Sixteen years of consistent learning and practice of climate-smart agriculture, led by the International Maize and Wheat Improvement Center (CIMMYT), are paying off for Luganu Mwangonde. Together with her husband Kenson, she has established herself as a successful smallholder farmer in Malawi’s Balaka district. She enjoys the multiple benefits of high yields from diverse crops, surplus to sell at the markets and improved soil quality.
“I started practicing the farming that does not demand too much labor back in 2004,” she explains at her 2.5-acre farm. “Over the years the process has become easier, because I have a full understanding of the benefits of techniques introduced through the project.”
In Malawi’s family farms, women often carry the burden of land preparation and weeding in the fields while juggling household responsibilities, contributing to widen gender differences already prevalent in the community.
Mwangonde observes that learning climate-smart techniques — such as minimum tillage, mulching and planting on flat land surfaces — has given her an advantage over other farmers practicing conventional agriculture.
Better off
At the beginning, like other farmers in the area, Mwangonde thought conservation agriculture and climate-smart techniques required a lot of work, or even hiring extra labor. As she tried this new approach, however, weed pressure in her plot decreased gradually, with the help of mulching and other techniques, and the labor required to maintain the fields reduced significantly. This allowed her to have extra time to add value to her products and sell them on the markets — and to rest.
The best gain for her is knowing that her family always has enough to eat. “I have enough grain to last until the next harvest,” she says. “My husband and I can provide for our seven children and four grandchildren.” During the 2018/19 season, Mwangonde’s family harvested six bags of maize, two bags of pigeon pea and four bags of groundnuts. The surplus from the harvest is reserved for later, when prices are more competitive.
“I am an equal partner in the farming activities. That means I can make decisions about how we work on our plot, distribute crops and apply everything that I have learnt about conservation agriculture,” Mwangonde explains. She has participated in CIMMYT activities where she could share her experiences on climate-smart agriculture with other women. As a lead farmer, she notes, she can confidently inspire the next generation of smallholders because of the empowering knowledge she has acquired.
Out of the 3,538 smallholder farmers from Balaka, Machinga and Zomba districts, up to 2,218 are women smallholder farmers who have successfully adopted climate-smart technologies.
Mwangonde is one of the beneficiaries of the Africa Research in Sustainable Intensification for the Next Generation (Africa RISING) project. She also benefitted from the support of the German Development Agency (GIZ), the International Fund for Agricultural Development (IFAD), Total Land Care (TLC) and the United States Agency for International Development (USAID).
Farmer receiving information from a phone-based service. (Photo: Michelle DeFreese/CIMMYT)
Agricultural research is entering a new age in Bangladesh. The days, months and years it takes to collect farm data with a clipboard, paper and pen are nearing their end.
Electronic smartphones and tablets are gaining ground, used by researchers, extension workers and farmers to revolutionize the efficiency of data collection and provide advice on best-bet practices to build resilient farming systems that stand up to climate change.
Digital data collection tools are crucial in today’s ‘big data’ driven agricultural research world and are fundamentally shifting the speed and accuracy of agricultural research, said Timothy Krupnik, Senior Scientist and Systems Agronomist at the International Maize and Wheat Improvement Center (CIMMYT).
“Easy-to-use data collection tools can be made available on electronic tablets for surveys. These allow extension workers to collect data from the farm and share it instantaneously with researchers,” he said.
“These tools allow the regular and rapid collection of data from farmers, meaning that researchers and extension workers can get more information than they would alone in a much quicker time frame.”
“This provides a better picture of the challenges farmers have, and once data are analyzed, we can more easily develop tailored solutions to farmers’ problems,” Krupnik explained.
It is the first time extension workers have been involved in data collection in the country. Since the pilot began in late 2019, extension workers have collected data from over 5,000 farmers, with detailed information on climate responses, including the management of soil, water and variety use to understand what drives productivity. The DAE is enthused about learning from the data, and plans to collect information from 7,000 more farmers in 2020.
Bangladesh’s DAE is directly benefiting through partnerships with expert national and international researchers developing systems to efficiently collect and analyze massive amounts of data to generate relevant climate-smart recommendations for farmers, said the department Director General Dr. M. Abdul Muyeed.
Workers spread maize crop for drying at a wholesale grain market. (Photo: Dreamstime.com)
For the first time widespread monitoring examines how farmers are coping with climate stresses, and agronomic data are being used to estimate greenhouse gas emissions from thousands of individual farmers. This research and extension partnership aims at identifying ways to mitigate and adapt to climate change, he explained.
“This work will strengthen our ability to generate agriculturally relevant information and increase the climate resilience of smallholder farmers in Bangladesh,” Dr. Muyeed said.
Next-gen big data analysis produces best-bet agricultural practices
“By obtaining big datasets such as these, we are now using innovative research methods and artificial intelligence (AI) to examine patterns in productivity, the climate resilience of cropping practices, and greenhouse gas emissions. Our aim is to develop and recommend improved agricultural practices that are proven to increase yields and profitability,” said Krupknik.
The surveys can also be used to evaluate on-farm tests of agricultural technologies, inform need-based training programs, serve local knowledge centers and support the marketing of locally relevant agricultural technologies, he explained.
“Collecting farm-specific data on greenhouse gas emissions caused by agriculture and recording its causes is a great step to develop strategies to reduce agriculture’s contribution to climate change,” added Krupnik.
Any fifth grader is familiar with the Cretaceous-Tertiary mass extinction, which saw dinosaurs — and three quarters of all species alive at that time — disappear from Earth, probably after it was struck by a very large asteroid. However, few people are aware the planet is currently going through a similar event of an equally large magnitude: a recent report from the World Wide Fund for Nature highlighted a 60% decline in the populations of over 4,000 vertebrate species monitored globally since 1970. This time, the culprit is not an asteroid, but human beings. The biggest threat we represent to other species is also the way we meet one of our most fundamental needs: food production.
As a response, scientists, particularly ecologists, have looked for strategies to minimize trade-offs between agriculture and biodiversity. One such strategy is “land sparing,” also known as the “Borlaug effect.” It seeks to segregate production and conservation and to maximize yield on areas as small as possible, sparing land for nature. Another strategy is “land sharing” or “wildlife-friendly farming,” which seeks to integrate production and conservation in the same land units and make farming as benign as possible to biodiversity. It minimizes the use of external inputs and retains unfarmed patches on farmland.
A heated debate between proponents of land sparing and proponents of land sharing has taken place over the past 15 years. Most studies, however, have found land sparing to lead to better outcomes than land sharing, in a range of contexts. With collaborators from CIFOR, UBC and other organizations, I hypothesized that this belief was biased because researchers assessed farming through a narrow lens, only looking at calories or crop yield.
Many more people today suffer from hidden hunger, or lack of vitamins and minerals in their diets, than lack of calories. Several studies have found more diverse and nutritious diets consumed by people living in or near areas with greater tree cover as trees are a key component of biodiversity. However, most of these studies have not looked at mechanisms explaining this positive association.
Forests for food
Studying seven tropical landscapes in Bangladesh, Burkina Faso, Cameroon, Ethiopia, Indonesia, Nicaragua and Zambia, we found evidence that tree cover directly supports diets in four landscapes out of seven. This may be through the harvest of bushmeat, wild fruits, wild vegetables and other forest-sourced foods. The study further found evidence of an agroecological pathway — that forests and trees support diverse crop and livestock production through an array of ecosystem services, ultimately leading to improved diets — in five landscapes out of seven. These results clearly demonstrate that although land sparing may have the best outcomes for biodiversity, it would cut off rural households from forest products such as forest food, firewood and livestock feed. It would also cut off smallholder farms from ecosystem services provided by biodiversity, and smallholders in the tropics tend to depend more on ecosystem services than on external inputs.
In Ethiopia, previous research conducted by some of the same authors has demonstrated that multifunctional landscapes that do not qualify as land sparing nor as land sharing may host high biodiversity whilst being more productive than simpler landscapes. They are more sustainable and resilient, provide more diverse diets and produce cereals with higher nutritional content.
The debate on land sparing vs. sharing has largely remained confined to the circles of conservation ecologists and has seldom involved agricultural scientists. As a result, most studies on land sparing vs. sharing have focused on minimizing the negative impact of farming on biodiversity, instead of looking for the best compromises between agricultural production and biodiversity conservation.
To design landscapes that truly balance the needs of people and nature, it is urgent for agronomists, agricultural economists, rural sociologists and crop breeders to participate in the land sparing vs. sharing debate.
This study was made possible by funding from the UK’s Department for International Development (DFID), the United States Agency for International Development (USAID) through the project Agrarian Change in Tropical Landscapes, and by the CGIAR Research Programs on MAIZE and WHEAT.
Early Maturing Short Duration High Yielding White Maize open-pollinated variety. (Photo: MMRI)
Pakistan’s maize sector achieved a remarkable milestone in 2019 by releasing ten new maize varieties developed by the International Maize and Wheat Improvement Center (CIMMYT) for commercial cultivation. The new varieties were released by two public sector research institutes.
The Maize and Millets Research Institute (MMRI) in Yousafwala, one of the leading and the oldest maize research institutes in Pakistan, released four open-pollinated varieties (OPVs) sourced from CIMMYT. The varieties, named Gohar-19, CIMMYT-PAK, Sahiwal Gold, and Pop-1 are the newest additions to Pakistan’s maize variety list. All the varieties are short-duration, which means they can be harvested quickly to rotate land for the next crop. They can also be grown in the main and off season, which makes them suitable for many different cropping systems.
The Agricultural Research Institute (ARI) in Quetta received approval for six of CIMMYT’s white kernel OPVs from the Provincial Seed Council (PSC), a government body responsible for variety registration in Balochistan. The varieties are named MERAJ-2019, MAHZAIB-2019, NOOR-2019, PAGHUNDA-2019, SILVER-2019, and SAR-SUBZ-2019. They are early-maturing with high yielding potential & drought tolerance. Drought stress is a major challenge for farmers in the Balochistan province, which covers 45% of Pakistan’s territory.
A group of maize experts visits maize research and seed production fields at the Maize and Millets Research Institute (MMRI) in Yousafwala, Pakistan. (Photo: CIMMYT)
Muhammad Arshad, Director of MMRI, acknowledged CIMMYT’s efforts to deploy the wide range of maize germplasm in the country. Arshad added that the Institute is working with partners to widely distribute these seeds to smallholder farmers at a reasonable price. “We are able to harvest maize yields from these early maturing varieties by applying 4-6 irrigations, unlike other varieties that require a minimum of ten irrigations per crop cycle,” said Syed Asmatullah Taran, Director of Cereal Crops at the Agricultural Research Institute in Quetta, Balochistan. “These are the first ever released maize varieties in our province,” he added, applauding CIMMYT for this milestone.
Muhammad Imtiaz, CIMMYT’s Country Representative for Pakistan and leader of the Agricultural Innovation Program (AIP), appreciated MMRI and ARI for their dedication and impactful efforts to strengthen the local maize seed system. Imtiaz explained that these new varieties will help cash-strapped smallholder farmers improve their livelihoods.
Through the AIP project, CIMMYT and its partners are helping new seeds reach farmers. “We expect to see more releases in 2020, as many varieties are in the pipeline,” said CIMMYT’s Seed Systems Specialist for South Asia, AbduRahman Beshir. “What is important is to scale up the seed production and distribution of these varieties so that farmers can get their share from the interventions. Water-efficient maize varieties will not only contribute to climate change adaptation strategy, but will also support the livelihood of marginal farmers.” Beshir also emphasized the importance of private sector engagement for seed delivery.
A maize field is prepared manually for planting in Balochistan province, Pakistan. (Photo: CIMMYT)
Maize is Pakistan’s third most important cereal following wheat and rice, encompassing an area of 1.3 million hectares. Maize productivity is also among the highest in South Asia, with national yields reaching almost 5 tons per hectare.
Despite its growing demand, maize production in Pakistan faces various challenges such as a lack of diverse genotypes suitable for various uses and ecologies, a weak seed delivery system unable to reach marginal farmers, high retail price of seeds and unpredictable weather conditions due to climate changes.
To enhance the availability, accessibility and affordability of quality maize seeds, the Agricultural Innovation Program (AIP) for Pakistan, led by CIMMYT and funded by USAID, is working with partners to benefit smallholder farmers across the country. The project focuses on the development and deployment of market-ready maize products sourced from different breeding hubs and systematically testing their adaptation in order to accelerate seed and varietal replacement in Pakistan. In the last six years, AIP’s public and private partners were able to access over 60 finished maize products and more than 150 parental lines from CIMMYT and IITA for further testing, variety registration, demonstration and seed scale up.
Maize-bean intercrop in the milpa system of the western highlands of Guatemala. (Photo: Carlos Gonzalez Esquivel)
Researchers from the Department of Energy’s Oak Ridge National Laboratory (ORNL) in Tennessee, United States, and the International Maize and Wheat Improvement Center (CIMMYT) in Texcoco, Mexico, describe why it is important for technical assistance to build upon indigenous farming knowledge and include women if programs are to succeed in tackling poverty and hunger in rural, Mesoamerican communities. Their findings, describing recent work in the Guatemalan Highlands, are recently published in Nature Sustainability.
According to government figures, 59% of Guatemalans live in poverty, concentrated in indigenous rural areas, such as the Western Highlands. Many factors contribute to pervasive malnutrition and a lack of employment opportunities for people in the Highlands. Recent crop failures associated with atypical weather events have exacerbated food shortages for Highland farm communities.
In early 2019, 90% of recent migrants to the southern border of the United States were from Guatemala, a majority of those from regions such as the Western Highlands. When they are unable to produce or purchase enough food to feed their families, people seek opportunities elsewhere. Historically, sugar cane and coffee industries offered employment but as prices for these commodities fall, fewer options for work are available within the region.
Indigenous peoples in the Highlands have been using a traditional agricultural production system called milpa for thousands of years. The milpa system involves growing maize together with climbing beans, squash, and other crops on a small plot of land. The maize plants support the growth of the climbing beans; the beans enrich soil through biological nitrogen fixation; and squash and other crops protect the soil from erosion, retain water, and prevent weeds.
However, frequent crop failures, declining farm sizes, and other factors result in low household production, forcing families to turn to non-agricultural sources of income or assistance from a family member working abroad. Studies have shown that as household income declines, dietary diversity decreases, which exacerbates undernutrition.
In prior decades, technical assistance for agriculture in Central America focused on larger farms and non-traditional export crops. The researchers recommend inclusion of indigenous communities to enhance milpa systems. Nutrition and employment options can be improved by increasing crop diversity and adopting improved seed varieties that are adapted to the needs of the local communities. This approach requires investments that recognize and advance ancestral knowledge and the role of indigenous women in milpa systems. The Nature Sustainability commentary highlights that technical assistance needs to include women and youth and should increase resilience in production systems to climate change, related weather events, pests, and disease.
“Improving linkages among local farmers, extensionists, students, and researchers is critical to identify and implement opportunities that result in more sustainable agricultural landscapes,” said Keith Kline, senior researcher at Oak Ridge National Laboratory. “For example, improved bean varieties have been developed that provide high-yields and disease resistance, but if they grow too aggressively, they choke out other milpa crops. And successful adoption of improved varieties also depends on whether flavor and texture meet local preferences.”
Strengthening institutions to improve agricultural development, health care, security, education can help create stronger livelihoods and provide the Western Highlands community with a foundation for healthier families and economic stability. As more reliable options become available to feed one’s family, fewer Guatemalans will feel pressured to leave home.
The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information, visit staging.cimmyt.org.
Ephrem Tadesse is a Business Development Manager at CIMMYT.
He studies the economic viability of different technologies for smallholder farmers in different geography and crop patterns. For the last three and half year, he has been testing and identifying best-bet technologies in Ethiopia, together with local research institutes and private sector companies. Based on the performance of the machine and the economic viability for farmers and service providers, he has been working on adoption and scaling of technologies, through market linkages and facilitating access to finance.
Hundreds of agricultural professionals in Bangladesh were trained in the latest fall armyworm management strategies as part of a new project that will strengthen efforts against this threat to farmers’ income, food security, and health. The new project, Fighting Back Against Fall Armyworm, is supported by USAID and the University of Michigan.
As part of the project, last November over 450 representatives from government, nonprofits and the private sector participated in three-day training to learn how to identify, monitor and apply integrated pest management approaches.
Fall armyworm presents an important threat to farmers’ income, food security and livelihoods as it continues to spread across the country, in addition to health risks if toxic insecticides are indiscriminately used, said Tim Krupnik, senior scientist and agronomist at the International Maize and Wheat Improvement Center (CIMMYT). It is anticipated the course participants will pass on knowledge about the pest and appropriate control practices to around 30,000 farmers in their respective localities.
“Participants were selected for their ability to reliably extend the strategies that can be sustainably implemented by maize farmers across the country,” explained Krupnik. “The immersive training saw participants on their hands and knees learning how to scout, monitor and collect data on fall armyworm,” he said. “They were also trained in alternatives to toxic chemical pesticides, and how and when to make decisions on biological control with parasitoids, bio-pesticides, and low-toxicity chemical pesticide use.”
Following its ferocious spread across Africa from the Americas, fall armyworm first attacked farms in Bangladesh during the winter 2018-2019 season. Combined with highly apparent damage to leaves, its resilience to most chemical control methods has panicked farmers and led researchers to promote integrated pest management strategies.
In this context, the 22-month Fighting Back Against Fall Armyworm project will build the capacity of the public and private sector for effective fall armyworm mitigation.
The hungry caterpillar feeds on more than 80 plant species, but its preferred host is maize — a crop whose acreage is expanding faster than any other cereal in Bangladesh. The pest presents a peculiar challenge as it can disperse over 200 kilometers during its adult stage, laying thousands of eggs along its way.
Once settled on a plant, larvae burrow inside maize whorls or hide under leaves, where they are partially protected from pesticides. In a bid to limit fall armyworm damage, farmers’ indiscriminate application of highly toxic and inappropriate insecticides can encourage the pest to develop resistance, while also presenting important risks to beneficial insects, farmers, and the environment.
Reaching every corner of the country
Participants of the Fighting Back against Fall Armyworm trainings visit farmers’ fields in Chauadanga, Bangladesh. (Photo: Tim Krupnik/CIMMYT)
As part of the project, CIMMYT researchers supported Bangladesh’s national Fall Armyworm Task Force to develop an online resource to map the spread of fall armyworm. Scientists are working with the Ministry of Agriculture to digitally collect real-time incidents of its spread to build evidence and gain further insight into the pest.
“Working with farmers and agricultural agencies to collect information on pest population and incidence will assist agricultural development planners, extension agents, and farmers to make informed management decisions,” said Krupnik, who is leading the project.
A key objective is to support national partners to develop educational strategies to facilitate sustainable pest control while also addressing institutional issues needed for efficient response.
“In particular, the Government of Bangladesh has been extremely responsive about the fall armyworm infestation and outbreak. It developed and distributed two fact sheets — the first of which was done before fall armyworm arrived — in addition to arranging workshops throughout the country. Initiatives have been taken for quick registration of microbial pesticides and seed treatments,” commented Syed Nurul Alam, Entomologist and Senior Consultant with CIMMYT.
“It is imperative that governmental extension agents are educated on sustainable ways to control the pest. In general, it is important to advise against the indiscriminate use of pesticides without first implementing alternative control measures, as this pest can build a resistance rendering many chemicals poorly effective,” Krupnik pointed out.
To this end, the project also consciously engages members of the private sector — including pesticide and seed companies as well as agricultural dealers — to ensure they are able to best advise farmers on the nature of the pest and suggest sustainable and long-term solutions. To date, the project has advised over 755 agricultural dealers operating in impacted areas of Bangladesh, with another 1,000 being trained in January 2020.
Project researchers are also working alongside the private sector to trial seed treatment and biologically-based methods of pest control. Biocontrol sees researchers identify, release, and manage natural predators and parasitoids to the fall armyworm, while targeted and biologically-based pesticides are significantly less of a health risk for farmers, while also being effective.
The 22-month project, funded by USAID, has 6 key objectives:
Develop educational materials to aid in reaching audiences with information to improve understanding and management of fall armyworm.
Assist the Department of Agricultural Extension in deploying awareness raising and training campaigns.
Prepare the private sector for appropriate fall armyworm response.
Standing task force supported.
Generate data and evidence to guide integrated fall armyworm management.
The Fighting Back Against Fall Armyworm in Bangladesh project is aligned with Michigan State University’s Borlaug Higher Education for Agricultural Research and Development (BHEARD) program, which supports the long-term training of agricultural researchers in USAID’s Feed the Future priority countries.
To achieve synergies and scale, the project will also be supported in part by in-kind staff time and activities, through linkages to the third phase of the USAID-supported Cereal Systems Initiative for South Asia (CSISA), led by the International Maize and Wheat Improvement Centre (CIMMYT). CSISA and CIMMYT staff work very closely with Bangladesh’s Department of Agricultural Extension and the Bangladesh Maize and Wheat Research Institute (BWMRI) in addition to other partners under the Ministry of Agriculture.
A farm worker applies fertilizer in a field of Staha maize for seed production at Suba Agro’s Mbezi farm in Tanzania. (Photo: Peter Lowe/CIMMYT)
Crop yields in sub-Saharan Africa are generally low. This is in large part because of low fertilizer use. A recent study of six countries in sub-Saharan Africa showed that just 35% of farmers applied fertilizer. Some possible reasons for this could be that farmers may be unaware of the efficacy of fertilizer use; or have degraded soils that do not respond to fertilizer; they may not have the cash to purchase it; or because unpredictable rainfall makes such investments risky. It may also be because local fertilizer prices make their use insufficiently profitable for many farmers.
To better understand the potential fertilizer demand in a particular location, it is important to know how crops respond to fertilizer under local conditions, but it is critical to understand crop responses in terms of economic returns. This requires information about local market prices of fertilizers and other inputs, as well as the prices that a farmer could receive from selling the crop.
While national-level fertilizer prices may be available, it is necessary to consider the extent to which prices vary within countries, reflecting transportation costs and other factors. In the absence of such data, analysis of household-level behaviors requires assumptions about the prices smallholder farmers face — assumptions which may not be valid. For example, evaluations of the returns to production technologies settings have often assumed spatially invariant input and output prices or, in other words, that all farmers in a country face the same set of prices. This is at odds with what we know about economic remoteness and the highly variable market access conditions under which African smallholders operate.
An obstacle to using empirical data on sub-national disparities in fertilizer prices is the scarcity of such data. A new study focused on the spatial discrepancies in fertilizer prices. The study compiled local market urea price in eighteen countries in sub-Saharan Africa for the period between 2010-2018 and used spatial interpolation models — using points with known values to approximate values at other unknown points — to predict local prices at locations for which no empirical data was available. It was conducted by scientists at University of California, Davis, the International Maize and Wheat Improvement Center (CIMMYT) and the International Food Policy Research Institute (IFPRI). The authors note that this is the first major attempt to systematically describe the spatial variability of fertilizer prices within the target countries and test the ability to estimate the price at unsampled locations.
Predicted relative urea price (local price divided by the observed median national price) for areas with crop land in eight East African countries.
“Our study uncovers considerable spatial variation in fertilizer prices within African countries and gives a much more accurate representation of the economic realities faced by African smallholders than the picture suggested by using national average prices,” said Camila Bonilla Cedrez, PhD Candidate at University of California, Davis. “We show that in many countries, this variation can be predicted for unsampled locations by fitting models of prices as a function of longitude, latitude, and additional predictor variables that capture aspects of market access, demand, and environmental conditions.”
Urea prices were generally found to be more expensive in remote areas or away from large urban centers, ports of entry or blending facilities. There were some exceptions, though. In Benin, Ghana and Nigeria, prices went down when moving away from the coast, with the possible explanation being market prices in areas with higher demand are lower. In other locations, imports of fertilizer from neighboring countries with lower prices may be affecting prices in another country or region, much like political influence. Politically, well-connected villages can receive more input subsidies compared to the less connected ones.
“The performance of our price estimation methods and the simplicity of our approach suggest that large scale price mapping for rural areas is a cost-effective way to provide more useful price information for guiding policy, targeting interventions, and for enabling more realistic applied microeconomic research. For example, local price estimates could be incorporated into household-survey-based analysis of fertilizer adoption,” explained Jordan Chamberlin, CIMMYT spatial economist. “In addition, such predictive ‘price maps’ can be incorporated into targeting and planning frameworks for agricultural investments. For example, to target technology promotion efforts to the areas where those technologies are most likely to be profitable.”
Predicted relative urea price (local price divided by the observed median national price) for areas with crop land in nine West African countries.
“The evidence we have compiled in this paper suggests that, while investments in more comprehensive and spatially representative price data collection would be very useful, we may utilize spatial price prediction models to extend the value of existing data to better reflect local price variation through interpolation,” explained Robert J. Hijmans, professor at University of California, Davis. “Even if imperfect, such estimates almost certainly better reflect farmers’ economic realities than assumptions of spatially constant prices within a given country. We propose that spatial price estimation methods such as the ones we employ here serve for better approximating heterogeneous economic market landscapes.”
This study has illustrated new ways for incorporating spatial variation in prices into efforts to understand the profitability of agricultural technologies across rural areas in sub-Saharan Africa. The authors suggest that an important avenue for future empirical work would be to evaluate the extent to which the subnational price variation documented is a useful explanatory factor for observed variation in smallholder fertilizer use in sub-Saharan Africa, after controlling for local agronomic responses and output prices. One way to do that may be to integrate input and output price predictions into spatial crop models, and then evaluate the degree to which modeled fertilizer use profitability predicts observed fertilizer use rates across different locations.
Some of the participants at the “Gender dynamics in seed systems in sub-Saharan Africa” workshop held on December 2, 2019, in Nairobi, Kenya. (Photo: Kipenz Films/CIMMYT)
One important pillar of Africa’s food security is ensuring that quality seeds are developed and delivered to the millions of smallholder farmers that feed the continent. Reaching the last mile with climate-resilient and disease-resistant seeds remains a challenge in many parts of sub-Saharan Africa. “In countries where we invested in seed systems initiatives, we have seen an upsurge in smallholder farm productivity,” said Joseph DeVries, the President of Seed Systems Group. “A story that is not adequately told is that of the important role of women along the seed value chain. In Kenya, 40% of owners of agrodealer shops are women. The farming sector would gain a lot with a stronger role for women in developing a gender-sensitive seed sector,” he noted.
DeVries was one of the keynote speakers at the “Gender dynamics in seed systems in sub-Saharan Africa” workshop organized by the International Maize and Wheat Improvement Center (CIMMYT) on December 2, 2019 in Nairobi, Kenya. The meeting brought together researchers, development practitioners, donors, farmers’ representatives, farmers, seed companies and other private actors.
CIMMYT’s Gender and Development Specialist, Rahma Adam, observed that with the African seed sector being male-dominated, the patriarchal nature of the family and community systems make it harder for women to penetrate the sector easily. For instance, many women employed in the sector mostly dominate the low-paying jobs. Workshop participants agreed that while there are many opportunities for women in the sector, the barriers to entry are many.
Joseph DeVries, President of Seed Systems Group, addresses participants at the “Gender dynamics in seed systems in sub-Saharan Africa” workshop. (Photo: Kipenz Films/CIMMYT)
Acknowledging the gender gap in agriculture
“Decades of gender research have shown that where there is gender inequality, there is food insecurity,” remarked Jemimah Njuki, senior program specialist from the International Development Research Center (IDRC). The gender gap in agricultural productivity observed in sub-Saharan Africa — up to 30% in countries like Nigeria and Malawi — is often explained by unequal access to inputs and male labor for heavy operations such as land preparation, access to knowledge and capital.
Addressing such unequal access is not enough, according to Njuki. To switch to a truly gender-sensitive food system, “you need to address social norms and women’s agency and what they can do on their own.” Taking the example of financial services, women often find difficulties obtaining loans because banks ask for collateral like title deeds, which are typically in the name of the husband or a male in-law. Yet, women are very good at repaying their loans on time. Making finance institutions “womanable” as Njuki put it, would be good for the welfare of women and their family, hence good for business.
Jemimah Njuki, senior program officer at the International Development Research Center (IDRC), speaks at the workshop. (Photo: Kipenz Films/CIMMYT)
Is there such a thing as seed for women farmers?
Within a household, who has a say in buying new seeds? Do men and women farmers look for the same traits and attributes?
A study conducted in Ethiopia, Kenya, Tanzania and Uganda by Paswel Marenya, a senior agricultural economist at CIMMYT, revealed that in many cases, the man has a greater say in selecting new seed varieties. Other research shows that beyond grain yield, the characteristics of “a good variety” differ between men and women farmers. In the study, both genders mention what they were willing to pay as trade-off against yield. Women would favor a variety with a longer grain shelf-life (ability to store 3-4 months). Men preferred a variety that performs well with low fertilizer requirements. Equally, women farmers engaged in participatory varietal selections tended to provide more nuanced evaluation of varieties than men. Despite this evidence, seed companies do not often adapt their seed marketing strategy according to gender.
Making institutions and seed systems gender-sensitive
CIMMYT’s gender and development specialist Rahma Adam addresses participants at the “Gender dynamics in seed systems in sub-Saharan Africa” workshop. (Photo: Kipenz Films/CIMMYT)
Are there missed opportunities for the seed sector by being “gender-blind”? Rahma Adam believes “the current one-size-fits-all model does not work for many women farmers”. She advises seed companies to be more gender-sensitive when organizing seed marketing operations. Women tend to have less time to attend field demos, the major marketing tool for seed companies. Packaging may not be adapted to suit their more limited purchasing power.
There are good examples of women seed entrepreneurs that have established their niche and reach out to women farmers. Janey Leakey, Director of Leldet Seed Company in Nakuru, Kenya, is one such example. She markets small seed packs called Leldet bouquet, a mix of improved maize and legume seeds at the cost of a cup of tea, to enable women farmers test new varieties.
For the more informal sweet potato seed systems, many women farmers have been successfully engaged in lucrative vine multiplication, thanks to the use of women extensionists and women groups to teach appropriate storage techniques in drought-prone regions. “Such seed business can empower women within the household,” noted Jan Low, co-leader of the Sweetpotato for Profit and Health Initiative (SPHI) at the International Potato Center (CIP) and 2016 World Food Prize Laureate. A woman vine multiplier was able to negotiate with the husband for more land and water access to increase production.
Many other important actors in the public, private and development sectors have also been more deliberate in structuring some of their project or business implementation plans to include or benefit more women in the seed value chain. Among the players are CARE International, Kenya’s Ministry of Agriculture, the Centre for Agriculture and Bioscience International (CABI), the Seed Trade Association of Kenya (STAK), SeedCo, the Agricultural Market Development Trust (AGMARK), World Vision, the Food and Agriculture Organization (FAO), which attended and participated very actively in this workshop.
Some of the plans entail helping more women to access information on climate change to understand their cropping seasons, contracting women farmers as seed out-growers, encouraging and supporting them to join forces to produce seed in group settings. Some of these actors also train women to enhance their entrepreneurial acumen, help them to access finance, obtain the appropriate labor and time-saving machinery, and acquire small seed packs.
Ultimately, designing a seed system that works for men and women requires a holistic approach, from building women’s agency, addressing norms and unequal access to resources. It requires time, dedication, financial and human resources, as well as capabilities and multi-stakeholder collaboration. “The main take-home message is that building a gender-sensitive seed system starts with us,” said Amanda Lanzarone, program officer at the Bill & Melinda Gates Foundation.
In Nepal, it takes at least a year to collate the demand and supply of a required type and quantity of seed. A new digital seed information system is likely to change that, as it will enable all value chain actors to access information on seed demand and supply in real time. The information system is currently under development, as part of the Nepal Seed and Fertilizer (NSAF) project, funded by the United States Agency for International Development (USAID) and led by the International Maize and Wheat Improvement Center (CIMMYT).
In this system, a national database allows easy access to an online seed catalogue where characteristics and sources of all registered varieties are available. A balance sheet simultaneously gathers and shares real time information on seed demand and supply by all the stakeholders. The digital platform also helps to plan and monitor seed production and distribution over a period of time.
Screenshot of the DESIS portal, still under development.
Challenges to seed access
Over 2,500 seed entrepreneurs engaged in production, processing and marketing of seeds in Nepal rely on public research centers to get early generation seeds of various crops, especially cereals, for subsequent seed multiplication.
“The existing seed information system is cumbersome and the process of collecting information takes a minimum of one year before a seed company knows where to get the required amount and type of seed for multiplication,” said Laxmi Kant Dhakal, Chairperson of the Seed Entrepreneurs Association of Nepal (SEAN) and owner of a seed company in the far west of the country. Similarly, more than 700 rural municipalities and local units in Nepal require seeds to multiply under farmers cooperatives in their area.
One of the critical challenges farmers encounter around the world is timely access to quality seeds, due to unavailability of improved varieties, lack of information about them, and weak planning and supply management. Asmita Shrestha, a farmer in Surkhet district, has been involved in maize farming for the last 20 years. She is unaware of the availability of different types of maize that can be productive in the mid-hill region and therefore loses the opportunity to sow improved maize seeds and produce better harvests.
In Sindhupalchowk district, seed producer Ambika Thapa works in a cooperative and produces hybrid tomato seeds. Her problem is getting access to the right market that can provide a good profit for her efforts. A kilogram of hybrid tomato seed can fetch up to $2,000 in a retail and upscale market. However, she is not getting a quarter of this price due to lack of market information and linkages with buyers. This is the story of many Nepali female farmers, who account for over 60% of the rural farming community, where lack of improved technologies and access to profitable markets challenge farm productivity.
At present, the Seed Quality Control Center (SQCC), Nepal Agriculture Research Council (NARC), the Centre for Crop Development and Agro Bio-diversity Conservation (CCDABC) and the Vegetable Development Directorate (VDD) are using paper-based data collection systems to record and plan seed production every year. Aggregating seed demand and supply data and generating reports takes at least two to three months. Furthermore, individual provinces need to convene meetings to collect and estimate province-level seed demand that must come from rural municipalities and local bodies.
A digital technology solution
CIMMYT and its partners are leveraging digital technologies to create an integrated Digitally Enabled Seed Information System (DESIS) that is efficient, dynamic and scalable. This initiative was the result of collaboration between U.S. Global Development Lab and USAID under the Digital Development for Feed the Future (D2FTF) initiative, which aimed to demonstrate that digital tools and approaches can accelerate progress towards food security and nutrition goals.
FHI 360 talked to relevant stakeholders in Nepal to assess their needs, as part of the Mobile Solutions Technical Assistance and Research (mSTAR) project, funded by USAID. Based on this work, CIMMYT and its partners identified a local IT expert and launched the development of DESIS.
The Digitally Enabled Seed Information System (DESIS) will help to create market and research linkages for Nepal’s seed system.
DESIS will provide an automated version of the seed balance sheet. Using unique logins, agencies will be able to place their requests and seed producers to post their seed supplies. The platform will help to aggregate and manage breeder, foundation and source seed, as well as certified and labelled seed. The system will also include an offline seed catalogue where users can view seed characteristics, compare seeds and select released and registered varieties available in Nepal. Users can also generate seed quality reports on batches of seeds.
“As the main host of this system, the platform is well designed and perfectly applicable to the needs of SQCC,” said Madan Thapa, Chief of SQCC, during the initial user tests held at his office. Thapa also expressed the potential of the platform to adapt to future needs.
The system will also link farmers to seed suppliers and buyers, to build a better internal Nepalese seed market. The larger goal of DESIS is to help farmers grow better yields and improve livelihoods, while contributing to food security nationwide.
DESIS is planned to roll out in Nepal in early 2020. Primary users will be seed companies, agricultural research centers, the Ministry of Agriculture and Livestock Development, agrovets, cooperatives, farmers, development partners, universities, researchers, policy makers, and international institutions. The system is based on an open source software and will be available on a mobile website and Android app.
“It is highly secure, user friendly and easy to update,” said Warren Dally, an IT consultant who currently oversees the technical details of the software and the implementation process.
Farmers in Nepal show their most popular digital tool, a mobile phone, during a training. (Photo: Bandana Pradhan/CIMMYT)
As part of the NSAF project, CIMMYT is also working to roll out digital seed inspection and a QR code-based quality certification system. The higher vision of the system is to create a seed data warehouse that integrates the seed information portal and the seed market information system.
Digital solutions are critical to link the agricultural market with vital information so farmers can make decisions for better production and harvest. It will not be long before farmers like Asmita and Ambika can easily access information using their mobile phones on the type of variety suitable to grow in their region and the best market to sell their products.
Pakistan has released 20 new high-yielding, disease-resistant and climate change–resilient wheat and maize varieties during the year.
The achievement came mainly on the back of a partnership between the International Maize and Wheat Improvement Centre (CIMMYT) and the Pakistan Agricultural Research Council (PARC) with support from the US development agency USAID.
Hafiz Uddin, a farmer from Ulankhati, Tanpuna, Barisal, Bangladesh. He used seeder fertilizer drills to plant mung beans on one acre of land, which resulted in a better yield than planting manually. (Photo: Ranak Martin)
Over the last few decades, deteriorating soil fertility has been linked to decreasing agricultural yields in South Asia, a region marked by inequities in food and nutritional security.
As the demand for fertilizers grows, researchers are working with government and businesses to promote balanced nutrient management and the appropriate use of organic amendments among smallholder farmers. The Cereal Systems Initiative for South Asia (CSISA) has published a new policy brief outlining opportunities for innovation in the region.
Like all living organisms, crops need access to the right amount of nutrients for optimal growth. Plants get nutrients — like nitrogen, phosphorus, and potassium, in addition to other crucially important micronutrients — from soils and carbon, hydrogen, oxygen from the air and water. When existing soil nutrients are not sufficient to sustain good crop yields, additional nutrients must be added through fertilizers or manures, compost or crop residues. When this is not done, farmers effectively mine the soil of fertility, producing short-term gains, but undermining long-term sustainability.
Nutrient management involves using crop nutrients as efficiently as possible to improve productivity while reducing costs for farmers, and also protecting the environment by limiting greenhouse gas emissions and water quality contamination. The key behind nutrient management is appropriately balancing soil nutrient inputs — which can be enhanced when combined with appropriate soil organic matter management — with crop requirements. When the right quantities are applied at the right times, added nutrients help crops yields flourish. On the other hand, applying too little will limit yield and applying too much can harm the environment, while also compromising farmers’ ability to feed themselves or turn profits from the crops they grow.
Smallholder farmers in South Asia commonly practice poor nutrition management with a heavy reliance on nitrogenous fertilizer and a lack of balanced inputs and micronutrients. Declining soil fertility, improperly designed policy and nutrient management guidelines, and weak fertilizer marketing and distribution problems are among the reasons farmers fail to improve fertility on their farms. This is why it is imperative to support efforts to improve soil organic matter management and foster innovation in the fertilizer industry, and find innovative ways to target farmers, provide extension services and communicate messages on cost-effective and more sustainable strategies for matching high yields with appropriate nutrient management.
Cross-country learning reveals opportunities for improved nutrient management. The policy brief is based on outcomes from a cross-country dialogue facilitated by CSISA earlier this year in Kathmandu. The meeting saw researchers, government and business stakeholders from Bangladesh, India, Nepal, and Sri Lanka discuss challenges and opportunities to improving farmer knowledge and access to sufficient nutrients. Several key outcomes for policy makers and representatives of the agricultural development sector were identified during the workshop, and are included in the brief.
Extension services as an effective way to encourage a more balanced use of fertilizers among smallholder farmers. There is a need to build the capacity of extension to educate smallholders on a plant’s nutritional needs and proper fertilization. It also details how farmers’ needs assessments and human-centered design approaches need to be integrated while developing and delivering nutrient application recommendations and extension materials.
Nutrient subsidies must be reviewed to ensure they balance micro and macro-nutrients. Cross-country learning and evidence sharing on policies and subsidies to promote balanced nutrient application are discussed in the brief, as is the need to balance micro and macro-nutrient subsidies, in addition to the organization of subsidy programs in ways that assure farmers get access the right nutrients when and where they are needed the most. The brief also suggests additional research and evidence are needed to identify ways to assure that farmers’ behavior changes in response to subsidy programs.
Market, policy, and product innovations in the fertilizer industry must be encouraged. It describes the need for blended fertilizer products and programs to support them. A blend is made by mixing two or more fertilizer materials. For example, particles of nitrogen, phosphate and small amounts of secondary nutrients and micronutrients mixed together. Experience with blended products are uneven in the region, and markets for blends are nascent in Bangladesh and Nepal in particular. Cross-country technical support on how to develop blending factories and markets could be leveraged to accelerate blended fertilizer markets and to identify ways to ensure equitable access to these potentially beneficial products for smallholder farmers.
Wheat blast is a fast-acting and devastating fungal disease that threatens food safety and security in tropical areas in South America and South Asia. Directly striking the wheat ear, wheat blast can shrivel and deform the grain in less than a week from the first symptoms, leaving farmers no time to act.
The disease, caused by the fungus Magnaporthe oryzae pathotype triticum (MoT), can spread through infected seeds and survives on crop residues, as well as by spores that can travel long distances in the air.
Magnaporthe oryzae can infect many grasses, including barley, lolium, rice, and wheat, but specific isolates of this pathogen generally infect limited species; that is, wheat isolates infect preferably wheat plants but can use several more cereal and grass species as alternate hosts. The Bangladesh wheat blast isolate is being studied to determine its host range. The Magnaporthe oryzae genome is well-studied but major gaps remain in knowledge about its epidemiology.
The pathogen can infect all aerial wheat plant parts, but maximum damage is done when it infects the wheat ear. It can shrivel and deform the grain in less than a week from first symptoms, leaving farmers no time to act.
Where is wheat blast found?
First officially identified in Brazil in 1985, the disease is widespread in South American wheat fields, affecting as much as 3 million hectares in the early 1990s. It continues to seriously threaten the potential for wheat cropping in the region.
In 2016, wheat blast spread to Bangladesh, which suffered a severe outbreak. It has impacted around 15,000 hectares of land in eight districts, reducing yield on average by as much as 51% in the affected fields.
Wheat-producing countries and presence of wheat blast.
How does blast infect a wheat crop?
Wheat blast spreads through infected seeds, crop residues as well as by spores that can travel long distances in the air.
Blast appears sporadically on wheat and grows well on numerous other plants and crops, so rotations do not control it. The irregular frequency of outbreaks also makes it hard to understand or predict the precise conditions for disease development, or to methodically select resistant wheat lines.
At present blast requires concurrent heat and humidity to develop and is confined to areas with those conditions. However, crop fungi are known to mutate and adapt to new conditions, which should be considered in management efforts.
How can farmers prevent and manage wheat blast?
There are no widely available resistant varieties, and fungicides are expensive and provide only a partial defense. They are also often hard to obtain or use in the regions where blast occurs, and must be applied well before any symptoms appear — a prohibitive expense for many farmers.
The Magnaporthe oryzae fungus is physiologically and genetically complex, so even after more than three decades, scientists do not fully understand how it interacts with wheat or which genes in wheat confer durable resistance.
Researchers from the International Maize and Wheat Improvement Center (CIMMYT) are partnering with national researchers and meteorological agencies on ways to work towards solutions to mitigate the threat of wheat blast and increase the resilience of smallholder farmers in the region. Through the USAID-supported Cereal Systems Initiative for South Asia (CSISA) and Climate Services for Resilient Development (CSRD) projects, CIMMYT and its partners are developing agronomic methods and early warning systems so farmers can prepare for and reduce the impact of wheat blast.
CIMMYT works in a global collaboration to mitigate the threat of wheat blast, funded by the Australian Centre for International Agricultural Research (ACIAR), the CGIAR Research Program on Wheat (WHEAT), the Indian Council of Agricultural Research (ICAR) and the Swedish Research Council (Vetenskapsrådet). Some of the partners who collaborate include the Bangladesh Wheat and Maize Research Institute (BWMRI), Bolivia’s Instituto Nacional de Innovación Agropecuaria y Forestal (INIAF), Kansas State University and the Agricultural Research Service of the US (USDA-ARS).
More than 11,000 scientists signed on to a recent report showing that planet Earth is facing a climate emergency and the United Nations warned that the world is on course for a 3.2 degree spike by 2100, even if 2015 Paris Agreement commitments are met.
Agriculture, forestry, and land-use change are implicated in roughly a quarter of global greenhouse gas emissions.
Agriculture also offers opportunities to mitigate climate change and to help farmers — particularly smallholders in developing and emerging economies who have been hardest hit by hot weather and reduced, more erratic rainfall.
Most of CIMMYT’s work relates to climate change, helping farmers adapt to shocks while meeting the rising demand for food and, where possible, reducing emissions.
Family farmer Geofrey Kurgat (center) with his mother Elice Tole (left) and his nephew Ronny Kiprotich in their 1-acre field of Korongo wheat near Belbur, Nukuru, Kenya. (Photo: Peter Lowe/CIMMYT)
Climate-resilient crops and farming practices
53 million people are benefiting from drought-tolerant maize. Drought-tolerant maize varieties developed using conventional breeding provide at least 25% more grain than other varieties in dry conditions in sub-Saharan Africa — this represents as much as 1 ton per hectare more grain on average. These varieties are now grown on nearly 2.5 million hectares, benefiting an estimated 6 million households or 53 million people in the continent. One study shows that drought-tolerant maize can provide farming families in Zimbabwe an extra 9 months of food at no additional cost. The greatest productivity results when these varieties are used with reduced or zero tillage and keeping crop residues on the soil, as was demonstrated in southern Africa during the 2015-16 El Niño drought. Finally, tolerance in maize to high temperatures in combination with drought tolerance has a benefit at least twice that of either trait alone.
Wheat yields rise in difficult environments. Nearly two decades of data from 740 locations in more than 60 countries shows that CIMMYT breeding is pushing up wheat yields by almost 2% each year — that’s some 38 kilograms per hectare more annually over almost 20 years — under dry or otherwise challenging conditions. This is partly through use of drought-tolerant lines and crosses with wild grasses that boost wheat’s resilience. An international consortium is applying cutting-edge science to develop climate-resilient wheat. Three widely-adopted heat and drought-tolerant wheat lines from this work are helping farmers in Pakistan, a wheat powerhouse facing rising temperatures and drier conditions; the most popular was grown on an estimated 40,000 hectares in 2018.
Climate-smart soil and fertilizer management. Rice-wheat rotations are the predominant farming system on more than 13 million hectares in the Indo-Gangetic Plains of South Asia, providing food and livelihoods for hundreds of millions. If farmers in India alone fine-tuned crop fertilizer dosages using available technologies such as cellphones and photosynthesis sensors, each year they could produce nearly 14 million tons more grain, save 1.4 million tons of fertilizer, and cut CO2-equivalent greenhouse gas emissions by 5.3 million tons. Scientists have been studying and widely promoting such practices, as well as the use of direct seeding without tillage and keeping crop residues on the soil, farming methods that help capture and hold carbon and can save up to a ton of CO2 emissions per hectare, each crop cycle. Informed by CIMMYT researchers, India state officials seeking to reduce seasonal pollution in New Delhi and other cities have implemented policy measures to curb the burning of rice straw in northern India through widespread use of zero tillage.
Farmers going home for breakfast in Motoko district, Zimbabwe. (Photo: Peter Lowe/CIMMYT)
Measuring climate change impacts and savings
In a landmark study involving CIMMYT wheat physiologists and underlining nutritional impacts of climate change, it was found that increased atmospheric CO2 reduces wheat grain protein content. Given wheat’s role as a key source of protein in the diets of millions of the poor, the results show the need for breeding and other measures to address this effect.
CIMMYT scientists are devising approaches to gauge organic carbon stocks in soils. The stored carbon improves soil resilience and fertility and reduces its emissions of greenhouse gases. Their research also provides the basis for a new global soil information system and to assess the effectiveness of resource-conserving crop management practices.
CIMMYT scientist Francisco Pinto operates a drone over wheat plots at CIMMYT’s experimental station in Ciudad Obregon, Mexico. (Photo: Alfonso Cortés/CIMMYT)
Managing pests and diseases
Rising temperatures and shifting precipitation are causing the emergence and spread of deadly new crop diseases and insect pests. Research partners worldwide are helping farmers to gain an upper hand by monitoring and sharing information about pathogen and pest movements, by spreading control measures and fostering timely access to fungicides and pesticides, and by developing maize and wheat varieties that feature genetic resistance to these organisms.
Viruses and moth larvae assail maize. Rapid and coordinated action among public and private institutions across sub-Saharan Africa has averted a food security disaster by containing the spread of maize lethal necrosis, a viral disease which appeared in Kenya in 2011 and quickly moved to maize fields regionwide. Measures have included capacity development with seed companies, extension workers, and farmers the development of new disease-resilient maize hybrids.
The insect known as fall armyworm hit Africa in 2016, quickly ranged across nearly all the continent’s maize lands and is now spreading in Asia. Regional and international consortia are combating the pest with guidance on integrated pest management, organized trainings and videos to support smallholder farmers, and breeding maize varieties that can at least partly resist fall armyworm.
New fungal diseases threaten world wheat harvests. The Ug99 race of wheat stem rust emerged in eastern Africa in the late 1990s and spawned 13 new strains that eventually appeared in 13 countries of Africa and beyond. Adding to wheat’s adversity, a devastating malady from the Americas known as “wheat blast” suddenly appeared in Bangladesh in 2016, causing wheat crop losses as high as 30% on a large area and threatening to move quickly throughout South Asia’s vast wheat lands.
A community volunteer of an agricultural cooperative (left) uses the Plantix smartphone app to help a farmer diagnose pests in his maize field in Bardiya district, Nepal. (Photo: Bandana Pradhan/CIMMYT)
Partners and funders of CIMMYT’s climate research
A global leader in publicly-funded maize and wheat research and related farming systems, CIMMYT is a member of CGIAR and leads the South Asia Regional Program of the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS).
CIMMYT receives support for research relating to climate change from national governments, foundations, development banks and other public and private agencies. Top funders include CGIAR Research Programs and Platforms, the Bill & Melinda Gates Foundation, Mexico’s Secretary of Agriculture and Rural Development (SADER), the United States Agency for International Development (USAID), the UK Department for International Development (DFID), the Australian Centre for International Agricultural Research (ACIAR), Cornell University, the German aid agency GIZ, the UK Biotechnology and Biological Sciences Research Council (BBSRC), and CGIAR Trust Fund Contributors to Window 1 &2.
Judith Thomson, agrodealer in Mbalizi, Mbeya district, Tanzania. (Photo: Owekisha Kwigizile)
Many Tanzanian smallholder farmers fail to produce even 1 ton of maize grain per hectare. To improve crop yields, a farmer needs the right seeds and complementary inputs, including inorganic fertilizer. The “right” inputs will depend upon what his or her geographical location and farming system are. How many farmers have access to such inputs and advice? What is the distribution of agrodealers in rural areas? What do they stock, and at what prices?
The International Maize and Wheat Improvement Center (CIMMYT) recently carried out a survey of agrodealers in Uganda and Tanzania to answer such questions related to the last-mile delivery of seeds and other agronomic inputs.
This is a joint initiative from two projects — Taking Maize Agronomy to Scale in Africa (TAMASA) and Strengthening product profile-based maize breeding and varietal turnover in Eastern and Southern Africa — funded by the Bill & Melinda Gates Foundation and USAID.
For the study, CIMMYT teams interviewed 233 agrodealers in Uganda and 299 agrodealers in Tanzania. The survey started in September 2019, just before the main maize planting season, and covered five districts in each country, in both easy-to-reach and remote areas.
For maize seed, researchers looked at which varieties are available at the agrodealer and how do they decide on what to stock.
Agrodealers were also asked to report the key selling attribute of the different varieties they had in store whether it was yield, drought tolerance, maturity level or another marketing characteristic like pricing or packaging. Such information will give some better insights for CIMMYT’s maize breeding team about perceived differences along the seed value chain on key attributes and product profiles.
For example, a new variety in Uganda that was tolerant to maize lethal necrosis (MLN), was mainly promoted as a double cobber and not as MLN tolerant. And unlike in Uganda, there was no “cheap variety” option available in Tanzania, according to the agrodealers interviewed for the study, although high seed prices were often mentioned as the main barrier for seed purchases.
Better understanding how retailers select their varieties could help improve varietal turnover, a key indicator of how fast CIMMYT’s research reaches out farmers.
Besides their own role, it is also interesting to see how agrodealers perceive external challenges to influence farmer adoption of improved varieties. In Uganda, agrodealers saw counterfeit seed and government free seed distributions to farmers as the main challenges for their business, issues that were not frequently mentioned in Tanzania.
Understanding input market characteristics
Enumerator Mary Mdache (left) interviews Shangwe Stephano, staff of BAYDA agrovet shop in Haydom town, Mbulu district, Tanzania. (Photo: Furaha Joseph)
The use of fertilizer is very low in sub-Saharan Africa, around 8-12 kg per hectare, twenty times less than Western standards. Fertilizer access and affordability have been cited as key factors in the low rates of uptake.
The study may shed some new light on this, as it looks at what types of fertilizer is available to farmers at agrodealer shops, and what drives sale and prices. Researchers will examine whether there is a competition effect and how transport costs or subsidies impede the growth of the fertilizer market.
Georeferencing of interviewed agrodealers and farmer population mapping will help reveal the degree to which agrodealers are concentrated in particular areas, leaving other areas with relatively little local access to inputs. Project researchers will investigate how marketing conditions vary across such situation, examining, for instance, how input pricing strategies, selection and quality varies spatially. The team will also use data collected on fertilizer prices to further refine regional fertilizer profitability maps.
Such mapping exercises could help improve the relevance of extension advice. As an example, to tackle acid soils or phosphorus deficiency, could farmers find the recommended input, lime or appropriate P fertilizer at the right time and right price, so that it is profitable for them?
The detailed results of the study are expected in early 2020 to guide agronomic investments and policies for more functional input markets that drive a much-needed sustainable intensification of African smallholder agriculture.