East and Southern Africa is a climate hotspot, with more than US$45 billion in agricultural production at risk from higher temperatures, shorter growing seasons and more extreme droughts and floods. Maize, a staple crop covering up to 75% of cropland in parts of the region, is particularly vulnerable and is projected to face yield declines of 15%, among other climate impacts if no adaptation measures are taken. Many of the affected areas already have serious levels of hunger and malnutrition, with the highest burden experienced by women and youth from marginalized and vulnerable communities. If these systems are sustainably diversified, they can contribute to stabilizing regional and global agrifood systems.
The next decade will be critical for strengthening food, land and water systems in East and Southern Africa. The agribusiness ecosystem for both regions has been identified as a critical engine for agricultural and economic development, climate change adaptation and gender and youth empowerment. Investment in innovation, capabilities and supportive environments will be essential for driving sustainable growth.
Objective
This Initiative aims to support climate-resilient agriculture and livelihoods in 12 countries in East and Southern Africa by helping millions of smallholders intensify, diversify and reduce the risks in maize-based farming through improved extension services, small and medium enterprise development, supporting governance frameworks and increased investment with a gender and social inclusion lens.
Activities
This objective will be achieved through:
Diversifying and sustainably intensifying production by assessing needs and options for the introduction of crops, livestock, mechanization and irrigation, applying innovations in value chains and building capacity while scaling to larger farming communities.
Reducing risk and digitalizing value chains by co-designing and delivering âInnovation Packageâ bundles of digital agro-advisory systems and research management products â including mobile apps, TV programs and social media â to build resilience and improve productivity.
Supporting and accelerating value chain business enablers in maize mixed systems by using CGIARâs expertise and partner network to unlock access to funding, investment and tailored technical assistance.
Promoting the governing and enabling of multifunctional landscapes for sustainable diversification and intensification with a focus on strengthening the evidence base for decision-makers.
Empowering and engaging women and youth in agribusiness ecosystems by mapping challenges and opportunities to address gender and social inequality and applying inclusive and coordinated interventions for transformative change.
Scaling innovations and coordinating CGIAR and partner activities in the region through a scaling hub that uses the âscaling readinessâ approach to inform, activate and bring to scale innovations that respond to regional or country demand.
As the effects of climate change intensify, rain dependent crop production is becoming more challenging for smallholder farmers in Malawi, Tanzania and Zambia. Farmers often experience either too little or too much rain to effectively grow their crops, which means growing crops under irrigation is becoming key to building resilience to climate shocks. However, smallholder farmers often lack the access to equipment and skills to implement low-cost irrigation technologies.
The Accelerated Innovation Delivery Initiative (AID-I) implemented by the International Center for Maize and Wheat Improvement (CIMMYT) with funding from the United States Agency for International Development (USAID) has partnered with Total LandCare (TLC) Malawi and Zambia to promote Sustainable Intensification practices in eastern and central Malawi. TLC conducted a training session on using treadle pumps for irrigation plot layout in Mumbi Village, Petauke District, Zambia.
Farmers setting up an irrigation plot as a live demonstration. (Photo : TLC)
Letting gravity do the work
The irrigation system operates on the principle of pumping water manually from a low point to a high point from which the water then flows by gravity through a system of channels to irrigate crops.
Properly managed, treadle pump irrigation can improve household food security, income, nutrition, and health sustainably without detrimental effects to the environment.
The training educated 12 farmers in establishing an irrigation layout using gravity-fed basins, with water pumped from a stream downhill using a treadle pump. Participants learned how to erect channels that directed water into basins.
During practical irrigation training in Muya village of Mondolo camp, Petauke district, one of the farmers, Magret Tembo said, âThis method of irrigation will negate the burden associated with use of watering cans, a practice which has been giving us backaches. Through this technology, we will experience increased production through better water management and increased area coverage.â
Following the setup demonstration, participants received practical guidance on various aspects of irrigation and crop management, covering such topics as planting techniques and effective fertilizer use, and application of pesticides and fungicides.
Inexpensive and durable
âTreadle pump irrigation offers tremendous opportunities to dramatically increase agricultural production while enriching the livelihoods of many resource-poor farmers,â said Zwide Jere, Co-founder/Managing Director of TLC.
Treadle pumps are inexpensive, so individuals can afford to purchase one and they are durable and easy to maintain, so one pump will work for years for individual households.
âThe pumps are also designed to work in many environments,â said Paul Malambo, Country Manager for TLC Zambia. âSo, over the years, TLC has been able to distribute the pumps in Malawi, Mozambique, Tanzania and Zambia.â
A farmer demonstrating how to use the pump (top left and right) in Kasenengwa, Zambia (Photo: TLC)
âProviding access to technical knowledge and support for under-utilized land, water and labor resources is an important part of the AID-I project, said Kevin Kabunda, CIMMYT lead for the AID-I. âAs is collaboration with local partners like TLC who facilitate the dissemination of expertise.â
TLC is a registered non-governmental organization based in Malawi and active in Zambia. Its mission is to empower self-reliance and prosperity for rural households in the Southern Africa region.
CIMMYT is happy to announce five new, improved tropical and subtropical maize hybrids that are now available for uptake by public and private sector partners, especially those interested in marketing or disseminating hybrid maize seed across Latin America and similar agro-ecologies in other regions. NARES and seed companies are hereby invited to apply for licenses to pursue national release, scale-up seed production, and deliver these maize hybrids to farming communities.
How does CIMMYTâs improved maize get to the farmer?
Intermediate-maturing, yellow, high-yielding, resistant to GLS, and Ear rots.
The newly available CIMMYT maize hybrids were identified through rigorous, years-long trialing and a stage-gate advancement process which culminated in the 03-22LTHTWM4M, 04-22LTHTYM4M, 01-22MASTCHSTW and 02-22MASTCHSTY Stage 5 Trials. The products were found to meet the stringent performance and farmer acceptance criteria for CIMMYTâs breeding pipelines that are designed to generate products tailored in particular for smallholder farmers in stress-prone agroecologies of Latin America.
The deadline to submit applications to be considered during the first round of allocations is December 1st, 2023. Applications received after that deadline will be considered during subsequent rounds of product allocations.
In a visit to 5 model sites for maize marketing in midwestern Nepal, 30 federal, provincial and local agricultural authorities were impressed with the coordination and capacity development among market actors, improved supply chain management and leveraging of government support, all of which are benefiting farmers and grain buyers.
Following visits to commercial maize fields and hearing stakeholdersâ perceptions of progress and key lessons, the authorities proposed additional funding for irrigation, machinery, grain grading and crop insurance, among other support, and promised to help expand activities of the model sites, which were established as part of the Nepal Seed and Fertilizer (NSAF) project.
Led by CIMMYT with funding from the United States Agency for International Development (USAID) and in its second-last year of operation, the project is working to raise crop productivity, incomes and household food and nutrition security across 20 districts of Nepal, including 5 that were severely affected by the catastrophic 2015 earthquake and aftershocks which killed nearly 9,000 and left hundreds of thousands homeless.
Participants at Sarswoti Khadya Trader, Kohalpur, Banke. (Photo: CIMMYT)
The visitors included officials and experts from the Ministry of Agriculture and Livestock Development (MoALD); the Department of Agriculture (DoA); the Ministry of Land Management, Agriculture and Cooperatives (MoLMAC); the Agriculture Development Directorates (ADD) for Lumbini and Sudurpaschim provinces; the Agriculture Knowledge Centres (AKC) of Banke, Kailali, Kanchanpur, Dang, and Kapilvastu districts; the Prime Minister Agriculture Modernization Project (PMAMP) offices of Dang and Bardiya; and the National Maize Research Program; the Department of Livestock Services; along with NSAF project team members.
The participants interacted with farmers, cooperative leaders, traders, rural municipality officials and elected representatives, and feed mill representatives. Sharing their experiences of behavioral change in maize production, farmers emphasized the benefits of their strengthened relationships with grain buyers and their dreams to expand spring maize cultivation.
Shanta Karki, deputy director the General of Department of the DoA lauded CIMMYT efforts for agriculture growth, improved soil fertility and sustainable agriculture development through NSAF.
Madan Singh Dhami, secretary, MoLMAC in Sudurpaschim Province, emphasized the importance of irrigation, building farmersâ capacities and interactions with buyers, and applying digital innovations to catalyze extension.
CIMMYT scientists have been based in CIMMYTâs office in Nepal and worked with Nepali colleagues for more than three decades to boost the productivity, profitability and ecological efficiency of maize- and wheat-based cropping systems and thus improve rural communitiesâ food security and livelihoods.
Smallholder mechanization out scaling depends upon the availability of skilled mechanics who are fully oriented with machinery operation. However, this crucial skillset is often identified as a missing link. In many instances, lack of care or regular checks and the absence of readily available mechanics has led to the failure of mechanization projects in sub-Saharan Africa, with frequent machine breakdowns and equipment left sitting idle long after a project intervention. Across smallholder farming communities, this phenomenon can be seen through the presence of obsolete and abandoned machinery often serving as breeding grounds for birds.
The Feed the Future Zimbabwe Mechanization and Extension Activity, funded by the United States Agency for International Development (USAID), aims to break this vicious cycle by improving the skillset of local mechanics and helping them stay in tune with evolving innovations in farm machinery. Implemented by CIMMYT, this activity targets existing mechanics across ten districts in Zimbabwe, offering specialized maintenance services to providers who own machinery. Through investing in their training, local capacity to troubleshoot, service and repair machinery will increase.
For most mechanics, the training workshop presents a first-hand experience of handling small machinery. (Photo: Shiela Chikulo/CIMMYT)
Gaining practical experience
 The program approaches training through full immersion and a deep dive into the individual components of key equipment. Workstations are set up to include a diesel engineâwhich forms the core of most of the machineryâa two-wheel tractor and post-harvest machines such as the multi-crop thresher, feed-chopper grinder and peanut butter machine.  For most of the participants, the workshop presents them with first-hand experience of handling such machinery.
 Andy Chagudhuma and Tendai Machonesaâfrom Bikita and Chiredzi, respectivelyâwere among the first ten mechanics to participate in the five-day training. âI learned about all the machines here,â says Chagudhuma, âbreaking them apart and fixing them. We worked through different scenarios while perfecting our knowledge on the operation of all the machinery.â With new skills gained, they eagerly await the opportunity to offer their expertise to service providers in their local areas, and a newfound confidence fuels their commitment to providing support through repair and maintenance work.
 However, one remaining challenge is the notable absence of female participants in the training. While the field of mechanics is often male-dominated, the Mechanization Activity seeks to promote a gender-inclusive environment for local mechanics and service providers through awareness meetings and skills training. In the future, more machinery and technical trainings will be targeted specifically towards women as a way to redress this imbalance.
Overall, the benefits of the training echo far beyond the workshop itself. Through the skills acquired, opportunities for additional income generation increase, and the participation of rural youths in mechanization-oriented businesses and a thriving local economy are possible. By empowering local mechanics, the Mechanization Activity not only breathes life into their communities and the machinery sector but also paves the way for one of the projectâs key objectivesâthe establishment of successful and entrepreneurial service providers.
Staff of the Nepal Seed and Fertilizer (NSAF) project conducted a three-day âtraining of trainersâ workshop on integrated soil fertility management and related practices for commercial rice farming, for 50 agricultural technicians from 50 farm cooperatives in districts of mountainous midwestern Nepal and its lowland Terai Region.
Held in Nepalgunj, midwestern Nepal, the workshop focused on the â4Rsâ for soil fertilizationâright source, right rate, right time, and right placeâalong with other best farming and soil nutrient stewardship practices for rice-based farming systems.
âSubject matter was comprehensive, covering variety selection, transplanting, weeding, management of nursery beds, fertilizer, irrigation, controlling pests and diseases and proper handling of rice grain after harvest,â said Dyutiman Choudhary, NSAF project coordinator and scientist at CIMMYT. âTopics relating to the integrated management of soil fertility included judicious application of organic and inorganic fertilizer, composting and the cultivation of green manure crops such as mungbean and dhaincha, a leguminous shrub, were also included.â
Support to sustainably boost Nepalâs crop yields
With funding from the United States Agency for International Development (USAID), the NSAF project promotes the use of improved seeds and integrated soil fertility management technologies, along with effective extension, including the use of digital and information and communication technologies.
Agriculture provides livelihoods for two-thirds of Nepalâs predominantly rural population, largely at a subsistence-level. Rice is the nationâs staple food, but yields are relatively low, requiring annual imports worth some $300 million, to satisfy domestic demand.
Workshop participants attended sessions on digital agri-advisories using the Geokrishi and PlantSat platforms and received orientation regarding gender and social inclusion concerns and approachesâcrucial in a nation where 70% of smallholder farmers are women and exclusion of specific social groups remains prevalent.
âTopics in that area included beneficiary selection, identifying training and farmer field day participants, and support for access to and selection of improved seed and small-scale farm equipment,â explained Choudhary. âThe participants will now go back to their cooperatives and train farmers, local governments and agrovets on improved rice production.â
Nepal scientists and national research programs have partnered with CIMMYT for more than three decades to breed and spread improved varieties of maize and wheat and test and promote more productive, resource-conserving cropping systems, including rotations involving rice.
It is a winter morning in Ward 12 of Mutare Rural district in Zimbabwe. Farmers brave the cold weather to gather around several tents lined with a range of new agricultural machinery. The number of farmers increases, and the excited chatter gets louder as they attempt to identify the different machines on display. âThat is a tractor, but it just has two wheels,â says one farmer. With enthusiasm, another identifies a multi-crop thresher and peanut butter machine and asks for the prices.
The scene typifies one of several settings for an awareness meeting conducted under the Feed the Future Zimbabwe Mechanization and Extension (Mechanization) Activity, funded by the United States Agency for International Development (USAID). The project operates in Zimbabweâs Manicaland and Masvingo provinces and addresses the pressing need to improve farm power and machinery access for smallholder farmers in ten districts: Buhera, Chimanimani, Chipinge, Mutare rural, Bikita, Chiredzi, Chivi, Masvingo rural, Mwenezi and Zaka.
Awareness meetings provide community members the opportunity to interact with the Mechanization Activity Team and learn more about the machinery suitable for their farm operations. (Photo: CIMMYT)
In recent years, farmers in the region have faced a decline in cattle populations due to tick-borne diseasesâthe devastating âJanuary diseaseâ (Theileriosis) hitting hardestâcausing significant draft power losses. In addition, on-farm and off-farm activities have notoriously been identified as labor-intensive, time consuming and back-breaking due to the level of effort required to execute certain tasks. Activities such as post-harvest processing have also been traditionally carried out by women, who are thus disproportionally affected by drudgery. Collectively, these challenges have affected not only food production and the quality of farm yields, but also drastically impacted farming familiesâ potential to realize sufficient household food and income security.
âFinding the best model of extension of appropriate machinery and developing financing mechanisms for smallholder farmers has been the work of previous projects on appropriate-scale mechanization,â says Christian Thierfelder, research director for the Mechanization Activity. âIn this activity, we are implementing a service provider model in Zimbabwe and are aiming to reach 150 service providers and 22,500 users of these machines in the next two years.â
Despite previous successes under initiatives such as FACASI and R4/ZAMBUKO, there remains a huge demand for affordable machines that improve farm labor and generate income for smallholder farmers. âWe already see hundreds of farmers demanding to mechanize agricultural activities in our intervention areas,â explains Leon Jamann, chief of party for the project. âThat is why our activity aims to collaborate with banks and microfinance institutions to bank these farmers at fair rates so that they can buy the machinery that they need and want.â
A launchpad for success
The awareness meetings have served as launchpads to acquaint farmers with appropriate machinery right at the âfarm gateâ while affording them a chance to explore the full range on offer. Since its inception, the Mechanization Activity has showcased through live demonstrations the operation and performance of machinery including the two-wheel tractor and trailer, ripper, basin digger, boom sprayer, multi-crop thresher, feed chopper-grinder, groundnut sheller and peanut butter machine. Each machine harmonizes with on-farm and off-farm activities, easing the labor burden and improving efficiency in land preparation, harvesting and post-harvest tasks. The aim is to create demand for and trigger business interest in the machinery through a service provision model.
The model centers on the service provider, typically an individual who owns machinery and extends their services to others for a fee. In some cases, organized Internal Savings and Lending (ISAL) and Production, Productivity Lending and Savings (PPL) groups have expressed, through the awareness meetings, interest in procuring a machine for use within the group. This symbiotic relationship empowers service providers economically, while granting communities access to crucial services that improve their land and labor productivity.
In the next step, service providers are then linked with banks to finance their machinery. This ensures a sustainable approach, as the mechanization solutions are locally produced, financed and used. Enhancing these local capacities and linkages is at the core of the activity and ensures impact beyond the project life cycle.
From awareness to demand
So far, a total of 32 awareness meetings have been held across three operational hubs in Masvingo and Manicaland provinces reaching 1,637 farmersâ843 females and 794 males. The impact is evident, with 475 service providers identified across 20 implementation wards.
232 participants are keen to acquire a two-wheel tractor, with a further 191 opting for trailers, 63 for rippers, 125 for multi-crop threshers, 166 for chopper grinders, 178 for peanut butter machines and 31 for groundnut shellers. Among the prospective service providers are those opting to purchase a single unit while others are choosing two, three or more units from the machinery on offer.
Beyond the numbers, the Mechanization and Extension Activity continues to appeal to women and youth through sustainable and climate-smart intensification of crop production using conservation agriculture practices, opportunities for employment creation and enhancing profitability.
Graduate intern Titos Chibi demonstrates the two-wheel tractor during an awareness meeting in Ward 10 in Bikita. (Photo: CIMMYT)
âI enjoyed learning about the service provider approach and learning about the machinery on display,â reflected Nyarai Mutsetse, a female farmer from Ward 12. âOther women even got the chance to try out the two-wheel tractor. From now on, we are going to save money in our groups and purchase some of these machines.â
Echoing the same sentiments, Patience Chadambuka was fascinated by the two-wheel tractor demonstration, and impressed that it could serve multiple purposes. âI can use it for different tasksâferrying wood, land preparation and it can also help us raise money to take our children to school through service provision,â she said. âWe are beginning to save the money, together with my husband because we would like to purchase the tractor and use it for our business.â
The Mechanization Activity awareness meetings paint a vivid picture of collaboration with other Feed the Future Zimbabwe Activities such as the Fostering Agribusiness for Resilient Markets (FARM), Resilience Anchors and Farmer to Farmer, among others. The activity harmonizes smallholder farmers with private sector enterprises, including machinery manufacturers, local mechanics, financial institutions and the Government of Zimbabwe. This collective cooperation is pivotal in helping smallholder farmers realize their mechanization business goals.
India can applaud a hallmark in national food production: in 2023, the harvest of wheatâIndiaâs second most important food cropâwill surpass 110 million tons for the first time.
This maintains India as the worldâs number-two wheat producer after China, as has been the case since the early 2000s. It also extends the wheat productivity jumpstart that begun in the Green Revolutionâthe modernization of Indiaâs agriculture during the 1960s-70s that allowed the country to put behind it the recurrent grain shortages and extreme hunger of preceding decades.
âNewer and superior wheat varieties in India continually provide higher yields and genetic resistance to the rusts and other deadly diseases,â said Distinguished Scientist Emeritus at CIMMYT, Ravi Singh. âMore than 90 percent of spring bread wheat varieties released in South Asia in the last three decades carry CIMMYT breeding contributions for those or other valued traits, selected directly from the Centerâs international yield trials and nurseries or developed locally using CIMMYT parents.â
Wheat grain yield in Indian farmersâ fields rose yearly by more than 1.8 percentâsome 54 kilograms per hectareâin the last decade, a remarkable achievement and significantly above the global average of 1.3 percent. New and better wheat varieties also reach farmers much sooner, due to better policies and strategies that speed seed multiplication, along with greater involvement of private seed producers.
âThe emergence of Ug99 stem rust disease from eastern Africa in the early 2000s and its ability to overcome the genetic resistance of older varieties drove major global and national initiatives to quickly spread the seed of newer, resistant wheat and to encourage farmers to grow it,â Singh explained. âThis both protected their crops and delivered breeding gains for yield and climate resilience.â
CIMMYT has recently adopted an accelerated breeding approach that has reduced the breeding cycle to three years and is expected to fast-track genetic gains in breeding populations and hasten delivery of improvements to farmers. The scheme builds on strong field selection and testing in Mexico, integrates genomic selection, and features expanded yield assays with partner institutions. To stimulate adoption of newer varieties, the Indian Institute of Wheat and Barley Research (IIWBR, of the Indian Council of Agricultural Research, ICAR) operates a seed portal that offers farmers advanced booking for seed of recently released and other wheat varieties.
Private providers constitute another key seed source. In particular, small-scale seed producers linked to the IIWBR/ICAR network have found a profitable business in multiplying and marketing new wheat seed, thus supporting the replacement of older, less productive or disease susceptible varieties.
Farm innovations for changing climates and resource scarcities
Following findings from longstanding CIMMYT and national studies, more Indian wheat farmers are sowing their crops weeks earlier so that the plants mature before the extreme high temperatures that precede the monsoon season, thus ensuring better yields.
New varieties DBW187, DBW303, DBW327, DBW332 and WH1270 can be planted as early as the last half of October, in the northwestern plain zone. Recent research by Indian and CIMMYT scientists has identified well-adapted wheat lines for use in breeding additional varieties for early sowing.
Resource-conserving practices promoted by CIMMYT and partners, such as planting wheat seed directly into the unplowed fields and residues from a preceding rice crop, shave off as much as two weeks of laborious plowing and planking.
Weeds in zero-tillage wheat in India. (Photo: Petr Kosina/CIMMYT)
âThis âzero tillageâ and other forms of reduced tillage, as well as straw management systems, save the time, labor, irrigation water and fuel needed to plant wheat, which in traditional plowing and sowing requires many tractor passes,â said Arun Joshi, CIMMYT wheat breeder and regional representative for Asia and managing director of the Borlaug Institute for South Asia (BISA). âAlso, letting rice residues decompose on the surface, rather than burning them, enriches the soil and reduces seasonal air pollution that harms human health in farm communities and cities such as New Delhi.â
Sustainable practices include precision levelling of farmland for more efficient irrigation and the precise use of nitrogen fertilizer to save money and the environment.
Science and policies ensure future wheat harvests and better nutrition
Joshi mentioned that increased use of combines has sped up wheat harvesting and cut post-harvest grain losses from untimely rains caused by climate change. âAdded to this, policies such as guaranteed purchase prices for grain and subsidies for fertilizers have boosted productivity, and recent high market prices for wheat are convincing farmers to invest in their operations and adopt improved practices.â
To safeguard Indiaâs wheat crops from the fearsome disease wheat blast, native to the Americas but which struck Bangladeshâs wheat fields in 2016, CIMMYT and partners from Bangladesh and Bolivia have quickly identified and cross-bred resistance genes into wheat and launched wheat disease monitoring and early warning systems in South Asia.
âMore than a dozen wheat blast resistant varieties have been deployed in eastern India to block the diseaseâs entry and farmers in areas adjoining Bangladesh have temporarily stopped growing wheat,â said Pawan Singh, head of wheat pathology at CIMMYT.
Building on wheatâs use in many Indian foods, under the HarvestPlus program CIMMYT and Indian researchers applied cross-breeding and specialized selection to develop improved wheats featuring grain with enhanced levels of zinc, a micronutrient whose lack in Indian diets can stunt the growth of young children and make them more vulnerable to diarrhea and pneumonia.
âAt least 10 such âbiofortifiedâ wheat varieties have been released and are grown on over 2 million hectares in India,â said Velu Govindan, CIMMYT breeder who leads the Centerâs wheat biofortification research. âIt is now standard practice to label all new varieties for biofortified traits to raise awareness and adoption, and CIMMYT has included high grain zinc content among its primary breeding objectives, so we expect that nearly all wheat lines distributed by CIMMYT in the next 5-8 years will have this trait.â
A rigorous study published in 2018 showed that, when vulnerable young children in India ate foods prepared with such zinc-biofortified wheat, they experienced significantly fewer days of pneumonia and vomiting than would normally be the case.
Celebrating joint achievements and committing for continued success
The April-June 2018 edition of the âICAR Reporterâ newsletter called the five-decade ICAR-CIMMYT partnership in agricultural research ââŠone of the longest and most productive in the worldâŠâ and mentioned mutually beneficial research in the development and delivery of stress resilient and nutritionally enriched wheat, impact-oriented sustainable and climate-smart farming practices, socioeconomic analyses, and policy recommendations.
Speaking during an August 2022 visit to India by CIMMYT Director General Bram Govaerts, Himanshu Pathak, secretary of the Department of Agricultural Research and Education (DARE) of Indiaâs Ministry of Agriculture and Farmers Welfare and Director General of ICAR, âreaffirmed the commitment to closely work with CIMMYT and BISA to address the current challenges in the field of agricultural research, education and extension in the country.â
âThe ICAR-CIMMYT collaboration is revolutionizing wheat research and technology deployment for global food security,â said Gyanendra Singh, director, ICAR-IIWBR. âThis in turn advances global peace and prosperity.â
India and CIMMYT wheat transformers meet in India in February, 2023. From left to right: Two students from the Indian Agricultural Research Institute (IARI); Arun Joshi, CIMMYT regional representative for Asia; Rajbir Yadav, former Head of Genetics, IARI; Gyanendra Singh, Director General, Indian Institute of Wheat and Barley Research (IIWBR); Bram Govaerts, CIMMYT director general; Harikrishna, Senior Scientist, IARI. (Photo: CIMMYT)
According to Govaerts, CIMMYT has concentrated on strategies that foster collaboration to deliver greater value for the communities both ICAR and the Center serve. âThe way forward to the next milestone â say, harvesting 125 million tons of wheat from the same or less land area â is through our jointly developing and making available new, cost effective, sustainable technologies for smallholder farmers,â he said.
Wheat research and development results to date, challenges, and future initiatives occupied the table at the 28th All India Wheat & Barley Research Workersâ Meeting, which took place in Udaipur, state of Rajasthan, August 28-30, 2023, and which ICAR and CIMMYT wheat scientists attended.
Generous funding from various agencies, including the following, have supported the work described: The Australian Centre for International Agricultural Research (ACIAR), the Bill & Melinda Gates Foundation, the Federal Ministry for Economic Cooperation and Development of Germany (BMZ), the Foreign, Commonwealth & Development Office of UKâs Government (FCDO), the Foundation for Food & Agricultural Research (FFAR), HarvestPlus, ICAR, the United States Agency for International Development (USAID), funders of the One CGIAR Accelerated Breeding Initiative (ABI), and the Plant Health Initiative (PHI).
CIMMYT participated in the inaugural Global Conference on Sustainable Agricultural Mechanization, organized by the Food and Agriculture Organization of the United Nations (FAO) from September 27-29, 2023. The gathering provided space for focused dialogues to prioritize actions and strengthen technical networks for sustainable development of agricultural mechanization.
Bram Govaerts, CIMMYT director general, presented a keynote address on September 27 regarding climate change and mechanization. As a global thought leader and change agent for climate resilient, sustainable and inclusive agricultural development, CIMMYT has many specific initiatives centered on mechanization for facilitating machine innovations and scaling-up improved farming practices for sustainability and farmer competitiveness.
Bram Govaerts delivered a keynote address. (Photo: CIMMYT)
Collaboration is a hallmark of CIMMYTâs endeavors in mechanization, including a strong partnership with local governments across Latin America, Africa and Asia, and international cooperation agencies, supporting the Green Innovations Centers installed by GIZ-BMZ and working on accelerated delivery models together with USAID, in Malawi, Zimbabwe and Bangladesh, to name only a few. Further, local value chain actor engagement is crucial and necessary in this work to connect farmers with viable solutions.
CIMMYT has a long history of leading projects aimed at mechanizing the agricultural efforts of smallholder farmers, including the successful MasAgro Productor in Mexico and FACASI (farm mechanization and conservation agriculture for sustainable intensification) in East and South Africa. At present, the Harnessing Appropriate-Scale Farm Mechanization in Zimbabwe (HAFIZ) project is working towards to improve access to mechanization and reduce labor drudgery while stimulating the adoption of climate-smart/sustainable intensification technologies. The project engages deeply with the private sector in Zimbabwe and South Africa to ensure long-term efficacy.
The Scaling Out Small Mechanization in the Ethiopian Highlands project was active from 2017 to 2022 and increased access for smallholder farmers to planting and harvesting machines. Farmers using two-wheel tractors furnished by the project reduced the time needed to establish a wheat crop from 100 hours per hectare to fewer than 10 hours. CIMMYTâs work was in partnership with the Africa-RISING program led by the International Livestock Research Institute (ILRI) in Ethiopia.
âAt CIMMYT, we work knowing that mechanization is a system, not only a technology,â said Govaerts. âSustainable mechanization efforts require infrastructure like delivery networks, spare parts and capacity development. Working with local partners is the best way to ensure that any mechanization effort reaches the right people with the right support.â
Read these stories about CIMMYTâs efforts to support equal access to agricultural mechanization and scaling up within local contexts.
Mechanization is a process of introducing technology or farm equipment to increase field efficiency. CIMMYTâs mechanization work is context specific, to help farmers have access to the appropriate tools that are new, smart and ideal for their unique farming conditions.
Working with the Cereal Systems Initiative for South Asia (CSISA), CIMMYT is leading mechanization efforts in Northern India. Combined with sustainable agriculture, the next generation of farmers now have access to tractors, seeders and other tools that are increasing yield and reducing back-breaking labor.
Gangesh Pathak with his father at the custom hiring center which provides custom hiring services to smallholder farmers in the region. (Photo: Vijay K. Srivastava/CIMMYT)
The delivery of row seeders from India to Benin demonstrates a new path to sustainable South-South business relationships. Developed in India in an iterative design process with farmers, portable row seeders have been a great success. Working with GIC, CIMMYT facilitated a technology and materiel transfer of the portable row seeders to Benin.
A farmer pulls a row seeder in Benin, West Africa. (Photo: CIMMYT)
Peanuts thrive as a crop in Togo and other West Africa countries, but post-harvest is threatened by aflatoxins, so the entire crop needs to dry. Traditionally, farmers, often women, have dried the peanuts in the open air, subject to weather and other pests. However, CIMMYT, working with GIC, has introduced solar-powered dryers, which speeds up the drying process by a factor of four.
Working with partners in Burkina Faso, CIMMYT is facilitating smallholder mechanization with a model of cascading effects: one farmer mechanizing can then use their skills and eqBMZuipment to help their neighbors, leading to community-wide benefits.
Pinnot Karwizi fills a mechanized sheller with dried maize cobs. (Photo: Matthew OâLeary/CIMMYT)
Visit our mechanization page to read stories about ongoing mechanization initiatives.
Millions of rural Indians, mostly farmers, are at the mercy of changing weather and climate change. Rising temperature and heat stress, unpredictable rainfall patterns, increasing drought-like situations, soil erosion and depleting water tables are leading to poorer yields and reduced income for farmers. While the agricultural sector and farmers are most affected by the adverse impacts of climate change, it is also one of the sectors significantly responsible for greenhouse gas emissions, contributing about 14% of the total greenhouse gas emissions in the country.
Farmer Rahul Rai prepares his field for wheat plantation with zero tillage – Buxar, Bihar (photo: Deepak K. Singh/CIMMYT)
Good agronomy and soil management through conservation agriculture practices such as no-till farming, crop rotation, and in-situ crop harvest residue management are resource efficient and help reduce greenhouse gas emissions significantly. The intensification of these conservation agriculture practices by the Cereal Systems Initiative for South Asia (CSISA)âa regional project led by CIMMYT to sustainably enhance cereal crop productivity and improve smallholder farmersâ livelihoods in Bangladesh, India, and Nepalâand partners is helping smallholder farmers to improve their yield and income with less input costs.
Climate smart agriculture
Over 70% of Bihar’s population is engaged in agriculture production, with wheat and rice as the two major crops grown in the state. Bordering Uttar Pradesh, Buxar, is one of the many rural districts in Bihar, with over 108,000 hectares of land used for agriculture. The area is plain, fertile and has good irrigation facilities. The rice-wheat cropping system forms the dominant practice here, and pulses and other non-cereal crops are grown additionally during winters.
CSISA began promoting zero tillage in wheat cultivation in the area in 2010. Along with Krishi Vigyan Kendras (KVKs), and local agriculture departments, awareness and frontline demonstrations on different best management practices were conducted to inform farmers of alternative approaches to cultivating wheat and rice sustainably. Farmers were used to conventional farming methods, with more input costs and labor-intensive practices. In addition, as farmers were growing long-duration rice varieties, they typically sowed wheat in late November to early December, which meant harvesting in late April/May. Harvesting wheat this late caused yield losses due to terminal heat stress at the grain filling stage. With increasingly hot temperatures in recent years due to climate change, yield loss in wheat is imminent.
To help curb these yield losses, researchers and officials began promoting early sowing of wheat through a technology called zero tillage in the region, with sowing recommended before mid-November. As expected, this helped farmers to escape high temperature stress at the time of the dough stage, thus, saving grain shrinkage and yield loss at harvest. Zero tillage technology is a tested method with the potential to increase crop productivity through better time management and reduced input cost.
Deepak Kumar Singh, scientist at CSISA who has been supporting agri-extension efforts in the region for nearly a decade recalled how CSISA and partners were able to get more farmers on board with zero tillage and early wheat sowing:
“The best practices of zero till technology and early wheat sowing were encouraged widely through exposure visits, demonstration trials on progressive farmers’ fields, and providing support from local KVKs for machines and quality seeds, including the promotion of private service providers,” he said.
As more farmers were reached through field events, with visible on-field results during public harvest activities held at demonstration fields by CSISA and KVKs, the region gradually adopted early wheat sowing, zero tillage and direct seeded rice technologies. Currently, in the district, it is estimated that over 40% of wheat cultivation under the rice-wheat system is through zero till, helping farmers obtain better yield and profits.
Rice-wheat cropping systems, resilient and sustainable in increasingly changing climate
Rajapur, a small village in Buxar district, boasts 100% adoption of zero tillage in wheat cropping. We met farmer Rahul Rai whose family has been involved in farming for generations. The family owns over thirty acres of land with agriculture as the primary source of income. His father and his siblings were used to conventional farming methods. The produce from their farm was sufficient for household consumption and with the little extra left, they sold and made some income. On the significance of agriculture and farming for his family, Rahul Rai says, “this farmland has been feeding and supporting 17 members in our joint household.”
When young Rahul Rai got down to work in the family fields in the early 2000s, he was keen to explore possibilities to improve the income generated from the farm. Initially, like many others, he was engaged in intensive farming. According to Rai, “with the input costs rising daily, including scarce labor and soil health deterioration, bringing in some extra income seemed unsustainable”.
He first met researchers from the CSISA project and local KVK scientists in early 2011 in the neighboring village. The team was there to inform farmers about conservation agriculture practices and how to better manage yield and maintain soil health. Rai soon became more curious about the benefits of adopting these new methods over conventional practices. He started with a few acres with zero tillage and began sowing wheat by early November, as recommended by the scientists. In Rabi 2022-23, his wheat fields were sown by November 11, compared to the early years when the sowing date was around December.
Wheat yield data gathered meticulously over a decade from Rahul Rai’s fields (Data: CSISA MEL team)
With more participation and engagement with CSISA, in 2017, he joined other farmers from the region on an exposure visit to Patna organized by the CSISA-KVK network. In Patna, at the Indian Council of Agri Research – Research Complex for Eastern Region (ICAR-RCER), Rai and the visiting farmers were introduced to conservation agri-technologies for rice-wheat and other cropping systems. During the visit, they were informed about crop rotation and diversification, new seed varieties that are resilient and adaptable to changing climates, efficient use of plant protection chemicals and fertilizer and various subsidies from the center/state government to farmers. He later accompanied other progressive farmers on a CSISA-led travel seminar to Gorakhpur in 2017, where he observed acres and acres of wheat fields cultivated through zero tillage and early sowing that had yielded 6-7 tons per hectare (t/ha) on average.
At present, Rai’s family cultivates only zero till wheat in their fields and direct seeded rice on a few acres where irrigation facilities are well established. Rai asserts that until 2014, the wheat yield was about 10-15 quintals per acre (3.5-4 t/ha), rising to around 20-25 quintals per acre on average (5.5 t/ha in 2023) in recent years, thanks to conservation agriculture practices.
Today, the CSISA team has system optimization and demonstration trials on fields owned by Rai’s family where they conduct trials to demonstrate the importance and feasibility of different agri-practices and compare yields at harvest. Rai, a champion farmer who has been involved with CSISA for nearly a decade, said, “I am a collaborator with CSISA now. The data gathered from my fields on the compounding benefits of conservation agriculture technologies is used to promote the best practices and technology adoption across our district and state.”
One village at a time
Presently, Rajapur village has 100% zero tillage adoption. Despite most farmers being smallholders, this level of zero tillage adoption in wheat is impressive. Zero-till-based crop establishment, with appropriate diversification in crops grown, is economically beneficial and improves soil health. All these practices and technologies ensure lower greenhouse emissions and support climate change mitigation efforts. Above all, smallholder farmers are food secure and contributing in their small way to national and global food security.
To scale the adoption of conservation agriculture practices, CSISA and partners are collaborating with farmers in the district/state â many of whom are already 50-80% in zero tillage adoption. The team on the ground are conducting system optimization trials on farmers’ fields to generate data and evidence to support and strengthen policies and assist in integrating market intelligence to support access and availability of technology to all smallholders. Every year steadily, through a smallholder farmer, a village, a district, the effort is to slowly expand the area under conservation agriculture across the state and region and ensure increased system productivity and sustainability of agriculture.
Written by mcallejas on . Posted in Uncategorized.
In 2015, the General Assembly of the African Union committed to retiring the hand hoe to museums and pushing for sustainable agricultural mechanization on the African continent.
Today, approximately 75-82% of smallholder farmers in eastern and southern Africa rely on human or animal draft power for primary tillage operations. Mechanization helps to reduce drudgery, increases productivity, and contributes to food security and increased livelihoods.
What is Feed the Future Mechanization and Extension Activity?
The Feed the Future Mechanization and Extension Activity, funded by the United States Agency for International Development (USAID), aims to improve smallholder farmersâ access to farm power and machinery to enhance their land and labor productivity.
This is achieved through three integrated components that stimulate demand for scale-appropriate machinery.
Components:
 Identification of demand-driven smallholder farm machinery and building capacity of manufacturing companies to produce, repair, and import machinery for smallholder agricultural production systems.
Building the capacity of local service providers to purchase, operate, and maintain farm machinery to provide mechanized services to small-scale agricultural value chain actors.
Coordinate and collaborate with other FTF activities to build the capacity of interested local service providers.
What are the objectives?
Assess and build the capacity of smallholder machinery manufacturers and suppliers to manufacture demand-driven farm machinery.
Enhance land and labor productivity and income through the establishment of mechanization service provision to small scale agricultural value chain actors.
Promote the use of the machinery through demonstrations and other demand creation activities, and inclusive training of rural women and youth in post-harvest processing of agricultural produce to generate increased income.
Coordinate and collaborate with other mechanization and Feed the Future activities to build capacity of the interested service providers to be agricultural extension agents to their customers during the cropping season.
Support service providers, manufacturers, and distributors to access credit to acquire machinery or mechanized services.
The project sites are located in Zimbabwe’s Manicaland and Masvingo provinces with project presence implemented across 10 districts.
The Mechanization and Extension Activity will directly benefit 150 service providers who in turn will reach up to 22,500 women and men smallholder farmers through provision of mechanized services. In addition, the mechanization activity will identify and build the capacity of 30 rural mechanics and 30 technicians drawn from local farm machinery manufacturing companies and/or small and medium enterprises.
Written by mcallejas on . Posted in Uncategorized.
Moben Ignatius is the Agriculture Research Associate in the SAS program at CIMMYT. His role revolves around fostering sustainable agricultural practices and innovative technologies and methods that cater to Rice-Wheat cropping systems.
His previous work role extended to forging alliances with diverse organizations and governmental bodies to advocate for the expansion of these beneficial agricultural techniques. Employing meticulous monitoring, evaluation, and data-driven surveys, ensuring the successful execution and scalability of projects.
The Coalition on Sustainable Productivity Growth for Food Security and Resource Conservation (SPG Coalition) brings together researchers, non-governmental organizations, and private sector partners to advance a world with greater access to nutritious food and affordable diets. The Coalition recognizes that increasing the productivity of natural resources through climate adaptation and mitigation is instrumental to reaching this goal.
In a recent report, the SPG Coalition provides a path forward for NGOs, research institutions, and government agencies to strengthen agrifood and climate policies. The report contains real-life, evidence-based examples to further the sustainable production and conservation of natural resources, detailing the potential impacts on social, economic, and environmental conditions.
CIMMYT features prominently in the report as a leading organization focused on 4 main areas: climate-smart agriculture, nutrient-use efficiency (NUE), and pest and fertilizer management.
Nutrient-use efficiency and fertilizer management
While chemical fertilizers increase crop yields, excessive or improper use of fertilizers contributes to greenhouse gas emissions (GHG) and increases labor costs for smallholders. Efficient NUE is central to nutrient management and climate change mitigation and adaptation.
Women using spreader for fertilizer application. (Photo: Wasim Iftikar/CSISA)
In India, CIMMYT, along with the Borlaug Institute for South Asia (BISA), CGIAR Research Centers, and regional partners, tested digital tools like the Nutrient Expert (NE) decision support tool which measures proper fertilizer use for optimized yields and provides nutrient recommendations based on local soil conditions.
The majority of smallholders who applied the NE tool reported higher yields while emitting less GHG emissions by 12-20% in wheat and by around 2.5% in rice as compared with conventional fertilization practices. Farmers also recorded double economic gains: increased yields and reduced fertilizer costs. Wider government scaling of NE could enhance regional food security and mitigate GHG emissions.
The Feed the Future Nepal Seed and Fertilizer (NSAF) project, led by CIMMYT and USAID, advocates for climate-smart agriculture by linking smallholders with improved seed, providing capacity-building programs, and promoting efficient fertilizer use. With a vast network established with the support from the Government of Nepal, NSAF successfully provides smallholders with expanded market access and nutritious and climate-resilient crop varieties.
Climate-smart maize breedingÂ
Since its arrival to sub-Saharan Africa (SSA) in 2016, fall armyworm (FAW) has devastated maize harvests for countless smallholders on the continent. Economic uncertainty caused by unstable yields and climate stressors like drought coupled with this endemic pest risk aggravating food insecurity.
Fall armyworm. (Photo: Jennifer Johnson/CIMMYT)
CIMMYT and NARES Partner Institutions in Eastern and Southern Africa are spearheading a robust pest management project to develop, screen, and introduce genetically resistant elite maize hybrids across SSA. South Sudan, Zambia, Kenya, and Malawi have already deployed resistant maize varieties, and eight other countries in the region are projected to release their own in 2023. These countries are also conducting National Performance Trials (NPTs) to increase awareness of host plant resistance for the sustainable control of FAW and to sensitize policymakers on accelerating the delivery of FAW-tolerant maize varieties.
The establishment of FAW screening facilities in Africa permits more rapid detection and breeding of maize varieties with native genetic resistance to FAW, facilitating increased deployment of these varieties across Africa. The sustainable control of FAW demands a rapid-response effort, overseen by research organizations and governments, to further develop and validate genetic resistance to fall armyworms. Achieving greater impact for maize smallholders is critical to ensuring improved income and food security in Africa. It is also paramount for biodiversity conservation and removing labor burden on farmers applying additional synthetic pesticides to prevent further losses by the pest.
âThe SPG Coalition report emphasizes the power of partnership to enhance financial and food security for smallholder communities in the Global South. This is fully in line with the recently launched CIMMYT 2030 strategy. Itâs also an important reminder to assess our strong points and where more investment and collaboration is needed,â said Bram Govaerts, CIMMYT director general.
CSISA collaborates with Chaudhury Charan Singh Haryana Agriculture University to provide students with opportunities to engage in the latest agri-research and big data management. (Photo: CIMMYT)
Working alongside smallholder farmers, the Cereal Systems Initiative for South Asia (CSISA) project, has forged partnerships at the state and center levels to bridge the gap between innovation and the adoption of sustainable agricultural systems. In its current phase (2022-2025) in India, CSISA is helping mainstream innovation processes into the programing of national and state institutes through joint extension and research activities, including capacity building initiatives. Chaudhury Charan Singh Haryana Agriculture University (CCSHAU) is one of Asiaâs biggest agricultural universities, located at Hisar in state of Haryana, India. Initially a campus of Punjab Agricultural University, Ludhiana, it became an autonomous institution in 1970 and contributed significantly to both the Green and White Revolutions in India.
Together with CCSHAU, CSISA recently initiated a landscape diagnostic survey (LDS) under the universityâs rural agricultural work experience (RAWE) program for students graduating with an honors Bachelor of Science in agriculture. The twin objectives of this initiative were to gain an understanding of the existing challenges and opportunities for different cropping systems in Haryana through a bottom-up approach and to prepare students for careers in agriculture by building their practical skills in digital agriculture and big data management. This, explained CCSHAU Vice Chancellor B.R. Kamboj, who led the collaboration with CSISA, would provide recent graduates with the opportunity to âdesign a survey schedule, collect data in digital format, understand how farmers are adopting new technologies, and the learnings and challenges associated with each cropping system.â
Developing solutions for tomorrowâs problems
The predominant cropping systems practiced within the three ecologies of Haryana state are: the rice-wheat cropping system (RWCS); the cotton-wheat cropping system (CWCS); and the pearl millet-mustard cropping system (PMCS). The landscape diagnostic survey was carried out in parts of Sirsa and Hisar districts (for CWCS), Rewari and Mahendergarh districts (for PMCS) and Panipat, Yamunanagar, and Kurukshetra districts (for RWCS). The entire survey design was based on farmersâ participatory engagement and the cropping system framework.
A thorough process of survey design, including the training of master trainers, followed by orientation for students, was undertaken by the universityâs RAWE faculty with support from CSISAâs technical team and participating KVKs. Students collected data from farming households using questionnaires and analyzed them using different analytical tools and techniques. Based on farmersâ responses, important data points about the regionâs three crucial cropping systems were recorded and a book entitled Cropping Systems of Haryana â Challenges and Opportunitieswas published earlier this year, documenting the research process, data generated, results, and conclusions.
This has been a unique experience for both students and faculty that culminated in a research program with hands-on training. In the long run, this approach to capacity building for students is expected to support fieldwork and studies that help develop solutions to tomorrowâs problems in agricultural development. âThe commitment of CCSHAU to implement a strong RAWE program under the technical guidance of CSISA, with support from the district KVKs, and student participation made this publication a strong endorsement and reference for similar RAWE programs across states and central universities,â acknowledged Peter Craufurd, CSISA project lead for India.
Lessons from the field
The survey helped build studentsâ capacity to design and understand data collection methods, analysis, and management with actual field exposure. Additionally, the qualitative data-gathering experience allowed them to develop their understanding of farmersâ perspectives in adopting or rejecting a particular technology or recommendation. Sharing her experience of the field sessions, RAWE student Muskanâ group leader for the rice-wheat cropping system survey, said, âThis process of data gathering, and field exposure is very motivating. I have a better understanding of our farmersâ practices and challenges.â
Another participating RAWE student and group leader for the cotton-wheat cropping system survey, Nilanchal Nishan said, âthis exposure has helped me understand how policies and technology advancements affect farmers and their interaction with these changes over the yearsâ.
âThe entire process, from training to data management and curation, was fascinating for us,â said Aman Kumar, who led the pearl millet-mustard cropping system (PMCS) survey. He added that such field exposure will make students more aware of the trends and prevalent practices in the agricultural sector and help them choose their future field of research and study in a way that is in sync with real-time developments. These sentiments were echoed by RC Aggarwal, deputy director general for education at the Indian Council of Agricultural Research (ICAR), who called for more collaborations and capacity development exercises of this nature to be initiated in other state agriculture universities.
Nepal is an agricultural country, where the sector provides the major source of income for half the population. Despite this, the sad reality is that the country is not able to produce enough crops to meet its needs, and major grains like rice, maize, and cereals are mostly imported.
One factor influencing this is an aging population of farmers, alongside decreasing interest in agriculture among the countryâs youth. Many young people do not see agriculture as a viable option for employment, opting instead for work opportunities outside the country. However, there are still some youth who see agriculture as a profitable business, like Pradeep Morya.
âIt is better to work hard in your home country rather than going abroad and working tirelessly every minute and hour,â says Morya, a 24-year-old farmer from Banke, Nepal, who finds happiness in living close to his family and helping to support national food security. âI love being in the field,â he explains. âI have cultivated spring maize on one hectare. My day-to-day business is to provide care to the spring maize along with pumpkins and beans that I have added for additional income on a small plot of land.â
Morya grows spring maize, pumpkin, and beans (Photo: CIMMYT)
Working alongside his eldest brother, Morya has cultivated 30 kattha of land (equivalent to 0.36 hectares) using the spring maize varieties Pioneer 1899 and DK 9108. His brother, a member of Mahatarkari cooperative in Duduwa, western Nepal, has been providing him with the knowledge and expertise needed for maize cultivation.
Mahatarkari is one among 50 cooperatives working in partnership with the Nepal Seed and Fertilizer project (NSAF), which is implemented by CIMMYT. NSAF works with the cooperatives to provide technical knowledge and training to farmers, to hone their potential and support them in the adoption of modern technologies which can improve their livelihoods. After participating in programs organized by NSAF, Morya makes sure that the suggestions he receives â on soil preparation, weed management, harvesting, and more â are implemented in his field.
Returning to the family farm
A few years back, the situation was different. Like many youths in the country, Morya also went abroad to try his luck on the international job market. He worked hard for two years in Malaysia but was forced to return to Nepal during the COVID-19 pandemic.
âI had imagined my shining future abroad. However, when I reached there, the reality was different,â recalls Morya. âI returned to my own country just before the lockdown in April 2021 with some small savings. Upon my arrival in Nepal, I was clueless about my future. I dropped my education after grade five. With no educational qualifications and skills in hand, it was difficult to get a decent job.â
Agriculture has provided Morya with a sustainable source of income in his home country. (Photo: CIMMYT)
Since the country was in lockdown, Morya chose to stay at home and support his family on the farm. It was here that his eldest brother guided him into farming, and Morya soon learned the knowledge needed to run the farm and began earning money from it. This attracted him towards farming as a longer-term career option, and he has now discovered a prosperous future in agriculture.
âAgriculture needs continuous effort,â he says. âWith the support of technology, it is easy and efficient to work. I work every day so that I can reap crops on a large scale to make a profit. I manage weeds, irrigation, and control pests.â
âI also have livestock. I get adequate fodder for my cows and buffalo from weeds and from the spring maize. I sell milk in the market. In addition to this, I also make sure to produce off-season vegetables so that I receive a decent price for additional income.â With the support of his family, Morya has recently purchased an e-rickshaw, which he uses to transport and sell his produce.
To further support his endeavors, Morya has also been participating in Nepalâs Maize Commercialization Network and using the Geo Krishi mobile app to learn about current market prices. âBefore knowing about the commercialization of crops, it was hard to receive good amounts from buyers,â he explains. âNow, I make a call to the local retailers and buyers to learn the best value of my grain. Sometimes I also explore the market. Then, I analyze the rate and sell my maize.â He uses a similar system for his off-season vegetables, selling either in the local market or directly to consumers for a premium price. âI make a saving of around 1500 Nepalese rupees (approximately US$ 11) per day,â he says.
A prosperous life
With the profits from his agricultural business, Morya has been able to fulfill his dream of purchasing a bike, as well as contributing to the construction of a new eight-room house, where his family is now living comfortably. âI love to roam on my bike with my friends in the evening. I also take my mother for a ride,â says Morya with a bright smile. âNow, I have a dream to live a prosperous life with my family.â
Morya fulfilled his dream of buying a bike. (Photo: CIMMYT)
Thanks to the support provided by the NSAF project with generous funding from USAID, young people like Morya can pursue a better life for themselves and their families. Agricultural training programs have not only helped young people fulfill their basic needs, but also to achieve their dreams. It is hoped that ongoing efforts to empower farmers through science and innovation will continue helping young farmers like Morya break the chain of unemployment, for both their own benefit and that of Nepal.