Skip to main content

funder_partner: Zimbabwe Resilience Building Fund (ZRBF)

Crop variety guide for farmers

As part of a rural resilience project in Zimbabwe, the International Maize and Wheat Improvement Center (CIMMYT) has published a new guide to stress-tolerant crop varieties for smallholder farmers in Zimbabwe.

The guide is a critical output of a project led by CIMMYT and the international humanitarian response agency GOAL, in collaboration with the United Nations World Food Programme (WFP), the Government of Zimbabwe and other partners. With financial support from the Swiss Agency for Development and Cooperation (SDC) and the U.S. Agency for International Development (USAID), the project aims to reach 5000 smallholder farmers in target areas in the country.

Among the project components is the promotion of stress-tolerant seed and climate-smart agriculture practices to rural smallholders. With increasing threats of climate change and a decline in soil fertility, using these improved varieties and climate-smart practices is critical to help farmers adapt to external stresses.

To support variety adoption, a team of CIMMYT experts have identified suitable drought-tolerant and nutritious maize, sorghum and millet varieties. These will be promoted through “mother and baby” trials, designed to facilitate conversations among farmers, extension, and researchers, in these areas.

The new crop variety guide aims to help smallholder farmers in target areas make informed choices by providing critical information about the prioritized products and their maturity length, drought-tolerance, nutritional value, and pest and disease resistance. Direct linkages with private sector seed companies will ensure that farmers have access to this seed at affordable prices.

Implementing crop rotation between these best-suited, stress-tolerant varieties and climate-resilient cowpeas and groundnuts in a conservation agriculture system can improve food and nutrition security even under a variable climate.

Starting with good seed, and enhanced with improved agronomic practices, smallholder farmers have a greater chance of reliable yields and improved income.

Download the manual: Variety description: maize, sorghum, millet, cowpeas and groundnuts

Saving water and time

“I wonder why I never considered using drip irrigation for all these years,” says Michael Duri, a 35-year-old farmer from Ward 30, Nyanga, Zimbabwe, as he walks through his 0.5-hectare plot of onions and potatoes. “This is by far the best method to water my crops.”

Duri is one of 30 beneficiaries of garden drip-kits installed by the International Maize and Wheat Improvement Center (CIMMYT), an implementing partner under the Program for Growth and Resilience (PROGRESS) consortium, managed by the Zimbabwe Resilience Building Fund (ZRBF).

“In June 2020, I installed the drip kit across 0.07 hectares and quickly realized how much water I was saving through this technology and the reduced amount of physical effort I had to put in,” explains Duri. By September, he had invested in two water tanks and more drip lines to expand the area under drip irrigation to 0.5 hectares.

Michael Duri stands with his son and mother next to his potato field in Nyanga, Zimbabwe. (Photo: Shiela Chikulo)
Michael Duri stands with his son and mother next to his potato field in Nyanga, Zimbabwe. (Photo: Shiela Chikulo)

Water woes

Zimbabwe’s eastern highland districts like Nyanga are renowned for their diverse and abundant fresh produce. Farming families grow a variety of crops — potatoes, sugar beans, onions, tomatoes, leafy vegetables and garlic — all year round for income generation and food security.

Long poly-pipes lining the district — some stretching for more than 10 kilometers — use gravity to transport water from the mountains down to the villages and gardens. However, in the last five-to-ten years, increasing climate-induced water shortages, prolonged dry spells and high temperatures have depleted water reserves.

To manage the limited resources, farmers access water based on a rationing schedule to ensure availability across all areas. Often during the lean season, water volumes are insufficient for effectively irrigating the vegetable plots in good time, which leads to moisture stress, inconsistent irrigation and poor crop performance. Reports of cutting off or diverting water supply among farmers are high despite the local council’s efforts to schedule water distribution and access across all areas. “When water availability is low, it’s not uncommon to find internal conflicts in the village as households battle to access water resources,” explains Grace Mhande, an avid potato producer in Ward 22.

Climate-proofing gardens

Traditionally, flood, drag hose, bucket and sprinkler systems have been used as the main irrigation methods. However, according to Raymond Nazare, an engineer from the University of Zimbabwe, these traditional irrigation designs “waste water, are laborious, require the services of young able-bodied workers and use up a lot of time on the part of the farmers.”

Prudence Nyanguru, who grows tomatoes, potatoes, cabbages and sugar beans in Ward 30, says the limited number of sprinklers available for her garden meant she previously had to irrigate every other day, alternating the sprinkler and hose pipe while spending more than five hours to complete an average 0.05-hectare plot.

“Whereas before I would spend six hours shifting the sprinklers or moving the hose, I now just switch on the drip and return in about two or three hours to turn off the lines,” says Nyanguru.

The drip technology is also helping farmers in Nyanga adapt to climate change by providing efficient water use, accurate control over water application, minimizing water wastage and making every drop count.

“With the sprinkler and flood systems, we noticed how easily the much-needed fertile top soil washed away along with any fertilizer applied,” laments Vaida Matenhei, another farmer from Ward 30. Matenhei now enjoys the simple operation and steady precision irrigation from her drip-kit installation as she monitors her second crop of sugar beans.

Frédéric Baudron, a systems agronomist at CIMMYT, observes that Zimbabwe has a long history of irrigation, but this has mostly tended to be large-scale. “This means either expensive pivots owned by large-scale commercial farmers — a minority of the farming population in Zimbabwe as in much of sub-Saharan Africa — or capital-intensive irrigation schemes shared by a multitude of small-scale farmers, often poorly managed because of conflicts amongst users,” he says. A similar pattern can be seen with mechanization interventions, where Zimbabwe continues to rely on large tractors when smaller, and more affordable, machines would be more adapted to most farmers in the country.

“Very little is done to promote small-scale irrigation,” explains Baudron. “However, an installation with drip kits and a small petrol pump costs just over $1 per square meter.”

Prudence Nyanguru tends to her thriving tomato field in Nyanga, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)
Prudence Nyanguru tends to her thriving tomato field in Nyanga, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)

A disability-inclusive technology

The design of the drip-kit intervention also focused on addressing the needs of people with disabilities. At least five beneficiaries have experienced the limitations to full participation in farming activities as a result of physical barriers, access challenges and strenuous irrigation methods in the past.

For 37-year-old Simon Makanza from Ward 22, for example, his physical handicap made accessing and carrying water for his home garden extremely difficult. The installation of the drip-kit at Makanza’s homestead garden has created a barrier-free environment where he no longer grapples with uneven pathways to fetch water, or wells and pumps that are heavy to operate.

“I used to walk to that well about 500 meters away to fetch water using a bucket,” he explains. “This was painstaking given my condition and by the time I finished, I would be exhausted and unable to do any other work.”

The fixed drip installation in his plot has transformed how he works, and it is now easier for Makanza to operate the pump and switches for the drip lines with minimal effort.

Families living with people with disabilities are also realizing the advantages of time-saving and ease of operation of the drip systems. “I don’t spend all day in the field like I used to,” says George Nyamakanga, whose brother Barnabas who has a psychosocial disability. “Now, I have enough time to assist and care for my brother while producing enough to feed our eight-member household.”

By extension, the ease of operation and efficiency of the drip-kits also enables elderly farmers and the sick to engage in garden activities, with direct benefits for the nutrition and incomes of these vulnerable groups.

Irene Chikata, 69, operates her lightweight drip-kit on her plot in Nyanga, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)
Irene Chikata, 69, operates her lightweight drip-kit on her plot in Nyanga, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)

Scaling for sustained productivity

Since the introduction of the drip-kits in Nyanga, more farmers like Duri are migrating from flood and sprinkler irrigation and investing in drip irrigation technology. From the 30 farmers who had drip-kits installed, three have now scaled up after witnessing the cost-effective, labor-saving and water conservation advantages of drip irrigation.

Dorcas Matangi, an assistant research associate at CIMMYT, explains that use of drip irrigation ensures precise irrigation, reduces disease incidence, and maximal utilization of pesticides compared to sprinklers thereby increasing profitability of the farmer. “Although we are still to evaluate quantitatively, profit margin indicators on the ground are already promising,” she says.

Thomas Chikwiramadara and Christopher Chinhimbiti are producing cabbages on their shared plot, pumping water out of a nearby river. One of the advantages for them is the labor-saving component, particularly with weed management. Because water is applied efficiently near the crop, less water is available for the weeds in-between crop plants and plots with drip irrigation are thus far less infested with weeds than plots irrigated with buckets or with flood irrigation.

“This drip system works well especially with weed management,” explains Chinhimbiti. “Now we don’t have to employ any casual labor to help on our plot because the weeds can be managed easily.”

Thomas Chikwiramadara and Christopher Chinhimbiti walk through their shared cabbage crop in Nyanga, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)
Thomas Chikwiramadara and Christopher Chinhimbiti walk through their shared cabbage crop in Nyanga, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)

Farm mechanization under COVID-19

The COVID-19 pandemic continues to transform the way the world operates, and agricultural production systems are not exempt.

Even in countries that have identified the agricultural sector as an essential one, ongoing restrictions on transport and freedom of movement are causing disruptions across the value chain — with potentially devastating impact on already fragile food systems in Latin America, sub-Saharan Africa and South Asia.

With this in mind, systems agronomists and mechanization specialists at the International Maize and Wheat Improvement Center (CIMMYT), discuss the impact of restrictions on agricultural labor and production, and the role farm mechanization can play in addressing new challenges.

What are the implications of the agricultural labor shortages that are emerging in Africa and Latin America as a result of COVID-19 restrictions?

A woman demonstrates the use of a mini-tiller in Naivasha, Kenya. (Photo: Matt O’Leary/CIMMYT)
A woman demonstrates the use of a mini-tiller in Naivasha, Kenya. (Photo: Matt O’Leary/CIMMYT)

Frédéric Baudron: The pandemic has demonstrated that food production systems around the world — even in countries where agriculture is thought to be highly mechanized — are highly dependent on farm labor.

Africa is often presented as being dominated by farms which rely mainly on the labor of family members. Therefore, one could expect that Africa would be spared from the consequences of unavailability and/or unaffordability of hired labor. However, a recent CIMMYT study shows that farming systems in Africa are far more dependent on hired labor than commonly thought, and that the quasi total dependence of smallholder farming on family labor is a myth. Depending on the farming system, a complete loss of hired labor could lead to a productivity decrease of up to 20% in Eastern and Southern Africa. Hired labor is also likely to be replaced by child labor.

Because most production on the continent is rainfed during a single season, most farmers only plant and harvest once per year, making the timing of each task critical. A delay in planting because of labor shortages — as will soon occur Ethiopia — could lead to dramatically reduced yields. A delay in harvesting — as is currently experienced in Zimbabwe — means a large fraction of the crop is likely to be spoilt in the field.

Jelle Van Loon: The situation is similar for Mexico and the general Central American corridor, although the main production cycle is only just starting. Proper land preparation and timely sowing are critical, not only in terms of food production and achieving proper yields, but also to ensure that farmers have a stable income at the end of the year. This is especially important now, as financial and food reserves are shrinking at a faster pace due to COVID-19 restrictions that heavily affect demand on informal markets.

An operator demonstrates the use of a reaper in Bangladesh. (Photo: CIMMYT)
An operator demonstrates the use of a reaper in Bangladesh. (Photo: CIMMYT)

Are you seeing a similar situation in South Asia?

Timothy Krupnik: Depending on the country, we’ve seen either abrupt interruptions in the movement of agricultural laborers — for example in India where millions of migrant laborers have not been able to travel home during lockdown — or an influx of people from urban areas who fled to their villages when lockdown began.

In the latter case, one might expect this to increase labor availability for farming, but we tended to observe the reverse. People remain largely frightened of coming out of their homes, so even in rural areas which saw an influx of people, labor availability has not necessarily increased. Where laborers are willing to work, our initial scan of the evidence indicates that daily wage labor costs have also increased considerably due to risks of infection spreading. In either situation, smallholder farmers who need to hire labor to assure crucial crop management activities like planting or harvesting are suffering. There are reports emerging also of increased child labor in the region as schools are closed and resource-poor farmers are allocating family members and children to work where they can’t afford to hire labor.

M.L. Jat: I would like to cite the specific example of intensive rice-wheat rotation in India’s breadbasket and the Green Revolution corridors in the western Indo-Gangetic plains, which provide the bulk of cereals to the national food basket. An ex-ante analysis on the consequences of the reverse migration of the agricultural workforce and social distancing due to COVID-19 revealed that a delay in the transplanting of rice seedlings by two weeks is likely, which will delay rice harvesting and consequently delay the planting of wheat. This will potentially lead to rice and wheat production losses of 10-25%, worth up to $1.5 billion.

In addition, the shorter turn around between harvesting rice and planting wheat may further increase the incidence of rice residue burning. This is a major problem which creates significant health issues and may exacerbate the threat of COVID-19 by increasing both infection rates and disease severity.

Krupnik: The situation has increased interest and policy to support use of scale-appropriate machinery for operations like harvesting. In Bangladesh, for example, there was a recent and very serious risk of losing much of the rice harvest as the monsoon has started early and flash flooding has been a concern. Without manual laborers to harvest the crop, CIMMYT-led projects like the Cereal Systems Initiative for South Asia – Mechanization and Extension Activity (CSISA-MEA) have played a key role in assisting the movement of combine harvesters and crop reapers to areas at risk of crop losses and helping to assure the rice crop is harvested on time.

An operator demonstrates the use of a starwheel planter in Zimbabwe. (Photo: Frederic Baudron/CIMMYT)
An operator demonstrates the use of a starwheel planter in Zimbabwe. (Photo: Frederic Baudron/CIMMYT)

It sounds like these machines were instrumental in avoiding crop losses. Does this mean that mechanization has a key role to play in lessening the impact of these labor shortages?

Krupnik: During the COVID-19 crisis, scale-appropriate machinery has become even more important for mitigating labor shortages.  We work to facilitate the availability of scale-appropriate machinery not only so that farmers can buy and use equipment, but also by encouraging those who own machineries to become entrepreneurial service providers who offer efficient and mechanized land preparation, planting, irrigation, harvesting and post-harvesting to other farmers on an affordable fee-for-service basis.

This is a win-win situation for farmers who can’t access or afford the escalating costs of labor. In the COVID-19 crisis, these arrangements assist in responding to the labor crunch in locations where resource-poor farmers are most in need, and also allow farmers to get crucial work done while maintaining and encouraging social distancing.

Baudron: Over the past seven years, CIMMYT and its partners have fine-tuned technologies and developed delivery models — based on rural service providers supported by private sector companies — to scale the use of small machines in East and Southern Africa. These are profitable for both farmers and service providers and reduce labor requirements tremendously.

In Zimbabwe, we found that labor requirements were 15 times lower when establishing a maize field with a direct seeder pulled by a two-wheel tractor, and 23 times lower using a similar technology for establishing wheat in Rwanda, compared to the conventional method based on labor and draft power. A ton of maize that would take 12 people a full day to shell manually, can be shelled in one hour using a small double-cob sheller that costs about $300.

Jat: Rapid policy decisions by sub-national and national governments on facilitating more mechanized operations in labor intensive rice-wheat production regions will address labor availability issues while contributing to productivity enhancement of succeeding wheat crop in rotation, as well as overall system sustainability. Our ex-ante analysis on the implications of labor shortages in rice-wheat rotation in the western Indo-Gangetic plains due to COVID-19 indicates that adoption of scale-appropriate farm mechanization has the potential to stabilize the food production as well as reducing the income losses and air pollution surges in northwest India.

Harvesting maize in Mexico. (Photo: CIMMYT)
Harvesting maize in Mexico. (Photo: CIMMYT)

The situation in the regions each of you have mentioned is unique, but are there any global trends that you’ve noticed? And if so, can other regions learn from these localized experiences?

Krupnik: A huge part of what we do as a research and training institute is facilitate exchanges of information across continents and countries. Different types and designs of machinery that can be used in similar circumstances can be shared, as can business models supporting service providers.

Importantly, part of the concept of ‘scale-appropriate mechanization’ is also learning when and where machinery makes sense — where labor is not scarce and rural communities are highly dependent on income from labor to sustain their communities, some forms of mechanization may not be appropriate. We work to understand these dynamics and target the right machines in the right time and right places.

Van Loon: In addition to reducing pressure on available labor and alleviating drudgery, modern farm equipment tailored to the needs of smallholders can also increase competitiveness, as it allows for higher precision and efficiency.

In this sense, scale-appropriate mechanization can stimulate rural transformation incentivizing short and efficient value chains while ensuring stable food provision — aspects that have become essential to navigating the present crisis.

Has the current pandemic brought up any new perspectives in terms of how you consider labor and mechanization?

Baudron: We often look at yield and area planted in staple crops to assess the food security situation of a country during a particular year. This pandemic has shown us that we need to pay more attention to labor productivity. In many countries, policy-makers and development agents fear that mechanization will displace labor, but the dependency of staple crops on labor is a threat to food security, as we currently see in Africa and South Asia.

If the production of fruit, vegetables, cash crops, and so on will continue to depend on manual labor, it is essential in my view for critical tasks in the production of staples to be mechanized — particularly planting and harvesting. This will ensure the resilience of national food systems in the case of a future disruption similar to the COVID-19 pandemic.

Cover photo: Establishment of demo trial in Nyanga, Zimbabwe. (Photo: CIMMYT/ZRBF)