Skip to main content

Location: Burundi

Fighting the stress

East African Seed Company has a rich history of nearly 50 years, serving farmers with improved climate-resilient seed varieties. Established in 1972, the company produces and sells improved seed, through a wide distribution network in at least 15 countries in sub-Saharan Africa. It also markets agrochemicals and other farm inputs, and has ambitions of expanding to the rest of Africa, trading as Agriscope Africa Limited.

Smallholder farmers in sub-Saharan Africa continue to face multiple biotic and abiotic stresses as they try to improve their farms’ productivity and their livelihoods. Maize seed that guarantees high yield is a key trait, coupled with other key attributes such as drought tolerance, disease and pest resistance, early seedling vigor as well as suitability for food and animal feed.

With the varieties serving both small- and large-scale commercial farmers, challenges such as the fall armyworm, diminishing soil fertility and erratic rains have persisted in recent years and remain as key farming obstacles. “Such challenges diminish crop production and the grain quality thereby, lessening farmers’ profitability,” says Rogers Mugambi, Chief Operating Officer of East African Seed Company.

Scientists at the International Maize and Wheat Improvement Center (CIMMYT), in collaboration with partners in the national agriculture research systems and the commercial seed sector, continue to develop seed varieties that can guarantee decent yield even in times of climatic, disease and pest stress.

General view of the East African Seed warehouse. (Photo: Jerome Bossuet/CIMMYT)
General view of the East African Seed warehouse. (Photo: Jerome Bossuet/CIMMYT)

Top-notch research trickles down to farmers

Over the years, East African Seed has inked partnerships with CIMMYT, national research institutes and other agencies in the countries where it operates. Such partnerships have been the driving force to its success and the impacts within the farming communities in sub-Saharan Africa.

“Our collaboration with CIMMYT began in 2008 with germplasm acquisition. The cooperation has expanded to include testing networks for new hybrids, early-generation seed production and marketing. The overall beneficiary is the smallholder farmer who can access quality seeds and produce more with climate-smart products,” Mugambi says.

Apart from the multi-stress-tolerant varieties developed and released over time by the national agricultural research programs, CIMMYT recently announced a breakthrough: fall armyworm-tolerant elite maize hybrids for eastern and southern Africa. This success followed three years of rigorous research and experiments conducted in Kenya and signified a key milestone in the fight against fall armyworm.

As part of the partnership in the Drought Tolerant Maize for Africa (DTMA) and Stress Tolerant Maize for Africa (STMA) projects, East African Seed Company (Agriscope Africa Limited) established demonstration farms and conducted field days in Kenya, reaching thousands of farmers as a result. It was also able to produce early generation seed, which supported production of 2,000 metric tons of certified seed. This partnership now continues in the Accelerating Genetic Gains in Maize and Wheat (AGG) project.

The company has contracted large- and small-scale growers across the country to meet its seed production targets.

“Most of our small-scale growers are clustered in groups of up to 30 farmers with less than five acres of farmland. The large growers have advanced irrigation facilities such as the pivot system and seed processing plants. The seed from the fields is pre-cleaned and dried in the out-grower facilities before delivery to our factory for further cleaning and processing,” Mugambi explains.

A handful of improved maize seed from the drought-tolerant variety TAN 250, developed and registered for sale in Tanzania through CIMMYT's Drought Tolerant Maize for Africa (DTMA) project. (Photo: Anne Wangalachi/CIMMYT)
A handful of improved maize seed from the drought-tolerant variety TAN 250, developed and registered for sale in Tanzania through CIMMYT’s Drought Tolerant Maize for Africa (DTMA) project. (Photo: Anne Wangalachi/CIMMYT)

Out with the drought

Currently, of the 1,300 metric tons of drought-tolerant hybrid seeds it produces yearly, 500 metric tons constitute those derived from the partnership in the STMA project. Two notable hybrids,  HODARI (MH501) and TOSHEKA (MH401), were derived during the DTMA and STMA projects. Released in 2014 and accepted for regional certification through the Common Market for Eastern and Southern Africa (COMESA)’s regional catalogue, the MH501 is a mid-altitude adapted and medium maturing three-way cross hybrid. The yield advantage of 15% over the local commercial checks triggered widespread adoption by the farmers, according to Mugambi. In Kenya, it was used as a commercial check during national performance trials, from 2017 to 2019.

The MH401, an early maturing hybrid with moderate drought tolerance, has been adopted in lowland and mid-altitude dry ecologies of Kenya and Tanzania. It has a 20% yield advantage over the local commercial checks.

As part of its varietal replacement, East African Seed Company looks to steadily retire older varieties such as KH600-15A and WE1101 and promote new ones including TAJIRI (EASH1220), TAJI (MH502) and FARAJA (MH503).

To promote new varieties and successfully reach smallholders, the company conducts field days, farm-level varietal demonstrations, road shows and radio programs. It also disseminates information on the benefits of new varieties while also dispensing promotional materials such as branded t-shirts and caps.

“Additionally, we organize annual field days at our research farm in Thika, where key and influential farmers and other stakeholders are invited from across Kenya and neighboring countries to learn about our new agricultural technologies,” Mugambi says.

Study calls for better understanding of fertilizer prices faced by African smallholder farmers

A farm worker applies fertilizer in a field of Staha maize for seed production at Suba Agro's Mbezi farm in Tanzania. (Photo: Peter Lowe/CIMMYT)
A farm worker applies fertilizer in a field of Staha maize for seed production at Suba Agro’s Mbezi farm in Tanzania. (Photo: Peter Lowe/CIMMYT)

Crop yields in sub-Saharan Africa are generally low. This is in large part because of low fertilizer use. A recent study of six countries in sub-Saharan Africa showed that just 35% of farmers applied fertilizer. Some possible reasons for this could be that farmers may be unaware of the efficacy of fertilizer use; or have degraded soils that do not respond to fertilizer; they may not have the cash to purchase it; or because unpredictable rainfall makes such investments risky. It may also be because local fertilizer prices make their use insufficiently profitable for many farmers.

To better understand the potential fertilizer demand in a particular location, it is important to know how crops respond to fertilizer under local conditions, but it is critical to understand crop responses in terms of economic returns. This requires information about local market prices of fertilizers and other inputs, as well as the prices that a farmer could receive from selling the crop.

While national-level fertilizer prices may be available, it is necessary to consider the extent to which prices vary within countries, reflecting transportation costs and other factors. In the absence of such data, analysis of household-level behaviors requires assumptions about the prices smallholder farmers face — assumptions which may not be valid. For example, evaluations of the returns to production technologies settings have often assumed spatially invariant input and output prices or, in other words, that all farmers in a country face the same set of prices. This is at odds with what we know about economic remoteness and the highly variable market access conditions under which African smallholders operate.

An obstacle to using empirical data on sub-national disparities in fertilizer prices is the scarcity of such data. A new study focused on the spatial discrepancies in fertilizer prices. The study compiled local market urea price in eighteen countries in sub-Saharan Africa for the period between 2010-2018 and used spatial interpolation models — using points with known values to approximate values at other unknown points — to predict local prices at locations for which no empirical data was available. It was conducted by scientists at University of California, Davis, the International Maize and Wheat Improvement Center (CIMMYT) and the International Food Policy Research Institute (IFPRI). The authors note that this is the first major attempt to systematically describe the spatial variability of fertilizer prices within the target countries and test the ability to estimate the price at unsampled locations.

Predicted relative urea price (local price divided by the observed median national price) for areas with crop land in eight East African countries.
Predicted relative urea price (local price divided by the observed median national price) for areas with crop land in eight East African countries.

“Our study uncovers considerable spatial variation in fertilizer prices within African countries and gives a much more accurate representation of the economic realities faced by African smallholders than the picture suggested by using national average prices,” said Camila Bonilla Cedrez, PhD Candidate at University of California, Davis. “We show that in many countries, this variation can be predicted for unsampled locations by fitting models of prices as a function of longitude, latitude, and additional predictor variables that capture aspects of market access, demand, and environmental conditions.”

Urea prices were generally found to be more expensive in remote areas or away from large urban centers, ports of entry or blending facilities. There were some exceptions, though. In Benin, Ghana and Nigeria, prices went down when moving away from the coast, with the possible explanation being market prices in areas with higher demand are lower. In other locations, imports of fertilizer from neighboring countries with lower prices may be affecting prices in another country or region, much like political influence. Politically, well-connected villages can receive more input subsidies compared to the less connected ones.

“The performance of our price estimation methods and the simplicity of our approach suggest that large scale price mapping for rural areas is a cost-effective way to provide more useful price information for guiding policy, targeting interventions, and for enabling more realistic applied microeconomic research. For example, local price estimates could be incorporated into household-survey-based analysis of fertilizer adoption,” explained Jordan Chamberlin, CIMMYT spatial economist. “In addition, such predictive ‘price maps’ can be incorporated into targeting and planning frameworks for agricultural investments. For example, to target technology promotion efforts to the areas where those technologies are most likely to be profitable.”

Predicted relative urea price (local price divided by the observed median national price) for areas with crop land in nine West African countries.
Predicted relative urea price (local price divided by the observed median national price) for areas with crop land in nine West African countries.

“The evidence we have compiled in this paper suggests that, while investments in more comprehensive and spatially representative price data collection would be very useful, we may utilize spatial price prediction models to extend the value of existing data to better reflect local price variation through interpolation,” explained Robert J. Hijmans, professor at University of California, Davis. “Even if imperfect, such estimates almost certainly better reflect farmers’ economic realities than assumptions of spatially constant prices within a given country. We propose that spatial price estimation methods such as the ones we employ here serve for better approximating heterogeneous economic market landscapes.”

This study has illustrated new ways for incorporating spatial variation in prices into efforts to understand the profitability of agricultural technologies across rural areas in sub-Saharan Africa.  The authors suggest that an important avenue for future empirical work would be to evaluate the extent to which the subnational price variation documented is a useful explanatory factor for observed variation in smallholder fertilizer use in sub-Saharan Africa, after controlling for local agronomic responses and output prices. One way to do that may be to integrate input and output price predictions into spatial crop models, and then evaluate the degree to which modeled fertilizer use profitability predicts observed fertilizer use rates across different locations.

Read the full study:
Spatial variation in fertilizer prices in Sub-Saharan Africa

Book launch: Lead farmers in eastern and southern Africa

Tackling the challenges of climate change and increasing scarcity of resources like arable land and water requires that farming and food systems around the world undergo fundamental shifts in thinking and practices. A new book draws on experiences of men and women farmers across eastern and southern Africa who have been associated with the Sustainable Intensification of Maize-Legume Systems for Food Security in Eastern and Southern Africa (SIMLESA) project. The inspiring and moving accounts tell the story of how these farmers have bravely embraced change to improve their farming methods and consequently the lives and livelihoods of their families.

The maize-growing regions of southern and eastern Africa face many challenges, including lower than average yields, crop susceptibility to pests and diseases, and abiotic stresses such as droughts that can be frequent and severe. There is also widespread lack of access to high-yielding stress resilient improved seed and other farming innovations, presenting a need for scalable technologies, adapted to farmers’ growing conditions.

Maize is the most important staple crop in the region, feeding more than 200-300 million people across Africa and providing food and income security to millions of smallholder farmers. Prioritization of cost reducing, yield enhancing and resource conserving farming methods is vital to catalyze a shift towards sustainable and resilient maize agri-food systems. Conservation agriculture (CA) is one promising approach.

Launched in 2010, SIMLESA is led by the International Maize and Wheat Improvement Center (CIMMYT) and funded by the Australian Center for International Agricultural Research (ACIAR). The project supports farmers and partner organizations to achieve increased food production while minimizing pressure on the environment by using smallholder farmers’ resources more efficiently through CA approaches. SIMLESA is implemented by national agricultural research systems, agribusinesses and farmers in partner countries including, Ethiopia, Kenya, Malawi, Mozambique, Rwanda, Tanzania and Uganda.

The farmers’ words in this book drive home the core philosophy of SIMLESA: that critical paradigm shifts in smallholder farming are possible and can lead to positive and potentially lasting impacts.

The candid accounts of the benefits yielded from adopting new practices like CA are a testimony to this idea:  “Now we have seen with our own eyes these new methods are beneficial, and we want to continue what we are doing
.my field is a school where others can learn,” said Maria Gorete, a farmer in Mozambique.

Policy makers and scientists from eastern and southern Africa met in Uganda at a regional forum convened by the Association for Strengthening Agricultural Research in Eastern and Central Africa (ASARECA), on 3-4 May 2019. The forum discussed ways to scale up the learnings of SIMLESA and a joint communique recommending policy actions was signed by the Ministers of Agriculture of the Republic of Burundi, the Republic of the Congo, the Democratic Republic of Congo, the State of Eritrea, the Federal Democratic Republic of Ethiopia, the Republic of Kenya, the Republic of Madagascar,  the Republic of Rwanda, the Republic of South Sudan, the Republic of the Sudan, the United Republic of Tanzania, the Republic of Uganda, the Republic of Malawi and the Republic of Mozambique of the high level Ministerial Panel on Sustainable Intensification of Maize-Legume Cropping Systems for Food Security in Eastern and Southern Africa (SIMLESA).

Sustainable Intensification of Maize-Legume Systems for Food Security in Eastern and Southern Africa (SIMLESA)

The Sustainable Intensification of Maize-Legume Systems for Food Security in Eastern and Southern Africa (SIMLESA) program aims to improve maize and legume productivity by 30 percent and to reduce the expected downside yield risk by 30 percent on approximately on approximately 650,000 farm households by 2023. Launched in 2010, the focal countries of program research are Australia, Botswana, Burundi, Ethiopia, Kenya, Malawi, Mozambique, Tanzania, South Sudan, Uganda, Rwanda, Zambia and Zimbabwe.

The main thrust of the SIMLESA program is increasing farm-level food security, productivity and incomes through promotion of maize-legume intercropping systems in the context of reduced climate risk and change.

The program has also laid the foundation for developing conservation agriculture based sustainable intensification options, including integration of improved maize and legume varieties identified for their compatibility with CA-based practices; promoting technology adoption by both female and male farmers; capacity building for national agricultural research systems of partner countries; creating enhanced partnerships and collaboration with established innovation platforms for coordinated scaling-out of SIMLESA-generated options and practices.

Funding Institutions: Australian Centre for International Agricultural Research (ACIAR)

Partners: National agricultural systems of Ethiopia, Kenya, Malawi, Mozambique and Tanzania, as well as international and local research centers, extension agencies, non-governmental organizations, universities and agribusinesses along the value chain.

Read the final report of the SIMLESA project

W4A Day Five: Ending on a high and a declaration of commitment

As so often happens at the end of conferences, I have to dash for a plane, so I’ll make it brief. You may have seen on our live twitter feed (#W4A) that today was a day for proposals and promises at the Wheat for Food Security in Africa conference. Participants from each country gathered together to discuss and present how they intended to move forward from these meetings.

Almost all the countries agreed that there is a need to initiate some form of ‘wheat task force’. This would act to liaise with governments, conduct research, and establish capacity building in the key areas of extension and technology adoption. Organizations such as these could also address the issues which have been raised so many times this week: smallholder farmers’ access to credit, inputs such as fertilizer, the correct agronomic practices for their region and efficiency within the value chain between researchers, extension workers, farmers, markets, millers, and consumers.

Participants also raised the issue of germplasm exchange. This needs to be made easier between countries, while making sure that IP rights are protected and the spread of diseases such as Ug99 prevented, which cannot be done without international collaboration. All participants indicated that they would be very willing to work together in the future and to convince others in their countries to work with their international partners. Linked to this, some argued that the involvement of the private sector is key if we are to promote the development of a profitable African wheat industry. For this too we need to develop sound and consistent IP practices.

Another major issue discussed was the current situation with wheat imports. Many African countries subsidize wheat imports so much that it is cheaper to buy wheat abroad than to grow it nationally. This, argued participants, is not a healthy or sustainable practice. Governments need to reduce subsidies to make wheat farming more attractive for producers and/or introduce a levy of e.g. $2/ton on wheat imports, and invest this money in wheat research to develop varieties and agronomic practices suitable for the region.

The conference concluded with the signing of a declaration which will be presented by the Minister of Ethiopia at the African Union Joint Conference of African Ministers of Agriculture and Ministers of Trade, 29 October – 2 November 2012, with the full support of conference participants and the Ministers of Sudan, Zimbabwe, and Burundi. The declaration “urgently recommends to include wheat as one of Africa’s strategic products” and stresses that policy options are proposed to “promote and develop domestic wheat production
 and to scale-up investment to the national and international wheat value chain.”

In closing the conference, Thomas Lumpkin, CIMMYT Director General, concluded: “I am committed, CIMMYT is committed, ICARDA is committed, to improving wheat in Africa
 African farmers want to change. They don’t want to be museums of ancient practices. They want to evolve, become more productive.” And this is the message that will be taken forward and presented to Africa as a continent.