to increase support for wheat improvement research to make wheat farmers more resilient to new diseases and climate shocks. Drought and heat tolerance, rust resistance and high yields even in low-fertility soils are some of the factors sought by wheat farmers.

International collaboration in durum wheat breeding is urgently needed as the area under durum wheat is declining in Ethiopia due to climate change, diseases and farmers switching to more productive and resilient bread wheat varieties. Braun advises that Ethiopia set up a shuttle breeding program with CIMMYT in Mexico, as Kenya did for bread wheat, to develop high-yielding and stress-resistant varieties. Such a shuttle breeding program between Ethiopia and Mexico would quickly benefit Ethiopian durum wheat farmers, aiming at raising their yields similar to those of Mexican farmers in the state of Sonora, who harvest more than 7 tons per hectare under irrigation. This would require a policy reform to facilitate the exchange of durum germplasm between Ethiopia and Mexico, as it is not possible at the moment.

Ethiopia also needs to be equipped to respond quickly to emerging pests and diseases. Five years ago, a new stem rust (TKTTF, also called Digalu race) damaged more than 20,000 hectares of wheat in Arsi and Bale, as Digalu — the popular variety used by local farmers — was sensitive to this new strain. The MARPLE portable rust testing lab, a fast and cost-effective rust surveillance system, is now helping Ethiopian plant health authorities quickly identify new rust strains and take preventive actions to stop new outbreaks.

CIMMYT’s representative in Ethiopia, Bekele Abeyo, gives an interview for Ethiopian media during the conference. (Photo: JĂ©rĂŽme Bossuet/CIMMYT)
CIMMYT’s representative in Ethiopia, Bekele Abeyo, gives an interview for Ethiopian media during the conference. (Photo: JĂ©rĂŽme Bossuet/CIMMYT)

Invest in soil health, mechanization and gender

In addition to better access to improved seeds and recommended inputs, better agronomic practices are needed. Scaling the use of irrigation would certainly increase wheat yields, but experts warn not to dismiss adequate agronomic research — knowing the optimal water needs of the crop for each agroecological zone — and the underlying drainage system. Otherwise, farmers are at risk of losing their soils forever due to an accumulation of salt.

‘’2.5 billion tons of topsoil are lost forever every year due to erosion. A long-term plan to address soil erosion and low soil fertility should be a priority,” highlights Marco Quinones, adviser at ATA. For instance, large-scale lime application can solve the important issue of acid soils, where wheat does not perform well. But it requires several years before the soil can be reclaimed and visible yield effects can be seen.

CIMMYT gender and development specialist Kristie Drucza talks about innovation barriers for female-headed households linked to gender norms in Ethiopia. (Photo: JérÎme Bossuet/CIMMYT)
CIMMYT gender and development specialist Kristie Drucza talks about innovation barriers for female-headed households linked to gender norms in Ethiopia. (Photo: JérÎme Bossuet/CIMMYT)

Mechanization could also boost Ethiopian wheat production and provide youth with new job opportunities. Recent research showed smallholder farmers can benefit from six promising two-wheel tractor (2WT) technologies. Identifying the right business models and setting up adapted training programs and financial support will help the establishment of viable machinery service providers across the country.

Better gender equity will also contribute significantly to Ethiopia becoming self-sufficient in wheat production. Women farmers, especially female-headed households, do not have the same access to trainings, credit, inputs or opportunities to experiment with new techniques or seed varieties because of gender norms. Gender transformative methodologies, like community conversations, can help identify collective ways to address such inequalities, which cost over one percent of GDP every year.

‘’With one third better seeds, one third good agronomy and one third good policies, Ethiopia will be able to be wheat self-sufficient,” concluded Braun. A National Wheat Taskforce led by EIAR will start implementing a roadmap in the coming days, with the first effects expected for the next planting season in early 2019.

The consultative workshop “Wheat Self-Sufficiency in Ethiopia: Challenges and Opportunities” took place in Addis Ababa, Ethiopia, on November 23, 2018.

Q&A: Expanding CIMMYT’s research agenda on markets and business

TEXCOCO, Mexico (CIMMYT) — Food security is heavily dependent on seed security. Sustainable seed systems ensure that a variety of quality seeds are available to farming communities at affordable prices. In many developing countries, however, farmers still lack access to the right seeds at the right time.

In the past, governments played a major role in getting improved seed to poor farmers. These days, however, the private sector plays a leading role, often with strong support from governments and NGOs.

“Interventions in formal seed systems in maize have tended to focus on improving the capacity of seed producing companies, which are often locally owned small-scale operations, to produce and distribute quality germplasm,” says Jason Donovan, Senior Economist at International Maize and Wheat Improvement Center (CIMMYT). “These local seed companies are expected to maintain, reproduce and sell seed to underserved farmers. That’s a pretty tall order, especially because private seed businesses themselves are a fairly new thing in many countries.”

Prior to the early 2000s, Donovan explains, many seed businesses were partially or wholly state-owned. In Mexico, for example, the Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP) produced seed and supplied it to a market-oriented entity which was responsible for distribution. “What we’re seeing now is locally owned private seed businesses carving out their space in the maize seed market, sometimes in direct competition with multinational seed companies,” he says. In Mexico, around 80 locally owned maize seed producing businesses currently exist, most of which have been involved in CIMMYT’s MasAgro Maize project. These are mostly small businesses selling between 150,000 and 500,000 kg of hybrid maize per year.

In the following Q&A, Donovan discusses new directions in research on value chains, the challenges facing private seed companies, and how new studies could help understand their capacities and needs.

Seed storage warehouse at seed company Bidasem in Celaya, Guanajato state, México. (Photo: X. Fonseca/CIMMYT)
Seed storage warehouse at seed company Bidasem in Celaya, Guanajato state, México. (Photo: X. Fonseca/CIMMYT)

How does research on markets and value chains contribute to CIMMYT’s mission?

We’re interested in the people, businesses and organizations that influence improved maize and wheat seed adoption, production, and the availability and quality of maize and wheat-based foods. This focus perfectly complements the efforts of those in CIMMYT and elsewhere working to improve seed quality and increase maize and wheat productivity in the developing world.

We are also interested in the nutrition and diets of urban and rural consumers. Much of the work around improved diets has centered on understanding fruit and vegetable consumption and options to stimulate greater consumption of these foods. While there are good reasons to include those food groups, the reality is that those aren’t the segments of the food market that are immediately available to or able to feed the masses. Processed maize and wheat, however, are rapidly growing in popularity in both rural and urban areas because that’s what people want and need to eat first. So the question becomes, how can governments, NGOs and others promote the consumption of healthier processed wheat and maize products in places where incomes are growing and tastes are changing?

This year, CIMMYT started a new area of research in collaboration with A4NH, looking at the availability of processed maize and wheat products in Mexico City — one of the world’s largest cities. We’re working in collaboration with researchers form the National Institute of Public Health to find out what types of wheat- and maize-based products the food industry is selling, to whom, and at what cost. At the end of the day, we want to better understand the variation in access to healthier wheat- and maize-based foods across differences in purchasing power. Part of that involves looking at what processed products are available in different neighborhoods and thinking about the dietary implications of that.

Your team has also recently started looking at formal seed systems in various locations. What direction is the research taking so far?

Our team’s current priority is to advance learning around the private sector’s role in scaling improved maize varieties. We are engaged with three large projects: MasAgro Maize in Mexico, Stress Tolerant Maize for Africa (STMA) and the Nepal Seed and Fertilizer Project (NSFP). We are looking to shed light on the productive and marketing capacities of the privately owned seed producing businesses and their ability to get more seed to more farmers at a lower cost. This implies a better understanding of options to better link seed demand and supply, and the business models that link seed companies with agro-dealers, seed producing farmers, and seed consumers.

We are also looking at the role of agro-dealers — shops that sell agricultural inputs and services (including seed) to farmers — in scaling improved maize seed.

At the end of the day, we want to provide evidence-based recommendations for future interventions in seed sectors that achieve even more impact with fewer resources.

Farmers purchase seed from an agro-dealer in Machakos, Kenya. (Photo: Market Matters Inc.)
Farmers purchase seed from an agro-dealer in Machakos, Kenya. (Photo: Market Matters Inc.)

This research is still in its initial stages, but do you already have an idea of what some of the key limiting factors are?

I think one of the main challenges facing small-scale seed producing businesses is the considerable expense entailed in simultaneously building their productive capacities and their market share. Many businesses simply don’t have a lot of capital. There’s also a lack of access to specialized business support.

In Mexico, for example, a lot of people in the industry are actually ex-breeders from government agencies, so they’re very familiar with the seed production process, but less so with options for building viable businesses and growing markets for new varieties of seed.

This is a critical issue if we expect locally owned seed businesses to be the primary vehicle by which improved seeds are delivered to farmers at scale. We’re currently in the assessment phase, examining what the challenges and capacities are, and hopefully this information will feed into new approaches to designing our interventions.

Is the study being replicated in other regions as well?

Yes, in East Africa, under the Stress Tolerant Maize for Africa (STMA) project. We’re working with seed producing businesses and agro-dealers in Ethiopia, Kenya, Tanzania, and Uganda to understand their strategies, capacities, and needs in terms of providing improved seed to more farmers. We’re using the same basic research design in Mexico, and there is also ongoing work in the Nepal Seed and Fertilizer Project. Given that we are a fairly small team within CIMMYT, comparable cross-regional research is one way to punch above our weight.

Why is this research timely or important?

The research is critical as CIMMYT’s impact relies, in part, on partnerships. In the case of improved maize seed, that revolves around viable seed businesses.

Although critical, no one else is actually engaged in this type of seed sector research. There have been a number of studies on seed production, seed systems and the adoption of improved seed by poor farmers. A few have focused on the emergence of the private sector in formal seed systems and the implications for seed systems development, but most have been pretty broad, examining the overall business environment in which these companies operate but not much beyond that. We’re trying to deepen the discussion. While we don’t expect to have all the answers at the end of this study, we hope we can shift the conversation about options for better support to seed companies and agro-dealers.

Jason Donovan joined CIMMYT in 2017 and leads CIMMYT’s research team on markets and value chains, based in Mexico. He has some 15 years of experience working and living in Latin America. Prior to joining CIMMYT he worked at the Peru office of the World Agroforestry Center (ICRAF), where his research focused on business development, rural livelihoods, gender equity and certification. He has a PhD in development economics from the University of London’s School of Oriental and African Studies (SOAS).

International research-for-development coalition against fall armyworm, the not-so-nice, very hungry caterpillar

ADDIS ABABA, Ethiopia (CIMMYT) — African farmers have lost millions of dollars in earnings since 2016 due to the loss of crops to the voracious fall armyworm.

Since the initial shock, farmers, researchers, extension officers, agribusinesses, governments and donors have reacted quickly to fight the invasive pest in various ways, including with pesticides, agroecological approaches and new seeds.

Yet the situation is far from under control. A more coordinated research-for-development (R4D) action plan is urgently needed to ensure that effective and affordable solutions reach smallholder farmers in sub-Saharan Africa so they can sustainably combat the devastating pest.

Smallholder farm socioeconomics are highly complex, which makes adoption of any new technology or practice a challenge. “We must look at the big picture to design safer, accessible, effective and sustainable solutions against fall armyworm,” said Martin Kropff, director general of the International Maize and Wheat Improvement Center (CIMMYT), which jointly coordinated “Fall Armyworm Research for Development: Status and priorities for Africa,” an international conference held from Oct. 29 to 31 at the African Union Commission in Addis Ababa, Ethiopia.

Hosted by the Fall Armyworm R4D International Consortium, the conference was aimed at drawing a science-based roadmap to combat the hungry caterpillar. The partners organizing the conference were the African Union Commission (AUC), the Alliance for a Green Revolution in Africa (AGRA), the Centre for Agriculture and Biosciences International (CABI), CIMMYT, the Food and Agriculture Organization of the United Nations (FAO), the International Centre of Insect Physiology and Ecology (icipe), the International Institute of Tropical Agriculture (IITA), and the United States Agency for International Development (USAID).

Vulnerable smallholder farmers

African leaders consider the invasive fall armyworm “a big threat for African food security,” said Amira Elfadil, African Union Commissioner for Social Affairs, at the opening of the conference.

The caterpillar has munched through thousands of hectares of maize, sorghum and a few other commercial crops across Africa and is causing severe concerns among food and agriculture experts and policymakers. Since it was first detected in Nigeria and São Tomé, the moth has spread across more than 40 African countries and has been seen in India since July 2018. It could also invade Europe and other continents.

“Fall armyworm has been the fastest pest to expand across the continent,” said Eyasu Abraha, Ethiopia’s state minister for agriculture development.

The pest is a familiar foe to agricultural experts and farmers in the Americas who have fought against it for several decades. However, the pest has found an ideal environment to flourish in Africa, with diverse agro-ecologies and a warmer climate all year round amplifying its persistent threat.

It has a host range of more than 80 plant species, including maize, a staple food on which millions of people throughout sub-Saharan Africa depend for food and income security. It can cause total crop losses, and at advanced larval development stages can be difficult to control even with synthetic pesticides. The female fall armyworm can lay up to a thousand eggs at a time and produce multiple generations very quickly without pause in tropical environments. The moth can fly 100 km (62 miles) a night, and some moth populations have even been reported to fly distances of up to 1,600 kilometers in 30 hours, according to experts.

Entomologists are trying to fill a knowledge gap on how the fall armyworm behaves and migrates throughout Africa.

Solutions that may work to combat the pest in Brazil or North America may not be applicable for the agricultural context in Africa where most farmers are low-resource smallholders, struggling to access new knowledge and technologies.

The conference organized by the Fall Armyworm R4D International Consortium attracted the interest of a large group of participants. (Photo: African Union Commission)
The conference organized by the Fall Armyworm R4D International Consortium attracted the interest of a large group of participants. (Photo: African Union Commission)

High cost of ineffective collaboration

Hans Dreyer, director of FAO’s plant protection division, listed many collaborative initiatives, including national task forces and expert working groups, which contributed to document and inform the current state of knowledge.

There are still many knowledge and technical gaps. Some resourceful information platforms are already available for the farmers and extension workers, including the fall armyworm web portal created by CABI, the mobile farmer Q&A service PlantVillage, or Precision Agriculture for Development’s text messaging advisory service MoA-Info.

“The cost of not collaborating is pretty severe,” said Regina Eddy, who leads the Fall Armyworm Task Force at the USAID Bureau for Food Security. The real gamechanger will be that “all experts in the room agree on a common and concrete research-for-development agenda and how to organize ourselves to implement it effectively,” she added.

During the conference, the experts debated intensely on the technical gaps and the best ways to combat the pest through an integrated pest management strategy, including how to scout the caterpillar in the crop field, establish monitoring and surveillance systems, pest control innovations and appropriate policy support to accelerate introduction of relevant innovations.

Safe, sustainable, farmer-centered solutions

Short-term responses to the pest at present include synthetic pesticide use. However, there are public health and environment concerns over some of the toxic pesticides being used in Africa to control the fall armyworm.

Brian Sobel from Catholic Relief Services recalled witnessing a woman in Malawi who, in an effort to combat the pest, sprayed much more chemical pesticide on her maize than necessary.

The rapid increase of the pesticide market in Africa has led to the circulation of plenty of banned or counterfeit products, some very toxic for the farmer, said Steven Haggblade, a professor in the Department of Agricultural, Food and Resource Economics at Michigan State University in the United States. Farmers are often not well trained in the use of such chemicals and do not protect themselves during application, he said.

Pesticide use has many negative trade-offs, said Paul Jepson, a professor of environmental and molecular toxicology in the College of Agricultural Sciences at Oregon State University. Natural enemies like parasitic wasps are also often far more vulnerable to pesticides than fall armyworm larvae, which are hard to reach and hide themselves in the maize whorls for instance.

Continental action plan

A key recommendation made by the Fall Armyworm R4D International Consortium is to develop common methodologies and research protocols to ensure data from various studies across the continent are better used and compared. For example, how best could the true impacts of the fall armyworm on food and seed security, public health and environment be measured? Collaborative research could include multilocation assessment of the relationship between observed crop damages and yield losses, which is key to determine the efficacy of a pest control innovation.

Conference participants also agreed to work on defining economic and action thresholds for fall armyworm interventions, to ensure better recommendations to the farming communities.

Because no one solution can fit all farmers and socioeconomic contexts, advice must include use of environmentally safer pesticides, low-cost agronomic practices and landscape management and fall armyworm-resistant varieties, among other integrated pest management tools.

Enhanced cooperation between countries to access new technologies and manage the transboundary pest is seen as a priority. Consortium experts also urge an integrated pest management approach, initiated based on farmers’ needs. Controlling the fall armyworm in the long run will require important investments into research-for-development for generating and sharing knowledge and addressing technical gaps with farmers.

For more information on fall armyworm, this conference and the Fall Armyworm R4D International Consortium, please contact B.M. Prasanna, Director of CIMMYT’s Global Maize Program and of the CGIAR Research Program on MAIZE, at b.m.prasanna@cgiar.org.

Cobs & Spikes podcast: Matthew Rouse discusses research on wheat diseases

This week the International Maize and Wheat Improvement Center (CIMMYT) launched a new podcast: Cobs & Spikes. This is a space where we’re going to break down complex science into bite-sized, audio-rich explainers. We’re going to have real conversations with experts from around the world who are innovating in the fields of agriculture, food security and nutrition. We’re also going to listen to stories that link CIMMYT’s research with real-world applications.

In this episode, we are celebrating World Food Day, October 16. Also this week, food experts and leaders from around the world are gathering in Iowa for the 2018 Borlaug Dialogue and the World Food Prize Laureate Award Ceremony.

Today we’re talking to the recipient of the World Food Prize 2018 Norman Borlaug Award for Field Research and Application.

Matthew Rouse is a researcher with the Agricultural Research Service of the United States Department of Agriculture. Rouse works on developing wheat varieties that are resistant to diseases, and he’s being recognized for his work on Ug99 — a devastating race of stem rust disease. Throughout his career, Rouse has collaborated with the International Maize and Wheat Improvement Center (CIMMYT).

Music credit: Loam by Podington Bear

You can subscribe to Cobs & Spikes on SoundCloud, iTunes, Stitcher and other podcast platforms.

See our coverage of the 2018 Borlaug Dialogue and the World Food Prize.
See our coverage of the 2018 Borlaug Dialogue and the World Food Prize.

Are advisory apps a solution for collecting Big Data?

Big Data is transforming the way scientists conduct agricultural research and helping smallholder farmers receive useful information in real time. Experts and partners of the CGIAR Platform for Big Data in Agriculture are meeting on October 3-5, 2018, in Nairobi, Kenya, to share their views on how to harness this data revolution for greater food and nutrition security.

Jordan Chamberlin, Spatial Economist at CIMMYT, will give his insights on best practices on electronic data capture on October 4, 2018.

NAIROBI (Kenya) — Agronomic researchers face several challenges and limitations related to data. To provide accurate predictions and useful advice to smallholder farmers, scientists need to collect many types of on-farm data; for example, field size, area devoted to each crop, inputs used, agronomic practices followed, incidence of pests and diseases, and yield.

These pieces of data are expensive to obtain by traditional survey methods, such as sending out enumerators to ask farmers a long list of questions. Available data is often restricted to a particular geographical area and may not capture key factors of production variability, like local soil characteristics, fertilizer timing or crop rotations.

As a result, such datasets cannot deliver yield predictions at scale, one of the main expectations of Big Data. Digital advisory apps may be part of the solution, as they use crowdsourcing to routinize data collection on key agronomic variables.

The Taking Maize Agronomy to Scale in Africa (TAMASA) project has been researching the use of mobile apps to provide site-specific agronomic advice to farmers through agro-dealers, extension workers and other service providers.

At CIMMYT, one of the research questions we were interested in was “Why are plant population densities in farmers fields usually well below recommended rates?” From surveys and yield estimates based on crop-cut samples at harvest in Ethiopia, Nigeria and Tanzania, we observed that yields were correlated with plant density.

What was making some farmers not use enough seeds for their fields? One possible reason could be that farmers may not know the size of their maize field. In other cases, farmers and agro-dealers may not know how many seeds are in one packet, as companies rarely indicate it and the weight of each seed variety is different. Or perhaps farmers may not know what plant population density is best to use. Seed packets sometimes suggest a sowing rate but this advice is rather generic and assumes that farmers apply recommended fertilizer rates. However, farmers’ field conditions differ, as does their capacity to invest in expensive fertilizers.

To help farmers overcome these challenges, we developed a simple app, Maize-Seed-Area. It enables farmers, agro-dealers and extension workers to measure the size of a maize field and to identify its key characteristics. Then, using that data, the app can generate advice on plant spacing and density, calculate how much seed to buy, and provide information on seed varieties available at markets nearby.

View of the interface of the Maize-Seed-Area app on mobile phones and tablets. (Photo: CIMMYT)
View of the interface of the Maize-Seed-Area app on mobile phones and tablets. (Photo: CIMMYT)

Maize-Seed-Area is developed using the Open Data Kit (ODK) format, which allows to collect data offline and to submit it when internet connection becomes available. In this case, the app is also used to deliver information to the end users.

Advisory apps usually require some input data from farmers, so advice can be tailored to their particular circumstances. For example, they might need to provide data on the slope of their field, previous crops or fertilizer use. Some additional information may be collected through the app, such as previous seed variety use. All this data entered by the user, which should be kept to a minimum, is routinely captured by the app and retrieved later.

Hello, Big Data!

As the app user community grows, datasets on farmer practices and outcomes grow as well. In this case, we can observe trends in real time, for instance on the popularity of different maize varieties.

In a pilot in western Kenya, in collaboration with Precision Agriculture for Development (PAD), some 100 agro-dealers and extension workers used the app to give advice to about 2,900 farmers. Most of the advice was on the amount of seed to buy for a given area and on the characteristics of different varieties.

Data showed that the previous year farmers grew a wide range of varieties, but that three of them were dominant: DK8031, Duma43 and WH505.

Preferred variety of maize for sample farmers in western Kenya (Bungoma, Busia, Kakamega and Siaya counties), February-March 2018.
Preferred variety of maize for sample farmers in western Kenya (Bungoma, Busia, Kakamega and Siaya counties), February-March 2018.

A phone survey among some 300 of the farmers who received advice found that most of them anticipated to do things differently in the future, ranging from asking for advice again (37 percent), growing a different maize variety (31 percent), buying a different quantity of seed (19 percent), using different plant spacing (18 percent) or using more fertilizer (16 percent).

Most of the agro-dealers and extension workers have kept the app for future use.

The dataset was collected in a short period of time, just two months, and was available as soon as app users got online.

The Maize-Seed-Area pilot shows that advisory apps, when used widely, are a major source of new Big Data on agronomic practices and farmer preferences. They also help to make data collection easier and cheaper.

TAMASA is supported by the Bill and Melinda Gates Foundation and is implemented by the International Maize and Wheat Improvement Center (CIMMYT), the International Institute of Tropical Agriculture (IITA), the International Plant Nutrition Institute (IPNI) and Africa Soil Information Service (AfSIS).

Suitcase-sized lab speeds up wheat rust diagnosis

A farm landscape in Ethiopia. (Photo: Apollo Habtamu/ILRI)
A farm landscape in Ethiopia. (Photo: Apollo Habtamu/ILRI)

Despite her unassuming nature, the literary character Miss Marple solves murder mysteries with her keen sense of perception and attention to detail. But there’s another sleuth that goes by the same name. MARPLE (Mobile And Real-time PLant disEase) is a portable testing lab which could help speed-up the identification of devastating wheat rust diseases in Africa.

Rust diseases are one of the greatest threats to wheat production around the world. Over the last decade, more aggressive variants that are adapted to warmer temperatures have emerged. By quickly being able to identify the strain of rust disease, researchers and farmers can figure out the best course of action before it is too late.

The Saunders lab of the John Innes Centre created MARPLE. In collaboration with the Ethiopian Institute of Agricultural Research (EIAR) and the International Maize and Wheat Improvement Center (CIMMYT), researchers are testing the mobile diagnostic kit in Holeta, central Ethiopia.

“These new pathogen diagnostic technologies 
 offer the potential to revolutionize the speed at which new wheat rust strains can be identified,” says Dave Hodson, a CIMMYT rust pathologist in Ethiopia. “This is critical information that can be incorporated into early warning systems and result in more effective control of disease outbreaks in farmers’ fields.”

Hodson and his colleagues will be presenting their research at the CGIAR Big Data in Agriculture Convention in Nairobi, on October 3-5, 2018.

Read more about the field testing of the MARPLE diagnostic kit on the ACACIA website.

CIMMYT collaborator wins Norman Borlaug Award for Field Research and Application

Matthew Rouse, a researcher with the United States Department of Agriculture (USDA) Agricultural Research Service (ARS), has been named the winner of the 2018 Norman Borlaug Award for Field Research and Application. Rouse is recognized for his essential leadership efforts to contain and reduce the impact of Ug99, a devastating new race of the stem rust pathogen that poses a serious threat to the world’s wheat crops and food security.

The Norman Borlaug Award for Field Research and Application is presented annually to a young extension worker, research scientist or development professional who best emulates the dedication, perseverance, and innovation demonstrated by Norman Borlaug while working in the field with Mexican farmers in the 1940s and ’50s.

“When I learned that I was selected for the Borlaug Field Award, I was humbled by both the legacy of Norman Borlaug and by the fact that any impact I made was a part of collaborations with talented and hard-working individuals at USDA-ARS, the University of Minnesota, CIMMYT, the Ethiopian Institute of Agricultural Research, and other national programs,” Rouse said.

Rouse has been an essential collaborator for a wide range of crucial projects to protect the world’s wheat crops. His research supports more than 20 breeding programs in the U.S. and 15 wheat genetics programs around the world, including those at CIMMYT. As the coordinator of ARS’s spring wheat nursery project in Ethiopia and Kenya, he has provided Ug99 resistance genes to breeders worldwide, accelerating the process for incorporating enhanced stem rust protection into wheat varieties.

Rouse also collaborated with CIMMYT in 2013, when a race of stem rust unrelated to Ug99 caused an epidemic in Ethiopia. He rapidly assembled a team of scientists from CIMMYT, the Ethiopian Institute of Agricultural Research (EIAR) and USDA-ARS, and developed a research plan to establish four stem rust screening nurseries. This led to the selection of promising new wheat breeding lines by Ethiopian and CIMMYT scientists and the rapid 2015 release of the variety ‘Kingbird’ in Ethiopia, which was shown to be resistant to four of the most dangerous races of stem rust in addition to Ug99.

Read the announcement of the award on the World Food Prize website.

Matthew Rouse shows how to score wheat seedlings for stem rust resistance, at the Njoro research station in Kenya in 2009. (Photo: Petr Kosina/CIMMYT)
Matthew Rouse shows how to score wheat seedlings for stem rust resistance, at the Njoro research station in Kenya in 2009. (Photo: Petr Kosina/CIMMYT)

 

See our coverage of the 2018 Borlaug Dialogue and the World Food Prize.
See our coverage of the 2018 Borlaug Dialogue and the World Food Prize.

Mutating diseases drive wheat variety turnover in Ethiopia, new study shows

Yellow spores of the fungus Puccinia striiformis f.sp. tritici, which causes stripe rust disease in wheat. Photo: CIMMYT/Mike Listman.
Yellow spores of the fungus Puccinia striiformis f.sp. tritici, which causes stripe rust disease in wheat. Photo: CIMMYT/Mike Listman.

Rapidly emerging and evolving races of wheat stem rust and stripe rust disease—the crop’s deadliest scourges worldwide—drove large-scale seed replacement by Ethiopia’s farmers during 2009-14, as the genetic resistance of widely-grown wheat varieties no longer proved effective against the novel pathogen strains, according to a new study by the International Maize and Wheat Improvement Center (CIMMYT).

Based on two surveys conducted by CIMMYT and the Ethiopian Institute of Agricultural Research (EIAR) and involving more than 2,000 Ethiopian wheat farmers, the study shows that farmers need access to a range of genetically diverse wheat varieties whose resistance is based on multiple genes.

After a severe outbreak in 2010-11 of a previously unseen stripe rust strain, 40 percent of the affected farm households quickly replaced popular but susceptible wheat varieties, according to Moti Jaleta, agricultural economist at CIMMYT and co-author of the publication.

“That epidemic hit about 600,000 hectares of wheat—30 percent of Ethiopia’s wheat lands—and farmers said it cut their yields in half,” Jaleta said. “In general, the rapid appearance and mutation of wheat rust races in Ethiopia has convinced farmers about the need to adopt newer, resistant varieties.”

The fourth most widely grown cereal after tef, maize, and sorghum, wheat in Ethiopia is produced largely by smallholder farmers under rainfed conditions. Wheat production and area under cultivation have increased significantly in the last decade and Ethiopia is among Africa’s top three wheat producers, but the country still imports on average 1.4 million tons of wheat per year to meet domestic demand.

National and international organizations such as EIAR, CIMMYT, and the International Centre for Agricultural Research in the Dry Areas (ICARDA) are working intensely to identify and incorporate new sources of disease resistance into improved wheat varieties and to support the multiplication of more seed to meet farmer demand.

New wheat varieties have provided bigger harvests and incomes for Ethiopia farmers in the last decade, but swiftly mutating and spreading disease strains are endangering wheat’s future, according to Dave Hodson, CIMMYT expert in geographic information and decision support systems, co-author of the new study.

Ethiopian wheat farmers like Abebe Abora, of Doyogena, have benefitted from adopting high-yielding wheat varieties but face threats from fast mutating races of wheat rust disease pathogens. Photo: CIMMYT/Apollo Habtamu.
Ethiopian wheat farmers like Abebe Abora, of Doyogena, have benefitted from adopting high-yielding wheat varieties but face threats from fast mutating races of wheat rust disease pathogens. Photo: CIMMYT/Apollo Habtamu.

“In addition to stripe rust, highly-virulent new races of stem rust are ruining wheat harvests in eastern Africa,” he explained. “These include the deadly Ug99 race group, which has spread beyond the region, and, more recently, the stem rust race TKTTF.”

As an example, he mentioned the case of the wheat variety Digalu, which is resistant to stripe rust and was quickly adopted by farmers after the 2010-11 epidemic. But Digalu has recently shown susceptibility to TKTTF stem rust and must now be replaced.

“In rust-prone Ethiopia, the risks of over-reliance on a widely-sown variety that is protected by a single, major resistance gene—Digalu, for example—are clearly apparent,” he added. “CIMMYT and partners are working hard to replace it with a new variety whose resistance is genetically more complex and durable.”

Hodson said as well that continuous monitoring of the rust populations in Ethiopia and the surrounding region is essential to detect and respond to emerging threats, as well as to ensure that the key pathogen races are used to screen for resistance in wheat breeding programs.

Hodson and partners at the John Innes Centre, UK, and EIAR are leading development of a handheld tool that allows rapid identification of disease strains in the field, instead of having to send them to a laboratory and lose precious time awaiting the results.

CIMMYT and partners are also applying molecular tools to study wheat varietal use in Ethiopia. “There are indications that yields reported by farmers were much lower than official statistics, and farmer recollections of varietal names and other information are not always exact,” Hodson explained. “We are analyzing results now of a follow-up study that uses DNA fingerprinting to better document varietal use and turnover.”

The authors would like to acknowledge the Standing Panel for Impact Assessment (SPIA) for financing, the Diffusion and Impacts of Improved Varieties in Africa (DIIVA) project that supported the first survey in 2011, and Cornell University, the Bill & Melinda Gates Foundation, and United Kingdom’s Department for International Development (DFID) through the Durable Rust Resistance in Wheat (DRRW, now called Delivering Genetic Gain in Wheat) project for support for the second survey in 2014.

Seed companies are responsible for creating demand for quality protein maize

NuME project leader briefing the delegation from Global Affairs Canada on QPM seed production. (Photo: CIMMYT)
NuME project leader briefing the delegation from Global Affairs Canada on QPM seed production. (Photo: CIMMYT)

Recently, the International Maize and Wheat Improvement Center (CIMMYT)-led, Government of Canada’s Global Affairs Canada (GAC)-funded, Nutritious Maize for Ethiopia (NuME) project has led field visits for a number of high-level stakeholders.

On April 11, 2018 representatives from the Embassy of Canada in Ethiopia, Ivan Roberts, Head of Development Cooperation and Carolyn MacLeod, Development Team leader for Human Development, Environment and Agriculture, visited the Ethio Veg Fru Farm, one of the main field sites of the NuME project.

“We were very much interested and happy to see such a success story as the Ethio Veg Fru Farm,” said MacLeod. Roberts and MacLeod both said they appreciated the efforts made by the NuME project in working collaboratively with private seed companies to fill the seed shortage of QPM varieties. They were also happy with the field performance of the crop under production.

MacLeod said she looked forward to continued collaboration with CIMMYT and indicated continued support to projects such as NuME under the International Assistance Policy of Canada, in which agricultural development must benefit women and girls.

The NuME project’s goal is to bring nutritious, quality protein maize (QPM) to rural maize producers in the Ethiopian maize belt and beyond.

Maize lacks two essential amino acids – lysine and tryptophan, making maize protein less useful for humans. In the southern region of Ethiopia, where maize accounts for more than 60 percent of the dietary protein intake, an estimated 85 to 90 percent of the population – especially young children and women – are at risk of inadequate lysine intake and protein deficiency.

In Ethiopia, maize now ranks first among cereals for production, and second in area planted. Ethiopian families increasingly rely on maize as a staple due to its higher productivity and lower production costs, compared to other cereals.

QPM looks and tastes the same as normal maize but contains up to twice as much lysine and tryptophan. Studies have shown that children who consume QPM grow roughly 10 percent more in both height and weight.

Over the last few years the Ethiopian government has been stepping up nutrition interventions targeting women and children, with aims for a 3 percent annual reduction in the number of stunted and underweight children. As part of this initiative, the Ethiopian government allocates around 10 percent of the total national budget to agriculture, and the Ministry of Agriculture and Natural Resource (MoANR) has officially made QPM part of their extension agenda.

The EthioVeg Fru Farm Plc., with the financial and technical support of the NuME Project, is multiplying parental lines of BHQPY545 under irrigation. BHQPY545, developed from CIMMYT lines, is a highly popular single cross QPM hybrid released by the Ethiopia Institute of Agricultural Research.

Although the variety has been quite popular, seed companies have been reluctant to produce and market the seed due to it low seed-yield potential, making it more difficult for seed companies to produce a sufficient supply. Due to the stigma of low seed-yield, NuME organized a high-level field day on March 27, 2018 to demonstrate the genetic potential of the parental lines and effectiveness offseason maize seed multiplication with irrigation.

Seed company managers briefed on QPM seed multiplication during visitors day. (Photo: CIMMYT)
Seed company managers briefed on QPM seed multiplication during visitors day. (Photo: CIMMYT)

Visitors to the field day included the state minister for agricultural development from MoANR, Tesfaye Mengiste, general managers of public and private seed companies and a Farmers’ Cooperative Union that work in partnership with the NuME project.

Mengiste stressed maize as the number one strategic food crop for the country as it is the most produced and consumed cereal. He thanked NuME for bringing QPM technologies to the country and said it has to be up to the extension system now to reach every farmer.

Impressed by the field performances he saw, Mengiste probed seed company managers about why they have not multiplied seeds during the offseason to overcome seed scarcity and help reach the annual target of 200,000 ha land planted with QPM, approximately 10 percent of land currently devoted to maize production.

Mengiste wondered why there seems to be a QPM seed paradox, where farmers criticize seed unavailability while seed companies complain about the lack of demand. He said that QPM is essential for the national food and nutrition security and urged seed companies to make all possible effort to produce and sell QPM seeds, as part of their responsibility to reach rural smallholder farmers in exchange for government support.

Most seed companies had considered the inbred lines incompetent and weak but the field visit made them realize the potential of the lines, even under high plant density. They were convinced that the poor field performance previously noticed was not due to lack of inherent potential, but to the agro-techniques applied.

The general manager of the South Seed Enterprise (SSE), Ato Belay Hariso said he learned a lot from the field day and will use the experience to produce seed using irrigation during the off-season to fill seed supply shortages.

After seeing the crop in the field and knowing that QPM is useful to curb malnutrition in the country, seed mangers expressed great enthusiasm to increase seed production of BHQPY545 and other QPM varieties.

Mengiste recommended a number of efforts to help increase the scalability of QPM seeds, starting with continued dissemination of QPM varieties by NuME and the governmental extension system until sustainable demand is created. He suggested that seed company managers must seriously plan QPM seed production for the coming main season and perhaps  look for more private seed companies, who have the interest and capacity to produce QPM seed to partner with. Mengiste said that seed enterprises should be able to sell all the QPM seed they produce by promoting the nutritional advantages of QPM, with support of the NuME project and the extension system.

The Nutritious Maize for Ethiopia project is funded by Global Affairs Canada (GAC) and implemented by CIMMYT-Ethiopia in collaboration with various stakeholders from agriculture, nutrition and health sectors. The project is designed to contribute to the reduction of malnutrition, especially among women and young children, and to increase food security for resource-poor smallholder farmers in Ethiopia through the widespread adoption, production and utilization of QPM varieties and crop management practices that increase farm productivity.