Skip to main content

funder_partner: United States Agency for International Development (USAID)

AMBIONET: A Model for Strengthening National Agricultural Research Systems

CIMMYT E-News, vol 3 no. 6, June 2006

june03A USAID-funded study by Rutgers economist Carl Pray concludes that present and future impacts of the Asian Maize Biotechnology Network (AMBIONET)—a forum that during 1998-2005 fostered the use of biotechnology to boost maize yields in Asia’s developing countries—should produce benefits that far exceed its cost.

Organized by CIMMYT and funded chiefly by the Asian Development Bank (ADB), AMBIONET included public maize research institutions in China, India, Indonesia, the Philippines, Thailand, and Vietnam. “Despite the small investment—about US$ 2.4 million from ADB and US$ 1.3 million from CIMMYT—the network was successful in increasing research capacity, increasing research output, and initiating the development of technology that should benefit small farmers and consumers,” Pray says.

Benefits already seen in the field, with more to come

Pray estimates that farmers in Thailand and Southern China are already gaining nearly US$ 200,000 a year by sowing downy-mildew-resistant hybrids from the project. Pray’s future projections are much more dramatic. An example is drought tolerant maize: if such varieties are adopted on just a third of Asia’s maize area and reduce crop losses by one-third, farmers stand to gain US$ 100 million a year. Furthermore, in India AMBIONET has improved knowledge, capacity, and partnerships with private companies; a 1% increase in yield growth from this improvement would provide US$ 10 million per year, according to Pray.

Emphasis on applied work pays off

AMBIONET’s applied approach stressed formal training and attracted Asian researchers to work on maize germplasm enhancement and breeding. This included graduate students, scientists who switched from an academic to an applied-research focus, and advanced-degree scientists with experience in DNA markers and mapping for maize. Many noted that the partnering of molecular geneticists with breeders strengthened their interactions and the exchange of expertise. The project also boosted funding for maize breeding research. Several AMBIONET labs used project money to leverage significant institutional and government grants. Major research programs emerged from AMBIONET in India and China.

In a 2003 interview, Shihuang Zhang, leader of a project team at the Chinese Academy of Agricultural Sciences’ (CAAS) Institute of Plant Breeding, said: “AMBIONET came along at the ideal time for us. We were able have some of our young people trained and start our lab. Then in 1998 and 1999, China changed the way research was funded. We
were able to get big projects for molecular breeding.” The CAAS group used the initial money, equipment, training, and advice from AMBIONET to start the fingerprinting, mapping, and a markers lab, as well as to hire leading national maize breeding and molecular genetics experts. According to Pray, this eventually converted the group into China’s major maize molecular breeding and enhancement program.

Region-wide sharing

Benefits were not confined just to individual labs, as groups shared knowledge and resources across borders. The Indonesian team, for example, sent two young scientists for extended training in the laboratory of B.M. Prasanna, at the Indian Agricultural Research Institute in New Delhi. Veteran Indonesian maize breeder Firdaus Kasim reported this to be extremely useful: “Prasanna showed our scientists how to do downy mildew and genetic diversity research. He was a very good teacher. After they came back they made a lot of progress.” Prasanna also provided lines that the Indonesian trainees fingerprinted in diversity studies and 400 primers (markers) for downy mildew resistance.

Lines, data, and markers from AMBIONET are in use region-wide. For example, sugarcane mosaic virus was identified as a serious constraint in several countries, and partners are using resistant lines developed under AMBIONET. Based on information from diversity studies conducted under the project, Vietnamese researchers are developing hybrids that resist lodging and are drought tolerant.

A regional program that worked

Research projects provided the focal point for AMBIONET, with training activities, annually meetings, and the technical backstopping contributing to the programs’ success. “The combination of collaboration, cooperation, and competition
was impressive,” says Pray, in the study’s closing statement. “This is the way good, collaborative research is supposed to work.”

For more information contact Jonathan Crouch (j.crouch@cgiar.org)

Steady as she goes: Improved maize and wheat varieties actually lower farmers’ risks

CIMMYT E-News, vol 3 no. 7, July 2006

jul04A USAID-funded study by Williams College economist Douglas Gollin shows that modern maize and wheat varieties not only increase maximum yields in developing countries, but add hundreds of millions of dollars each year to farmers’ incomes by guaranteeing more reliable yields than traditional varieties.

Modern crop varieties developed through scientific crop breeding clearly produce higher yields than farmers’ traditional varieties. But critics have long maintained that, in developing countries, yields of modern varieties vary more from season to season than the traditional varieties, thereby exposing producers and consumers to greater risk.

Gollin’s study analyzed changes in national-level yield stability for wheat and maize across developing countries and related them directly to the diffusion of modern varieties. “The outcomes strongly suggest that, over the past 40 years, there has actually been a decline in the relative variability of grain yields—that is, the absolute magnitude of deviations from the yield trend—for both wheat and, to a lesser extent, for maize in developing countries,” says Gollin. “This reduction in variability is statistically associated with the spread of modern cultivars, even after controlling for expanded use of irrigation and other inputs.”

 The value to farmers of reduced risk

Valuing these reductions in yield variability requires assumptions about society’s willingness to trade off risk against return. Using a standard analytic framework, the study finds that the reductions in variability are as valuable as small increases in average yield. Assuming a moderate level of risk aversion on farmers’ part and taking estimates for the magnitude of reductions in yield variability, the results suggest that the reductions in yield variability due to modern varieties are worth about 0.3% of annual production in the case of wheat and 0.8% of production in the case of maize. These appear to be small effects, but the sheer scale of wheat and maize production in the developing world means that the benefits from improved yield stability are large in absolute terms. At appropriate world prices, the benefits are about US$143 million for wheat and about US$149 million for maize, on an annual and recurring basis.

The study drew on country-level data for the diffusion of modern wheat and maize varieties compiled by Robert Evenson of Yale University, as well as aggregate data on production and yields from FAOSTAT, the global food information database of the Food and Agriculture Organization of the United Nations. The analysis also made novel use of a mathematical tool called the Hodrick-Prescott filter to disentangle changes in long term trends from annual fluctuations. The filter is most often used in macroeconomics.

According to Gollin, the benefits are not attributable to any particular research theme or program. “They reflect longstanding efforts in breeding for disease and pest resistance, drought tolerance, and improved cropping systems, to name a few,” he says. “By reducing the fluctuations in maize and wheat grain yields, scientists have played a vital role in making modern crop technology attractive, accessible, and beneficial to farmers and consumers around the globe.”

For more information contact John Dixon (j.dixon@cgiar.org)

When papa said no

CIMMYT E-News, vol 3 no. 7, July 2006

jul06A daring move by a young farmer in India has changed his life and his father’s.

Durgesh Kumar Singh shoulders a huge responsibility. When his father became too ill to work his small farm near Varanasi in the eastern Indo-Gangetic Plains, the 24- year-old student had little choice but to take on managing both the farm and his studies. His father was always there to give advice and share his farming knowledge, so when Durgesh decided to defy his father’s instructions, he was taking a big risk.

A team from the CIMMYT-convened Rice Wheat Consortium (RWC) for the Indo-Gangetic Plains had visited the villagers to enlist their cooperation in a demonstration of zero-till seeding technology. The team wanted village farmers to plant some of their wheat crop without plowing the soil first. Like people living on much of the vast plain below the foothills of the Himalayan Mountains, the farmers of Durgesh’s village plant wheat in the dry season, after harvesting the rainy-season rice crop. Preparing the land takes time and labor and for every day of delay after the optimal planting time, farmers lose about 1% of their potential harvest. A ten-day advance in wheat seeding results in 10% higher harvests. Plowing means waiting until a crew with a tractor and plow is available.

jul05

When the RWC team, which included Ramesh Chand and UP Singh from Banaras Hindu University, first visited the village, people laughed. “How can you expect the seed to germinate if you just throw it on the ground?” they joked. After two weeks of cajoling and pointing out that zero-tillage saves time, labor, and scarce water, the team convinced one farmer, Surindra Sharma Mayaran, to set aside a very small piece of his land for a trial. “If it works, OK, and if it doesn’t, OK,” he said. Even though the wheat germinated and grew, most villagers remained skeptical, especially Durgesh Singh’s father. He told Durgesh that he would die if his son tried to plant that way.

But seeing in that first trial a possibility for a brighter future, Durgesh decided to try zero-tillage for wheat on a small field that his father could not see from the house. He harvested at least as much as with the old methods, but gained something more precious. “We now have enough time to read,” he says. “My golden time is what I am saving.” This has not only let him continue his studies, but has reduced farm labor costs, making the family wheat crop more profitable. Now most of the villagers who were at first so skeptical are following his lead.

Even those who are nearly landless see benefits. Ram Dhari is what the village calls a “minimum landholder” with just a tenth of a hectare. He is extremely poor. He did not have the money to rent the zero-till seeding machinery, so the rest of the village let him use it for free and Banaras Hindu University provided seed. He had watched the others and wanted to follow. “I am looking forward to the profits,” he says.

This is one of countless stories of the success of a broad range of resource-conserving technologies on smallholder farms in India. RWC work, in India funded in large measure by the United States Agency for International Development (USAID), has won praise and awards. Recently the Minister of Agriculture for India, Sharad Pawar, said the use of such technologies, especially zero-tillage, was essential to the improvement of Indian agriculture.

Durgesh Singh, Ram Dhari and Surindra Mayaran see the impact in their village every day. At first Durgesh was a laughing stock. Now his zero-till fields have produced, and produced well. The father who said he would die if is son tried out such a foolish thing as planting without plowing now asks “Why didn’t you do the whole farm this way?”

For more information contact Raj Gupta (r.gupta@cgiar.org)

Simple Screening for a Complex Problem

February, 2005

oldBlackMagicA CIMMYT research team is using an old but effective technique to get a head start on some very advanced crop science. Their aim is to breed high yielding maize that also resists infection by a dangerous fungus. As part of a USAID-funded project, the team uses ultraviolet or black light to identify maize that inhibits Aspergillus flavus, a fungus that produces potent toxins known as aflatoxins.

The fungus is particularly widespread in maize-growing regions of Africa, and the aflatoxins it produces can cause health problems in those who ingest it in high doses. By starting with elite maize varieties, those that already cope well in drought and high temperatures, and that resist damaging insects, the project hopes to produce a “package deal” for farmers: maize lines can survive these conditions and resist Aspergillus flavus.

No continent is immune from the Aspergillus problem. During 1988-1998, losses from aflatoxin damage in the US exceeded USD 1 billion. The United States has set an upper permissible aflatoxin level of 20 parts per billion in food, and the European Union has even stricter tolerances. A carcinogen, aflatoxin was recently linked with the deaths of more than 50 people who consumed contaminated grain in Kenya. A study in West Africa found a strong association between aflatoxin levels in children’s blood and stunted growth. “There is no easy quick-fix to this problem,” says Dan Jeffers, CIMMYT researcher overseeing the project, “but when a solution is found, everyone wins.”

By collaborating with scientists in the US, CIMMYT is better able to accomplish its goal of helping resource-poor farming households who consume their own maize. “We want to combine useful traits that will lessen the incidence of aflatoxin in the crop,” says Jeffers. “By crossing maize varieties that already are drought tolerant with those that resist Aspergillus, commercially viable and attractive lines should emerge.” This holistic approach will provide better varieties to collaborators and eventually to farmers.

The kernels vibrate as they shuffle down the tray of the light box. Healthy kernels appear faded under the black light, but the infected grain glows. Jeffers and his team will use the fluorescence data to choose the maize lines that show the least amount of fungal infection. “The most promising materials will then be used in further studies to look at aflatoxin levels,” Jeffers says.

Wheat and Water Win

May, 2005

obregon01CIMMYT shows technology to enhance farmer income and reduce ocean pollution

Wheat farmers in the Yaqui Valley of Mexico’s Sonora State will be the first to gain from a new technology developed by CIMMYT researchers with partners from Oklahoma State and Stanford Universities. And while the farmers in Mexico will benefit, CIMMYT believes that farmers and the environment in many developing countries will reap rewards as well.

“I wish I had known about it this season,” said Ruben Luders when he saw the results. He farms 400 hectares of wheat in the Yaqui valley. “It will save me money.”

What Luders and more than twenty-five other farmers saw in a demonstration was an effective and accurate way to determine both the right time and correct amount of nitrogen fertilizer to apply to a growing wheat crop. Wheat needs nitrogen to grow properly, but until now there has been no easy way to know how to apply it in an optimum way. Traditionally farmers in the region fertilize before they plant their seed and then again at the first post-planting irrigation. The new approach, developed in conjunction with Oklahoma State University in the United States, uses an infrared sensor to measure the yield potential of wheat plants as they grow.

“I had been looking for something to determine nitrogen requirements for a long time,” says CIMMYT wheat agronomist, Dr. Ivan Ortiz-Monasterio. “This technology was already being used by CIMMYT scientists for other things, such as estimating the yield of different genotypes. It has taken time to calibrate it, but now we have a useful tool to determine the nitrogen a wheat plant needs.”

obregon02

The sensor is held above the young, growing wheat plants and measures how much light is reflected in two different colors—red and invisible infrared. In technical terms this is called measuring the Normalized Differential Vegetative Index (NVDI). After much testing, Ortiz-Monasterio and his colleagues from Oklahoma State found they could get a handheld computer to calculate the nitrogen requirement of the plants from the two readings.

The demonstration, conducted in the fields of four different farmer-volunteers, showed they could maintain their yields using far less fertilizer. That is because fertilizer residue from over-applications in past seasons can still be utilized by the new crop.

“We used to feed the soil first, before growing the wheat,” says Luders. “Now we know we should feed the wheat.” He and his friends calculated that with just 80 hectares of wheat the nitrogen sensor, which costs about US $400, could pay for itself in a single season.

The demonstration was made possible because farmers in the Yaqui Valley have consistently supported the research work of CIMMYT and of Mexico’s national agricultural research institute, INIFAP, in the area.

There is much more to this technology than a tool to maximize farm income. A recent Stanford University study published by the prestigious science journal Nature showed that each time farmers irrigate their fields, some of the excess nitrogen fertilizer washes into the nearby Sea of Cortez. The heavy load of nitrogen in the water results in blooms of algae which deplete the oxygen in the water. In other parts of the world such algae blooms can do serious damage to local fisheries. If widely adopted in the Yaqui Valley, the nitrogen-optimizing technology should result in less fertilizer washing into the sea.

Runoff of excess nitrogen fertilizer is a problem that will threaten many more sensitive bodies of water around the world, according to Ortiz-Monasterio. “As farming systems intensify to feed more people, we need to increase production but minimize impact on the environment,” he says. So while farmers in the State of Sonora may be the first to benefit, they certainly will not be the last. Just five days before the demonstration in Ciudad Obregon, the first infrared sensor, a result of a USAID linkage grant with CIMMYT and Oklahoma State, arrived in Pakistan. This way, a technology proven in the field in Mexico will go on to assist farmers in poorer parts of the world and help maintain the health of coastal waters at the same time.

For further information, contact Ivan Ortiz-Monasterio (i.ortiz-monasterio@cgiar.org).

Helping to Reinvigorate Agriculture in Afghanistan

CIMMYT E-News, vol 2 no. 8, August 2005
whtVariety
Ghulam m Aqtash, Executive Director, KRA

“The maize brought by CIMMYT and implemented by Kunduz Rehabilitation Agency is doing wonders.”
Years of war (1979-1989) and subsequent internal instability, plus a prolonged drought and an earthquake, devastated Afghanistan’s agricultural infrastructure, production capacity, and agricultural research capabilities. As a result, agricultural production fell to an estimated 45% of 1978 levels, with crop yields declining to about 50% of pre-war levels.
Wheat is the number-one staple crop in Afghanistan, and maize is the third. Together they occupy 80% of the area planted to annual crops in the country. A central aim of CIMMYT in Afghanistan is to make improved, high quality seed of both crops available to farmers, along with appropriate crop management technologies. To date CIMMYT has responded to Afghanistan’s most urgent needs by:

  • Distributing 300 tons of quality seed of the locally-adapted wheat MH-97 to 9,000 farmers in four provinces of Afghanistan.
  • Producing and delivering tons of breeder’s and foundation maize seed.
  • Planting 35 wheat variety trials at 6 sites and 24 maize trials at 8 sites to identify additional materials suited to farmers’ needs.
  • Training Afghan researchers through courses in-country and at CIMMYT in Mexico.

CIMMYT has collaborated with Afghan researchers for over three decades—even during the war. Thanks to the Swedish Committee for Afghanistan and the FAO, Afghan researchers maintained contact with the Turkey-CIMMYT-ICARDA International Winter Wheat Improvement Program (IWWIP) and continued to select the best new wheats from international nurseries. The new seed moved from farmer to farmer; without it, people would have suffered even more hunger and malnutrition than they did. All winter and facultative wheat cultivars currently registered in Afghanistan are derived from those nurseries. In total, several hundred CIMMYT wheat and maize nurseries have been evaluated in Afghanistan over the past 30 years.

Recent Update from the Field

kunduzAn important component of a current ACIAR-funded project (“Wheat and Maize Productivity Improvement in Afghanistan”) has included collaborative work with farmers and non-government and international organizations to verify in farmers’ fields the performance and acceptability of improved wheat and maize varieties. For wheat, the project uses two approaches:

  1. A traditional approach where demonstrations are planted in farmers’ fields and the farmer assessments are recorded informally through topic focused interviews during field days. The varieties included in these demonstrations are released in the country and made available where security allows. Using this approach in Parwan Province, farmers showed a keen interest for the variety ‘Sohla,’ which yielded well and showed superior resistance to diseases like rust. The project is helping to ensure that demand for seed of the variety is met.
  2. A participatory technology development approach implemented by the Aga Khan Foundation brings farmers to research stations to observe yield trials of promising varieties. Farmers identify preferred varieties with red tags; their assessments determine the selection of wheat lines for advancement and subsequent release.

For maize, the project provided non-government organizations with seed of open-pollinated varieties that were distributed to rural communities. Farmer testing and feedback resulted in the identification of two promising varieties: Rampur 9433 and PozaRica 8731. Farmers said the varieties performed well but did not mature quickly enough to fit local cropping systems, so project participants are identifying earlier-maturing varieties. To offer farmers sufficient seed, the project is pursuing two approaches:

  1. A formal scheme whose main partners are the Agricultural Research Institute of Afghanistan (ARIA) and the FAO, through the Improved Seed Enterprise (ISE), and under which breeder’s seed will be offered to recognized producers of certified seed.
  2. Informal farmer-to-farmer distribution systems, which have resulted in up to a 10-fold increase in some areas under improved varieties. For example, the Norwegian Project Office-Rural Rehabilitation Association for Afghanistan (NPO-RRAA) reported that farmers who had planted open-pollinated varieties from the project in 2003 had bartered and sold more than two tons of seed of the varieties in 2004.

afghanFarmers

The project has built human capacity through in-country, technical workshops, five of which have been conducted since 2000 on topics including: agricultural development potential and constraints in specific zones; yellow rust and field scoring for the disease; research methodologies; variety evaluation; and several field days. The workshops have drawn 70 participants, including farmers, workers from non-government organizations, and officers from research stations.

CIMMYT partners in Afghanistan include:
  • The Future Harvest Consortium to Rebuild Agriculture in Afghanistan, funded by USAID and coordinated by ICARDA.
  • AusAID and the Australian Centre for International Agricultural Research (ACIAR).
  • The FAO.
  • The International Fertilizer Development Center (IFDC)-USAID.
  • The French non-government organization, ACTED.
  • The Aga Khan Development Network.
  • Improved Seed Enterprise.
  • The Afghan Ministry of Agriculture.
  • ARIA.

For further information, contact Mahmood Osmanzai (m.osmanzai@cgiar.org).

This write-up draws on contributions from Alma McNab, former CIMMYT science writer and the CIMMYT team in Afghanistan, including team leader Mahmood Osmanzai and former CIMMYT maize agronomist Julien de Meyer. De Meyer manages the Effective Development Group (EDG), a non-government organization based in Australia and has been commissioned by ACIAR to assist the Afghanistan project in data analysis, training, planning workshops, and reporting.

Wheat warriors: The struggle to break the yield barrier

CIMMYT E-News, vol 6 no. 6, October 2009

nov01In 2009, out of a global population of 6.8 billion people, more than 1 billion regularly woke up and went to bed hungry. By 2050 the population is expected to grow to 9.1 billion people, most of whom will be in developing countries. Unless we can increase global food production by 70%, the number of chronically hungry will continue to swell. To help ensure global food security, a new research consortium aims to boost yields of wheat—a major staple food crop.

There is no easy fix for world hunger. Any improvement will require complex collaborative efforts and funding to support them. With this in mind, wheat scientists and agricultural experts from diverse private and public institutions are joining to form a Wheat Yield Potential Consortium (WYC). This group will strive to improve wheat yields, which must increase 1.6% annually to meet a projected demand of 760 million tons by 2020.
The unofficial launch of the WYC happened in November 2009, when over 60 world-renowned experts gathered for a USAID-sponsored symposium at CIMMYT’s Mexico headquarters to integrate various research components into a common breeding platform for improving wheat yields.

“Over the past year we’ve been pulling together experts in photosynthesis who have ideas on how to raise the overall biomass of the crop, as well as other experts in crop adaptation to make sure that increased biomass will also translate into better yields,” says Matthew Reynolds wheat physiologist and initiator of the WYC.

In recent decades, wheat yields have increased nearly 1% each year, but global population is growing roughly 1.5% annually. Climate change, unsustainable cropping practices, and changes in diet preferences further challenge wheat’s ability to meet the demands of a global population that relies on the crop for more than one-fifth of its caloric intake.

Meeting of the minds

“The international wheat community recognizes that each of us has different skills and that, though individually we cannot solve the problem of insufficient wheat yields, collectively we can,” said Richard Richards chief research scientist at Australia’s Commonwealth Scientific and Industrial Research Organization, Plant Industry, who has been commissioned to review a WYC project proposal under development.

The Consortium will pursue advanced approaches to increase wheat yields, including increasing the efficiency of photosynthesis, improving the plant’s adaption to target environments, and using physiological and molecular breeding. To date, selective, conventional breeding has been the main force behind yield improvement. Scientists breed a large number of high-yielding wheat plants, select early generations with good agronomic traits, populate trial fields with the offspring, and move the best forward in the breeding program. The cycle is then repeated. This system has been successful, but precedent suggests it will not be fast enough to overcome the combined challenges of population growth and climate change. “Instead of going straight to the end product —yield—we must look at every yield-determining physiological process and improve the efficiency of the limiting ones,” Richards said.

Powering up photosynthesis

Under favorable conditions, yield is a function of the interception, conversion, and distribution of solar energy. To increase yield, one or more of these components must be improved. Thanks to years of wheat improvement, the efficiency of solar energy intercepted is nearly 90% and energy distribution results in an almost optimal proportion of total biomass to grain, roughly 50%. “This leaves the conversion of sunlight into chemical energy—mainly controlled by photosynthesis—as the main yield component left to improve,” said Xinguang Zhu, group leader of Plant Systems Biology at the CAS-MPG Partner Institute of Computational Biology.

One way to do this is to increase carbon-fixing efficiency during photosynthesis. Plants that thrive at moderate temperatures, like wheat, tend to use C3 carbon fixation, a slow system that accepts both carbon dioxide and oxygen. The fixation of oxygen, called photorespiration, reduces the efficiency of photosynthesis. Plants that inhabit warmer locations, like maize, tend to use C4 carbon fixation, which increases chloroplastic CO2 concentration, reduces photorespiration, and improves energy-use efficiency.

The fact that the C4 system has evolved many times in nature has inspired scientists to look for ways to introduce parts of it into wheat, so that the plant can thrive at relatively high temperatures. This will be essential as temperatures in tropic and subtropic regions continue to climb. Studies show that for every 1°C of warming, wheat yields in these areas will fall 10%. Given that 95% of the world’s malnourished people live in these regions—which also have the highest rates of population growth—high-yielding wheat that can beat the heat could make a world of a difference.
For more information: Matthew Reynolds, wheat physiologist (m.reynolds@cgiar.org).

Fellows Program, World Food Prize Laureates Highlight Borlaug’s 90th

March, 2004

borlaug_photo1US Secretary of State Colin Powell paid tribute to Iowa and in particular to one man, known as the father of the Green Revolution, who was born there 90 years ago.

“On behalf of the American people, on behalf of President Bush, we gather to thank heaven for the great state of Iowa,” Powell said at a State Department ceremony to announce the 2004 World Food Prize Laureates on 29 March. “Most of all, we salute Iowa’s own, Norman Borlaug, for creating the World Food Prize and for his own prize winning work against hunger.”

US Secretary of Agriculture Ann Veneman joined Powell in honoring Dr. Borlaug’s 90th birthday in Washington DC. In front of more than 200 guests, including FAO Director General Jacques Diouf, USAID Administrator Andrew Natsios, World Bank Vice President and CGIAR Chair Ian Johnson, CGIAR Director Francisco Reifschneider, and CIMMYT Director General Masa Iwanaga, Veneman described the Norman E. Borlaug Agricultural Science and Technology Fellows Program to be inaugurated by the United States Department of Agriculture.

“Thanks to Dr. Borlaug’s pioneering work in the 1960’s to develop varieties of high-yielding wheat, countless millions of men, women and children, who will never know his name, will never go to bed hungry,” Powell said. “Dr. Borlaug’s scientific breakthroughs have eased needless suffering and saved countless lives. And Dr. Borlaug has been an inspiration to new generations across the globe who have taken up the fight against hunger and have made breakthroughs of their own.”

A tribute to Dr. Borlaug’s individual pursuit of using science and technology to fight hunger, the Fellows Program will focus on strengthening agriculture in developing countries by incorporating and advancing new science and technology. Proposed by Texas A&M University’s Agriculture Program and established by the USDA, it will give scientific training to fellows from developing countries and support exchanges among university faculty, researchers, and policy makers.

borlaug_photo2

The program aims to prepare professionals who want to lead developing countries in agricultural research and education while embracing the values that Dr. Borlaug’s life and work represent. It will be managed by the USDA’s Foreign Agricultural Service, the US Agency for International Development, the US Department of State, land grant colleges, and Texas A&M University, where Dr. Borlaug is professor emeritus.

In 2004, an initial group of fellows from around the world—especially Africa, Latin America, and Asia—will begin training or research programs at US schools, government agencies, private companies, international agricultural research centers such as CIMMYT, and nonprofit institutions. The program will span such diverse areas as biotechnology, food safety, marketing, economics, and natural resource conservation, and it will include studies of policies and regulations to foster the use of new technology.

The US$ 2 million research grant given to the Texas Agriculture Experiment Station by USDA-Cooperative State Research, Education, and Extension Service will be managed by a Consultative Committee, which comprises representatives from universities, foundations, government agencies, and countries affiliated with Dr. Borlaug’s work. This committee will serve as a donor council, advise on the selection and placement of fellows, and evaluate the program.

At the US State Department, Secretary of State Powell named the new World Food Prize Laureates: Yuan Long Ping of China and Monty Jones of Sierra Leone, who have made advances in high-yielding rice.

borlaug_photo3
Borlaug founded the World Food Prize in 1986 to honor people who have made important contributions to improving the world’s food supply. Endowed since 1990 by businessman and philanthropist John Ruan, this international award recognizes achievements of people who have improved the quality, amount, or accessibility of food in the world to advance human development.

World Food Prize Laureate Yuan has revolutionized rice cultivation in China. Known as the Father of Hybrid Rice, he helped cultivate the first successful and widely grown hybrid rice varieties in the world. More than 20 countries have adopted his hybrid rice, and his breeding methods have helped provide food for tens of millions of people.

World Food Prize Laureate Jones, formerly a rice breeder at WARDA—the Africa Rice Center—in Cîte d’Ivoire, successfully made fertile inter-specific African and Asian rice crosses that combined the best characteristics of both gene pools. This “New Rice for Africa,” or NERICA, has higher yields and better agronomic characteristics for African conditions.

Jones and Yuan will receive a $250,000 prize to share in October.

borlaug_photo4

Dr. Borlaug has dedicated 60 years to building knowledge and fostering development in poor countries. Since the mid-1940s, when he arrived in Mexico to work on an agricultural project that was the forerunner of CIMMYT, he has worked tirelessly in the cause of international agricultural research. The innovative wheat varieties that he and his team bred in Mexico in the 1950s enabled India and Pakistan to prevent a massive famine in the mid-1960s and to initiate the Green Revolution. This achievement earned Dr. Borlaug the Nobel Prize in 1970 and created extensive support for a network of international agricultural research centers, known as the Consultative Group on International Agricultural Research (CGIAR).

In order to meet the 1996 World Food Summit goal of cutting in half the number of chronically hungry people by 2015, Powell said the international community must reduce the number of undernourished people by an average rate of 22 million people per year. The current rate is only a decrease of 6 million people per year. Of the more than 800 million severely malnourished people in the world, 80 percent are women and children, he said, but famine is entirely preventable in the 21st century.

More information on the Borlaug Fellows Program: http://www.usda.gov/Newsroom/0125.04.html

More information on the World Food Prize: http://www.worldfoodprize.org

South Asian Partners Host Trustees for Extended Field Visits

April, 2004
South Asian Partners Host Trustees for Extended Field Visits

Much of CIMMYT’s research focuses on improving the livelihoods and food security of poor households in South Asia, which is home to more of the world’s poor–43 percent–than any other region. To observe the impact of CIMMYT’s efforts there and to assess opportunities to help farmers, CIMMYT’s Board of Trustees and senior management visited India and Nepal in March. Officials of both countries hosted the visiting delegation.

India and Nepal are two key partners for CIMMYT. India’s relationship with CIMMYT began before the Green Revolution, and the world has benefited from the research products of this collaboration. CIMMYT also has maintained a long partnership with Nepal, where the National Agricultural Research Center (NARC) has hosted CIMMYT’s South Asia Regional Office for 18 years.

Field Visits in India

visitingNepalOn the first day of the field visits, about 200 farmers from nearby villages greeted the delegation and expressed appreciation for new practices that were helping them to diversity agricultural production and conserve resources such as water and soil. The delegation was welcomed in Kapriwas, Gurgaon by senior officials of the Indian Council of Agricultural Research (ICAR), including Director General Mangala Rai, Deputy Director of Crops and Horticulture G. Kalloo, and M.K. Miglani, Vice Chancellor of Haryana Agricultural University. They explained how new tillage and planting practices helped Indian farmers by saving labor, fuel, and irrigation, while maintaining or increasing yields.

Many farmers were extremely enthusiastic about the visit. One farmer was sprinkle irrigating wheat that was close to maturity, which is something that is not typically done. When one of the visitors asked why he was doing this, the farmer replied that he was overjoyed by their visit and wanted to show off his sprinkle irrigation system. (The technical explanation was that he wanted to lower the heat stress and improve grain filling.)

The visitors saw research to identify salt-tolerant wheat and other crops and to study the long-term effects of saline water use at Bawal Research Station. They also saw an experiment showing how paired-row wheat planting on beds produced high yields, large spikes, and large grains, which help wheat fetch a higher market price. Although all the farmers who joined the delegation agreed that wheat planted on beds in paired rows gives higher yields with less labor and fewer inputs, they said there is a shortage of bed planters for Indian farmers. CIMMYT, ICAR, and the private sector are working to improve the situation.

Another experiment they observed evaluated the potential for growing maize in Haryana, where limited production and high demand compel people to buy maize in Delhi or Rajasthan.

On the second day the delegation visited Durgapura Research Station of Rajasthan Agricultural University. They learned about a wide spectrum of research, including breeding for resistance to rust and to cereal cyst nematode and for tolerance to saline conditions. They heard about issues related to the use of brackish and saline water in crop production in arid regions. Some participants expressed concern about the long-term health effects of this practice, especially in the production of green vegetables.

On the third day the delegation was received by farmers of Kallogarhi-Matiala Village, as well as PP Singh (Vice Chancellor, Sardar Vallabh Bhai Patel University of Agriculture and Technology, Meerut) and Larry Paulson (USAID-India). Board members were very interested in locally developed, low-cost equipment for promoting conservation agriculture. They saw the comparative performance of wheat planted using zero-tillage drills with “inverted T” and double disc openers. Farmers at this site are developing a permanent “double no-till” system of conservation agriculture to grow rice and wheat.

During dinner, representatives of Raja Balwant Singh College Trust thanked CIMMYT for more than 50 years of partnership in Indian agricultural development, dating back to before the Green Revolution. They suggested that CIMMYT and RBS, the largest and one of the oldest agricultural colleges in India, could benefit from a joint visiting scientist program.

Field Visits in Nepal

In 2003, Nepal’s national average wheat yield surpassed 2 t/ha for the first time, an achievement that gives some idea of the constraints that farmers there have overcome. The National Wheat Research Program Coordinator, Mr. M.R. Bhatta, described the impact of disease and yield nurseries that CIMMYT and NARC distribute throughout South Asia, and observed that more than 20 wheat varieties have been released in Nepal in the past 15 years.

At Khumaltar Research Station, NARC researchers highlighted studies in areas such as pathology, breeding, agronomy, soil sciences, mechanization, and biotechnology.

The visitors also heard researchers from the Hill Maize Research Project describe how communities have become self-sufficient in maize, their staple food, for the first time. Nearly 80% of Nepal’s maize is grown in the mid-hills, where more than 10 million people depend on the crop for food, income, and animal feed. Shortages are chronic. The Hill Maize Research Project provides the farmers with source seed, plus training in seed production techniques, storage, and marketing. It also ensures that there is sufficient seed of new maize varieties for farmers to replace old improved or local varieties, which yield very little.

Through their efforts, communities have produced more than 150 tons of maize seed. Community-based seed production accelerates seed replacement, disseminates new technologies, improves household food security, and raises incomes. This work, supported by the Swiss Agency for Development and Cooperation (SDC), is having an enormous impact in isolated hill sites.

A visit to farmers’ fields in Thecho Village in the Kathmandu Valley showed how farmers’ access to better wheat varieties and growing practices was increasing through participatory research. The farmers partner with NARC, CIMMYT, the University of Bangore, the Agricultural Development Organization (ADO), and others in a project funded by the UK Department for International Development. Farmers enthusiastically shared their experiences with participatory variety selection and seed production. Some groups are earning enough additional income from growing wheat to purchase new equipment or make other investments.

NARC and ADO have extended participatory variety selection to rice, legumes, vegetables, and other crops throughout Nepal after seeing the success with wheat. (In India, similar exciting work is being done in collaboration with Banaras Hindu University.)

Thanks to Our Hosts

board_memberCIMMYT’s Board and staff are grateful to P.P. Manandhar, Nepal’s Secretary of Agriculture, and officials at the Ministry of Agriculture and Cooperatives for their constant support for CIMMYT’s South Asia Regional Office, and to NARC Executive Director R.P. Sapkota and his colleagues for support and field visits. They are also most grateful to ICAR Director General Mangla Rai, Deputy Director of Crops and Horticulture G. Kalloo, and the many representatives of experiment stations, colleges, and universities in India who made the visit a success. The opportunity to meet and visit the field with representatives of DFID, FAO, the Japan International Cooperation Agency, SDC, USAID, and the World Bank, among others, was also greatly appreciated.

We also thank the farmers who so kindly shared their experiences and hospitality with us.

Community seed promoters trained in sustainable maize seed production and marketing in Nepal

Ensuring a market for maize seed produced using community based seed production (CBSP) in the value chain system, and enhancing management and marketing competencies of local partners are among the strategic activities in Phase IV of the Hill Maize Research Project (HMRP), supported by SDC and USAID. The HMRP, in collaboration with the National Maize Research Program (NMRP), completed a 20-day training course on maize seed production technologies (15 days) and seed business plan development and marketing (5 days). The course took place at NMRPRampur, Chitwan, from 27 March to 16 April 2012. A total of 31 participants (11 women) attended the course; they were selected from CBSP groups collaborating with HMRP and are expected to work as community seed promoters in their respective groups afterwards.

The first course component on maize seed production technologies covered diverse topics, such as agronomic practices in maize seed production, farmers’ practices in maize varietal development, source seed production technologies, crop management technology (including insect pest management), improved seed production through CBSP, quality control, and truthful labelling. The second component covered HMRP seed marketing strategies, agricultural marketing, seed production costs, maize seed value-chain analysis, seed business plan development, bookkeeping at the CBSP group level, potential sourcing of local state funds by CBSP groups, the importance of gender equity and social inclusion in the CBSP approach, an introduction to cooperatives and private companies, and the basic legal requirements to establish them.

Each trainee developed a comprehensive action plan and presented it on the last day of the course. Participants were evaluated before and after each course component and the first-ranked candidate was recognized. Speaking at the closing session, Dr. K.B. Koirala, NMRP National Coordinator, expressed his appreciation to the HMRP and emphasized the importance of this type of training for empowering local communities. Dr. G. Ortiz-Ferrara, HMRP Team Leader, thanked the course participants, training coordinator, and resource persons for their help and cooperation in making the course a success. Finally, Dr. Koirala and Dr. Ortiz-Ferrara jointly distributed certificates and training kits to all participants.

HMRP-2012-Photo-Community-Seed-Promotors-Training-Rampur1

SIMLESA: Celebrating two years of achievements, defining the future

During 19-23 March 2012, over 200 researchers, policy makers, donors, seed specialists, and NGO representatives from Africa and Australia gathered in Arusha, Tanzania, for the second SIMLESA (Sustainable Intensification of Maize-Legume Cropping Systems for Food Security in Eastern and Southern Africa) Annual Regional Planning and Review Meeting. Representation from the Australian Centre for International Agriculture Research (ACIAR), which generously supports the work, included nine members of the organization’s Commission for International Agricultural Research.

Participants shared lessons from the last two years and discussed better ways to design and implement future activities. Ten sessions addressed issues including project implementation, Australian-African partnerships, program and partner progress and lessons, and communications and knowledge management.

SIMLESA

A key message was that SIMLESA had consolidated and strengthened activities across all objectives, maximizing gains from integration, innovation, information, and technology diffusion for greater impacts on livelihoods and agroecosystems. It was noted that the use of integrated systems can foster productive intensification of agriculture and, indeed, the Innovation Platform Framework, supported by science and partnerships, can contribute to productive, sustainable and resilient maize-legume systems. For even greater impact, the program should rely on stronger leadership from agribusiness, while supporting the public sector’s role, and ensure a farm-income focus to reduce poverty.

Another key message was to strengthen Australian-African partnerships through better delivery of research products, capacity building under any of ACIAR’s four thematic areas, bridging research and extension, strengthening policy and socioeconomic research, and building individual and institutional capacity.

SIMLESA25Speaking at the SIMLESA’s second “birthday party,” Joana Hewitt, chairperson of the ACIAR Commission for International Agricultural Research, reiterated the Australian government’s commitment to long-term partnerships with African governments. Participants also heard of the new SIMLESA Program in Zimbabwe, focusing on crop-livestock interactions. During the dinner, Kenya and Mozambique were recognized for their efforts in promoting and strengthening local innovation platforms.

In addition to SIMLESA’s program steering committee and the mid-term review team, the event drew representatives from USAID’s Farmer-to-Farmer Program, from the International Development Research Centre (IDRC), the African Agriculture Technology Foundation (AATF), the International Livestock Research Institute (ILRI), and the Agricultural Research Council (ARC) of South Africa. SIMLESA is centered in five countries— Ethiopia, Kenya, Tanzania, Malawi, and Mozambique—with spillovers benefiting Uganda, Sudan, and Zambia. Representatives from all those countries interacted at the meeting.

A SIMLESA “village” and poster presentations allowed partner representatives and researchers to showcase achievements, and visits to Karatu and Mbulu—Tanzanian sites where SIMLESA is present— demonstrated how the project is transforming agriculture.

Farmers in the Charlands of Bangladesh benefit from new wheat and maize interventions

CIMMYT-CSISA-Bangladesh organized a field day in collaboration with the Wheat Research Centre (WRC) and the Department of Agriculture and Extension (DAE). In all, 162 farmers from Mymensingh, Bangladesh, attended the field day, held on 21 March 2012. CSISA–BD is a collaborative venture funded by USAID that includes CIMMYT, IRRI, WorldFish, and relevant national research and development partners. Also participating in the field day were other partners who work with CSISA-BD, CIMMYT, and Mymensingh Hub, such as the Directorate of Agricultural Extension and Bangladesh Agricultural Research Institute (BARI), and NGOs, such as CARE, ASPADA, POPI, and JABC.

Bangladesh55

Although cropping intensity in the region is 212%, just one crop (black gram) is grown in the charlands of the Brahmaputra River. Charlands are formed through the sedimentation, over time, of huge amounts of sand, silt, and clay carried by rivers. Growing the preferred crop (Boro rice) in these lands is not feasible for lack of surface water.

CSISA–CIMMYT identified the charlands as a potential area for new wheat and maize hybrids, and organized demonstrations and on-farm participatory research on Ug99 tolerant wheat varieties BARI Gom 26 and BARI Gom 27 (Francolin) and hybrid maize. Farmers were happy to see both wheat and maize growing in demonstrations with limited irrigation. They said this was the first time in history that maize and wheat could be grown in charland areas with this level of success, and expressed an interest in significantly expanding the area sown to these materials next year. It has been estimated that such technologies could impact hundreds of hectares in this region and thousands of hectares across Bangladesh.

During the demonstrations, Dr. DB Pandit, cropping systems agronomist for CSISA-CIMMYT, gave an overview of CSISA-BD activities in the charlands. DAE Adjunct Director Dr. ASM Affazuddin and WRC Director Dr Jalal Uddin Ahmed spoke very highly of these efforts and assured farmers they would establish more wheat and mungbean demonstrations next year. Dr. TP Tiwari, CIMMYT-BD cropping systems agronomist, asked farmers to share the knowledge and skills they have gained so far from CSISA-BD interventions with their neighbors and relatives. He also initiated discussions on improved maize production technologies. All NGO participants expressed their determination to support the implementation of CIMMYT-CSISA activities aimed at achieving sustainable food security and improving the livelihoods of charland farmers. M. Islam, administrative coordinator of the Mymensingh Hub who led the organization of the field day, ended the program by thanking all participants.

Stress tolerant maize seed on the way in southern Africa

Low soil fertility: Problems and progress

TungaSilvar-12 Tunga Silvar grows maize to feed his wife and fourgrandchildren on about 0.5 hectares of land in Mawanga, Zimbabwe, a hilly area some 45 kilometers northeast of Harare. Like otherfarmers in the region, he is acutely aware of the value of nitrogen fertilizer, continually juggles his limited household financesto get it, and is poorer and hungrier when he can’t. “We used to sell maize, but in the last five years we haven’t been able to do so,” saysSilvar. “I had to pay school fees for my grandchildren, so I couldn’t buy fertilizer. Fertilizer is very important, especially in our type of soil. If you don’t apply it, youcan barely harvest anything.”

After water, nitrogen is the single most important input for maize production. In sub-Saharan Africa where fertilizer use is negligible, improved maize with tolerance to low nitrogen (N) conditions could give maize farmers more abundant harvests, greatly improving their food security and livelihoods.

Improved Maize for African Soils (IMAS), a project funded by the Bill & Melinda Gates Foundation and USAID and conducted jointly with the KenyanAgricultural Research Institute (KARI), South Africa’s Agricultural Research Council (ARC), and the DuPont Company Pioneer Hi-Bred, aims to overcome theseproblems by developing hybrids with 25-50 % more yield than current commercial seed in low-N soils. The second annual IMAS meeting in Harare in lateFebruary 2012 drew more than 40 scientists from these organizations and CIMMYT to review progress and develop shared work plans for the following year.

Accomplishments to date include establishment of a low N phenotyping network across eastern and Southern Africa and application of cutting-edgemolecular breeding techniques for low N tolerance. Several recently-identified, low-N tolerant inbred lines from diverse genetic backgrounds are being used in new hybrid combinations and to initiate pedigree breeding. New and existing elite hybrid combinations and synthetics are being evaluated inthe regional low N phenotyping network, which now has access to more than 60,000 rows in N-depleted plots of experiment stations region-wide. Over thepast year CIMMYT maize breeders Bish Das and Amsal Tarekegne have engaged several additional seed companies in work on low-N tolerant maize.As part of this, representatives from 11 companies in eastern and southern Africa attended a field day in Harare to showcase the latest products and highlightnew support from the Foundation to scale-up seed production for existing commercial or advanced hybrids and OPVs that perform well in low N fields.

Group01

Strengthening Malawi’s seed sector

Seed companies provide the vital link to get improved maize varieties into farmers’ hands. A major focus of the Drought Tolerant Maize for Africa (DTMA) project has been to strengthen small- and intermediate-scale seed enterprises and thereby speed delivery of drought tolerant varieties. The project has provided training and help to develop business plans (“road maps” for seed delivery), improved drought tolerant hybrids, and assistancein seed production. As one example of the benefits of this approach, three years of support in seed production and business planning have helped theseed company Demeter in Malawi go from strength to strength. The company now produces over 2,000 tons of seed, and its portfolio includes the open pollinated varieties ZM309, ZM523, and ZM721 developed under DTMA.

New companies are also appearing on the scene. One example is Funwe Farm, a company that is starting to grow with support from CIMMYT and the Programme for Africa’s Seeds Systems of the Alliance for a Green Revolution in Africa (AGRA-PASS). John MacRobert, seed systems specialist for sub-Saharan Africa, andAmsal Tarekegne visited Funwe’s seed production fields to smooth out initial teething problems in the production of foundation seed of a CIMMYT hybridreleased by the Malawi government as MH26. “By supporting companies like Demeter and Funwe we are helping to ensure farmers get access to improvedvarieties,” said MacRobert. “Our partnerships with seed companies are really starting to pay off.”

On-farm performance: the definitive challenge of breeding

Sailas-Ruswa Late and erratic rainfall in Zimbabwe has many farmers facing the prospect of poor harvests. The current hardships from drought though may furnish some hopefor farmers. New drought tolerant varieties are being tested in on-farm trials under farmer management. Many of the trials are experiencing drought stress—aperfect opportunity to identify the best varieties for such harsh conditions. A recent visit to on-farm trials in the Murewa District of Zimbabwe showed many new drought tolerant products performing well. Local farmer Sailas Ruswa is growing a trial and was enthusiastic about what he saw: some varieties showedsigns of severe drought stress, but a few were holding up well and were expected to produce good yields.

Francolin: Ug99-tolerant wheat variety released in Bangladesh

The danger posed by the Ug99 strain of the disease stem rust to global wheat production is well recognized, and Bangladesh is no exception. Wheat is one of the major cereals in Bangladesh, ranking second after rice with a cultivated area of 0.38 m ha and average yield of 2.6 t/ha. In a major step in countering the disease threat, a new wheat variety, named Francolin, was released on 06 March 2012. Also known as BARI Gom 27 (previously BAW 1120), Francolin, first introduced to Bangladesh in 2008 from CIMMYT-Mexico, possesses good resistance to all variants of Ug99 along with an impressive agronomic performance. It yielded approximately 10% more than the most popular variety Shatabdi in three years of multi-location testing in Bangladesh.

Its performance in on-farm testing was also significantly superior to all check varieties. “Francolin is popular among the participating farmers because of its high grain yield potential and good agronomic traits,” said T.P. Tiwari, cropping systems agronomist at CIMMYT-Bangladesh, adding that it also performed better than other varieties during on-farm testing.

Francolin is already under demonstration in farmers’ fields through participatory variety selection (PVS), the multi-location testing (MLT) program of the Bangladesh Agricultural Research Institute (BARI), and a participatory seed multiplication program. These activities are being jointly implemented by BARI’s Wheat Research Centre (WRC) and CIMMYT, and are also well integrated into the Cereal Systems Initiative for South Asia (CSISA) validation and demonstration programs in Bangladesh. According to CIMMYT scientists T.P. Tiwari and Arun K. Joshi, seed multiplication of this variety is in progress on 55 ha in 23 different locations in Bangladesh during the current crop cycle. This is expected to produce around 150 tons of seed that will be available for the next planting season, meeting the needs of the Bangladesh Agricultural Development Corporation (BADC) and the Department of Agricultural Extension (DAE), the government agencies responsible for large-scale seed production and distribution. Francolin is also being disseminated through informal channels (farmer-to-farmer).

This step toward mitigating the threat of Ug99 was made possible in part by a USAID seed-multiplication famine fund program. The WRC and CIMMYT-Bangladesh are working together under this program to identify suitable Ug99-resistant varieties, and carry out seed production and delivery. Israel Hossain, Abu Zaman Sarker (WRC), T.P. Tiwari, M. Gathala, and T. Krupnik (CIMMYT) also report that Francolin is performing exceedingly well under conservation agriculture (CA) practices such as strip- and zero-tillage.

The WRC and CIMMYT are developing linkages between seed producers and traders to facilitate marketing. Additionally, information regarding the benefits of growing Ug99-resistant varieties is disseminated through media outlets such as newspapers, radio, and television. The first Ug99-resistant wheat variety to be released in Bangladesh was BARI Gom 26 (previously known as BAW, and popularly called Hashi), in 2010. The two new varieties are expected to cover just over 5% of the total wheat area in 2012/13.

Wheat scientists involved in the development of Francolin include Naresh C.D. Barma, Paritosh Kumar Malaker, Dinabandhu Pandit, Md. Abdul Hakim, and Jalal Uddin, among others. Agronomists and soil scientists from BARI and CIMMYT-Bangladesh were also involved in its validation and promotional activities.

DG meets with Tunisian Minister of Agriculture

CIMMYT’s director general Thomas Lumpkin met with Mohamed Ben Salem, the Minister of Agriculture of Tunisia, on 11 February 2012 in Tunis, Tunisia, during a visit to the region focusing on fortifying CIMMYT’s presence in Africa. From CIMMYT, Lumpkin was accompanied by Wilfred Mwangi, liaison officer for Africa, and Karim Ammar, head of the durum wheat program and a Tunisian national.

Wheat is currently the number one imported crop into Africa and, at approximately 216 kilos per person per year, the North Africa region has the highest wheat consumption per capita in the world. Tunisia already imports an estimated 2 million tons of wheat per year, and with low yields and a growing population, wheat production is a major concern for the country. 61% of Tunisia’s total land area is categorized as arid, and erratic rainfall and weather patterns are the primary concern for the country’s wheat producers. In 2010, for example, an extended period of drought halved the country’s wheat production. Diseases and pests such as Hessian fly also cause problems.

Lumpkin-Tunisia2eq

During the meeting, which aimed at re-establishing links and partnerships in the region, Lumpkin and Ben Salem discussed opportunities for activities in line with the WHEAT CGIAR Research Program (CRP) lead by CIMMYT in partnership with ICARDA. They talked about improved varieties and agronomic techniques developed at CIMMYT, and the potential for establishing a research platform in Tunisia aimed at achieving higher yields.

CIMMYT’s activities in Tunisia date back to the period 1966-1977, when a comprehensive project known as “The Wheat Project” was implemented by the Government of Tunisia, CIMMYT, USAID, the Ford Foundation, and the Rockefeller Foundation. The goals of the project were to introduce and adapt Mexican semi-dwarf high-yielding wheat varieties and to train Tunisian scientists in agricultural research and extension methods. During the project, 55 Tunisian nationals were trained at CIMMYT in Mexico, and to this day many refer to the varieties developed as “Mexican wheats”.

Lumpkin continued with his visits to the region by heading to Rabat, Morocco to meet with officials alongside Mahmoud Sohl, director general of ICARDA, to link activities in the region with the WHEAT CRP. He also joined CIMMYT’s Hans Braun, director of the global wheat program and CheraĂ© Robinson, director of fundraising and strategic partnerships, at the Global Food Security Forum, held in Rabat during 07-09 March 2012, where he spoke as a panelist on the subject of Investment and Innovation: Key Building Block of Food Security. Lumpkin will end his recent tour of Africa in Tanzania for the annual meetings of the Sustainable Intensification of Maize- Legume Cropping Systems for Food Security in Eastern and Southern Africa (SIMLESA) project at the end of March.